1
|
Nixon LJ, Acebes-Doria A, Kirkpatrick D, Leskey TC. Influence of deployment method and maintenance on efficacy of sticky card traps for Halyomorpha halys (Hemiptera: Pentatomidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:2003-2008. [PMID: 39183460 DOI: 10.1093/jee/toae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/06/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) is an invasive pest which feeds on numerous economically significant crops. Many integrated pest management strategies for this species rely on effective season-long monitoring for H. halys populations, including attract-and-kill and threshold-based insecticide sprays. Previous studies have shown that a black pyramid trap effectively captures all mobile life stages of H. halys, however, these bulky, ground-deployed traps can be impractical in active orchard rows. Clear sticky cards have been used as a more practical tool for monitoring when paired with the H. halys aggregation pheromone and synergist. Here, the efficacy of deploying single- or double-sided sticky cards hanging in trees or deployed on wooden stakes was compared to standard black pyramid traps over 2 years. The efficacy of single-sided sticky cards deployed on wooden stakes was also evaluated after occlusion of 25%, 50%, or 75% of the surface area by 2D inert materials and 3D organic matter. Single-sided sticky cards were also exposed to simulated sunlight and rainfall for 0, 4, 8, and 12 wk before deployment on wooden stakes. Captures of H. halys adults using sticky cards deployed on wooden stakes were comparable to pyramid traps. Occlusion of cards by 25% or more of any material type led to a decrease in H. halys captures, however, weathering did not influence capture. These data show that clear sticky cards deployed on wooden stakes are effective for season-long monitoring of H. halys in apple orchards, and card replacement should be driven by maintenance of cleanliness.
Collapse
Affiliation(s)
- Laura J Nixon
- USDA-ARS, Appalachian Fruit Research Station, Kearneysville, WV, USA
| | - Angelita Acebes-Doria
- USDA-ARS, Appalachian Fruit Research Station, Kearneysville, WV, USA
- USDA-ARS, US Pacific Basin Agricultural Research Center, Hilo, HI, USA
| | | | - Tracy C Leskey
- USDA-ARS, Appalachian Fruit Research Station, Kearneysville, WV, USA
| |
Collapse
|
2
|
Cooperband MF, Murman KM. Spotted Lanternflies Respond to Natural Pheromone Lures for Mate-Finding and Oviposition. INSECTS 2024; 15:447. [PMID: 38921162 PMCID: PMC11203839 DOI: 10.3390/insects15060447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/27/2024]
Abstract
Using semiochemicals collected from spotted lanternflies Lycorma delicatula (Hemiptera: Fulgoridae) (SLF) and deployed in the field with circle traps, we demonstrated that SLF responded to SLF pheromones: in particular, this was the case for males while seeking mates and for females while ovipositing. The attractants consisted of SLF body extract emitted from diffuser lures and SLF honeydew on burlap ribbons, collected from heavily infested locations. Traps with attractants were deployed in field sites with very light SLF infestations to avoid competing signals of pre-existing aggregations. The number of SLF equivalents emitted by each diffuser per trapping period was used in a dose-response analysis. Three trees per block received either (1) a control hexane lure and a clean ribbon, (2) a lure containing SLF extract and a clean ribbon, or (3) a lure containing SLF extract and a honeydew-laden ribbon. Ten blocks were sampled three times per week for twelve weeks. We found a significant positive dose-response by males to SLF body extract only in the presence of SLF honeydew, indicating a synergistic effect between honeydew volatiles and body volatiles. This dose-response occurred for five weeks after mating started, after which males no longer responded. Subsequently, females had a significant positive dose-response to SLF extract only in the presence of honeydew when oviposition was their primary activity, continuing for two weeks, suggesting that females may use pheromones to aggregate for oviposition. The extract in the absence of honeydew did not result in a positive dose-response, nor did the hexane control. These findings suggest that SLF respond synergistically to the combination of pheromones present in both SLF honeydew and SLF bodies. Thus, combining key components from both sources may aid the development of semiochemical lures for SLF.
Collapse
Affiliation(s)
- Miriam F. Cooperband
- Forest Pest Methods Laboratory, USDA—APHIS—PPQ, 1398 W. Truck Rd., Buzzards Bay, MA 02542, USA
| | | |
Collapse
|
3
|
Leach H, Mariani T, Centinari M, Urban J. Evaluating integrated pest management tactics for spotted lanternfly management in vineyards. PEST MANAGEMENT SCIENCE 2023; 79:3486-3492. [PMID: 37139847 DOI: 10.1002/ps.7528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Spotted lanternfly, an invasive planthopper which was first found in 2014 in the eastern USA, has become a significant pest to vineyards. Sap-feeding by this pest has been associated with plant stress and yield declines, and current management depends entirely on the prophylactic use of insecticides. Our study explored two new integrated pest management (IPM) tactics against spotted lanternfly to reduce the negative effects of frequent chemical applications: the use of exclusion netting and the use of perimeter applications of insecticides. RESULTS Exclusion netting was installed across five vineyards in 2020 and compared to adjacent vines without exclusion netting. The netting reduced spotted lanternfly on vines by 99.8% and had no effect on air temperature, humidity, fungal disease pressure, or fruit quality. Perimeter applications of insecticides were compared against full-cover applications for both in-season and late-season control of spotted lanternfly in 2020. Residual efficacy with adult spotted lanternfly was evaluated within the vineyard plots, revealing that insecticide efficacy declined after 8 m into the vineyard in the perimeter application. However, there was no difference in the level of control achieved using a perimeter spray compared to a full-cover spray. Additionally, the perimeter spray reduced the area treated with insecticide by 31% in a 1 ha block and took 66% less time to spray. CONCLUSION Both methods, exclusion netting and perimeter spraying, offer new strategies to alleviate the invasion of spotted lanternfly into vineyards, reducing chemical input and rebuilding IPM in vineyards after invasion by spotted lanternfly. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Heather Leach
- Department of Entomology, Penn State University, University Park, PA, USA
| | | | - Michela Centinari
- Department of Plant Science, Penn State University, University Park, PA, USA
| | - Julie Urban
- Department of Entomology, Penn State University, University Park, PA, USA
| |
Collapse
|
4
|
Nixon LJ, Barnes C, Deecher E, Madalinska K, Nielsen A, Urban J, Leskey TC. Evaluating deployment strategies for spotted lanternfly (Lycorma delicatula Hemiptera: Fulgoridae) traps. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:426-434. [PMID: 36881709 DOI: 10.1093/jee/toad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 05/30/2023]
Abstract
The spotted lanternfly, Lycorma delicatula (White) (Hemiptera: Fulgoridae), is an invasive planthopper that was first detected in the United States in Berks County, PA, in 2014, and has since spread to 13 states in the Eastern United States. This phloem-feeding pest has a broad host range, including economically important crops such as grapevine, Vitis spp. Monitoring presence and relative abundance of L. delicatula is essential to develop pest management tools. Here, we compared deployment strategies to optimize use of L. delicatula monitoring traps. Standard circle traps, sticky bands, and circle traps with replaceable bag tops were deployed at sites with either high or low populations present. Trap deployment at different heights and on different host tree species and trap sampling intervals were evaluated for standard circle traps only. Circle traps captured significantly more L. delicatula adults at low-density sites compared with other trap types in 2021, and no differences were detected at high-density sights. Traps deployed 1 m from the ground captured significantly more adults than those deployed at 0.5 m; no differences were detected for nymphs. While no significant differences in captures were found among intervals, weekly or biweekly sampling prevented specimen degradation. Although traps deployed on Ailanthus altissima (Mill.) Swingle (Sapindales: Simaroubaceae) captured significantly or numerically more L. delicatula at most sites, traps deployed on other hosts also yielded consistent captures. We were also able to alter the construction of circle trap skirts to allow for deployment on different sized tree trunks.
Collapse
Affiliation(s)
- Laura J Nixon
- USDA-ARS, Appalachian Fruit Research Station, Kearneysville, WV, USA
| | - Caitlin Barnes
- USDA-ARS, Appalachian Fruit Research Station, Kearneysville, WV, USA
| | - Elizabeth Deecher
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
| | | | - Anne Nielsen
- Rutgers Agricultural Research and Extension Center, Bridgeton, NJ, USA
| | - Julie Urban
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
| | - Tracy C Leskey
- USDA-ARS, Appalachian Fruit Research Station, Kearneysville, WV, USA
| |
Collapse
|
5
|
Cooperband MF, Wickham JD, Warden ML. Factors Guiding the Orientation of Nymphal Spotted Lanternfly, Lycorma delicatula. INSECTS 2023; 14:279. [PMID: 36975964 PMCID: PMC10054470 DOI: 10.3390/insects14030279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
A mark-release-recapture experiment was conducted to evaluate the orientation of spotted lanternfly (SLF) Lycorma delicatula White (Hemiptera: Fulgoridae) nymphs when released equidistant between two trees. The experiment was repeated weekly for eight weeks in a heavily infested area with mature tree-of-heaven Ailanthus altissima (Mill.) Swingle (Sapindales: Simaroubaceae) planted in rows as ornamental street trees in Beijing, China. One tree in each pair received a methyl salicylate lure, and the lure was rotated between trees every week as it aged. Two additional independent variables for each tree were also analyzed: size and SLF population density. Marked-released SLF significantly chose trees with higher SLF population density over trees with lower density populations, and they also chose larger trees significantly more than smaller trees. Population density and tree size were better predictors of attraction than lures, but when those factors were controlled, SLF significantly chose trees with methyl salicylate lures over control trees for the first 4 weeks of lure life. Wild SLF distribution was assessed weekly, revealing strong aggregation in first and second instars that diminished with development to the third and fourth instars. Thus, nymphal SLF aggregate, and orientation is strongly guided by the presence of other SLF and tree size.
Collapse
Affiliation(s)
- Miriam F. Cooperband
- Forest Pest Methods Laboratory, USDA—APHIS—PPQ, 1398 W. Truck Rd., Buzzards Bay, MA 02542, USA
| | - Jacob D. Wickham
- Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Rd., Beijing 100101, China
| | - Melissa L. Warden
- Forest Pest Methods Laboratory, USDA—APHIS—PPQ, 1398 W. Truck Rd., Buzzards Bay, MA 02542, USA
| |
Collapse
|
6
|
Urban JM, Leach H. Biology and Management of the Spotted Lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae), in the United States. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:151-167. [PMID: 36206772 DOI: 10.1146/annurev-ento-120220-111140] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Spotted lanternfly, Lycorma delicatula (White), invaded the eastern United States in 2014 and has since caused economic and ecological disruption. In particular, spotted lanternfly has shown itself to be a significant pest of vineyards and ornamental plants and is likely to continue to spread to new areas. Factors that have contributed to its success as an invader include its wide host range and high mobility, which allow it to infest a wide range of habitats, including agricultural, urban, suburban, and managed and natural forested areas. Management is dependent on chemical use, although no single currently available control measure alone will be sufficient.
Collapse
Affiliation(s)
- Julie M Urban
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, USA;
| | - Heather Leach
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, USA;
| |
Collapse
|
7
|
Madalinska K, McDougall R, Nielsen AL. Characterizing location of spotted lanternfly egg masses in wooded habitat during early invasion stages. FRONTIERS IN INSECT SCIENCE 2022; 2:964736. [PMID: 38468770 PMCID: PMC10926495 DOI: 10.3389/finsc.2022.964736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/15/2022] [Indexed: 03/13/2024]
Abstract
The spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae), is an invasive planthopper from Asia that is estimated to have spread 17 km/yr since it's initial detection in Pennsylvania in 2014. Lycorma delicatula is a pest to the agricultural and forestry industries in the Mid-Atlantic region of the United States, in part due to its highly polyphagous nature. Current detection relies on visual observations, unbaited traps, or eDNA surveillance in its primary hosts, including grape and hardwoods. These approaches narrow the surveillance area by concentrating on known host plants but could be further refined to narrow the search parameters from the 100+ known host plants. Because L. delicatula appears to have a strong population buildup in wooded areas, we evaluated the relationship between egg mass presence and habitat characteristics in wooded habitats adjacent to vineyards in New Jersey at six farms within the first two years of L. delicatula detection. Habitat characteristics included distance from wood edge, and presence of a critical host plant Ailanthus altissima, and presence of Vitis spp. within 4.5 m. We identified a significant relationship between egg mass presence and Vitis spp. with an 88% probability of finding an egg mass close to a wild grapevine, dropping to 9% where grapes were absent. During the early invasion stages when this research was conducted, a two-year delay from initial detection in wooded habitats to nymphal presence in the vineyard was observed.
Collapse
|
8
|
Huron NA, Behm JE, Helmus MR. Paninvasion severity assessment of a U.S. grape pest to disrupt the global wine market. Commun Biol 2022; 5:655. [PMID: 35788172 PMCID: PMC9253006 DOI: 10.1038/s42003-022-03580-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 06/10/2022] [Indexed: 11/09/2022] Open
Abstract
Economic impacts from plant pests are often felt at the regional scale, yet some impacts expand to the global scale through the alignment of a pest's invasion potentials. Such globally invasive species (i.e., paninvasives) are like the human pathogens that cause pandemics. Like pandemics, assessing paninvasion risk for an emerging regional pest is key for stakeholders to take early actions that avoid market disruption. Here, we develop the paninvasion severity assessment framework and use it to assess a rapidly spreading regional U.S. grape pest, the spotted lanternfly planthopper (Lycorma delicatula; SLF), to spread and disrupt the global wine market. We found that SLF invasion potentials are aligned globally because important viticultural regions with suitable environments for SLF establishment also heavily trade with invaded U.S. states. If the U.S. acts as an invasive bridgehead, Italy, France, Spain, and other important wine exporters are likely to experience the next SLF introductions. Risk to the global wine market is high unless stakeholders work to reduce SLF invasion potentials in the U.S. and globally.
Collapse
Affiliation(s)
- Nicholas A Huron
- Integrative Ecology Lab, Department of Biology, Temple University, Philadelphia, PA, 19122, USA.
| | - Jocelyn E Behm
- Integrative Ecology Lab, Department of Biology, Temple University, Philadelphia, PA, 19122, USA
| | - Matthew R Helmus
- Integrative Ecology Lab, Department of Biology, Temple University, Philadelphia, PA, 19122, USA
| |
Collapse
|
9
|
Dechaine AC, Sutphin M, Leskey TC, Salom SM, Kuhar TP, Pfeiffer DG. Phenology of Lycorma delicatula (Hemiptera: Fulgoridae) in Virginia, USA. ENVIRONMENTAL ENTOMOLOGY 2021; 50:1267-1275. [PMID: 34613349 DOI: 10.1093/ee/nvab107] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Indexed: 06/13/2023]
Abstract
The spotted lanternfly, Lycorma delicatula (White), is an invasive planthopper that was first discovered in North America in Berks County, Pennsylvania in 2014. Currently, L. delicatula has spread to eight additional states and threatens agricultural, ornamental, and timber commodities throughout the United States. The timing of insect life events is very important in the development of pest management tools and strategies. In 2019 and 2020, L. delicatula phenology was successfully documented in Winchester, Virginia using weekly 5-min observational surveys at established monitoring plots. Each year, L. delicatula were active in the environment from May to November with initial detections of first, second, third, fourth, and adults occurring in May, May, June, June, and July, respectively. Cumulative average growing degree days were also calculated for the onset of each L. delicatula life stage using local weather data and a lower developmental threshold of 10°C. First-instar L. delicatula were initially observed at 135 and 111.5, adults at 835 and 887, and egg masses at 1673.5 and 1611.5 in 2019 and 2020, respectively. Combined, these data can be used by growers and land managers to facilitate timing of effective pest management strategies.
Collapse
Affiliation(s)
- Andrew C Dechaine
- Department of Entomology, Virginia Polytechnic Institute and State University, 216A Price Hall, 170 Drillfield Drive, Blacksburg, VA 24061, USA
| | - Mark Sutphin
- Frederick County Virginia Cooperative Extension, 107 N. Kent Street, Winchester, VA 22601, USA
| | - Tracy C Leskey
- Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA
| | - Scott M Salom
- Department of Entomology, Virginia Polytechnic Institute and State University, 216A Price Hall, 170 Drillfield Drive, Blacksburg, VA 24061, USA
| | - Thomas P Kuhar
- Department of Entomology, Virginia Polytechnic Institute and State University, 216A Price Hall, 170 Drillfield Drive, Blacksburg, VA 24061, USA
| | - Douglas G Pfeiffer
- Department of Entomology, Virginia Polytechnic Institute and State University, 216A Price Hall, 170 Drillfield Drive, Blacksburg, VA 24061, USA
| |
Collapse
|
10
|
Kane SA, Bien T, Contreras-Orendain L, Ochs MF, Tonia Hsieh S. Many ways to land upright: novel righting strategies allow spotted lanternfly nymphs to land on diverse substrates. J R Soc Interface 2021; 18:20210367. [PMID: 34376093 DOI: 10.1098/rsif.2021.0367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Unlike large animals, insects and other very small animals are so unsusceptible to impact-related injuries that they can use falling for dispersal and predator evasion. Reorienting to land upright can mitigate lost access to resources and predation risk. Such behaviours are critical for the spotted lanternfly (SLF) (Lycorma delicatula), an invasive, destructive insect pest spreading rapidly in the USA. High-speed video of SLF nymphs released under different conditions showed that these insects self-right using both active midair righting motions previously reported for other insects and novel post-impact mechanisms that take advantage of their ability to experience near-total energy loss on impact. Unlike during terrestrial self-righting, in which an animal initially at rest on its back uses appendage motions to flip over, SLF nymphs impacted the surface at varying angles and then self-righted during the rebound using coordinated body rotations, foot-substrate adhesion and active leg motions. These previously unreported strategies were found to promote disproportionately upright, secure landings on both hard, flat surfaces and tilted, compliant host plant leaves. Our results highlight the importance of examining biomechanical phenomena in ecologically relevant contexts, and show that, for small animals, the post-impact bounce period can be critical for achieving an upright landing.
Collapse
Affiliation(s)
| | - Theodore Bien
- Physics and Astronomy Department, Haverford College, Haverford, PA, USA
| | | | - Michael F Ochs
- Department of Mathematics and Statistics, The College of New Jersey, Ewing, NJ, USA
| | - S Tonia Hsieh
- Department of Biology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
11
|
Yang K, Wen J. Developing traps for the overwintering tree-of-heaven weevils Eucryptorrhynchus scrobiculatus and E. brandti (Coleoptera: Curculionidae). PEST MANAGEMENT SCIENCE 2021; 77:2766-2772. [PMID: 33527652 DOI: 10.1002/ps.6305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The tree-of-heaven root and trunk weevils, Eucryptorrhynchus scrobiculatus (TRW) and E. brandti (TTW) are important boring pests of Ailanthus altissima in China. Overwintering TRW and TTW adults can continue to damage A. altissima trees and reproduce after they emerge from the soil each year. There is a lack of studies regarding the development of control measures during the overwintering period. A polyethylene terephthalate bottle trap (PETBT) and corrugated paper box trap (CPBT) were evaluated for their ability to trap TRW and TTW adults descending from trees to overwinter in the soil in Wutongshu and Shabatou locations in Ningxia, China. RESULTS Significantly more overwintering TRW adults were caught by the PETBT than the CPBT. There were no significant differences in the TTW captures in PETBT when compared to the CPBT. Both PETBT and CPBT have little effect on trapping overwintering TTW adults. Further trapping studies showed that PETBT treatments significantly reduced overwintering TRW numbers caught in population monitoring trap nets placed on the A. altissima tree trunks (an average annual reduction of 42% than the untreated trees). CONCLUSION These results demonstrate that PETBT is effective for trapping overwintering TRW adults. PETBT could be recommended as an alternative for managing TRW in the framework of integrated pest management. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kailang Yang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, 100083, China
| | - Junbao Wen
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|