1
|
Lu X, Xu H, Zhang X, Sun T, Lin Y, Li H, Li X, Zhang L, Duan H, Yang X, Ling Y. Target-Based Design, Synthesis, and Biological Evaluation of Novel 1,2,4-Triazolone Derivatives as Potential nAChR Modulators. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19333-19342. [PMID: 38050804 DOI: 10.1021/acs.jafc.3c04998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Novel agrochemicals have been successfully developed using target-based drug design (TBDD). To discover a novel, efficient, and highly selective nicotinic insecticide candidate, we developed a unified pharmacological model using TBDD by studying the binding modes of 11 nicotinic acetylcholine receptor (nAChR) modulators with acetylcholine binding protein (AChBP) targets for the first time. This model was used to design and develop a series of 1,2,4-triazolone derivatives. Bioassays demonstrated excellent insecticidal activities against Aphis glycines of compounds 4k (LC50 = 4.95 mg/L) and 4q (LC50 = 3.17 mg/L), and low toxicities to Apis mellifera. Additionally, compound 4q was stably bound to Aplysia californica AChBP, which was consistent with the pharmacological model obtained via molecular docking and molecular dynamics simulations. Therefore, compound 4q could be a potential lead candidate targeting nAChR. The explicit pharmacological model of nAChR modulators with Ac-AChBP in this study may facilitate the future rational design of eco-friendly nicotinic insecticides.
Collapse
Affiliation(s)
- Xingxing Lu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Huan Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiaoming Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Tengda Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yufan Lin
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Honghong Li
- Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, Agricultural College, Guangxi University, Nanning, Guangxi Province 530004, China
| | - Xuesheng Li
- Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, Agricultural College, Guangxi University, Nanning, Guangxi Province 530004, China
| | - Li Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xinling Yang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yun Ling
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Crossley MS, Burke KD, Schoville SD, Radeloff VC. Recent collapse of crop belts and declining diversity of US agriculture since 1840. GLOBAL CHANGE BIOLOGY 2021; 27:151-164. [PMID: 33064906 DOI: 10.1111/gcb.15396] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 09/20/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Over the last century, US agriculture greatly intensified and became industrialized, increasing in inputs and yields while decreasing in total cropland area. In the industrial sector, spatial agglomeration effects are typical, but such changes in the patterns of crop types and diversity would have major implications for the resilience of food systems to global change. Here, we investigate the extent to which agricultural industrialization in the United States was accompanied by agglomeration of crop types, not just overall cropland area, as well as declines in crop diversity. Based on county-level analyses of individual crop land cover area in the conterminous United States from 1840 to 2017, we found a strong and abrupt spatial concentration of most crop types in very recent years. For 13 of the 18 major crops, the widespread belts that characterized early 20th century US agriculture have collapsed, with spatial concentration increasing 15-fold after 2002. The number of counties producing each crop declined from 1940 to 2017 by up to 97%, and their total area declined by up to 98%, despite increasing total production. Concomitantly, the diversity of crop types within counties plummeted: in 1940, 88% of counties grew >10 crops, but only 2% did so in 2017, and combinations of crop types that once characterized entire agricultural regions are lost. Importantly, declining crop diversity with increasing cropland area is a recent phenomenon, suggesting that corresponding environmental effects in agriculturally dominated counties have fundamentally changed. For example, the spatial concentration of agriculture has important consequences for the spread of crop pests, agrochemical use, and climate change. Ultimately, the recent collapse of most agricultural belts and the loss of crop diversity suggest greater vulnerability of US food systems to environmental and economic change, but the spatial concentration of agriculture may also offer environmental benefits in areas that are no longer farmed.
Collapse
Affiliation(s)
| | - Kevin D Burke
- Nelson Institute for Environmental Studies, University of Wisconsin-Madison, Madison, WI, USA
| | - Sean D Schoville
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - Volker C Radeloff
- SILVIS Lab, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
3
|
Crossley MS, Steffan SA, Voegtlin DJ, Hamilton KL, Hogg DB. Variable Isotopic Compositions of Host Plant Populations Preclude Assessment of Aphid Overwintering Sites. INSECTS 2017; 8:E128. [PMID: 29206134 PMCID: PMC5746811 DOI: 10.3390/insects8040128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/29/2017] [Indexed: 12/01/2022]
Abstract
Soybean aphid (Aphis glycines Matsumura) is a pest of soybean in the northern Midwest whose migratory patterns have been difficult to quantify. Improved knowledge of soybean aphid overwintering sites could facilitate the development of control efforts with exponential impacts on aphid densities on a regional scale. In this preliminary study, we explored the utility of variation in stable isotopes of carbon and nitrogen to distinguish soybean aphid overwintering origins. We compared variation in bulk 13C and 15N content in buckthorn (Rhamnus cathartica L.) and soybean aphids in Wisconsin, among known overwintering locations in the northern Midwest. Specifically, we looked for associations between buckthorn and environmental variables that could aid in identifying overwintering habitats. We detected significant evidence of correlation between the bulk 13C and 15N signals of soybean aphids and buckthorn, despite high variability in stable isotope composition within and among buckthorn plants. Further, the 15N signal in buckthorn varied predictably with soil composition. However, lack of sufficient differentiation of geographic areas along axes of isotopic and environmental variation appears to preclude the use of carbon and nitrogen isotopic signals as effective predictors of likely aphid overwintering sites. These preliminary data suggest the need for future work that can further account for variability in 13C and 15N within/among buckthorn plants, and that explores the utility of other stable isotopes in assessing likely aphid overwintering sites.
Collapse
Affiliation(s)
- Michael S Crossley
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, WI 53706, USA.
| | - Shawn A Steffan
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, WI 53706, USA.
| | - David J Voegtlin
- Illinois Natural History Survey, 1816 S. Oak St., Champaign, IL 61820, USA.
| | - Krista L Hamilton
- Wisconsin Department of Agriculture, Trade & Consumer Protection, 2811 Agriculture Dr., Madison, WI 53718, USA.
| | - David B Hogg
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, WI 53706, USA.
| |
Collapse
|
4
|
Effect of the spatial context along the invasion process: “Hierarchical spatial” or “Host-switching spatial” hypotheses? Biol Invasions 2017. [DOI: 10.1007/s10530-017-1536-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Kees AM, Hefty AR, Venette RC, Seybold SJ, Aukema BH. Flight Capacity of the Walnut Twig Beetle (Coleoptera: Scolytidae) on a Laboratory Flight Mill. ENVIRONMENTAL ENTOMOLOGY 2017; 46:633-641. [PMID: 28334300 DOI: 10.1093/ee/nvx055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Indexed: 06/06/2023]
Abstract
The walnut twig beetle, Pityophthorus juglandis Blackman, and associated fungus Geosmithia morbida Kolařík, Freeland, Utley, & Tisserat constitute the insect-fungal complex that causes thousand cankers disease in walnut, Juglans spp., and wingnut, Pterocarya spp. Thousand cankers disease is responsible for the decline of Juglans species throughout the western United States and more recently, the eastern United States and northern Italy. We examined the flight capacity of P. juglandis over 24-h trials on a flight mill in the laboratory. The maximum total flight distance observed was ∼3.6 km in 24 h; however, the mean and median distances flown by beetles that initiated flight were ∼372 m and ∼158 m, respectively. Beetles flew for 34 min on average within a 24-h flight trial. Male and female flight capacities were similar, even though males were larger than females (0.64 vs. 0.57 mm pronotal width). Age postemergence had no effect on flight distance, flight time, or mean flight velocity. The propensity to fly, however, decreased with age. We integrated results of flight distance with propensity to fly as beetles aged in a Monte Carlo simulation to estimate the maximum dispersal capacity over 5 d, assuming no mortality. Only 1% of the insects would be expected to fly >2 km, whereas one-third of the insects were estimated to fly <100 m. These results suggest that nascent establishments remain relatively localized without anthropogenic transport or wind-aided dispersal, which has implications for management and sampling of this hardwood pest.
Collapse
Affiliation(s)
- Aubree M Kees
- Department of Entomology, University of Minnesota, 1980 Folwell Ave., 432 Hodson Hall, St. Paul, MN 55108 (; ; )
| | - Andrea R Hefty
- Department of Entomology, University of Minnesota, 1980 Folwell Ave., 432 Hodson Hall, St. Paul, MN 55108 ( ; ; )
- US Department of Agriculture Forest Service, Forest Health Protection, Region 5, 602 S. Tippecanoe Ave., San Bernardino, CA 92408
| | - Robert C Venette
- USDA Forest Service Northern Research Station, 1561 Lindig St., St. Paul, MN 55108
| | - Steven J Seybold
- USDA Forest Service Pacific Southwest Research Station, HDH001 (F039) Orchard Park Drive, Rm 116, Davis, CA 95616
| | - Brian H Aukema
- Department of Entomology, University of Minnesota, 1980 Folwell Ave., 432 Hodson Hall, St. Paul, MN 55108 (; ; )
| |
Collapse
|
6
|
Stack Whitney K, Meehan TD, Kucharik CJ, Zhu J, Townsend PA, Hamilton K, Gratton C. Explicit modeling of abiotic and landscape factors reveals precipitation and forests associated with aphid abundance. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2016; 26:2598-2608. [PMID: 27875008 DOI: 10.1002/eap.1418] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/25/2016] [Indexed: 06/06/2023]
Abstract
Increases in natural or noncrop habitat surrounding agricultural fields have been shown to be correlated with declines in insect crop pests. However, these patterns are highly variable across studies suggesting other important factors, such as abiotic drivers, which are rarely included in landscape models, may also contribute to variability in insect population abundance. The objective of this study was to explicitly account for the contribution of temperature and precipitation, in addition to landscape composition, on the abundance of a widespread insect crop pest, the soybean aphid (Aphis glycines Matsumura), in Wisconsin soybean fields. We hypothesized that higher soybean aphid abundance would be associated with higher heat accumulation (e.g., growing degree days) and increasing noncrop habitat in the surrounding landscape, due to the presence of the overwintering primary hosts of soybean aphid. To evaluate these hypotheses, we used an ecoinformatics approach that relied on a large dataset collected across Wisconsin over a 9-year period (2003-2011), for an average of 235 sites per year (n = 2,110 fields total). We determined surrounding landscape composition (1.5-km radius) using publicly available satellite-derived land cover imagery and interpolated daily temperature and precipitation information from the National Weather Service COOP weather station network. We constructed linear mixed models for soybean aphid abundance based on abiotic and landscape explanatory variables and applied model averaging for prediction using an information theoretic framework. Over this broad spatial and temporal extent in Wisconsin, we found that variation in growing season precipitation was positively related to soybean aphid abundance, while higher precipitation during the nongrowing season had a negative effect on aphid populations. Additionally, we found that aphid populations were higher in areas with proportionally more forest but were lower in areas where minor crops, such as small grains, were more prevalent. Thus, our findings support our hypothesis that including abiotic drivers increases our understanding of crop pest abundance and distribution. Moreover, by explicitly modeling abiotic factors, we may be able to explore how variable climate in tandem with land cover patterns may affect current and future insect populations, with potentially critical implications for crop yields and agricultural food webs.
Collapse
Affiliation(s)
- Kaitlin Stack Whitney
- Department of Zoology, University of Wisconsin-Madison, 250 N Mills St, Madison, Wisconsin, 53706, USA
| | - Timothy D Meehan
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, Wisconsin, 53706, USA
| | - Christopher J Kucharik
- Department of Agronomy, University of Wisconsin-Madison, 1575 Linden Dr, Madison, Wisconsin, 53706, USA
| | - Jun Zhu
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, Wisconsin, 53706, USA
- Department of Statistics, University of Wisconsin-Madison, 1300 University Ave, Madison, Wisconsin, 53706, USA
| | - Philip A Townsend
- Department of Forest & Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, Wisconsin, 53706, USA
| | - Krista Hamilton
- Wisconsin Department of Agriculture, Trade, and Consumer Protection, 2811 Agriculture Drive, Madison, Wisconsin, 53706, USA
| | - Claudio Gratton
- Department of Zoology, University of Wisconsin-Madison, 250 N Mills St, Madison, Wisconsin, 53706, USA
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, Wisconsin, 53706, USA
| |
Collapse
|