1
|
Castellan I, Duménil C, Rehermann G, Eisenstecken D, Bianchi F, Robatscher P, Spitaler U, Favaro R, Schmidt S, Becher PG, Angeli S. Chemical and Electrophysiological Characterisation of Headspace Volatiles from Yeasts Attractive to Drosophila suzukii. J Chem Ecol 2024:10.1007/s10886-024-01494-x. [PMID: 38691267 DOI: 10.1007/s10886-024-01494-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 05/03/2024]
Abstract
Chemical control of Drosophila suzukii (Diptera: Drosophilidae) based on the use of insecticides is particularly challenging as the insect attacks ripening fruits shortly before harvest. An alternative strategy may rely on the use of yeasts as phagostimulants and baits, applied on canopy as attract-and-kill formulations. The aim of this research was to identify the most attractive among six yeast species for D. suzukii: Saccharomyces cerevisiae, Hanseniaspora uvarum, Clavispora santaluciae, Saccharomycopsis vini, Issatchenkia terricola, and Metschnikowia pulcherrima. The volatile profile of C. santaluciae was described for the first time. Behavioural experiments identified H. uvarum and S. vini as the most attractive yeasts. The characterization of yeast headspace volatiles using direct headspace (DHS) and solid-phase microextraction (SPME) revealed several strain-specific compounds. With DHS injection, 19 volatiles were characterised, while SPME revealed 71 compounds constituting the yeast headspace. Both analyses revealed terpenoids including β-ocimene, citronellol, (Z)-geraniol (nerol), and geranial as distinct constituents of S. vini. H. uvarum and S. vini were further investigated using closed-loop stripping analysis (CSLA) and electroantennography. Out of 14 compounds quantified by CSLA, ethyl acetate, isoamyl acetate, β-myrcene, benzaldehyde and linalool were detected by D. suzukii antennae and might generate the strong attractiveness of S. vini and H. uvarum. Our results highlight a strong attraction of D. suzukii to various yeasts associated with both the flies and their habitat and demonstrate how different sampling methods can impact the results of volatile compound characterization. It remains to be demonstrated whether the distinct attraction is based on special adaptations to certain yeasts and to what extent the metabolites causing attraction are interchangeable.
Collapse
Affiliation(s)
- Irene Castellan
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Claire Duménil
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Guillermo Rehermann
- Department of Plant Protection Biology, Chemical Ecology Horticulture Unit, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Daniela Eisenstecken
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Auer-Ora, Italy
| | - Flavia Bianchi
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Auer-Ora, Italy
| | - Peter Robatscher
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Auer-Ora, Italy
| | - Urban Spitaler
- Entomology Group, Institute for Plant Health, Laimburg Research Centre, Auer-Ora, Italy
| | - Riccardo Favaro
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Silvia Schmidt
- Entomology Group, Institute for Plant Health, Laimburg Research Centre, Auer-Ora, Italy
| | - Paul G Becher
- Department of Plant Protection Biology, Chemical Ecology Horticulture Unit, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Sergio Angeli
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy.
- Competence Centre for Plant Health, Free University of Bozen-Bolzano, Bolzano, Italy.
| |
Collapse
|
2
|
Nicoletti R, Russo E, Becchimanzi A. Cladosporium-Insect Relationships. J Fungi (Basel) 2024; 10:78. [PMID: 38276024 PMCID: PMC10820778 DOI: 10.3390/jof10010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
The range of interactions between Cladosporium, a ubiquitous fungal genus, and insects, a class including about 60% of the animal species, is extremely diverse. The broad case history of antagonism and mutualism connecting Cladosporium and insects is reviewed in this paper based on the examination of the available literature. Certain strains establish direct interactions with pests or beneficial insects or indirectly influence them through their endophytic development in plants. Entomopathogenicity is often connected to the production of toxic secondary metabolites, although there is a case where these compounds have been reported to favor pollinator attraction, suggesting an important role in angiosperm reproduction. Other relationships include mycophagy, which, on the other hand, may reflect an ecological advantage for these extremely adaptable fungi using insects as carriers for spreading in the environment. Several Cladosporium species colonize insect structures, such as galleries of ambrosia beetles, leaf rolls of attelabid weevils and galls formed by cecidomyid midges, playing a still uncertain symbiotic role. Finally, the occurrence of Cladosporium in the gut of several insect species has intriguing implications for pest management, also considering that some strains have proven to be able to degrade insecticides. These interactions especially deserve further investigation to understand the impact of these fungi on pest control measures and strategies to preserve beneficial insects.
Collapse
Affiliation(s)
- Rosario Nicoletti
- Council for Agricultural Research and Economics, Research Center for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.R.); (A.B.)
| | - Elia Russo
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.R.); (A.B.)
| | - Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.R.); (A.B.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
3
|
Lewis MT, Miller L, Hu M, Hamby KA. Diffuse Associations Between Drosophila suzukii and Filamentous Fungal Microbes May Alter Caneberry Disease Dynamics. PHYTOPATHOLOGY 2024; 114:137-145. [PMID: 38318843 DOI: 10.1094/phyto-12-22-0470-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Interactions between microorganisms and frugivorous insects can modulate fruit rot disease epidemiology. Insect feeding and/or oviposition wounds may create opportunities for fungal infection. Passive and active dispersal of fungal inoculums by adult insects also increases disease incidence. In fall-bearing raspberries and blackberries, such vectoring interactions could increase crop damage from the invasive pestiferous vinegar fly Drosophila suzukii (spotted-wing drosophila). Periods of peak D. suzukii activity are known to overlap with several species of primary fruit rot pathogen, particularly Botrytis cinerea and Cladosporium cladosporioides, and previous work indicates that larvae co-occur with and feed on various filamentous fungi at low rates. To further our understanding of the epidemiological consequences that may emerge from these associations, we surveyed the filamentous fungal community associated with adult D. suzukii, isolating and molecularly identifying fungi externally and internally (indicating feeding) from field-collected adults over 3 years. We isolated and identified 37 unique genera of fungi in total, including known raspberry pathogens. Most fungi were detected infrequently, and flies acquired and carried fungi externally at higher richness, frequency, and density relative to internally. In a worst-case scenario laboratory vectoring assay, D. suzukii adults were able to transfer B. cinerea and C. cladosporioides to sterile media at 0, 24, 48, and 72 h after exposure to sporulating cultures in Petri dishes. These results collectively suggest an adventitious vectoring association between D. suzukii and fruit rot fungi that has the potential to alter caneberry disease dynamics.
Collapse
Affiliation(s)
- Margaret T Lewis
- Department of Entomology, University of Maryland, College Park, MD 20742
| | - Logan Miller
- Department of Entomology, University of Maryland, College Park, MD 20742
| | - Mengjun Hu
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD 20742
| | - Kelly A Hamby
- Department of Entomology, University of Maryland, College Park, MD 20742
| |
Collapse
|
4
|
Shah HMS, Singh Z, Kaur J, Hasan MU, Woodward A, Afrifa-Yamoah E. Trends in maintaining postharvest freshness and quality of Rubus berries. Compr Rev Food Sci Food Saf 2023; 22:4600-4643. [PMID: 37661731 DOI: 10.1111/1541-4337.13235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 06/08/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023]
Abstract
Blackberries and raspberries, commonly known as Rubus berries, are commercially grown worldwide across different climates. Rubus berries contain wide array of phytochemicals, vitamins, dietary fibers, minerals, and unsaturated fatty acids. Nevertheless, these berries have short storage life which is the major constraint in their supply chains leading to higher postharvest losses. Inappropriate harvest handling, physical bruising, insect pests, and postharvest diseases lower the acceptability of fruit among consumers and other supply chain stakeholders. Additionally, the susceptibility to microbial decay, fruit softening, higher ethylene production, respiratory activity, and increased oxidation of anthocyanins, phenolics, and flavonoids considerably affects the marketability of Rubus berries at domestic and international markets. To date, several postharvest strategies such as cold storage, precooling, modified and controlled atmospheres, anti-ripening chemicals, edible coatings, biological agents, and nonchemical alternatives (heat treatment, ultrasound, irradiations, ozone) have been reported to prolong storage life, ensure food safety, and maintain the nutritional quality of Rubus berries. This review briefly encompasses multiple aspects including harvest maturity indices, regulation of fruit ripening, pre and postharvest factors affecting fruit quality, and an update on postharvest quality preservation by employing postharvest technologies to extend the storage life and maintaining the bioactive compounds in Rubus berries which are lacking in the literature. Accordingly, this review provides valuable information to the industry stakeholders and scientists offering relevant solutions, limitations in the application of certain technologies at commercial scale, highlighting research gaps, and paving the way forward for future investigations.
Collapse
Affiliation(s)
| | - Zora Singh
- Horticulture, School of Science, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Jashanpreet Kaur
- Horticulture, School of Science, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Mahmood Ul Hasan
- Horticulture, School of Science, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Andrew Woodward
- Horticulture, School of Science, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Eben Afrifa-Yamoah
- Horticulture, School of Science, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
5
|
Bošković D, Vuković S, Lazić S, Baser N, Čulum D, Tekić D, Žunić A, Šušnjar A, Šunjka D. Insecticidal Activity of Selected Essential Oils against Drosophila suzukii (Diptera: Drosophilidae). PLANTS (BASEL, SWITZERLAND) 2023; 12:3727. [PMID: 37960084 PMCID: PMC10647715 DOI: 10.3390/plants12213727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023]
Abstract
The spotted wing drosophila (SWD), Drosophila suzukii Matsumura (Diptera: Drosophilidae), is an invasive polyphagous pest of soft-skinned fruit that has started to threaten small fruit production in Europe since 2008. High reproductive capacity, short generation time, and difficulties in visualizing early damage contribute to its rapid spread. Currently, the control strategy against D. suzukii mostly relies on treatment with synthetic insecticides. Keeping in mind that this pest causes the greatest damage during the harvesting period, control using chemicals is not recommended due to the increased risk of high pesticide residue levels in the fruit. With the aim of reducing the use of insecticides, there is a need for developing an environmentally safer way of control. Alternative solutions could rely on the use of essential oils (EOs), which can be used in conventional and organic production systems. Four essential oils, geranium (Pelargonium graveolens), dill (Anethum graveolens), Scots pine (Pinus sylvestris), and bergamot (Citrus bergamia), were assessed for their insecticidal effects using four different tests (contact toxicity, fumigant-contact toxicity, repellent effect, and multiple-choice tests). The EOs applied were dissolved in acetone at three different concentrations. The most promising one was the geranium essential oil, which had the best effect in all conducted tests, even at the lowest applied concentration. Geranium oil caused very high mortality (95%), even at the lowest concentration applied, after 24 h in the fumigant-contact test, and it caused a mortality of over 85% in the contact test. It was also noticed that geranium demonstrated a deterrent effect by repelling females from laying eggs for four days after at the lowest applied concentration. Scots pine and dill EOs have moderate to strong effects in most tests. The mortality of 100% was achieved for the highest applied concentration in the fumigant-contact and contact tests. Bergamot EO did not have any significant insecticidal activity. Geranium, Scots pine, and dill have great potential to be used as an environmentally friendly way of controlling D. suzukii as they exhibit deterrent, repellent, and insecticidal effects.
Collapse
Affiliation(s)
- Dragana Bošković
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (S.V.); (S.L.); (D.T.); (A.Ž.); (A.Š.)
| | - Slavica Vuković
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (S.V.); (S.L.); (D.T.); (A.Ž.); (A.Š.)
| | - Sanja Lazić
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (S.V.); (S.L.); (D.T.); (A.Ž.); (A.Š.)
| | - Nuray Baser
- CIHEAM-IAMB—International Centre for Advanced Mediterranean Agronomic Studies, 70010 Bari, Italy;
| | - Dušan Čulum
- Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Dragana Tekić
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (S.V.); (S.L.); (D.T.); (A.Ž.); (A.Š.)
| | - Antonije Žunić
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (S.V.); (S.L.); (D.T.); (A.Ž.); (A.Š.)
| | - Aleksandra Šušnjar
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (S.V.); (S.L.); (D.T.); (A.Ž.); (A.Š.)
| | - Dragana Šunjka
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (S.V.); (S.L.); (D.T.); (A.Ž.); (A.Š.)
| |
Collapse
|
6
|
Kleman I, Rehermann G, Kwadha CA, Witzgall P, Becher PG. Hanseniaspora uvarum Attracts Drosophila suzukii (Diptera: Drosophilidae) With High Specificity. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:999-1007. [PMID: 35385117 PMCID: PMC9365507 DOI: 10.1093/jee/toac029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 05/10/2023]
Abstract
Since the early phase of the intercontinental dispersal of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), fermentation baits have been used for monitoring. Self-made lures and commercial products are often based on wine and vinegar. From an ecological perspective, the formulation of these baits is expected to target especially vinegar flies associated with overripe fruit, such as Drosophila melanogaster (Meigen) (Diptera: Drosophilidae). Hanseniaspora uvarum (Niehaus) (Ascomycota: Saccharomyceta) is a yeast closely associated with D. suzukii and fruit, and furthermore attractive to the flies. Based on this relation, H. uvarum might represent a suitable substrate for the development of lures that are more specific than vinegar and wine. In the field, we therefore, compared H. uvarum to a commercial bait that was based on vinegar and wine with respect to the number of trapped D. suzukii relative to other drosophilids and arthropods. Trap captures were higher with the commercial bait but specificity for D. suzukii was greater with H. uvarum. Moreover, H. uvarum headspace extracts, as well as a synthetic blend of H. uvarum volatiles, were assayed for attraction of D suzukii in a wind tunnel and in the field. Headspace extracts and the synthetic blend induced strong upwind flight in the wind tunnel and confirmed attraction to H. uvarum volatiles. Furthermore, baited with H. uvarum headspace extract and a drowning solution of aqueous acetic acid and ethanol, 74% of field captured arthropods were D. suzukii. Our findings suggest that synthetic yeast headspace formulations might advance the development of more selective monitoring traps with reduced by-catch.
Collapse
Affiliation(s)
- Isabella Kleman
- Department of Plant Protection Biology, Unit Chemical Ecology Horticulture, Swedish University of Agricultural Sciences, Alnarp, Box 190, 234 22 Lomma, Sweden
| | - Guillermo Rehermann
- Department of Plant Protection Biology, Unit Chemical Ecology Horticulture, Swedish University of Agricultural Sciences, Alnarp, Box 190, 234 22 Lomma, Sweden
| | - Charles A Kwadha
- Department of Plant Protection Biology, Unit Chemical Ecology Horticulture, Swedish University of Agricultural Sciences, Alnarp, Box 190, 234 22 Lomma, Sweden
| | - Peter Witzgall
- Department of Plant Protection Biology, Unit Chemical Ecology Horticulture, Swedish University of Agricultural Sciences, Alnarp, Box 190, 234 22 Lomma, Sweden
| | - Paul G Becher
- Department of Plant Protection Biology, Unit Chemical Ecology Horticulture, Swedish University of Agricultural Sciences, Alnarp, Box 190, 234 22 Lomma, Sweden
| |
Collapse
|
7
|
Jones R, Fountain MT, Andreani NA, Günther CS, Goddard MR. The relative abundances of yeasts attractive to Drosophila suzukii differ between fruit types and are greatest on raspberries. Sci Rep 2022; 12:10382. [PMID: 35725889 PMCID: PMC9209449 DOI: 10.1038/s41598-022-14275-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/03/2022] [Indexed: 01/04/2023] Open
Abstract
Fungal metabolic volatiles attract Drosophila suzukii which oviposits in ripening fruits, but there are few data describing the fungal microbiomes of commercial fruits susceptible to this insect pest. We tested the hypothesis that fruit type and ripening stage have a significant effect on fruit surface fungal communities using DNA metabarcoding approaches and found strong support for differences in all three fungal community biodiversity metrics analysed (numbers, types, and abundances of taxa). There was an average fivefold greater difference in fungal communities between sites with different fruit types (strawberry, cherry, raspberry, and blueberry) than across fruit developmental stages, demonstrating site and/or fruit type is the greater factor defining fungal community assemblage. The addition of a fungal internal standard (Plectosphaerella cucumerina) showed cherry had relatively static fungal populations across ripening. Raspberry had a greater prevalence of Saccharomycetales yeasts attractive to D. suzukii, including Hanseniaspora uvarum, which aligns with reports that raspberry is among the fruits with greatest susceptibility and attraction to D. suzukii. Greater knowledge of how yeast communities change during fruit maturation and between species or sites may be valuable for developing methods to manipulate fruit microbiomes for use in integrated pest management strategies to control D. suzukii.
Collapse
Affiliation(s)
- Rory Jones
- School of Life Sciences, University of Lincoln, Lincoln, LN6 7DL, UK.
- NIAB EMR, New Road, East Malling, Kent, ME19 6BJ, UK.
| | | | - Nadia A Andreani
- School of Life Sciences, University of Lincoln, Lincoln, LN6 7DL, UK
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Catrin S Günther
- School of Life Sciences, University of Lincoln, Lincoln, LN6 7DL, UK
- The New Zealand Institute of Plant and Food Research Ltd, Ruakura Research Campus, Bisley Road, Hamilton, 3214, New Zealand
| | - Matthew R Goddard
- School of Life Sciences, University of Lincoln, Lincoln, LN6 7DL, UK
- The School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Chakraborty A, Mori B, Rehermann G, Garcia AH, Lemmen‐Lechelt J, Hagman A, Khalil S, Håkansson S, Witzgall P, Becher PG. Yeast and fruit fly mutual niche construction and antagonism against mould. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amrita Chakraborty
- Department of Plant Protection Biology Swedish University of Agricultural Sciences Box 102 23053 Alnarp Sweden
- EVA 4.0 Unit, Faculty of Forestry and Wood Sciences Czech University of Life Sciences Kamýcka 129 16500 Prague Czech Republic
| | - Boyd Mori
- Department of Plant Protection Biology Swedish University of Agricultural Sciences Box 102 23053 Alnarp Sweden
- Department of Agricultural, Food and Nutritional Science University of Alberta Agriculture/Forestry Centre 4‐10 Edmonton Alberta Canada T6G 2P5
| | - Guillermo Rehermann
- Department of Plant Protection Biology Swedish University of Agricultural Sciences Box 102 23053 Alnarp Sweden
| | - Armando Hernández Garcia
- Department of Molecular Sciences Swedish University of Agricultural Sciences Box 7015 75007 Uppsala Sweden
- Division of Biotechnology Department of Chemistry Faculty of Engineering Lund University Box 124 221 00 Lund Sweden
| | - Joelle Lemmen‐Lechelt
- Department of Plant Protection Biology Swedish University of Agricultural Sciences Box 102 23053 Alnarp Sweden
| | - Arne Hagman
- Division of Biotechnology Department of Chemistry Faculty of Engineering Lund University Box 124 221 00 Lund Sweden
| | - Sammar Khalil
- Department of Biosystems and Technology Swedish University of Agricultural Sciences Box 102 23053 Alnarp Sweden
| | - Sebastian Håkansson
- Department of Molecular Sciences Swedish University of Agricultural Sciences Box 7015 75007 Uppsala Sweden
- Division of Applied Microbiology Department of Chemistry Faculty of Engineering Lund University Lund Sweden
| | - Peter Witzgall
- Department of Plant Protection Biology Swedish University of Agricultural Sciences Box 102 23053 Alnarp Sweden
| | - Paul G Becher
- Department of Plant Protection Biology Swedish University of Agricultural Sciences Box 102 23053 Alnarp Sweden
| |
Collapse
|
9
|
Spitaler U, Cossu CS, Delle Donne L, Bianchi F, Rehermann G, Eisenstecken D, Castellan I, Duménil C, Angeli S, Robatscher P, Becher PG, Koschier EH, Schmidt S. Field and greenhouse application of an attract-and-kill formulation based on the yeast Hanseniaspora uvarum and the insecticide spinosad to control Drosophila suzukii in grapes. PEST MANAGEMENT SCIENCE 2022; 78:1287-1295. [PMID: 34854220 PMCID: PMC9299924 DOI: 10.1002/ps.6748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/27/2021] [Accepted: 12/02/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND The invasive insect Drosophila suzukii (Matsumura) is an important pest of several red grape varieties. The yeast Hanseniaspora uvarum (Niehaus), which is associated with D. suzukii, strongly attracts flies and stimulates them to feed on yeast-laden food. In the present study, a formulation based on H. uvarum culture with spinosad insecticide was applied to the foliage of vineyards and control of D. suzukii was compared to applying spinosad to the whole plant. After successful H. uvarum and insecticide application in the vineyard, we tested additional H. uvarum-based formulations with spinosad in a greenhouse to determine their capacity to control D. suzukii. RESULTS Application of the H. uvarum-spinosad formulation at 36.4 g of spinosad per hectare reduced the D. suzukii field infestation at the same rate as applying 120 g of spinosad per hectare and prevented spinosad residues on grapes. Leaves treated with H. uvarum and spinosad in the field and transferred to a laboratory assay caused high mortality to flies and reduced the number of eggs laid on fruits. Formulations with spinosad applied in the greenhouse showed that both H. uvarum culture and the yeast cell-free supernatant of a centrifuged culture increased fly mortality and reduced the number of eggs laid compared to the unsprayed control. CONCLUSION In comparison to typical spinosad spray applications, the use of H. uvarum in combination with spinosad as an attract-and-kill formulation against D. suzukii reduces pesticide residues on the fruits by targeting the treatment to the canopy and decreasing the amount of insecticide per hectare without compromising control efficacy.
Collapse
Affiliation(s)
- Urban Spitaler
- Entomology Group, Institute for Plant Health, Laimburg Research CentreSouth TyrolItaly
- Institute of Plant Protection, Department of Crop SciencesUniversity of Natural Resources and Life SciencesViennaAustria
| | - Carlo S Cossu
- Entomology Group, Institute for Plant Health, Laimburg Research CentreSouth TyrolItaly
| | - Lorenz Delle Donne
- Entomology Group, Institute for Plant Health, Laimburg Research CentreSouth TyrolItaly
- Institute of Plant Protection, Department of Crop SciencesUniversity of Natural Resources and Life SciencesViennaAustria
| | - Flavia Bianchi
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food QualityLaimburg Research CentreSouth TyrolItaly
| | - Guillermo Rehermann
- Chemical Ecology – Horticulture, Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - Daniela Eisenstecken
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food QualityLaimburg Research CentreSouth TyrolItaly
| | - Irene Castellan
- Faculty of Science and TechnologyFree University of Bozen‐BolzanoSouth TyrolItaly
| | - Claire Duménil
- Faculty of Science and TechnologyFree University of Bozen‐BolzanoSouth TyrolItaly
| | - Sergio Angeli
- Faculty of Science and TechnologyFree University of Bozen‐BolzanoSouth TyrolItaly
| | - Peter Robatscher
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food QualityLaimburg Research CentreSouth TyrolItaly
| | - Paul G Becher
- Chemical Ecology – Horticulture, Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - Elisabeth H Koschier
- Institute of Plant Protection, Department of Crop SciencesUniversity of Natural Resources and Life SciencesViennaAustria
| | - Silvia Schmidt
- Entomology Group, Institute for Plant Health, Laimburg Research CentreSouth TyrolItaly
| |
Collapse
|
10
|
Separate and combined Hanseniaspora uvarum and Metschnikowia pulcherrima metabolic volatiles are attractive to Drosophila suzukii in the laboratory and field. Sci Rep 2021; 11:1201. [PMID: 33441642 PMCID: PMC7806593 DOI: 10.1038/s41598-020-79691-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/07/2020] [Indexed: 11/08/2022] Open
Abstract
Drosophila suzukii flies cause economic losses to fruit crops globally. Previous work shows various Drosophila species are attracted to volatile metabolites produced by individual fruit associated yeast isolates, but fruits naturally harbour a rich diversity of yeast species. Here, we report the relative attractiveness of D. suzukii to yeasts presented individually or in combinations using laboratory preference tests and field trapping data. Laboratory trials revealed four of 12 single yeast isolates were attractive to D. suzukii, of which Metschnikowia pulcherrima and Hanseniaspora uvarum were also attractive in field trials. Four out of 10 yeast combinations involving Candida zemplinina, Pichia pijperi, M. pulcherrima and H. uvarum were attractive in the laboratory. Whilst a combination of M. pulcherrima + H. uvarum trapped the greatest number of D. suzukii in the field, the efficacy of the M. pulcherrima + H. uvarum combination to trap D. suzukii was not significantly greater than traps primed with volatiles from only H. uvarum. While volatiles from isolates of M. pulcherrima and H. uvarum show promise as baits for D. suzukii, further research is needed to ascertain how and why flies are attracted to certain baits to optimise control efficacy.
Collapse
|
11
|
Trombin de Souza M, Trombin de Souza M, Bernardi D, Rakes M, Vidal HR, Zawadneak MAC. Physicochemical Characteristics and Superficial Damage Modulate Persimmon Infestation by Drosophila suzukii (Diptera: Drosophilidae) and Zaprionus indianus. ENVIRONMENTAL ENTOMOLOGY 2020; 49:1290-1299. [PMID: 33051661 DOI: 10.1093/ee/nvaa117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) and Zaprionus indianus Gupta (Diptera: Drosophilidae) were recently observed co-infesting persimmons in Brazil. We evaluate the infestation susceptibility of persimmons at different ripening stages (unripe, UN; early ripe, ER; orange ripe, OR, and overripe, OV) by D. suzukii and Z. indianus in the field and laboratory conditions. Additionally, we determined the influence of physicochemical characteristics (e.g., resistance to penetration force, fruit skin color, acidity (pH), TSS concentration, total titratable acidity [TTA]) and the type of damage that facilitates infestation by D. suzukii or Z. indianus. In the field, the natural infestation capacity and biological development of D. suzukii and Z. indianus were verified in whole fruits at the ripening stages ER, OR, and OV. The natural infestation was directly related to the physicochemical characteristics of the fruits (resistance to penetration force, pH, and total soluble solids). In the no-choice bioassay, the oviposition rate of D. suzukii did not differ between the ripening stages of the fruit. However, in the choice bioassay, there was a higher preference for oviposition in OV fruits. Regarding Z. indianus, the highest preference for oviposition was observed in OR and OV fruits in both bioassays. The presence of mechanical damage did not increase the susceptibility of the fruits to D. suzukii. However, it favored the oviposition of Z. indianus in OR and OV fruits. The damage caused by D. suzukii or mechanical damage favored the infestation by Z. indianus. This is the first report of the capacity of D. suzukii to infest whole persimmons in Brazil.
Collapse
Affiliation(s)
- Michele Trombin de Souza
- Department of Phytotechnology and Plant Health, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Mireli Trombin de Souza
- Department of Phytotechnology and Plant Health, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Daniel Bernardi
- Department of Plant Health, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Matheus Rakes
- Department of Plant Health, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Hugo R Vidal
- Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Maria A C Zawadneak
- Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
12
|
Lewis MT, Hamby KA. Optimizing Caneberry Spray Coverage for Drosophila suzukii (Diptera: Drosophilidae) Management on Diversified Fruit Farms. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2820-2831. [PMID: 33128449 DOI: 10.1093/jee/toaa237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Spray coverage may influence the efficacy of insecticides targeting the invasive vinegar fly Drosophila suzukii (Matsumura), a primary pest of raspberries and blackberries. In commercially managed caneberries, spray coverage is typically lowest in the inner and lower plant canopy, regions that overlap with higher levels of adult D. suzukii activity. To understand how spray coverage of fruit impacts efficacy against D. suzukii, laboratory bioassays were conducted using raspberries. In laboratory bioassays, higher spray coverage did not impact larval infestation rates but did increase adult mortality, indicating that flies can avoid a lethal dose of insecticide when applications do not achieve adequate coverage. We also evaluated how carrier water volume impacts spray coverage patterns throughout the canopy of raspberry and blackberry plants using both airblast and CO2 backpack sprayers. Increasing carrier water volume generally improved spray coverage in the lower plant canopy. However, effects in the upper plant canopy were inconsistent and varied between sprayer types. In addition to carrier water volume, other approaches, including adjusting the pesticide sprayer equipment used and/or sprayer calibration, should also be explored to improve coverage. Growers should evaluate spray coverage in their caneberries to identify and troubleshoot coverage issues. Results from this study indicate that taking the time to optimize this aspect of pesticide application may improve chemical management of D. suzukii and will likely also improve control of other important caneberry pests.
Collapse
Affiliation(s)
| | - Kelly A Hamby
- Department of Entomology, University of Maryland, College Park, College Park, MD
| |
Collapse
|
13
|
Bianchi F, Spitaler U, Castellan I, Cossu CS, Brigadoi T, Duménil C, Angeli S, Robatscher P, Vogel RF, Schmidt S, Eisenstecken D. Persistence of a Yeast-Based ( Hanseniaspora uvarum) Attract-and-Kill Formulation against Drosophila suzukii on Grape Leaves. INSECTS 2020; 11:insects11110810. [PMID: 33217960 PMCID: PMC7698740 DOI: 10.3390/insects11110810] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 11/16/2022]
Abstract
The production of phagostimulant and attractive volatile organic compounds (VOCs) by yeasts can be exploited to improve the efficacy of attract-and-kill formulations against the spotted wing drosophila (SWD). This study evaluated the persistence over one week of a yeast-based formulation under greenhouse conditions. Potted grape plants were treated with: (i) potato dextrose broth (PDB), (ii) PDB containing spinosad (PDB + S), and (iii) H. uvarum fermentation broth grown on PDB containing spinosad (H. u. + S). Laboratory trials were performed to determine the survival and the oviposition rate of SWD after exposure to treated leaves. Ion-exchange chromatography was performed to measure carbohydrates, sugar alcohols, and organic acids on leaf surfaces, while amino acids were assessed through liquid chromatography-mass-spectrometry. Additionally, the VOCs released by plants treated with H.uvarum were collected via closed-loop-stripping analysis and compared to those emitted by untreated leaves. A higher mortality was observed for adult SWDs in contact with H. uvarum containing spinosad compared to PDB containing spinosad. Generally, a decrease in the amounts of non-volatile compounds was observed over time, though numerous nutrients were still present one week after treatment. The application of the yeast-based formulation induced the emission of VOCs by the treated leaves. The concentration of 2-phenylethanol, one of the main VOCs emitted by yeasts, decreased over time. These findings describe the presence of potential phagostimulants and compounds attractive to SWD in a yeast-based attract-and-kill formulation and demonstrate the efficacy of the formulation over one week.
Collapse
Affiliation(s)
- Flavia Bianchi
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Laimburg 6, 39040 Auer (Ora), South Tyrol, Italy; (F.B.); (T.B.); (P.R.)
- Chair of Technical Microbiology, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Straße 4, 85354 Freising, Germany;
| | - Urban Spitaler
- Entomology Group, Institute for Plant Health, Laimburg Research Centre, Laimburg 6, 39040 Auer (Ora), South Tyrol, Italy; (U.S.); (C.S.C.); (S.S.)
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, 1180 Vienna, Austria
| | - Irene Castellan
- Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano, Italy; (I.C.); (C.D.); (S.A.)
| | - Carlo S. Cossu
- Entomology Group, Institute for Plant Health, Laimburg Research Centre, Laimburg 6, 39040 Auer (Ora), South Tyrol, Italy; (U.S.); (C.S.C.); (S.S.)
| | - Timothy Brigadoi
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Laimburg 6, 39040 Auer (Ora), South Tyrol, Italy; (F.B.); (T.B.); (P.R.)
| | - Claire Duménil
- Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano, Italy; (I.C.); (C.D.); (S.A.)
| | - Sergio Angeli
- Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano, Italy; (I.C.); (C.D.); (S.A.)
| | - Peter Robatscher
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Laimburg 6, 39040 Auer (Ora), South Tyrol, Italy; (F.B.); (T.B.); (P.R.)
| | - Rudi F. Vogel
- Chair of Technical Microbiology, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Straße 4, 85354 Freising, Germany;
| | - Silvia Schmidt
- Entomology Group, Institute for Plant Health, Laimburg Research Centre, Laimburg 6, 39040 Auer (Ora), South Tyrol, Italy; (U.S.); (C.S.C.); (S.S.)
| | - Daniela Eisenstecken
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Laimburg 6, 39040 Auer (Ora), South Tyrol, Italy; (F.B.); (T.B.); (P.R.)
- Correspondence:
| |
Collapse
|
14
|
Van Timmeren S, Fanning PD, Schöneberg T, Hamby K, Lee J, Isaacs R. Exploring the Efficacy and Mechanisms of a Crop Sterilant for Reducing Infestation by Spotted-Wing Drosophila (Diptera: Drosophilidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:288-298. [PMID: 31630205 DOI: 10.1093/jee/toz245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Indexed: 06/10/2023]
Abstract
Vinegar flies (Diptera: Drosophilidae) are well known to be associated with yeasts, which provide important nutrients and emit attractive semiochemicals. Drosophila suzukii (Matsumura) has become a major pest of berries and cherries around the world, requiring intensive management to maintain fruit quality. Although insecticides remain a dominant control approach, disruption of fly-yeast-host interactions remains a promising avenue for reducing the economic impact of this pest. We conducted field and laboratory experiments to explore whether a crop sterilant (peroxyacetic acid and hydrogen peroxide) developed for disease control can affect D. suzukii. In 2 yr of field tests in highbush blueberries, we found significantly lower infestation by D. suzukii in plots treated with the crop sterilant, both alone and in a rotation program with zeta-cypermethrin. When shoots from treated plots were tested in no-choice bioassays, crop sterilant treatments did not affect adult mortality or oviposition, but they reduced infestation. To explore the mechanisms in the laboratory, we found that the crop sterilant did not affect adult mortality, nor oviposition on treated fruit under no-choice settings, but adult flies settled and oviposited less on treated fruit in choice settings. When the crop sterilant was applied to colonies of Hanseniaspora uvarum (Niehaus) (Saccharomycetales: Saccharomycodaceae) and Issatchenkia terricola (Van der Walt) (Saccharomycetales: Saccharomycetacea) yeasts that are attractive and provide nutrition to D. suzukii, there was a dose-dependent inhibition of their growth. We highlight the potential for microbial management as a component of integrated pest management programs and prioritize research needs to incorporate this approach into control programs.
Collapse
Affiliation(s)
| | - Philip D Fanning
- Department of Entomology, Michigan State University, East Lansing, MI
| | | | - Kelly Hamby
- Department of Entomology, University of Maryland, College Park, MD
| | - Jana Lee
- USDA-ARS Horticultural Crops Research Unit, Corvallis, OR
| | - Rufus Isaacs
- Department of Entomology, Michigan State University, East Lansing, MI
| |
Collapse
|
15
|
Context-Dependence and the Development of Push-Pull Approaches for Integrated Management of Drosophila suzukii. INSECTS 2019; 10:insects10120454. [PMID: 31847450 PMCID: PMC6956413 DOI: 10.3390/insects10120454] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 11/28/2022]
Abstract
Sustainable pest control requires a systems approach, based on a thorough ecological understanding of an agro-ecosystem. Such fundamental understanding provides a basis for developing strategies to manipulate the pest’s behaviour, distribution, and population dynamics, to be employed for crop protection. This review focuses on the fundamental knowledge required for the development of an effective push-pull approach. Push-pull is a strategy to repel a pest from a crop, while attracting it toward an external location. It often relies on infochemicals (e.g., pheromones or allelochemicals) that are relevant in the ecology of the pest insect and can be exploited as lure or repellent. Importantly, responsiveness of insects to infochemicals is dependent on both the insect’s internal physiological state and external environmental conditions. This context-dependency reflects the integration of cues from different sensory modalities, the effect of mating and/or feeding status, as well as diurnal or seasonal rhythms. Furthermore, when the costs of responding to an infochemical outweigh the benefits, resistance can rapidly evolve. Here, we argue that profound knowledge on context-dependence is important for the development and implementation of push-pull approaches. We illustrate this by discussing the relevant fundamental knowledge on the invasive pest species Drosophila suzukii as an example.
Collapse
|
16
|
Solomon GM, Dodangoda H, McCarthy-Walker T, Ntim-Gyakari R, Newell PD. The microbiota of Drosophila suzukii influences the larval development of Drosophila melanogaster. PeerJ 2019; 7:e8097. [PMID: 31763075 PMCID: PMC6873876 DOI: 10.7717/peerj.8097] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/24/2019] [Indexed: 12/11/2022] Open
Abstract
Microorganisms play a central role in the biology of vinegar flies such as Drosophila suzukii and Drosophila melanogaster: serving as a food source to both adults and larvae, and influencing a range of traits including nutrition, behavior, and development. The niches utilized by the fly species partially overlap, as do the microbiota that sustain them, and interactions among these players may drive the development of crop diseases. To learn more about how the microbiota of one species may affect the other, we isolated and identified microbes from field-caught D. suzukii, and then characterized their effects on D. melanogaster larval development time in the laboratory. We found that the D. suzukii microbiota consistently included both yeasts and bacteria. It was dominated by yeasts of the genus Hanseniaspora, and bacteria from the families Acetobacteraceae and Enterobacteriaceae. Raising D. melanogaster under gnotobiotic conditions with each microbial isolate individually, we found that some bacteria promoted larval development relative to axenic conditions, but most did not have a significant effect. In contrast, nearly all the yeasts tested significantly accelerated larval development. The one exception was Starmerella bacillaris, which had the opposite effect: significantly slowing larval developmental rate. We investigated the basis for this effect by examining whether S. bacillaris cells could sustain larval growth, and measuring the survival of S. bacillaris and other yeasts in the larval gut. Our results suggest S. bacillaris is not digested by D. melanogaster and therefore cannot serve as a source of nutrition. These findings have interesting implications for possible interactions between the two Drosophilia species and their microbiota in nature. Overall, we found that microbes isolated from D. suzukii promote D. melanogaster larval development, which is consistent with the model that infestation of fruit by D. suzukii can open up habitat for D. melanogaster. We propose that the microbiome is an important dimension of the ecological interactions between Drosophila species.
Collapse
Affiliation(s)
- Gabrielle M. Solomon
- Department of Biological Sciences, State University of New York at Oswego, Oswego, NY, United States of America
| | - Hiruni Dodangoda
- Department of Biological Sciences, State University of New York at Oswego, Oswego, NY, United States of America
| | - Tylea McCarthy-Walker
- Department of Biological Sciences, State University of New York at Oswego, Oswego, NY, United States of America
| | - Rita Ntim-Gyakari
- Department of Biological Sciences, State University of New York at Oswego, Oswego, NY, United States of America
| | - Peter D. Newell
- Department of Biological Sciences, State University of New York at Oswego, Oswego, NY, United States of America
| |
Collapse
|
17
|
Differential Impacts of Yeasts on Feeding Behavior and Development in Larval Drosophila suzukii (Diptera:Drosophilidae). Sci Rep 2019; 9:13370. [PMID: 31527678 PMCID: PMC6746873 DOI: 10.1038/s41598-019-48863-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/14/2019] [Indexed: 11/23/2022] Open
Abstract
Larval Drosophila encounter and feed on a diverse microbial community within fruit. In particular, free-living yeast microbes provide a source of dietary protein critical for development. However, successional changes to the fruit microbial community may alter host quality through impacts on relative protein content or yeast community composition. For many species of Drosophila, fitness benefits from yeast feeding vary between individual yeast species, indicating differences in yeast nutritional quality. To better understand these associations, we evaluated how five species of yeast impacted feeding preference and development in larval Drosophila suzukii. Larvae exhibited a strong attraction to the yeast Hanseniaspora uvarum in pairwise yeast feeding assays. However, larvae also performed most poorly on diets containing H. uvarum, a mismatch in preference and performance that suggests differences in yeast nutritional quality are not the primary factor driving larval feeding behavior. Together, these results demonstrate that yeast plays a critical role in D. suzukii’s ecology and that larvae may have developed specific yeast associations. Further inquiry, including systematic comparisons of Drosophila larval yeast associations more broadly, will be necessary to understand patterns of microbial resource use in larvae of D. suzukii and other frugivorous species.
Collapse
|