1
|
Lejri I, Grimm A, Trempat P, Boujedaini N, Eckert A. Gelsemium low doses protect against serum deprivation-induced stress on mitochondria in neuronal cells. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118714. [PMID: 39181289 DOI: 10.1016/j.jep.2024.118714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gelsemium dynamized dilutions (GDD) are known as a remedy for a wide range of behavioral and psychological symptoms of depression and anxiety at ultra-low doses, yet the underlying mechanisms of the mode of action of G. sempervirens itself are not well understood. AIM OF THE STUDY The present study was designed to examine the neuroprotective effects of Gelsemium preparations in counteracting stress-related mitochondrial dysfunctions in neuronal cells. MATERIALS AND METHODS We started by studying how serum deprivation affects the mitochondrial functions of human neuroblastoma (SH-SY5Y) cells. Next, we looked into the potential of various Gelsemium dilutions to improve cell survival and ATP levels. After identifying the most effective dilutions, 3C and 5C, we tested their ability to protect SH-SY5Y cells from stress-induced mitochondrial deficits. We measured total and mitochondrial superoxide anion radicals using fluorescent dyes dihydroethidium (DHE) and the red mitochondrial superoxide indicator (MitoSOX). Additionally, we assessed total nitric oxide levels with 4,5-diaminofluorescein diacetate (DAF-2DA), examined the redox state using pRA305 cells stably transfected with a plasmid encoding a redox-sensitive green fluorescent protein, and analyzed mitochondrial network morphology using an automated high-content analysis device, Cytation3. Furthermore, we investigated bioenergetics by measuring ATP production with a bioluminescence assay (ViaLighTM HT) and evaluated mitochondrial respiration (OCR) and glycolysis (ECAR) using the Seahorse Bioscience XF24 Analyzer. Finally, we determined cell survival using an MTT reduction assay. RESULTS Our research indicates that Gelsemium dilutions (3C and 5C) exhibited neuroprotective effects by: - Normalizing total and mitochondrial superoxide anion radicals and total nitric oxide levels. - Regulating the mitochondrial redox environment and mitochondrial networks morphology. - Increasing ATP generation as well as OCR and ECAR levels, thereby reducing the viability loss induced by serum withdrawal stress. CONCLUSIONS These findings highlight that dynamized Gelsemium preparations may have neuroprotective effects against stress-induced cellular changes in the brain by regulating mitochondrial functions, essential for the survival, plasticity, and function of neurons in depression.
Collapse
Affiliation(s)
- Imane Lejri
- Research Cluster Molecular & Cognitive Neuroscience, Neurobiology Laboratory for Brain Aging and Mental Health, University of Basel, Basel, Switzerland; Psychiatric University Clinics, Basel, Switzerland.
| | - Amandine Grimm
- Research Cluster Molecular & Cognitive Neuroscience, Neurobiology Laboratory for Brain Aging and Mental Health, University of Basel, Basel, Switzerland; Psychiatric University Clinics, Basel, Switzerland.
| | | | | | - Anne Eckert
- Research Cluster Molecular & Cognitive Neuroscience, Neurobiology Laboratory for Brain Aging and Mental Health, University of Basel, Basel, Switzerland; Psychiatric University Clinics, Basel, Switzerland.
| |
Collapse
|
2
|
Qi XJ, Huang CY, Zuo MT, Gong MD, Huang SJ, Tang MH, Liu ZY. Network Pharmacology and Experimental Verification to Unveil the Mechanism of N-Methyl-D-Aspartic Acid Rescue Humantenirine-Induced Excitotoxicity. Metabolites 2023; 13:metabo13020195. [PMID: 36837814 PMCID: PMC9966887 DOI: 10.3390/metabo13020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/22/2022] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Gelsemium is a medicinal plant that has been used to treat various diseases, but it is also well-known for its high toxicity. Complex alkaloids are considered the main poisonous components in Gelsemium. However, the toxic mechanism of Gelsemium remains ambiguous. In this work, network pharmacology and experimental verification were combined to systematically explore the specific mechanism of Gelsemium toxicity. The alkaloid compounds and candidate targets of Gelsemium, as well as related targets of excitotoxicity, were collected from public databases. The crucial targets were determined by constructing a protein-protein interaction (PPI) network. Subsequently, Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to explore the bioprocesses and signaling pathways involved in the excitotoxicity corresponding to alkaloids in Gelsemium. Then, the binding affinity between the main poisonous alkaloids and key targets was verified by molecular docking. Finally, animal experiments were conducted to further evaluate the potential mechanisms of Gelsemium toxicity. A total of 85 alkaloids in Gelsemium associated with 214 excitotoxicity-related targets were predicted by network pharmacology. Functional analysis showed that the toxicity of Gelsemium was mainly related to the protein phosphorylation reaction and plasma membrane function. There were also 164 pathways involved in the toxic mechanism, such as the calcium signaling pathway and MAPK signaling pathway. Molecular docking showed that alkaloids have high affinity with core targets, including MAPK3, SRC, MAPK1, NMDAR2B and NMDAR2A. In addition, the difference of binding affinity may be the basis of toxicity differences among different alkaloids. Humantenirine showed significant sex differences, and the LD50 values of female and male mice were 0.071 mg·kg-1 and 0.149 mg·kg-1, respectively. Furthermore, we found that N-methyl-D-aspartic acid (NMDA), a specific NMDA receptor agonist, could significantly increase the survival rate of acute humantenirine-poisoned mice. The results also show that humantenirine could upregulate the phosphorylation level of MAPK3/1 and decrease ATP content and mitochondrial membrane potential in hippocampal tissue, while NMDA could rescue humantenirine-induced excitotoxicity by restoring the function of mitochondria. This study revealed the toxic components and potential toxic mechanism of Gelsemium. These findings provide a theoretical basis for further study of the toxic mechanism of Gelsemium and potential therapeutic strategies for Gelsemium poisoning.
Collapse
Affiliation(s)
- Xue-Jia Qi
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
| | - Chong-Yin Huang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
| | - Meng-Ting Zuo
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
| | - Meng-Die Gong
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
| | - Si-Juan Huang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
| | - Mo-Huan Tang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
| | - Zhao-Ying Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
- Correspondence:
| |
Collapse
|
3
|
Sex Differences in the In Vivo Exposure Process of Multiple Components of Gelsemium elegans in Rats. Metabolites 2022; 13:metabo13010033. [PMID: 36676958 PMCID: PMC9865510 DOI: 10.3390/metabo13010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Asian Gelsemium elegans (G. elegans) has a wide range of pharmacological activities. However, its strong toxicity limits its potential development and application. Interestingly, there are significant gender differences in G. elegans toxicity in rats. This work aimed to elucidate the overall absorption, distribution, metabolism, and excretion (ADME) of whole G. elegans crude extract in female and male rats using high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (HPLC/QqTOF-MS), which facilitates determining the reasons for the gender differences in toxicity. A total of 25 absorbed bioactive components and 3 related produced metabolites were tentatively identified in female rats, while only 17 absorbed bioactive components and 3 related produced metabolites were identified in male rats. By comparison of peak intensities, most compounds were found to be more active in absorption, distribution and excretion in female rats than in male rats, which showed that female rats were more sensitive to G. elegans. This study was the first to investigate the multicomponent in vivo process of G. elegans in rats and compare the differences between sexes. It was hypothesized that differences in the absorption of gelsedine-type alkaloids were one of the main reasons for the sex differences in G. elegans toxicity.
Collapse
|
4
|
Basu N, Narad P, Guptasarma ML, Tandon C, Das BC, Tandon S. Computational and In Vitro Approaches to Elucidate the Anti-cancer Effects of Arnica montana in Hormone-Dependent Breast Cancer. HOMEOPATHY 2022; 111:288-300. [PMID: 35790192 DOI: 10.1055/s-0042-1743565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Breast cancer is the most common cancer in women worldwide. Use of homeopathic medicines for the treatment of cancers has increased in the last several years. Arnica montana is an anti-inflammatory homeopathic medicine used in traumatic conditions and because of this property we performed investigations for its potential as a chemotherapeutic agent against breast cancer. METHODS An ethanolic extract of Arnica montana (mother tincture, MT), prepared according to the Homoeopathic Pharmacopoeia of India, was characterized by gas chromatography-mass spectroscopy (GC-MS), followed by computational (in silico) analysis using molecular docking, to identify specific compounds that can bind and modulate the activity of key proteins involved in breast cancer survival and progression. To validate the in silico findings, in a controlled experiment breast cancer cells (MCF7) were treated in vitro with Arnica montana and the cytotoxic effects assessed by flowcytometry, fluorescence microscopy, scratch assay, clonogenic potential and gene expression analysis. RESULTS Phytochemical characterization of ethanolic extract of Arn MT by GC-MS allowed identification of several compounds. Caryophyllene oxide and 7-hydroxycadalene were selected for molecular docking studies, based on their potential drug-like properties. These compounds displayed selective binding affinity to some of the recognized target proteins of breast cancer, which included estrogen receptor alpha (ERα), progesterone receptor (PR), epidermal growth factor receptor (EGFR), mTOR (mechanistic target of rapamycin) and E-cadherin. In vitro studies revealed induction of apoptosis in MCF7 cells following treatment with Arn MT. Furthermore, treatment with Arn MT revealed its ability to inhibit migration and colony forming abilities of the cancer cells. CONCLUSION Considering the apoptotic and anti-migratory effects of Arnica montana in breast cancer cells in vitro, there is a need for this medicine to be further validated in an in vivo model.
Collapse
Affiliation(s)
- Nilanjana Basu
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India
| | - Priyanka Narad
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Manni Luthra Guptasarma
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Bhudev Chandra Das
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India
| | - Simran Tandon
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India.,Amity University Punjab, Mohali, India
| |
Collapse
|
5
|
Yu H, Tang MH, Zeng ZY, Huang SJ, Zheng XF, Liu ZY. Suppressive Effects of Gelsemine on Anxiety-like Behaviors Induced by Chronic Unpredictable Mild Stress in Mice. Brain Sci 2022; 12:brainsci12020191. [PMID: 35203954 PMCID: PMC8870043 DOI: 10.3390/brainsci12020191] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 01/27/2023] Open
Abstract
Gelsemine is an active principle and a major alkaloid found in Gelsemium genus of plants belonging to the Loganiaceae family. The aim of the present study was to explore whether gelsemine exerts anxiolytic effects on a mouse model of chronic-unpredictable-mild-stress (CUMS)-induced anxiety-like behaviors. NOD-like receptor protein 3 (NLRP3) inflammasome, downregulated cAMP-response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF) were also evaluated as potential mechanisms. First, gelsemine reversed a CUMS-induced decrease in body-weight gain in mice. Next, gelsemine alleviated CUMS-induced anxiety-like behaviors, as evidenced by the increased distance traveled in the central zone of the open-field test, both the increased percentage of time spent and distance traveled in the light compartment, the increased number of transitions between compartments in the light/dark-transition test, and the increased percentage of entries and time spent in the open arm of the elevated plus-maze. In addition, gelsemine decreased the levels of pro-inflammatory cytokines, including interleukin (IL)-1β and IL-6, in the hypothalamus and hippocampus of CUMS mice. Interestingly, further investigations revealed that gelsemine inhibited the CUMS-induced activation of NLRP3-inflammasome pathways and downregulated CREB and BDNF overexpression in the hypothalamus. In summary, gelsemine alleviated anxiety-like behaviors in the CUMS-induced mouse model. Gelsemine exerted its anxiolytic effects by modulating the NLRP3 and CREB/BDNF pathways.
Collapse
Affiliation(s)
- Hui Yu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (M.-H.T.); (Z.-Y.Z.); (S.-J.H.); (X.-F.Z.)
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
| | - Mo-Huan Tang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (M.-H.T.); (Z.-Y.Z.); (S.-J.H.); (X.-F.Z.)
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
| | - Zi-Yue Zeng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (M.-H.T.); (Z.-Y.Z.); (S.-J.H.); (X.-F.Z.)
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
| | - Si-Juan Huang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (M.-H.T.); (Z.-Y.Z.); (S.-J.H.); (X.-F.Z.)
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
| | - Xiao-Feng Zheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (M.-H.T.); (Z.-Y.Z.); (S.-J.H.); (X.-F.Z.)
| | - Zhao-Ying Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (M.-H.T.); (Z.-Y.Z.); (S.-J.H.); (X.-F.Z.)
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
- Correspondence:
| |
Collapse
|
6
|
Mishra P, Sinha JK, Rajput SK. Efficacy of Cicuta virosa medicinal preparations against pentylenetetrazole-induced seizures. Epilepsy Behav 2021; 115:107653. [PMID: 33358679 DOI: 10.1016/j.yebeh.2020.107653] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/03/2020] [Accepted: 11/19/2020] [Indexed: 12/15/2022]
Abstract
Epileptic seizures are characterized by imbalanced inhibition-excitation cycle that triggers biochemical alterations responsible for jeopardized neuronal integrity. Conventional antiepileptic drugs (AEDs) have been the mainstay option for treatment and control; however, symptomatic control and potential to exacerbate the seizure condition calls for viable alternative to these chemical agents. In this context, natural product-based therapies have accrued great interest in recent years due to competent disease management potential and lower associated adversities. Cicuta virosa (CV) is one such herbal remedy that is used in traditional system of medicine against myriad of disorders including epilepsy. Homeopathic medicinal preparations (HMPs) of CV were assessed for their efficacy in pentylenetetrazole (PTZ)-induced acute and kindling models of epilepsy. CV HMPs increased the latency and reduced the duration of tonic-clonic phase in acute model while lowering the kindling score in the kindling model that signified their role in modulating GABAergic neurotransmission and potassium conductance. Kindling-induced impairment of cognition, memory, and motor coordination was ameliorated by the CV HMPs that substantiated their efficacy in imparting sustained neuronal fortification. Furthermore, biochemical evaluation showed attenuated oxidative stress load through reduced lipid peroxidation and strengthened free radical scavenging mechanism. Taken together, CV HMPs exhibited promising results in acute and kindling models and must be further assessed through molecular and epigenomic studies.
Collapse
Affiliation(s)
- Priya Mishra
- Amity Institute of Neuropsychology and Neurosciences (AINN), Amity University, Uttar Pradesh, Noida 201303, India.
| | - Jitendra Kumar Sinha
- Amity Institute of Neuropsychology and Neurosciences (AINN), Amity University, Uttar Pradesh, Noida 201303, India.
| | - Satyendra Kumar Rajput
- Department of Pharmaceutical Sciences, Gurukul Kangri (deemed to be University), Haridwar, Uttrakhand, 249404, India.
| |
Collapse
|
7
|
Wang ZY, Zuo MT, Zhao XJ, Li YJ, Sun ZL, Liu ZY. Comparative metabolism of gelsenicine in liver microsomes from humans, pigs, goats and rats. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8843. [PMID: 32453886 DOI: 10.1002/rcm.8843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Gelsemium elegans (G. elegans) is highly toxic to humans and rats but has insecticidal and growth-promoting effects on pigs and goats. However, the mechanisms behind the toxicity differences of G. elegans are unclear. Gelsenicine, isolated from G. elegans, has been reported to be a toxic alkaloid. METHODS In this study, the in vitro metabolism of gelsenicine was investigated and compared for the first time using human (HLM), pig (PLM), goat (GLM) and rat (RLM) liver microsomes and high-performance liquid chromatography/mass spectrometry (HPLC/MS). RESULTS In total, eight metabolites (M1-M8) were identified by using high-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (HPLC/QqTOF-MS). Two main metabolic pathways were found in the liver microsomes of the four species: demethylation at the methoxy group on the indole nitrogen (M1) and oxidation at different positions (M2-M8). M8 was identified only in the GLM. The degradation ratio of gelsenicine and the relative percentage of metabolites produced during metabolism were determined by high-performance liquid chromatography/tandem mass spectrometry (HPLC/QqQ-MS/MS). The degradation ratio of gelsenicine in liver microsomes decreased in the following order: PLM ≥ GLM > HLM > RLM. The production of M1 decreased in the order of GLM > PLM > RLM > HLM, the production of M2 was similar among the four species, and the production of M3 was higher in the HLM than in the liver microsomes of the other three species. CONCLUSIONS Based on these results, demethylation was speculated to be the main gelsenicine detoxification pathway, providing vital information to better understand the metabolism and toxicity differences of G. elegans among different species.
Collapse
Affiliation(s)
- Zi-Yuan Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Ming-Ting Zuo
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Xue-Jiao Zhao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Yu-Juan Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Zhi-Liang Sun
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Zhao-Ying Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, 410128, China
| |
Collapse
|
8
|
Wang ZY, Zuo MT, Liu ZY. The Metabolism and Disposition of Koumine, Gelsemine and Humantenmine from Gelsemium. Curr Drug Metab 2020; 20:583-591. [PMID: 31203797 DOI: 10.2174/1389200220666190614152304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/27/2019] [Accepted: 05/16/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND Gelsemium is a toxic flowering plant of the Gelsemiaceae family. It is used to treat skin diseases in China, and it is an important medicinal and homeopathic plant in North America. Up to now, more than 200 compounds have been isolated and reported from Gelsemium. More than 120 of these are indole alkaloids, including the main components, koumine, gelsemine and humantenmine which produce the pharmacological and toxicological effects of Gelsemium. However, their clinical application their limited by its narrow therapeutic window. Therefore, it is very important to study the metabolism and disposition of indole alkaloids from Gelsemium before their clinical application. This paper reviews all the reports on the metabolism and disposition of alkaloids isolated from Gelsemium at home and abroad. METHODS The metabolism and disposition of alkaloids from Gelsemium were searched by the Web of Science, NCBI, PubMed and some Chinese literature databases. RESULTS Only koumine, gelsemine and humantenmine have been reported, and few other alkaloids have been described. These studies indicated that the three indole alkaloids are absorbed rapidly, widely distributed in tissues, extensively metabolized and rapidly eliminated. There are species differences in the metabolism of these alkaloids, which is the reason for the differences in their toxicity in animals and humans. CONCLUSION This review not only explains the pharmacokinetics of indole alkaloids from Gelsemium but also facilitates further study on their metabolism and mechanism of toxicity.
Collapse
Affiliation(s)
- Zi-Yuan Wang
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, Hunan, China.,College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Meng-Ting Zuo
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, Hunan, China.,College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Zhao-Ying Liu
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, Hunan, China.,College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan, China
| |
Collapse
|
9
|
Bellavite P, Bonafini C, Marzotto M. Experimental neuropharmacology of Gelsemium sempervirens: Recent advances and debated issues. J Ayurveda Integr Med 2018; 9:69-74. [PMID: 29428604 PMCID: PMC5884012 DOI: 10.1016/j.jaim.2017.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 01/19/2017] [Accepted: 01/27/2017] [Indexed: 01/01/2023] Open
Abstract
Gelsemium sempervirens L. (Gelsemium) is traditionally used for its anxiolytic-like properties and its action mechanism in laboratory models are under scrutiny. Evidence from rodent models was reported suggesting the existence of a high sensitivity of central nervous system to anxiolytic power of Gelsemium extracts and Homeopathic dilutions. In vitro investigation of extremely low doses of this plant extract showed a modulation of gene expression of human neurocytes. These studies were criticized in a few commentaries, generated a debate in literature and were followed by further experimental studies from various laboratories. Toxic doses of Gelsemium cause neurological signs characterized by marked weakness and convulsions, while ultra-low doses or high Homeopathic dilutions counteract seizures induced by lithium and pilocarpine, decrease anxiety after stress and increases the anti-stress allopregnanolone hormone, through glycine receptors. Low (non-Homeopathic) doses of this plant or its alkaloids decrease neuropathic pain and c-Fos expression in mice brain and oxidative stress. Due to the complexity of the matter, several aspects deserve interpretation and the main controversial topics, with a focus on the issues of high dilution pharmacology, are discussed and clarified.
Collapse
Affiliation(s)
- Paolo Bellavite
- Department of Medicine, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy.
| | - Clara Bonafini
- Department of Medicine, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Marta Marzotto
- Department of Medicine, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| |
Collapse
|
10
|
Chen CJ, Zhong ZF, Xin ZM, Hong LH, Su YP, Yu CX. Koumine exhibits anxiolytic properties without inducing adverse neurological effects on functional observation battery, open-field and Vogel conflict tests in rodents. J Nat Med 2017; 71:397-408. [DOI: 10.1007/s11418-017-1070-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 01/03/2017] [Indexed: 01/30/2023]
|
11
|
Concordance and incongruence in preclinical anxiety models: Systematic review and meta-analyses. Neurosci Biobehav Rev 2016; 68:504-529. [PMID: 27328783 DOI: 10.1016/j.neubiorev.2016.04.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/19/2016] [Accepted: 04/18/2016] [Indexed: 12/14/2022]
Abstract
Rodent defense behavior assays have been widely used as preclinical models of anxiety to study possibly therapeutic anxiety-reducing interventions. However, some proposed anxiety-modulating factors - genes, drugs and stressors - have had discordant effects across different studies. To reconcile the effect sizes of purported anxiety factors, we conducted systematic review and meta-analyses of the literature on ten anxiety-linked interventions, as examined in the elevated plus maze, open field and light-dark box assays. Diazepam, 5-HT1A receptor gene knockout and overexpression, SERT gene knockout and overexpression, pain, restraint, social isolation, corticotropin-releasing hormone and Crhr1 were selected for review. Eight interventions had statistically significant effects on rodent anxiety, while Htr1a overexpression and Crh knockout did not. Evidence for publication bias was found in the diazepam, Htt knockout, and social isolation literatures. The Htr1a and Crhr1 results indicate a disconnect between preclinical science and clinical research. Furthermore, the meta-analytic data confirmed that genetic SERT anxiety effects were paradoxical in the context of the clinical use of SERT inhibitors to reduce anxiety.
Collapse
|
12
|
Replications of fundamental research models in ultra high dilutions 1994 and 2015--update on a bibliometric study. HOMEOPATHY 2015; 104:234-45. [PMID: 26678723 DOI: 10.1016/j.homp.2015.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/02/2015] [Accepted: 10/13/2015] [Indexed: 11/21/2022]
Abstract
INTRODUCTION This paper focuses exclusively on experimental models with ultra high dilutions (i.e. beyond 10(-23)) that have been submitted to replication scrutiny. It updates previous surveys, considers suggestions made by the research community and compares the state of replication in 1994 with that in 2015. METHODS Following literature research, biochemical, immunological, botanical, cell biological and zoological studies on ultra high dilutions (potencies) were included. Reports were grouped into initial studies, laboratory-internal, multicentre and external replications. Repetition could yield either comparable, or zero, or opposite results. The null-hypothesis was that test and control groups would not be distinguishable (zero effect). RESULTS A total of 126 studies were found. From these, 28 were initial studies. When all 98 replicative studies were considered, 70.4% (i.e. 69) reported a result comparable to that of the initial study, 20.4% (20) zero effect and 9.2% (9) an opposite result. Both for the studies until 1994 and the studies 1995-2015 the null-hypothesis (dominance of zero results) should be rejected. Furthermore, the odds of finding a comparable result are generally higher than of finding an opposite result. Although this is true for all three types of replication studies, the fraction of comparable studies diminishes from laboratory-internal (total 82.9%) to multicentre (total 75%) to external (total 48.3%), while the fraction of opposite results was 4.9%, 10.7% and 13.8%. Furthermore, it became obvious that the probability of an external replication producing comparable results is bigger for models that had already been further scrutinized by the initial researchers. CONCLUSIONS We found 28 experimental models which underwent replication. In total, 24 models were replicated with comparable results, 12 models with zero effect, and 6 models with opposite results. Five models were externally reproduced with comparable results. We encourage further replications of studies in order to learn more about the model systems used.
Collapse
|
13
|
Wu YE, Li YD, Luo YJ, Wang TX, Wang HJ, Chen SN, Qu WM, Huang ZL. Gelsemine alleviates both neuropathic pain and sleep disturbance in partial sciatic nerve ligation mice. Acta Pharmacol Sin 2015; 36:1308-17. [PMID: 26388157 PMCID: PMC4635333 DOI: 10.1038/aps.2015.86] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/07/2015] [Indexed: 01/05/2023] Open
Abstract
Aim: Gelsemine, an alkaloid from the Chinese herb Gelsemium elegans (Gardn & Champ) Benth., is effective in mitigating chronic pain in rats. In the present study we investigated whether the alkaloid improved sleep disturbance, the most common comorbid symptoms of chronic pain, in a mouse model of neuropathic pain. Methods: Mice were subjected to partial sciatic nerve ligation (PSNL). After the mice were injected with gelsemine or pregabalin (the positive control) intraperitoneally, mechanical allodynia and thermal hyperalgesia were assessed, and electroencephalogram (EEG)/electromyogram (EMG) recording was performed. Motor performance of the mice was assessed using rota-rod test. c-Fos expression in the brain was analyzed with immunohistochemical staining. Results: In PSNL mice, gelsemine (2 and 4 mg/kg) increased the mechanical threshold for 4 h and prolonged the thermal latencies for 3 h. Furthermore, gelsemine (4 mg/kg, administered at 6:30 AM) increased non-rapid eye movement (non-REM, NREM) sleep, decreased wakefulness, but did not affect REM sleep during the first 3 h in PSNL mice. Sleep architecture analysis showed that gelsemine decreased the mean duration of wakefulness and increased the total number of episodes of NREM sleep during the first 3 h after the dosing. Gelsemine (4 mg/kg) did not impair motor coordination in PSNL mice. Immunohistochemical study showed that PSNL increased c-Fos expression in the neurons of the anterior cingulate cortex, and gelsemine (4 mg/kg) decreased c-Fos expression by 58%. Gelsemine (4 mg/kg, administered at either 6:30 AM or 8:30 PM) did not produce hypnotic effect in normal mice. Pregabalin produced similar antinociceptive and hypnotic effects, but impaired motor coordination in PSNL mice. Conclusion: Gelsemine is an effective agent for treatment of both neuropathic pain and sleep disturbance in PSNL mice; anterior cingulate cortex might play a role in the hypnotic effects of gelsemine.
Collapse
|
14
|
Bonamin LV, Cardoso TN, Cunha de Carvalho A, Amaral JG. The use of animal models in homeopathic research – a review of 2010–2014 PubMed indexed papers. HOMEOPATHY 2015; 104:283-91. [DOI: 10.1016/j.homp.2015.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 05/23/2015] [Accepted: 06/08/2015] [Indexed: 01/16/2023]
|
15
|
Zhang JY, Wang YX. Gelsemium analgesia and the spinal glycine receptor/allopregnanolone pathway. Fitoterapia 2014; 100:35-43. [PMID: 25447163 DOI: 10.1016/j.fitote.2014.11.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/30/2014] [Accepted: 11/01/2014] [Indexed: 12/21/2022]
Abstract
Gelsemium, a small genus of flowering plant from the family Loganiaceae, comprises five species including the popular Gelsemium sempervirens Ait. and Gelsemium elegans Benth., which are indigenous to North America and China/East Asia, respectively. Approximately 120 alkaloids have been isolated and identified from Gelsemium, with the predominant indole alkaloids including gelsemine, koumine, gelsemicine, gelsenicine, gelsedine, sempervirine, koumidine, koumicine and humantenine. Gelsemine is the principal active alkaloid in G. sempervirens Ait., and koumine and gelsemine are the most and second-most dominant alkaloids in G. elegans Benth. Gelsemium extract and its active alkaloids serve a variety of biological functions, including neurobiological, immunosuppressive and antitumor effects, and have traditionally been used to treat pain, neuralgia, anxiety, insomnia, asthma, respiratory ailments and cancers. This review focuses on animal-based studies of Gelsemium as a pain treatment and its mechanism of action. In contrast to morphine, when administered intrathecally and systemically, koumine, gelsemine and gelsenicine have marked antinociception in inflammatory, neuropathic and bone cancer pains without inducing antinociceptive tolerance. Gelsemium and its active alkaloids may produce antinociception by activating the spinal α3 glycine/allopregnanolone pathway. The results of this review support the clinical use of Gelsemium and suggest that its active alkaloids may be developed to treat intractable and other types of pain, preferably after chemical modification. However, Gelsemium is a known toxic plant, and its toxicity limits its appropriate dosage and clinical use. To avoid or decrease the side/toxic effects of Gelsemium, an individual monomer of highly potent alkaloids must be selected, or alkaloids that exhibit greater α3 glycine receptor selectivity may be discovered or modified.
Collapse
Affiliation(s)
- Jing-Yang Zhang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, No 6 Biomedicine Building, 800 Dongchuan Road, Shanghai 200240, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, No 6 Biomedicine Building, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
16
|
Bellavite P, Marzotto M, Olioso D, Moratti E, Conforti A. High-dilution effects revisited. 1. Physicochemical aspects. HOMEOPATHY 2014; 103:4-21. [PMID: 24439452 DOI: 10.1016/j.homp.2013.08.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/26/2013] [Accepted: 08/12/2013] [Indexed: 12/20/2022]
Abstract
Several lines of evidence suggest that homeopathic high dilutions (HDs) can effectively have a pharmacological action, and so cannot be considered merely placebos. However, until now there has been no unified explanation for these observations within the dominant paradigm of the dose-response effect. Here the possible scenarios for the physicochemical nature of HDs are reviewed. A number of theoretical and experimental approaches, including quantum physics, conductometric and spectroscopic measurements, thermoluminescence, and model simulations investigated the peculiar features of diluted/succussed solutions. The heterogeneous composition of water could be affected by interactive phenomena such as coherence, epitaxy and formation of colloidal nanobubbles containing gaseous inclusions of oxygen, nitrogen, carbon dioxide, silica and, possibly, the original material of the remedy. It is likely that the molecules of active substance act as nucleation centres, amplifying the formation of supramolecular structures and imparting order to the solvent. Three major models for how this happens are currently being investigated: the water clusters or clathrates, the coherent domains postulated by quantum electrodynamics, and the formation of nanoparticles from the original solute plus solvent components. Other theoretical approaches based on quantum entanglement and on fractal-type self-organization of water clusters are more speculative and hypothetical. The problem of the physicochemical nature of HDs is still far from to be clarified but current evidence strongly supports the notion that the structuring of water and its solutes at the nanoscale can play a key role.
Collapse
Affiliation(s)
- Paolo Bellavite
- Department of Pathology and Diagnostics, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy.
| | - Marta Marzotto
- Department of Pathology and Diagnostics, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Debora Olioso
- Department of Pathology and Diagnostics, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Elisabetta Moratti
- Department of Pathology and Diagnostics, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Anita Conforti
- Department of Public Health and Community Medicine, University of Verona, Piazza L.A. Scuro 10, 37134 Verona, Italy
| |
Collapse
|
17
|
Bellavite P, Marzotto M, Conforti A. Scientific criticism in homoeopathy: need to test more than disputes. Int J Clin Pract 2014; 68:403-4. [PMID: 24588949 DOI: 10.1111/ijcp.12349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- P Bellavite
- Department of Pathology and Diagnostics, University of Verona, Verona, Italy.
| | | | | |
Collapse
|
18
|
Jin GL, Su YP, Liu M, Xu Y, Yang J, Liao KJ, Yu CX. Medicinal plants of the genus Gelsemium (Gelsemiaceae, Gentianales)--a review of their phytochemistry, pharmacology, toxicology and traditional use. JOURNAL OF ETHNOPHARMACOLOGY 2014; 152:33-52. [PMID: 24434844 DOI: 10.1016/j.jep.2014.01.003] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/04/2014] [Accepted: 01/04/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In the genus Gelsemium, Gelsemium elegans (Gardn. & Champ.) Benth. has been recognized as a toxic plant that is widely distributed in Southeast Asia and has been used as traditional Chinese medicine for the treatment of rheumatoid pain, neuropathic pain, spasticity, skin ulcers and cancers for many years. Gelsemium sempervirens (L.) J.St.-Hil. has been used since the nineteenth century in homeopathy for treating anxiety, neuralgia, migraine and spasmodic disorders, such as asthma and whooping cough in North America. This review aims to provide comprehensive information on the botany, traditional uses, phytochemistry, pharmacological research and toxicology of medicinal plants in the genus Gelsemium. The overall objective is to explore the evidence supporting its ethnopharmacological effectiveness. MATERIALS AND METHODS A literature survey was performed by searching the scientific databases Pubmed, Google Scholar, SciFinder, Scopus, Web of Science and the Chinese CNKI, in addition to traditional Chinese medicine and homeopathic texts for information on Gelsemium. RESULTS Plants of the genus Gelsemium have been used in traditional medicine for the treatment of migraines, neuralgia, sciatica, cancer and various types of sores. Studies into the phytochemical composition of this genus have shown that all of the species are rich sources of monoterpene indole alkaloids and that they have attracted the attention of many researchers due to their markedly diverse and complex architecture. To date, a total of 121 alkaloids have been isolated and identified from the genus. The crude extracts, as well as the monomeric compounds, from the genus possess anti-tumor, analgesic, anxiolytic, anti-inflammatory and immunomodulating pharmacological activities. CONCLUSION It is evident from the available literature that Gelsemium species possess potential for use as a beneficial therapeutic remedy. However, the analysis of previous pharmacological research suggests that a clear assignment of active molecules and mechanisms of action is remain lacking. Due to their high toxicity, the studies available on toxicity and safety are inadequate for providing information on clinical utilization.
Collapse
Affiliation(s)
- Gui-Lin Jin
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou 350108, Fujian, People's Republic of China
| | - Yan-Ping Su
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou 350108, Fujian, People's Republic of China
| | - Ming Liu
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou 350108, Fujian, People's Republic of China
| | - Ying Xu
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou 350108, Fujian, People's Republic of China
| | - Jian Yang
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou 350108, Fujian, People's Republic of China
| | - Kai-Jun Liao
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou 350108, Fujian, People's Republic of China
| | - Chang-Xi Yu
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou 350108, Fujian, People's Republic of China.
| |
Collapse
|
19
|
Chirumbolo S. Bias and adverse effects of homeopathy: is scientific criticism in homeopathy a "mission impossible"? Int J Clin Pract 2013; 67:923-6. [PMID: 23952470 DOI: 10.1111/ijcp.12225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
20
|
Pharmacological effect of gelsemine on anxiety-like behavior in rat. Behav Brain Res 2013; 253:90-4. [DOI: 10.1016/j.bbr.2013.07.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/05/2013] [Accepted: 07/06/2013] [Indexed: 01/19/2023]
|
21
|
Bell IR, Koithan M. A model for homeopathic remedy effects: low dose nanoparticles, allostatic cross-adaptation, and time-dependent sensitization in a complex adaptive system. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 12:191. [PMID: 23088629 PMCID: PMC3570304 DOI: 10.1186/1472-6882-12-191] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 10/19/2012] [Indexed: 01/09/2023]
Abstract
Background This paper proposes a novel model for homeopathic remedy action on living systems. Research indicates that homeopathic remedies (a) contain measurable source and silica nanoparticles heterogeneously dispersed in colloidal solution; (b) act by modulating biological function of the allostatic stress response network (c) evoke biphasic actions on living systems via organism-dependent adaptive and endogenously amplified effects; (d) improve systemic resilience. Discussion The proposed active components of homeopathic remedies are nanoparticles of source substance in water-based colloidal solution, not bulk-form drugs. Nanoparticles have unique biological and physico-chemical properties, including increased catalytic reactivity, protein and DNA adsorption, bioavailability, dose-sparing, electromagnetic, and quantum effects different from bulk-form materials. Trituration and/or liquid succussions during classical remedy preparation create “top-down” nanostructures. Plants can biosynthesize remedy-templated silica nanostructures. Nanoparticles stimulate hormesis, a beneficial low-dose adaptive response. Homeopathic remedies prescribed in low doses spaced intermittently over time act as biological signals that stimulate the organism’s allostatic biological stress response network, evoking nonlinear modulatory, self-organizing change. Potential mechanisms include time-dependent sensitization (TDS), a type of adaptive plasticity/metaplasticity involving progressive amplification of host responses, which reverse direction and oscillate at physiological limits. To mobilize hormesis and TDS, the remedy must be appraised as a salient, but low level, novel threat, stressor, or homeostatic disruption for the whole organism. Silica nanoparticles adsorb remedy source and amplify effects. Properly-timed remedy dosing elicits disease-primed compensatory reversal in direction of maladaptive dynamics of the allostatic network, thus promoting resilience and recovery from disease. Summary Homeopathic remedies are proposed as source nanoparticles that mobilize hormesis and time-dependent sensitization via non-pharmacological effects on specific biological adaptive and amplification mechanisms. The nanoparticle nature of remedies would distinguish them from conventional bulk drugs in structure, morphology, and functional properties. Outcomes would depend upon the ability of the organism to respond to the remedy as a novel stressor or heterotypic biological threat, initiating reversals of cumulative, cross-adapted biological maladaptations underlying disease in the allostatic stress response network. Systemic resilience would improve. This model provides a foundation for theory-driven research on the role of nanomaterials in living systems, mechanisms of homeopathic remedy actions and translational uses in nanomedicine.
Collapse
|
22
|
Rats Born to Mothers Treated with Dexamethasone 15 cH Present Changes in Modulation of Inflammatory Process. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:710923. [PMID: 22899956 PMCID: PMC3414090 DOI: 10.1155/2012/710923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/16/2012] [Accepted: 05/22/2012] [Indexed: 02/06/2023]
Abstract
As little information about the effect of ultra high dilutions of glucocorticoid in reproduction is available in the literature, pregnant female Wistar rats (N = 12) were blindly subcutaneously treated during all gestational and lactation period with: dexamethasone 4 mg/kg diluted into dexamethasone 15 cH (mixed); or dexamethasone 4 mg/kg diluted in water; or dexamethasone 15 cH, or vehicle. Parental generation had body weight, food and water consumption monitored. The F1 generation was monitored regarding to newborn development. No birth occurred in both groups treated with dexamethasone 4 mg/kg. After 60 days from birth, 12 male F1 rats were randomly selected from each remaining group and inoculated subcutaneously with 1% carrageenan into the footpad, for evaluation of inflammatory performance. Edema and histopathology of the footpad were evaluated, using specific staining methods, immunohistochemistry and digital histomorphometry. Mothers treated with mixed dexamethasone presented reduced water consumption. F1 rats born to dexamethasone 15 cH treated females presented significant increase in mast cell degranulation, decrease in monocyte percentage, increase in CD18+ PMN cells, and early expression of ED2 protein, in relation to control. The results show that the exposure of parental generation to highly diluted dexamethasone interferes in inflammation modulation in the F1 generation.
Collapse
|
23
|
Testing homeopathy in mouse emotional response models: pooled data analysis of two series of studies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:954374. [PMID: 22548123 PMCID: PMC3324905 DOI: 10.1155/2012/954374] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 01/29/2012] [Indexed: 01/26/2023]
Abstract
Two previous investigations were performed to assess the activity of Gelsemium sempervirens (Gelsemium s.) in mice, using emotional response models. These two series are pooled and analysed here. Gelsemium s. in various homeopathic centesimal dilutions/dynamizations (4C, 5C, 7C, 9C, and 30C), a placebo (solvent vehicle), and the reference drugs diazepam (1 mg/kg body weight) or buspirone (5 mg/kg body weight) were delivered intraperitoneally to groups of albino CD1 mice, and their effects on animal behaviour were assessed by the light-dark (LD) choice test and the open-field (OF) exploration test. Up to 14 separate replications were carried out in fully blind and randomised conditions. Pooled analysis demonstrated highly significant effects of Gelsemium s. 5C, 7C, and 30C on the OF parameter “time spent in central area” and of Gelsemium s. 5C, 9C, and 30C on the LD parameters “time spent in lit area” and “number of light-dark transitions,” without any sedative action or adverse effects on locomotion. This pooled data analysis confirms and reinforces the evidence that Gelsemium s. regulates emotional responses and behaviour of laboratory mice in a nonlinear fashion with dilution/dynamization.
Collapse
|
24
|
Cervo L, Torri V. Comment on: "Dose-effect study of Gelsemium sempervirens in high dilutions on anxiety-related responses in mice" (Magnani P, Conforti A, Zanolin E, Marzotto M and Bellavite P, Psychopharmacology, 2010). Psychopharmacology (Berl) 2012; 220:439-40; author reply 441-2. [PMID: 22094532 DOI: 10.1007/s00213-011-2582-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 11/07/2011] [Indexed: 02/08/2023]
|
25
|
Chirumbolo S. Plant-derived extracts in the neuroscience of anxiety on animal models: biases and comments. Int J Neurosci 2011; 122:177-88. [PMID: 22050267 DOI: 10.3109/00207454.2011.635829] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Generalized anxiety disorders probably represent one of the world's biggest mental health problems. A large number of studies have also shown that anxiety disorders and depression are often associated with quality of life impairments. As anxiety represents a big concern in public health, a substantial literature supports clinically important associations between psychiatric illness and chronic medical conditions. Actually, most research focuses on depression, finding that depression can adversely affect self-care and increase the risk of incident medical illness, complications, and mortality. Anxiety disorders are less well studied, but robust epidemiological and clinical evidences show that they play an equally important role. Recent reported articles have raised a debate about the effectiveness of some plant-derived extracts in anxiety-like models in mice. Biases about several aspects related with experimental setting, animal selection, environments, operators and investigators, selection and performance of behavioral tests, controls, results managing, and statistics are here discussed.
Collapse
|
26
|
Magnani P, Conforti A, Zanolin E, Marzotto M, Bellavite P. Dose-effect study of Gelsemium sempervirens in high dilutions on anxiety-related responses in mice. Psychopharmacology (Berl) 2010; 210:533-45. [PMID: 20401745 PMCID: PMC2877813 DOI: 10.1007/s00213-010-1855-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 03/26/2010] [Indexed: 11/28/2022]
Abstract
INTRODUCTION This study was designed to investigate the putative anxiolytic-like activity of ultra-low doses of Gelsemium sempervirens (G. sempervirens), produced according to the homeopathic pharmacopeia. METHODS Five different centesimal (C) dilutions of G. sempervirens (4C, 5C, 7C, 9C and 30C), the drug buspirone (5 mg/kg) and solvent vehicle were delivered intraperitoneally to groups of ICR-CD1 mice over a period of 9 days. The behavioral effects were assessed in the open-field (OF) and light-dark (LD) tests in blind and randomized fashion. RESULTS Most G. sempervirens dilutions did not affect the total distance traveled in the OF (only the 5C had an almost significant stimulatory effect on this parameter), indicating that the medicine caused no sedation effects or unspecific changes in locomotor activity. In the same test, buspirone induced a slight but statistically significant decrease in locomotion. G. sempervirens showed little stimulatory activity on the time spent and distance traveled in the central zone of the OF, but this effect was not statistically significant. In the LD test, G. sempervirens increased the % time spent in the light compartment, an indicator of anxiolytic-like activity, with a statistically significant effect using the 5C, 9C and 30C dilutions. These effects were comparable to those of buspirone. The number of transitions between the compartments of the LD test markedly increased with G. sempervirens 5C, 9C and 30C dilutions. CONCLUSION The overall pattern of results provides evidence that G. sempervirens acts on the emotional reactivity of mice, and that its anxiolytic-like effects are apparent, with a non-linear relationship, even at high dilutions.
Collapse
Affiliation(s)
- Paolo Magnani
- Dipartimento di Patologia, Università di Verona, Strada Le Grazie, 37134 Verona, Italy
| | - Anita Conforti
- Department of Medicine and Public Health, University of Verona, Verona, Italy
| | - Elisabetta Zanolin
- Department of Medicine and Public Health, University of Verona, Verona, Italy
| | - Marta Marzotto
- Dipartimento di Patologia, Università di Verona, Strada Le Grazie, 37134 Verona, Italy
| | - Paolo Bellavite
- Dipartimento di Patologia, Università di Verona, Strada Le Grazie, 37134 Verona, Italy
| |
Collapse
|