1
|
Lumbrokinase, a Fibrinolytic Enzyme, Prevents Intra-Abdominal Adhesion by Inhibiting the Migrative and Adhesive Activities of Fibroblast via Attenuation of the AP-1/ICAM-1 Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2023; 2023:4050730. [PMID: 36685669 PMCID: PMC9851794 DOI: 10.1155/2023/4050730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/10/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023]
Abstract
Intra-abdominal adhesion is a complication following abdominal surgery caused by the suppression of fibrinolytic activity and aggravated fibroblast invasion of the injured area, which may lead to chronic illnesses such as chronic pain, intestinal obstruction, and female infertility. This study hypothesized that lumbrokinase, a fibrinolytic enzyme extracted from the earthworm, supports the wound healing process. Therefore, we assessed the effect of lumbrokinase on intra-abdominal adhesion. Lumbrokinase treatment significantly decreased the severity and the area of intra-abdominal adhesion in vivo in a dose-dependent manner compared with the controls (untreated and hyaluronate-treated). Lumbrokinase-associated adverse effects were not observed. Immunohistochemical analysis of adhesion tissues revealed a loosened adhesive band between tissues, coupled with significantly decreased peritoneal thickening in the lumbrokinase-treated group versus the control group. Three-dimensional spheroid, MTT, and scratch wound migration assays using the IMR-90 human fibroblast cell line demonstrated that lumbrokinase significantly attenuated the migration and adhesive activity of fibroblasts without compromising cell proliferation. The luciferase assay and western blot analysis showed that lumbrokinase inhibited the AP-1/ICAM-1 cell adhesion signaling pathway. Therefore, lumbrokinase decreases intra-abdominal adhesion and peritoneal thickening by augmenting fibrinolytic action and inhibiting fibroblast migration and adhesive activity via attenuation of the AP-1/ICAM-1 signaling pathway. Lumbrokinase is thus a promising agent to prevent intra-abdominal adhesion.
Collapse
|
2
|
An Integrated Strategy of Chemical Fingerprint and Network Pharmacology for the Discovery of Efficacy-Related Q-Markers of Pheretima. Int J Anal Chem 2022; 2022:8774913. [PMID: 36245784 PMCID: PMC9553678 DOI: 10.1155/2022/8774913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/22/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Pheretima, one of the animal-derived traditional Chinese medicines, has been wildly used in various cardiovascular and cerebrovascular diseases, including stroke, coronary heart disease, hyperlipidemia, and hyperglycemia. However, it was still a big challenge to select the quality markers for Pheretima quality control. The fingerprint and network pharmacology-based strategy was proposed to screen the efficiency related quality markers (Q-Markers) of Pheretima. The ratio of sample to liquid, ultrasonic-extraction time, temperature, and power were optimized by orthogonal design, respectively. The chemical fingerprint of forty batches of Pheretima was established, and six common peaks were screened. The network pharmacology was used to construct the Pheretima-Components-Targets-Pathways-Stroke network. It was found that six potential efficacy Q-markers in Pheretima could exert the relaxing meridians effect to treat stroke through acting on multiple targets and regulating various pathways. A simple HPLC-DAD method was developed and validated to determine the efficacy Q-markers. Grey relational analysis was used to further verify the relation of potential efficiency related quality markers with the anticoagulation activity of Pheretima, which indicated that the contents of these markers exhibited high relationship with the anticoagulation activity. It was concluded that hypoxanthine, uridine, phenylalanine, inosine, guanosine, and tryptophan were selected as quality markers related to relaxing meridians to evaluate the quality of Pheretima. The fingerprint and network pharmacology-based strategy was proved to be a powerful strategy for the discovery of efficiency related Q-markers of Pheretima.
Collapse
|
3
|
Effects of PIN on Osteoblast Differentiation and Matrix Mineralization through Runt-Related Transcription Factor. Int J Mol Sci 2020; 21:ijms21249579. [PMID: 33339165 PMCID: PMC7765567 DOI: 10.3390/ijms21249579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Styrax Japonica Sieb. et Zucc. has been used as traditional medicine in inflammatory diseases, and isolated compounds have shown pharmacological activities. Pinoresinol glucoside (PIN) belonging to lignins was isolated from the stem bark of S. Japonica. This study aimed to investigate the biological function and mechanisms of PIN on cell migration, osteoblast differentiation, and matrix mineralization. Herein, we investigated the effects of PIN in MC3T3-E1 pre-osteoblasts, which are widely used for studying osteoblast behavior in in vitro cell systems. At concentrations ranging from 0.1 to 100 μM, PIN had no cell toxicity in pre-osteoblasts. Pre-osteoblasts induced osteoblast differentiation, and the treatment of PIN (10 and 30 μM) promoted the cell migration rate in a dose-dependent manner. At concentrations of 10 and 30 μM, PIN elevated early osteoblast differentiation in a dose-dependent manner, as indicated by increases in alkaline phosphatase (ALP) staining and activity. Subsequently, PIN also increased the formation of mineralized nodules in a dose-dependent manner, as indicated by alizarin red S (ARS) staining, demonstrating positive effects of PIN on late osteoblast differentiation. In addition, PIN induced the mRNA level of BMP2, ALP, and osteocalcin (OCN). PIN also upregulated the protein level of BMP2 and increased canonical BMP2 signaling molecules, the phosphorylation of Smad1/5/8, and the protein level of Runt-related transcription factor 2 (RUNX2). Furthermore, PIN activated non-canonical BMP2 signaling molecules, activated MAP kinases, and increased β-catenin signaling. The findings of this study indicate that PIN has biological roles in osteoblast differentiation and matrix mineralization, and suggest that PIN might have anabolic effects in bone diseases such as osteoporosis and periodontitis.
Collapse
|
4
|
The transcriptome of anterior regeneration in earthworm Eudrilus eugeniae. Mol Biol Rep 2020; 48:259-283. [PMID: 33306150 DOI: 10.1007/s11033-020-06044-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/28/2020] [Indexed: 12/25/2022]
Abstract
The oligochaete earthworm, Eudrilus eugeniae is capable of regenerating both anterior and posterior segments. The present study focuses on the transcriptome analysis of earthworm E. eugeniae to identify and functionally annotate the key genes supporting the anterior blastema formation and regulating the anterior regeneration of the worm. The Illumina sequencing generated a total of 91,593,182 raw reads which were assembled into 105,193 contigs using CLC genomics workbench. In total, 40,946 contigs were annotated against the NCBI nr and SwissProt database and among them, 15,702 contigs were assigned to 14,575 GO terms. Besides a total of 9389 contigs were mapped to 416 KEGG biological pathways. The RNA-Seq comparison study identified 10,868 differentially expressed genes (DEGs) and of them, 3986 genes were significantly upregulated in the anterior regenerated blastema tissue samples of the worm. The GO enrichment analysis showed angiogenesis and unfolded protein binding as the top enriched functions and the pathway enrichment analysis denoted TCA cycle as the most significantly enriched pathway associated with the upregulated gene dataset of the worm. The identified DEGs and their function and pathway information can be effectively utilized further to interpret the key cellular, genetic and molecular events associated with the regeneration of the worm.
Collapse
|
5
|
Park KR, Leem HH, Cho M, Kang SW, Yun HM. Effects of the amide alkaloid piperyline on apoptosis, autophagy, and differentiation of pre-osteoblasts. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 79:153347. [PMID: 32992084 DOI: 10.1016/j.phymed.2020.153347] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/26/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Amide alkaloidsare typical constituents in plants of the Piperaceae family. Most of the pharmacological properties of Piper nigrum L. are attributed to the major amide alkaloid, piperine. Piperyline (PIPE) is a further amide alkaloid that has been isolated from P. nigrum. HYPOTHESIS/PURPOSE This study was performed to examine the biological effects of PIPE on pre-osteoblasts and elucidate the underlying mechanisms. STUDY DESIGN We investigated the effects of PIPE in MC3T3E-1 cells, which are widely used for studying osteoblast behavior in in vitro cell systems. METHODS We evaluated cell viability based on the MTT assay, apoptosis by TUNEL staining, adhesion and migration by cell adhesion and migration assays, and osteoblast differentiation by alkaline phosphatase activity and staining. Western blot and immunocytochemical analyses were used to investigate cell signaling pathways. RESULTS We found that at concentrations ranging from 1 to 30 μM, PIPE inhibited cell growth and induced apoptosis in pre-osteoblasts, which was accompanied by the upregulation of apoptotic proteins but downregulation of anti-apoptotic proteins. In contrast, PIPE had no appreciable effect on the autophagy pathway. Nevertheless, PIPE reduced cell adhesion and migration via the inactivation of non-receptor tyrosine kinase (Src)/focal adhesion kinase (FAK) and mitogen-activated protein kinases, and also promoted the downregulation of matrix metalloproteinase 2 and 9 levels. Furthermore, at concentrations of 10 and 30 μM, PIPE suppressed osteoblast differentiation, as indicated by reductions in alkaline phosphatase staining and activity. In addition, PIPE reduced the protein levels of phospho-Smad1/5/8 and runt-related transcription factor 2, and the mRNA levels of osteopontin, alkaline phosphatase, and osteocalcin. CONCLUSION The findings of this study indicate that PIPE has biological effects associated with cell adhesion, migration, proliferation, and osteoblast differentiation, and suggest a potential role for this alkaloid in the treatment of bone diseases.
Collapse
Affiliation(s)
- Kyung-Ran Park
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung HeeUniversity,26, Kyungheedae-ro, Dongdaemun-gu,Seoul02453, South Korea
| | - Hyun Hee Leem
- National Development Institute of Korean Medicine, Gyeongsan38540, South Korea
| | - MyoungLae Cho
- National Development Institute of Korean Medicine, Gyeongsan38540, South Korea
| | - Sang Wook Kang
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung HeeUniversity,26, Kyungheedae-ro, Dongdaemun-gu,Seoul02453, South Korea.
| | - Hyung-Mun Yun
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung HeeUniversity,26, Kyungheedae-ro, Dongdaemun-gu,Seoul02453, South Korea.
| |
Collapse
|
6
|
7-HYB, a Phenolic Compound Isolated from Myristica fragrans Houtt Increases Cell Migration, Osteoblast Differentiation, and Mineralization through BMP2 and β-catenin Signaling. Int J Mol Sci 2020; 21:ijms21218059. [PMID: 33137925 PMCID: PMC7663243 DOI: 10.3390/ijms21218059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
The seeds (nutmegs) of Myristica fragrans Houtt have been used as popular spices and traditional medicine to treat a variety of diseases. A phenolic compound, ((7S)-8′-(benzo[3′,4′]dioxol-1′-yl)-7-hydroxypropyl)benzene-2,4-diol (7-HYB) was isolated from the seeds of M. fragrans. This study aimed to investigate the anabolic effects of 7-HYB in osteogenesis and bone mineralization. In the present study, 7-HYB promotes the early and late differentiation of MC3T3-E1 preosteoblasts. 7-HYB also elevated cell migration rate during differentiation of the preosteoblasts with the increased phosphorylation of mitogen-activated protein kinases (MAPKs) including ERK1/2, p38, and JNK. In addition, 7-HYB induced the protein level of BMP2, the phosphorylation of Smad1/5/8, and the expression of RUNX2. 7-HYB also inhibited GSK3β and subsequently increased the level of β-catenin. However, in bone marrow macrophages (BMMs), 7-HYB has no biological effects in cell viability, TRAP-positive multinuclear osteoclasts, and gene expression (c-Fos and NF-ATc1) in receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis. Our findings suggest that 7-HYB plays an important role in osteoblast differentiation through the BMP2 and β-catenin signaling pathway. It also indicates that 7-HYB might have a therapeutic effect for the treatment of bone diseases such as osteoporosis and periodontitis.
Collapse
|
7
|
TMARg, a Novel Anthraquinone Isolated from Rubia cordifolia Nakai, Increases Osteogenesis and Mineralization through BMP2 and β-Catenin Signaling. Int J Mol Sci 2020; 21:ijms21155332. [PMID: 32727092 PMCID: PMC7432489 DOI: 10.3390/ijms21155332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Plant extracts have long been regarded as useful medicines in the treatment of human diseases. Rubia cordifolia Nakai has been used as a traditional medicine, as it has pharmacological properties such as antioxidant and anti-inflammatory activity. However, the biological functions of TMARg, isolated from the roots of R. cordifolia, in osteoblast differentiation remain unknown. This study was performed to investigate the pharmacological effects and intracellular signaling of TMARg in the osteoblast differentiation of pre-osteoblast MC3T3-E1 cells and mesenchymal precursor C2C12 cells. Methods: Cell viability was evaluated using an MTT assay. Early and late osteoblast differentiation was examined by analyzing the activity of alkaline phosphatase (ALP), and by staining it with Alizarin red S (ARS). Cell migration was determined by using migration assays. Western blot analysis and immunocytochemical analysis were used to examine the intracellular signaling pathways and differentiation proteins. Results: In the present study, TMARg showed no cytotoxicity and increased the osteoblast differentiation in pre-osteoblasts, as assessed from the alkaline phosphate (ALP) staining and activity and ARS staining. TMARg also induced BMP2 expression and increased the p-smad1/5/8-RUNX2 and β-catenin pathways in both MC3T3-E1 and C2C12 cells. Furthermore, TMARg activated mitogen-activated protein kinases (MAPKs) and increased the cell migration rate. In addition, the TMARg-mediated osteoblast differentiation was suppressed by BMP and Wnt inhibitors with the downregulation of BMP2 expression. Conclusion: These findings demonstrate that TMARg exerts pharmacological and biological effects on osteoblast differentiation through the activation of BMP2 and β-catenin signaling pathways, and suggest that TMARg might be a potential phytomedicine for the treatment of bone diseases.
Collapse
|
8
|
A Phytochemical Constituent, (E)-Methyl-Cinnamate Isolated from Alpinia katsumadai Hayata Suppresses Cell Survival, Migration, and Differentiation in Pre-Osteoblasts. Int J Mol Sci 2020; 21:ijms21103700. [PMID: 32456334 PMCID: PMC7279157 DOI: 10.3390/ijms21103700] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND (E)-methyl-cinnamate (EMC), a phytochemical constituent isolated from Alpinia katsumadai Hayata, is a natural flavor compound with anti-inflammatory properties, which is widely used in the food and commodity industry. However, the pharmacological effects of methyl-cinnamate on pre-osteoblasts remain unknown. This study aimed to investigate the pharmacological effects and mechanisms of EMC in pre-osteoblast MC3T3-E1 cells (pre-osteoblasts). METHODS Cell viability and apoptosis were evaluated using the MTT assay and TUNEL staining. Cell migration and osteoblast differentiation were examined using migration assays, as well as alkaline phosphatase activity and staining assays. Western blot analysis was used to examine intracellular signaling pathways and apoptotic proteins. RESULTS EMC decreased cell viability with morphological changes and increased apoptosis in pre-osteoblasts. EMC also induced the cleavage of Poly (ADP-ribose) polymerase (PARP) and caspase-3 and reduced the expression of anti-apoptotic proteins. In addition, EMC increased TUNEL-positive cells in pre-osteoblasts, decreased the activation of mitogen-activated protein kinases, and suppressed cell migration rate in pre-osteoblasts. Subsequently, EMC inhibited the osteoblast differentiation of pre-osteoblasts, as assessed by alkaline phosphatase staining and activity assays. CONCLUSION These findings demonstrate that EMC has a pharmacological and biological role in cell survival, migration, and osteoblast differentiation. It suggests that EMC might be a potential phytomedicine for treating abnormalities of osteoblast function in bone diseases.
Collapse
|
9
|
Wang Z, Mudalal M, Sun Y, Liu Y, Wang J, Wang Y, Sun X, Zhou Y. The Effects of Leukocyte-Platelet Rich Fibrin (L-PRF) on Suppression of the Expressions of the Pro-Inflammatory Cytokines, and Proliferation of Schwann Cell, and Neurotrophic Factors. Sci Rep 2020; 10:2421. [PMID: 32051476 PMCID: PMC7016122 DOI: 10.1038/s41598-020-59319-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/27/2020] [Indexed: 11/21/2022] Open
Abstract
This study evaluates the use of L-PRF as an autologous scaffold in nerve regeneration, and Schwann cells (SCs) proliferation and secretion of neurotrophic factors and its anti-inflammatory effect on SC Porphyromonas Gingivalis-Lipopolysaccharide (PG-LPS)-induced inflammatory responses in vitro. SEM was done to investigate various features of L-PRF. L-PRF-extracts was used to investigate the release of growth factors and treatment of SCs line. ELISA was applied to examine the release of IGF-1. The proliferative effect of L-PRF on SCs was assessed with CCK-8 assay. The effect of L-PRF on the mRNA and protein expression of SC neurotrophic factors were analyzed by RT-qPCR and ELISA. CCK-8 assay and RT-qPCR were used to determine the required concentration and the action time of PG-LPS before the anti-inflammatory effect of L-PRF was determined by measuring the changes in IL-1β, IL-6, and TNF-a with RT-qPCR and ELISA. There are different features in L-PRF. Fourteen days was sufficient to release adequate GF. The mRNA expressions of the pro-inflammatory cytokines were notably raised by PG-LPS in 3-hours treatment. L-PRF can increase SC proliferation, neurotrophic factors secretion, and suppress SC PG-LPS-induced inflammatory responses in vitro. L-PRF has the potential as an autologous biological additive for peripheral nerve regeneration in the event of nerve inflammation and injuries.
Collapse
Affiliation(s)
- Zhanqi Wang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Provincial Key Laboratory of Dental Development, Jaw Remodeling and Regeneration, Jilin University, Changchun, 130021, China
| | - Mahmoud Mudalal
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Provincial Key Laboratory of Dental Development, Jaw Remodeling and Regeneration, Jilin University, Changchun, 130021, China
- Department of Oral and Maxillofacial Surgery and Periodontology, Faculty of Dentistry, The Arab American University, Jenin, 240, Palestine
| | - Yue Sun
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Provincial Key Laboratory of Dental Development, Jaw Remodeling and Regeneration, Jilin University, Changchun, 130021, China
| | - Yiping Liu
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Provincial Key Laboratory of Dental Development, Jaw Remodeling and Regeneration, Jilin University, Changchun, 130021, China
| | - Jia Wang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Provincial Key Laboratory of Dental Development, Jaw Remodeling and Regeneration, Jilin University, Changchun, 130021, China
| | - Yao Wang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Provincial Key Laboratory of Dental Development, Jaw Remodeling and Regeneration, Jilin University, Changchun, 130021, China
| | - Xiaolin Sun
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China.
- Provincial Key Laboratory of Dental Development, Jaw Remodeling and Regeneration, Jilin University, Changchun, 130021, China.
| | - Yanmin Zhou
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China.
- Provincial Key Laboratory of Dental Development, Jaw Remodeling and Regeneration, Jilin University, Changchun, 130021, China.
| |
Collapse
|
10
|
Wu CH, Liu FC, Pan CH, Lai MT, Lan SJ, Wu CH, Sheu MJ. Suppression of Cell Growth, Migration and Drug Resistance by Ethanolic Extract of Antrodia cinnamomea in Human Lung Cancer A549 Cells and C57BL/6J Allograft Tumor Model. Int J Mol Sci 2018. [PMID: 29522490 PMCID: PMC5877652 DOI: 10.3390/ijms19030791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The purpose of this study was to investigate the inhibitory activities of ethanolic extracts from Antrodia cinnamomea (EEAC) on lung cancer. Cell proliferation and cell cycle distribution were analyzed using (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay and flow cytometry, respectively. Wound-healing assay, Western blotting, and a murine tumor model were separately used to examine cell migration, protein expression, and tumor repression. Our results showed that EEAC induced cell cycle arrest at the G0/G1 phase resulting decreased cell viability in A549 cells. Moreover, EEAC up-regulated the growth-suppressing proteins, adenosine 5′-monophosphate-activated protein kinase (AMPK), p21 and p27, but down-regulated the growth-promoting proteins, protein kinase B (Akt), mammalian tarfet of rapamycin (mTOR), extracellular signal-regulating kinase 1/2 (ERK1/2), retinoblastoma protein (Rb), cyclin E, and cyclin D1. EEAC also inhibited A549 cell migration and reduced expression of gelatinases. In addition, our data showed that tumor growth was suppressed after treatment with EEAC in a murine allograft tumor model. Some bioactive compounds from EEAC, such as cordycepin and zhankuic acid A, were demonstrated to reduce the protein expressions of matrix metalloproteinase (MMP)-9 and cyclin D1 in A549 cells. Furthermore, EEAC enhanced chemosensitivity of A549 to paclitaxel by reducing the protein levels of caveolin-1. Our data suggests that EEAC has the potential to be an adjuvant medicine for the treatment of lung cancer.
Collapse
Affiliation(s)
- Chi-Han Wu
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan.
| | - Fon-Chang Liu
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan.
| | - Chun-Hsu Pan
- School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
| | - Ming-Tsung Lai
- Department of Pathology, Taichung Hospital, Ministry of Health and Welfare Taiwan, Taichung 40343, Taiwan.
| | - Shou-Jen Lan
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan.
| | - Chieh-Hsi Wu
- School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
| | - Ming-Jyh Sheu
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
11
|
Luo W, Deng ZH, Li R, Cheng G, Kotian RN, Li YS, Li WP. Study of analgesic effect of earthworm extract. Biosci Rep 2018; 38:BSR20171554. [PMID: 29273677 PMCID: PMC5784179 DOI: 10.1042/bsr20171554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/03/2017] [Accepted: 12/21/2017] [Indexed: 01/24/2023] Open
Abstract
Pain represents a major clinical problem and one which has exercised generations of healthcare professionals. Earthworms are used as a traditional Chinese medicine, and have been applied pharmacologically and clinically since a long time in China. However, the analgesic effects of earthworm extract (EE) are seldom studied. Hence, we evaluated the analgesic effects of EE in mice. The obtained data showed that EE increased pain threshold and exhibited peripheral but not central analgesic effects in mice; evidenced by increased inhibition ratio in acetic acid writhing test and formalin test, whereas only slight increase in inhibition ratio in hot plate test and tail immersion test. In addition, EE decreased serum norepinephrine (NE), 5-hydroxytryptamine (5-HT), and nitric oxide (NO) synthase (NOS) concentration, similar to other analgesic drugs like morphine and aspirin. In a nutshell, the obtained data have demonstrated that EE has peripheral analgesic properties and could be used as a promising analgesic drug.
Collapse
Affiliation(s)
- Wei Luo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Zhen-Han Deng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Rui Li
- Department of Animal Science, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, P.R. China
| | - Guo Cheng
- Department of Animal Science, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, P.R. China
| | - Ronak Naveenchandra Kotian
- Department of Orthopaedic Surgery, Victoria Hospital, Bangalore Medical College and Research Institute, Bangalore, India
| | - Yu-Sheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Wen-Ping Li
- Department of Animal Science, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, P.R. China
| |
Collapse
|
12
|
Yang R, Zhang Y, Huang D, Luo X, Zhang L, Zhu X, Zhang X, Liu Z, Han JY, Xiong JW. Miconazole protects blood vessels from MMP9-dependent rupture and hemorrhage. Dis Model Mech 2017; 10:337-348. [PMID: 28153846 PMCID: PMC5374319 DOI: 10.1242/dmm.027268] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 01/23/2017] [Indexed: 12/11/2022] Open
Abstract
Hemorrhagic stroke accounts for 10-15% of all strokes and is strongly
associated with mortality and morbidity worldwide, but its prevention and
therapeutic interventions remain a major challenge. Here, we report the
identification of miconazole as a hemorrhagic suppressor by a small-molecule
screen in zebrafish. We found that a hypomorphic mutant fn40a,
one of several known β-pix mutant alleles in zebrafish,
had the major symptoms of brain hemorrhage, vessel rupture and inflammation as
those in hemorrhagic stroke patients. A small-molecule screen with mutant
embryos identified the anti-fungal drug miconazole as a potent hemorrhagic
suppressor. Miconazole inhibited both brain hemorrhages in zebrafish and
mesenteric hemorrhages in rats by decreasing matrix metalloproteinase 9
(MMP9)-dependent vessel rupture. Mechanistically, miconazole downregulated the
levels of pErk and Mmp9 to protect vascular integrity in fn40a
mutants. Therefore, our findings demonstrate that miconazole protects blood
vessels from hemorrhages by downregulating the pERK-MMP9 axis from zebrafish to
mammals and shed light on the potential of phenotype-based screens in zebrafish
for the discovery of new drug candidates and chemical probes for hemorrhagic
stroke. Summary: A phenotype-based chemical screen in zebrafish identifies
miconazole as a novel hemorrhagic suppressor. Miconazole inhibits vessel rupture
and hemorrhages by decreasing pErk and MMP9 in zebrafish and rats.
Collapse
Affiliation(s)
- Ran Yang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100871, China
| | - Yunpei Zhang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Dandan Huang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Xiao Luo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100871, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100871, China
| | - Xiaojun Zhu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100871, China
| | - Xiaolin Zhang
- AstraZeneca Asia and Emerging Market Innovative Medicine and Early Development, Shanghai 201203, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100871, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jing-Wei Xiong
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China .,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
13
|
QIN JIE, WANG LIN, ZHENG LING, ZHOU XIAOYAN, ZHANG YIDI, YANG TINGTING, ZHOU YANMIN. Concentrated growth factor promotes Schwann cell migration partly through the integrin β1-mediated activation of the focal adhesion kinase pathway. Int J Mol Med 2016; 37:1363-70. [DOI: 10.3892/ijmm.2016.2520] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 03/01/2016] [Indexed: 11/06/2022] Open
|
14
|
Zhou C, Huang M, Xie L, Shen J, Xiao T, Wang R. IVIG inhibits TNF-α-induced MMP9 expression and activity in monocytes by suppressing NF-κB and P38 MAPK activation. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:15879-15886. [PMID: 26884859 PMCID: PMC4730072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/25/2015] [Indexed: 06/05/2023]
Abstract
Matrix metalloproteinase-9 (MMP9) has been involved in inflammatory and pathologic processes of coronary artery lesions (CAL) in Kawasaki disease (KD). Intravenous immunoglobulin (IVIG), a traditional treatment for Kawasaki disease, could decrease the expressions of MMP9. The purpose of this study was to investigate the protective effect of IVIG in chemotactic migration of monocyte and the regulation of MMP9 induced by tumor necrosis factor-α (TNF-α) in U937s. Studies were carried out with real time polymerase chain reaction (RT-PCR), zymographic, Western blotting and immunofluorescence. U937s' migration was enhanced by TNF-α stimulation, while was inhibited by IVIG pretreatment. MMP9 expression and activity in U937s were also significantly enhanced by TNF-α and inhibited by IVIVG pretreatment. During inflammatory stimulus, nuclear factor kappa B (NF-κB) and P38 Mitogenactivated protein kinase (P38 MAPK) pathways play a significant role in regulating MMP9 gene expression. TNF-α induced nuclear translocation of NF-κB and P38 MAPK activation in U937s were inhibited significantly by IVIG. Furthermore, we clarified that nuclear NF-κB and P38 MAPK pathways play pivotal roles in regulating U937s' migration and MMP9 expressions using PDTC and SB203580, which were specific inhibitors of NF-κB and p38 MAPK pathways. IVIG displays striking biological effects, notably promoting monocyte migration. These effects involve the NF-κB and p38 pathways, and increased MMP9 activity. It might be a crucial mechanism of IVIG reducing the occurrence of CAL that IVIG inhibited monocytes expressing MMP9 and decreased chemotactic migration of monocyte.
Collapse
Affiliation(s)
- Cuizhen Zhou
- Department of Cardiology, Shanghai Children's Hospital, Shanghai Jiaotong University Shanghai 200062, China
| | - Min Huang
- Department of Cardiology, Shanghai Children's Hospital, Shanghai Jiaotong University Shanghai 200062, China
| | - Lijian Xie
- Department of Cardiology, Shanghai Children's Hospital, Shanghai Jiaotong University Shanghai 200062, China
| | - Jie Shen
- Department of Cardiology, Shanghai Children's Hospital, Shanghai Jiaotong University Shanghai 200062, China
| | - Tingting Xiao
- Department of Cardiology, Shanghai Children's Hospital, Shanghai Jiaotong University Shanghai 200062, China
| | - Renjian Wang
- Department of Cardiology, Shanghai Children's Hospital, Shanghai Jiaotong University Shanghai 200062, China
| |
Collapse
|
15
|
Li C, Li Y, Lv H, Li S, Tang K, Zhou W, Yu S, Chen X. The novel anti-neuroblastoma agent PF403, inhibits proliferation and invasion in vitro and in brain xenografts. Int J Oncol 2015; 47:179-87. [PMID: 25936609 DOI: 10.3892/ijo.2015.2977] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/20/2014] [Indexed: 11/06/2022] Open
Abstract
Neuroblastoma is the most common cancer in infants and the fourth most common cancer in children. Our previous study showed that PF403 had a potent antitumor ability. In the present study, we evaluated the anti-neuroblastoma property of PF403 and investigated the underlying mechanisms. MTT assay, colony formation assay and flow cytometry assay were used to assess cytotoxicity of PF403 on SH-SY5Y cells. Transwell assay was chosen to estimate the anti-invasion ability of PF403 on neuroblastoma cells. The protein expression was detected by western blot analysis. The SH-SY5Y brain xenograft model was used to assess in vivo antitumor activity of PF403. PF403-mediated SH-SY5Y cell death was found to be dose- and time-dependent, and PF403 was able to limit invasion and metastasis of neuroblastoma cells. MRI and pathology analysis proved that the pro-drug of PF403, CAT3, inhibited SH-SY5Y cells in vivo. PF403 decreased expression of phosphorylated FAK, MMP-2 and MMP-9 proteins, and downregulated the activity of PI3K/AKT and Raf/ERK pathways, followed by regulation of the proteins expression of Bcl-2 family, activated caspase-3, -9 and PARP and initiation of apoptosis of neuroblastoma cells. PF403 exerted cytotoxicity against SH-SY5Y neuroblastoma cell both in vitro and in vivo, and inhibited its invasion ability, suggesting PF403 has potential as a new anticancer drug for the treatment of neuroblastoma.
Collapse
Affiliation(s)
- Chao Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Yan Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Haining Lv
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Shaowu Li
- Department of Neurosurgery, Capital Medical University Affiliated Beijing Tiantan Hospital; Beijing Neurosurgical Institute, Beijing 100050, P.R. China
| | - Ke Tang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Wanqi Zhou
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Shishan Yu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Xiaoguang Chen
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| |
Collapse
|
16
|
Fu YT, Chen KY, Chen YS, Yao CH. Earthworm (Pheretima aspergillum) extract stimulates osteoblast activity and inhibits osteoclast differentiation. Altern Ther Health Med 2014; 14:440. [PMID: 25387689 PMCID: PMC4233063 DOI: 10.1186/1472-6882-14-440] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 08/21/2014] [Indexed: 01/21/2023]
Abstract
Background The potential benefits of earthworm (Pheretima aspergillum) for healing have received considerable attention recently. Osteoblast and osteoclast activities are very important in bone remodeling, which is crucial to repair bone injuries. This study investigated the effects of earthworm extract on bone cell activities. Methods Osteoblast-like MG-63 cells and RAW 264.7 macrophage cells were used for identifying the cellular effects of different concentrations of earthworm extract on osteoblasts and osteoclasts, respectively. The optimal concentration of earthworm extract was determined by mitochondrial colorimetric assay, alkaline phosphatase activity, matrix calcium deposition, Western blotting and tartrate-resistant acid phosphatase activity. Results Earthworm extract had a dose-dependent effect on bone cell activities. The most effective concentration of earthworm extract was 3 mg/ml, significantly increasing osteoblast proliferation and differentiation, matrix calcium deposition and the expression levels of alkaline phosphatase, osteopontin and osteocalcin. Conversely, 3 mg/ml earthworm extract significantly reduced the tartrate-resistant acid phosphatase activity of osteoclasts without altering cell viability. Conclusions Earthworm extract has beneficial effects on bone cell cultures, indicating that earthworm extract is a potential agent for use in bone regeneration.
Collapse
|
17
|
Evaluating the bone tissue regeneration capability of the Chinese herbal decoction Danggui Buxue Tang from a molecular biology perspective. BIOMED RESEARCH INTERNATIONAL 2014; 2014:853234. [PMID: 25295277 PMCID: PMC4176646 DOI: 10.1155/2014/853234] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/21/2014] [Indexed: 11/17/2022]
Abstract
Large bone defects are a considerable challenge to reconstructive surgeons. Numerous traditional Chinese herbal medicines have been used to repair and regenerate bone tissue. This study investigated the bone regeneration potential of Danggui Buxue Tang (DBT), a Chinese herbal decoction prepared from Radix Astragali (RA) and Radix Angelicae Sinensis (RAS), from a molecular biology perspective. The optimal ratio of RA and RAS used in DBT for osteoblast culture was obtained by colorimetric and alkaline phosphatase (ALP) activity assays. Moreover, the optimal concentration of DBT for bone cell culture was also determined by colorimetric, ALP activity, nodule formation, Western blotting, wound-healing, and tartrate-resistant acid phosphatase activity assays. Consequently, the most appropriate weight ratio of RA to RAS for the proliferation and differentiation of osteoblasts was 5:1. Moreover, the most effective concentration of DBT was 1,000 μg/mL, which significantly increased the number of osteoblasts, intracellular ALP levels, and nodule numbers, while inhibiting osteoclast activity. Additionally, 1,000 μg/mL of DBT was able to stimulate p-ERK and p-JNK signal pathway. Therefore, DBT is highly promising for use in accelerating fracture healing in the middle or late healing periods.
Collapse
|
18
|
Abstract
Earthworms have several names in different countries (In Chinese: 地龍 dì lóng, Japanese: Mimizu, Korean: Jireongi, Spanish: Lombriz de tierra, French: Ver de terre, German: Regenwurm, Italian: Lombrico, Swedish: Daggmask, Portuguese: Minhoca). They have long been used as a food source as well as treatments of various ailments. Many alternative and traditional disciplines of medicine, such as those in China, Japan, and Korea, developed medicinal uses of dilong from an initial utilization as nutrition. Increased curiosity in the potential medicinal properties of dilong has come to fruition through bioprospecting and evidence based research. This increased questioning and searching spawned first from a growing knowledge base about the earthworm's innate immune system. Their importance in understanding the evolution of the innate immune system has long been overlooked because of the ecological importance in soil preservation, earthworm immune systems, being full of leukocytes and humoral products, offer significant advantages when used as medicines. Earthworms offer an unanticipated slew of potential health benefits without common drawbacks that come with other biological, alternative forms of medicine such as cost, ethical and pathological concerns of animal testing.
Collapse
|
19
|
Zhao X, Gao S, Ren H, Sun W, Zhang H, Sun J, Yang S, Hao J. Hypoxia-inducible factor-1 promotes pancreatic ductal adenocarcinoma invasion and metastasis by activating transcription of the actin-bundling protein fascin. Cancer Res 2014; 74:2455-64. [PMID: 24599125 DOI: 10.1158/0008-5472.can-13-3009] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Because of the early onset of local invasion and distant metastasis, pancreatic ductal adenocarcinoma (PDAC) is the most lethal human malignant tumor, with a 5-year survival rate of less than 5%. In this study, we investigated the role of fascin, a prometastasis actin-bundling protein, in PDAC progression, invasion, and the molecular mechanisms underlying fascin overexpression in PDAC. Our data showed that the expression levels of fascin were higher in cancer tissues than in normal tissues, and fascin overexpression correlated with the PDAC differentiation and prognosis. Fascin overexpression promoted PDAC cell migration and invasion by elevating matrix metalloproteinase-2 (MMP-2) expression. Fascin regulated MMP-2 expression through protein kinase C and extracellular signal-regulated kinase. Importantly, our data showed that hypoxia induced fascin overexpression in PDAC cells by promoting the binding of hypoxia-inducible factor-1 (HIF-1) to a hypoxia response element on the fascin promoter and transactivating fascin mRNA transcription. Intriguingly, HIF-1α expression levels in PDAC patient specimens significantly correlated with fascin expression. Moreover, immunohistochemistry staining of consecutive sections demonstrated colocalization between HIF-1α and fascin in PDAC specimens, suggesting that hypoxia and HIF-1α were responsible for fascin overexpression in PDAC. When ectopically expressed, fascin was able to rescue PDAC cell invasion after HIF-1α knockdown. Our results demonstrated that fascin is a direct target gene of HIF-1. Our data suggested that the hypoxic tumor microenvironment in PDAC might promote invasion and metastasis by inducing fascin overexpression, and fascin might be targeted to block PDAC progression.
Collapse
Affiliation(s)
- Xiao Zhao
- Authors' Affiliations: Department of Pancreatic Carcinoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China; and Department of Tumor Biology and Comprehensive Melanoma Research Center, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Chen SC, Chien YC, Pan CH, Sheu JH, Chen CY, Wu CH. Inhibitory effect of dihydroaustrasulfone alcohol on the migration of human non-small cell lung carcinoma A549 cells and the antitumor effect on a Lewis lung carcinoma-bearing tumor model in C57BL/6J mice. Mar Drugs 2014; 12:196-213. [PMID: 24413802 PMCID: PMC3917270 DOI: 10.3390/md12010196] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 12/14/2013] [Accepted: 12/16/2013] [Indexed: 01/03/2023] Open
Abstract
There are many major causes of cancer death, including metastasis of cancer. Dihydroaustrasulfone alcohol, which is isolated from marine coral, has shown antioxidant activity, but has not been reported to have an anti-cancer effect. We first discovered that dihydroaustrasulfone alcohol provided a concentration-dependent inhibitory effect on the migration and motility of human non-small cell lung carcinoma (NSCLC) A549 cells by trans-well and wound healing assays. The results of a zymography assay and Western blot showed that dihydroaustrasulfone alcohol suppressed the activities and protein expression of matrix metalloproteinase (MMP)-2 and MMP-9. Further investigation revealed that dihydroaustrasulfone alcohol suppressed the phosphorylation of ERK1/2, p38, and JNK1/2. Dihydroaustrasulfone alcohol also suppressed the expression of PI3K and the phosphorylation of Akt. Furthermore, dihydroaustrasulfone alcohol markedly inhibited tumor growth in Lewis lung cancer (LLC)-bearing mice. We concluded that dihydroaustrasulfone alcohol is a new pure compound with anti-migration and anti-tumor growth activity in lung cancer and might be applied to clinical treatment in the future.
Collapse
Affiliation(s)
- Shuo-Chueh Chen
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
- School of Medicine, China Medical University, Taichung 404, Taiwan; E-Mail:
| | - Yi-Chung Chien
- School of Pharmacy, China Medical University, 91 Hsueh-Shih Road, Taichung 404, Taiwan; E-Mail:
- College of Pharmacy, Taipei Medical University, 250 Wu-Hsing Street, Taipei City 110, Taiwan; E-Mail:
| | - Chun-Hsu Pan
- College of Pharmacy, Taipei Medical University, 250 Wu-Hsing Street, Taipei City 110, Taiwan; E-Mail:
| | - Jyh-Horng Sheu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, 70 Lien-Hai Road, Kaohsiung 804, Taiwan
- Authors to whom correspondence should be addressed; E-Mails: (C.-H.W.); (J.-H.S.); (C.-Y.C.); Tel.: +886-2-2736-1661 (ext. 6100) (C.-H.W.); Fax: +886-2-2739-0671 (C.-H.W.); Tel.: +886-7-5252000 (ext. 5030) (J.-H.S.); Fax: +886-7-5255-0200 (J.-H.S.); Tel.: +886-4-22052121 (ext. 1921) (C.-Y.C.); Fax: +886-4-2203-8883 (C.-Y.C.)
| | - Chih-Yi Chen
- Division of Chest Surgery and Cancer Center, Department of Surgery, China Medical University Hospital, Taichung 404, Taiwan
- Authors to whom correspondence should be addressed; E-Mails: (C.-H.W.); (J.-H.S.); (C.-Y.C.); Tel.: +886-2-2736-1661 (ext. 6100) (C.-H.W.); Fax: +886-2-2739-0671 (C.-H.W.); Tel.: +886-7-5252000 (ext. 5030) (J.-H.S.); Fax: +886-7-5255-0200 (J.-H.S.); Tel.: +886-4-22052121 (ext. 1921) (C.-Y.C.); Fax: +886-4-2203-8883 (C.-Y.C.)
| | - Chieh-Hsi Wu
- College of Pharmacy, Taipei Medical University, 250 Wu-Hsing Street, Taipei City 110, Taiwan; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (C.-H.W.); (J.-H.S.); (C.-Y.C.); Tel.: +886-2-2736-1661 (ext. 6100) (C.-H.W.); Fax: +886-2-2739-0671 (C.-H.W.); Tel.: +886-7-5252000 (ext. 5030) (J.-H.S.); Fax: +886-7-5255-0200 (J.-H.S.); Tel.: +886-4-22052121 (ext. 1921) (C.-Y.C.); Fax: +886-4-2203-8883 (C.-Y.C.)
| |
Collapse
|
21
|
Cooper EL, Hirabayashi K. Origin of innate immune responses: revelation of food and medicinal applications. J Tradit Complement Med 2013; 3:204-12. [PMID: 24716179 PMCID: PMC3924995 DOI: 10.4103/2225-4110.119708] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Much is known about the strong ecological impact that earthworms ( Qiū Yǐn; Pheretima) have on soil in terms of fertility, nutrient production, and tilling. Even more interesting though is the impact they have had on our understanding of innate immunity, and from this discovery, there has been a simultaneous recognition of their potential through their historical use as food and their use in treatment of certain chronic health problems that often afflict humans. This bifurcating growing knowledge base has stemmed from centuries of honing and practicing traditional and complementary forms of medicine such as Ayurveda (India) Traditional Chinese Medicine (China), Kampo (Japan), and Traditional Korean Medicine (Korea). Earthworms (Dilong) have also been credited as a model for research concerning the nervous and endocrine systems. One of the reasons behind the earthworm's tremendous impact on research into these biomedical endeavors is partly due to its lack of ethical restrictions, like those imposed on vertebrate models. Using invertebrate models as opposed to mice or other mammalian models bypasses ethical concerns. Moreover, financial constraints consistently hover over biological research that requires living subjects, preferably mammals. Earthworms are a rich source of several vital biological macromolecules and other nutrients. They have long been used as food in several cultures such as the Ye'Kuana in Venezuela, the Maori in New Zealand, and the nomadic populations in Papua New Guinea. Earthworms and their nutritious products have been shown to exert significant effects in treating humans for disorders of inflammation and blood coagulation. One area that continues to be examined is the earthworm's ability to regenerate lost appendages, and these effects have been extended to mammals. Evidence reveals that earthworm extracts may actually promote the regeneration of damaged nerves. This presentation will explore how earthworms may reveal significant advances and conclusions that decipher innate immunity. This is intimately associated with them as sources of their various nutritional and medicinal benefits.
Collapse
Affiliation(s)
- Edwin L. Cooper
- Laboratory of Comparative Neuroimmunology, Department of Neurobiology, David Geffen School Of Medicine at UCLA, University of California, Los Angeles, USA
| | - Kyle Hirabayashi
- Laboratory of Comparative Neuroimmunology, Department of Neurobiology, David Geffen School Of Medicine at UCLA, University of California, Los Angeles, USA
| |
Collapse
|
22
|
Liu CH, Lin YW, Tang NY, Liu HJ, Huang CY, Hsieh CL. Effect of oral administration of Pheretima aspergillum (earthworm) in rats with cerebral infarction induced by middle-cerebral artery occlusion. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES : AJTCAM 2012; 10:66-82. [PMID: 24082328 PMCID: PMC3746360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We investigated the curative effect of Pheretima aspergillum (earthworm, PA) on rats with middle cerebral artery occlusion (MCAo). The MCAo-induced cerebral infarction was established and its underlying mechanisms by counting the infarction areas and evaluating the rats' neurological status. Immunostaining was used to test the expression of NeuN, and glial fibrillary acidic (GFAP), S100B, and brain-derived neurotrophic factor (BDNF) proteins. Our results showed that oral administration of PA for two weeks to rats with MCAo successfully reduced cerebral infarction areas in the cortex and striatum, and also reduced scores of neurological deficit. The PA-treated MCAo rats showed greatly decreased neuronal death, glial proliferation, and S100B proteins in the penumbra area of the cortex and in the ischemic core area of the cortex, but BDNF did not changed. These results demonstrated novel and detailed cellular mechanisms underlying the neuroprotective effects of PA in MCAo rats.
Collapse
Affiliation(s)
- Chung-Hsiang Liu
- Department of Neurology, China Medical University Hospital, Taichung 40402, Taiwan
| | | | | | | | | | | |
Collapse
|
23
|
Cooper EL, Balamurugan M, Huang CY, Tsao CR, Heredia J, Tommaseo-Ponzetta M, Paoletti MG. Earthworms dilong: ancient, inexpensive, noncontroversial models may help clarify approaches to integrated medicine emphasizing neuroimmune systems. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2012; 2012:164152. [PMID: 22888362 PMCID: PMC3410320 DOI: 10.1155/2012/164152] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 03/20/2012] [Accepted: 04/01/2012] [Indexed: 01/22/2023]
Abstract
Earthworms have provided ancient cultures with food and sources of medicinal cures. Ayurveda, traditional Chinese medicine (TCM), and practices in Japan, Vietnam, and Korea have focused first on earthworms as sources of food. Gradually fostering an approach to potential beneficial healing properties, there are renewed efforts through bioprospecting and evidence-based research to understand by means of rigorous investigations the mechanisms of action whether earthworms are used as food and/or as sources of potential medicinal products. Focusing on earthworms grew by serendipity from an extensive analysis of the earthworm's innate immune system. Their immune systems are replete with leukocytes and humoral products that exert credible health benefits. Their emerging functions with respect to evolution of innate immunity have long been superseded by their well-known ecological role in soil conservation. Earthworms as inexpensive, noncontroversial animal models (without ethical concerns) are not vectors of disease do not harbor parasites that threaten humans nor are they annoying pests. By recognizing their numerous ecological, environmental, and biomedical roles, substantiated by inexpensive and more comprehensive investigations, we will become more aware of their undiscovered beneficial properties.
Collapse
Affiliation(s)
- Edwin L. Cooper
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan
- Laboratory of Comparative Neuroimmunology, Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095-1763, USA
| | - Mariappan Balamurugan
- Division of Vermibiotechnology, Department of Zoology, Annamalai University, Annamalai Nagar-608002, India
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science and Graduate Institute of Chinese Medical Science, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Clara R. Tsao
- Department of Biology and Department of Sociology, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | - Jesus Heredia
- Department of Linguistics, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | | | - Maurizio G. Paoletti
- Department of Biology, University of Padua, Via U. Bassi, 58/b, 35121-Padua, Italy
| |
Collapse
|
24
|
Chen YY, Chou PY, Chien YC, Wu CH, Wu TS, Sheu MJ. Ethanol extracts of fruiting bodies of Antrodia cinnamomea exhibit anti-migration action in human adenocarcinoma CL1-0 cells through the MAPK and PI3K/AKT signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2012; 19:768-778. [PMID: 22464013 DOI: 10.1016/j.phymed.2012.02.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 01/27/2012] [Accepted: 02/28/2012] [Indexed: 05/31/2023]
Abstract
Cancer metastasis is a primary cause of cancer death. Antrodia cinnamomea (A. cinnamomea), a medicinal mushroom in Taiwan, has been shown antioxidant and anticancer activities. In this study, we first observed that ethanol extract of fruiting bodies of A. cinnamomea (EEAC) exerted a concentration-dependent inhibitory effect on migration and motility of CL1-0 cells in the absence of cytotoxicity. The results of a gelatin zymography assay showed that A. cinnamomea suppressed the activity of matrix metalloproteinase (MMP)-2 and MMP-9 in a concentration-dependent manner. Western blot results demonstrated that treatment with A. cinnamomea decreased the expression of MMP-9 and MMP-2; while the expression of the endogenous inhibitors of these proteins, i.e., tissue inhibitors of MMP (TIMP-1 and TIMP-2) increased. Two major compounds from EEAC codycepin and zhankuic acid A alone and together inhibited MMP-9 and MMP-2 expressions. Further investigation revealed that A. cinnamomea suppressed the phosphorylation of p38, and JNK1/2. A. cinnamomea also suppressed the expressions of PI3K and phosphorylation of AKT. This is the first report confirming the anti-migration activity of this potentially beneficial mushroom against human lung adenocarcinoma CL1-0.
Collapse
Affiliation(s)
- Ying-Yi Chen
- School of Pharmacy, China Medical University, 91 Hsueh-Shih Road, Taichung 404, Taiwan
| | | | | | | | | | | |
Collapse
|
25
|
Chen YY, Liu FC, Chou PY, Chien YC, Chang WSW, Huang GJ, Wu CH, Sheu MJ. Ethanol extracts of fruiting bodies of Antrodia cinnamomea suppress CL1-5 human lung adenocarcinoma cells migration by inhibiting matrix metalloproteinase-2/9 through ERK, JNK, p38, and PI3K/Akt signaling pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2012; 2012:378415. [PMID: 22454661 PMCID: PMC3291113 DOI: 10.1155/2012/378415] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 10/25/2011] [Accepted: 10/25/2011] [Indexed: 12/27/2022]
Abstract
Metastatic cancer attributes to a major cause of cancer death. In this pioneer study, we aimed to investigate how Antrodia cinnamomea (A. cinnamomea), indigenous to Taiwan, affects migration ability of highly metastatic human adenocarcinoma lung cancer cells CL1-5. Our result demonstrated that noncytotoxic ethanol extract of fruiting bodies of A. cinnamomea (EEAC) exhibited a dose-dependent inhibitory effect on motility and migration of the highly metastatic CL1-5 cells. Results of a gelatin zymography assay illustrated that A. cinnamomea repressed the activities of matrix metalloproteinase- (MMP-) 2 and 9 in a dose-dependent manner. A. cinnamomea administration decreased MMP-9 and MMP-2 protein expressions from Western blotting assay, whereas the expression of the tissue inhibitors of MMP (TIMP-1 and TIMP-2) increased. Additional study disclosed that A. cinnamomea suppressed FAK, ERK1/2, p38, AKT, and JNK1/2 phosphorylation, and also PI3K and Rac-1 were found decreased. Further, treatment of CL1-5 cells with inhibitors specific for PI3K (LY294002), ERK1/2 (PD98059), JNK (SP600125), and p38 MAPK (SB203580) decreased the expression of MMP-2 and MMP-9. Taken together, EEAC induced FAK phosphorylation and exhibited its antimigration activities via the PI3K/AKT and MAPK signalings in CL1-5 cells. This is the pioneer study verifying the antimigration activity of A. cinnamomea against human lung adenocarcinoma CL1-5 cancer cells [corrected].
Collapse
Affiliation(s)
- Ying-Yi Chen
- School of Pharmacy, China Medical University, 91 Hsueh-Shih Road, Taichung 404, Taiwan
| | - Fon-Chang Liu
- School of Pharmacy, China Medical University, 91 Hsueh-Shih Road, Taichung 404, Taiwan
- Department of Pharmacy, Da Chien General Hospital, Miaoli 36052, Taiwan
| | - Pei-Yu Chou
- Department of Life Science, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 402, Taiwan
| | - Yi-Chung Chien
- Department of Life Science, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 402, Taiwan
| | - Wun-Shaing Wayne Chang
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 350, Taiwan
| | - Guang-Jhong Huang
- School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan
| | - Chieh-Hsi Wu
- School of Pharmacy, China Medical University, 91 Hsueh-Shih Road, Taichung 404, Taiwan
| | - Ming-Jyh Sheu
- School of Pharmacy, China Medical University, 91 Hsueh-Shih Road, Taichung 404, Taiwan
| |
Collapse
|
26
|
Chang YM, Chi WY, Lai TY, Chen YS, Tsai FJ, Tsai CH, Kuo WW, Cheng YC, Lin CC, Huang CY. Dilong: role in peripheral nerve regeneration. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:380809. [PMID: 21799677 PMCID: PMC3136393 DOI: 10.1093/ecam/neq079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 05/25/2010] [Indexed: 01/18/2023]
Abstract
Dilong, also known as earthworm, has been widely used in traditional Chinese medicine (TCM) for thousands of years. Schwann cell migration and proliferation are critical for the regeneration of injured nerves and Schwann cells provide an essentially supportive role for neuron regeneration. However, the molecular mechanisms of migration and proliferation induced by dilongs in Schwann cells remain unclear. Here, we discuss the molecular mechanisms that includes (i) migration signaling, MAPKs (mitogen-activated protein kinases), mediated PAs and MMP2/9 pathway; (ii) survival and proliferative signaling, IGF-I (insulin-like growth factor-I)-mediated PI3K/Akt pathways and (iii) cell cycle regulation. Dilong stimulate RSC96 cell proliferation and migration. It can induce phosphorylation of ERK1/2 and p38, but not JNK, and activate the downstream signaling expression of PAs (plasminogen activators) and MMPs (matrix metalloproteinases) in a time-dependent manner. In addition, Dilong stimulated ERK1/2 and p38 phosphorylation was attenuated by pretreatment with chemical inhibitors (U0126 and SB203580), and small interfering ERK1/2 and p38 RNA, resulting in migration and uPA-related signal pathway inhibition. Dilong also induces the phosphorylation of IGF-I-mediated PI3K/Akt pathway, activates protein expression of PCNA (proliferating cell nuclear antigen) and cell cycle regulatory proteins (cyclin D1, cyclin E and cyclin A) in a time-dependent manner. In addition, it accelerates G1-phase progression with earlier S-phase entry and significant numbers of cells entered the S-phase. The siRNA-mediated knockdown of PI3K that significantly reduces PI3K protein expression levels, resulting in Bcl2 survival factor reduction, revealing a marked blockage of G1 to S transition in proliferating cells. These results reveal the unknown RSC96 cell migration and proliferation mechanism induced by dilong, which find use as a new medicine for nerve regeneration.
Collapse
Affiliation(s)
- Yung-Ming Chang
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Chang YM, Kuo WH, Lai TY, Shih YT, Tsai FJ, Tsai CH, Shu WT, Chen YY, Chen YS, Kuo WW, Huang CY. RSC96 Schwann Cell Proliferation and Survival Induced by Dilong through PI3K/Akt Signaling Mediated by IGF-I. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:216148. [PMID: 20040524 PMCID: PMC3135880 DOI: 10.1093/ecam/nep216] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 11/19/2009] [Indexed: 12/31/2022]
Abstract
Schwann cell proliferation is critical for the regeneration of injured nerves. Dilongs are widely used in Chinese herbal medicine to remove stasis and stimulate wound-healing functions. Exactly how this Chinese herbal medicine promotes tissue survival remains unclear. The aim of the present study was to investigate the molecular mechanisms by which Dilong promote neuron regeneration. Our results show that treatment with extract of Dilong induces the phosphorylation of the insulin-like growth factor-I (IGF-I)-mediated phosphatidylinositol 3-kinase/serine-threonine kinase (PI3K/Akt) pathway, and activates protein expression of cell nuclear antigen (PCNA) in a time-dependent manner. Cell cycle analysis showed that G1 transits into the S phase in 12–16 h, and S transits into the G2 phase 20 h after exposure to earthworm extract. Strong expression of cyclin D1, cyclin E and cyclin A occurs in a time-dependent manner. Small interfering RNA (siRNA)-mediated knockdown of PI3K significantly reduced PI3K protein expression levels, resulting in Bcl2 survival factor reduction and a marked blockage of G1 to S transition in proliferating cells. These results demonstrate that Dilong promotes the proliferation and survival of RSC96 cells via IGF-I signaling. The mechanism is mainly dependent on the PI3K protein.
Collapse
Affiliation(s)
- Yung-Ming Chang
- Graduate Institute of Chinese Medical Science and Institute of Basic Medical Science, China Medical University, No 91, Hsueh-Shih Road, Taichung 404, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Huang GJ, Yang CM, Chang YS, Amagaya S, Wang HC, Hou WC, Huang SS, Hu ML. Hispolon suppresses SK-Hep1 human hepatoma cell metastasis by inhibiting matrix metalloproteinase-2/9 and urokinase-plasminogen activator through the PI3K/Akt and ERK signaling pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:9468-75. [PMID: 20698552 DOI: 10.1021/jf101508r] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cancer metastasis is a primary cause of cancer death. Hispolon is an active phenolic compound of Phellinus linteus, a mushroom that has recently been shown to have antioxidant and anticancer activities. In this study, we first observed that hispolon exerted a dose-dependent inhibitory effect on invasion and motility, but not on adhesion, of the highly metastatic SK-Hep1 cells in the absence of cytotoxicity. Mechanistically, hispolon decreased the expression of matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), and urokinase-plasminogen activator (uPA) in a concentration-dependent manner. Hispolon also inhibited phosphorylation of extracellular signaling-regulating kinase1/2 (ERK1/2), phosphatidylinositol-3-kinase/serine/threonine protein kinase (or protein kinase B (PI3K/Akt), and focal adhesion kinase (FAK). Furthermore, treatment of SK-Hep1 cells with an inhibitor specific for ERK1/2 (PD98256) decreased the expression of MMP-2, and MMP-9. These results demonstrate that hispolon can inhibit the metastasis of SK-Hep1 cells by reduced expression of MMP-2, MMP-9, and uPA through the suppression of the FAK signaling pathway and of the activity of PI3K/Akt and Ras homologue gene family, member A (RhoA). These findings suggest that hispolon may be used as an antimetastatic agent.
Collapse
Affiliation(s)
- Guan-Jhong Huang
- Institute of Chinese Pharmaceutical Sciences, College of Pharmacy, China Medical University, 91 Hsueh-Shih Road, Taichung City 404, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|