1
|
Fiorilli V, Martínez-Medina A, Pozo MJ, Lanfranco L. Plant Immunity Modulation in Arbuscular Mycorrhizal Symbiosis and Its Impact on Pathogens and Pests. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:127-156. [PMID: 39251211 DOI: 10.1146/annurev-phyto-121423-042014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Arbuscular mycorrhizal (AM) symbiosis is the oldest and most widespread mutualistic association on Earth and involves plants and soil fungi belonging to Glomeromycotina. A complex molecular, cellular, and genetic developmental program enables partner recognition, fungal accommodation in plant tissues, and activation of symbiotic functions such as transfer of phosphorus in exchange for carbohydrates and lipids. AM fungi, as ancient obligate biotrophs, have evolved strategies to circumvent plant defense responses to guarantee an intimate and long-lasting mutualism. They are among those root-associated microorganisms able to boost plants' ability to cope with biotic stresses leading to mycorrhiza-induced resistance (MIR), which can be effective across diverse hosts and against different attackers. Here, we examine the molecular mechanisms underlying the modulation of plant immunity during colonization by AM fungi and at the onset and display of MIR against belowground and aboveground pests and pathogens. Understanding the MIR efficiency spectrum and its regulation is of great importance to optimizing the biotechnological application of these beneficial microbes for sustainable crop protection.
Collapse
Affiliation(s)
- V Fiorilli
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy;
| | - A Martínez-Medina
- Department of Plant-Microbe Interactions, Institute of Natural Resources and Agrobiology of Salamanca, CSIC, Salamanca, Spain
| | - Maria J Pozo
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain;
| | - L Lanfranco
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy;
| |
Collapse
|
2
|
Pujasatria GC, Miura C, Yamaguchi K, Shigenobu S, Kaminaka H. Colonization by orchid mycorrhizal fungi primes induced systemic resistance against necrotrophic pathogen. FRONTIERS IN PLANT SCIENCE 2024; 15:1447050. [PMID: 39145195 PMCID: PMC11322130 DOI: 10.3389/fpls.2024.1447050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024]
Abstract
Orchids and arbuscular mycorrhiza (AM) plants evolved independently and have different structures and fungal partners, but they both facilitate nutrient uptake. Orchid mycorrhiza (OM) supports orchid seed germination, but unlike AM, its role in disease resistance of mature plants is largely unknown. Here, we examined whether OM induces systemic disease resistance against a necrotrophic pathogen in a similar fashion to AM. We investigated the priming effect of mycorrhizal fungi inoculation on resistance of a terrestrial orchid, Bletilla striata, to soft rot caused by Dickeya fangzhongdai. We found that root colonization by a compatible OM fungus primed B. striata seedlings and induced systemic resistance against the infection. Transcriptome analysis showed that priming was mediated by the downregulation of jasmonate and ethylene pathways and that these pathways are upregulated once infection occurs. Comparison with the reported transcriptome of AM fungus-colonized rice leaves revealed similar mechanisms in B. striata and in rice. These findings highlight a novel aspect of commonality between OM and AM plants in terms of induced systemic resistance.
Collapse
Affiliation(s)
| | - Chihiro Miura
- Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Katsushi Yamaguchi
- Functional Genomics Facility, National Institute for Basic Biology Core Research Facilities, Okazaki, Japan
| | - Shuji Shigenobu
- Functional Genomics Facility, National Institute for Basic Biology Core Research Facilities, Okazaki, Japan
| | - Hironori Kaminaka
- Faculty of Agriculture, Tottori University, Tottori, Japan
- Unused Bioresource Utilization Center, Tottori University, Tottori, Japan
| |
Collapse
|
3
|
Moreira X, Martín-Cacheda L, Quiroga G, Lago-Núñez B, Röder G, Abdala-Roberts L. Testing the joint effects of arbuscular mycorrhizal fungi and ants on insect herbivory on potato plants. PLANTA 2024; 260:66. [PMID: 39080142 PMCID: PMC11289011 DOI: 10.1007/s00425-024-04492-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
MAIN CONCLUSION Ants, but not mycorrhizae, significantly affected insect leaf-chewing herbivory on potato plants. However, there was no evidence of mutualistic interactive effects on herbivory. Plants associate with both aboveground and belowground mutualists, two prominent examples being ants and arbuscular mycorrhizal fungi (AMF), respectively. While both of these mutualisms have been extensively studied, joint manipulations testing their independent and interactive (non-additive) effects on plants are rare. To address this gap, we conducted a joint test of ant and AMF effects on herbivory by leaf-chewing insects attacking potato (Solanum tuberosum) plants, and further measured plant traits likely mediating mutualist effects on herbivory. In a field experiment, we factorially manipulated the presence of AMF (two levels: control and mycorrhization) and ants (two levels: exclusion and presence) and quantified the concentration of leaf phenolic compounds acting as direct defenses, as well as plant volatile organic compound (VOC) emissions potentially mediating direct (e.g., herbivore repellents) or indirect (e.g., ant attractants) defense. Moreover, we measured ant abundance and performed a dual-choice greenhouse experiment testing for effects of VOC blends (mimicking those emitted by control vs. AMF-inoculated plants) on ant attraction as a mechanism for indirect defense. Ant presence significantly reduced herbivory whereas mycorrhization had no detectable influence on herbivory and mutualist effects operated independently. Plant trait measurements indicated that mycorrhization had no effect on leaf phenolics but significantly increased VOC emissions. However, mycorrhization did not affect ant abundance and there was no evidence of AMF effects on herbivory operating via ant-mediated defense. Consistently, the dual-choice assay showed no effect of AMF-induced volatile blends on ant attraction. Together, these results suggest that herbivory on potato plants responds mainly to top-down (ant-mediated) rather than bottom-up (AMF-mediated) control, an asymmetry in effects which could have precluded mutualist non-additive effects on herbivory. Further research on this, as well as other plant systems, is needed to examine the ecological contexts under which mutualist interactive effects are more or less likely to emerge and their impacts on plant fitness and associated communities.
Collapse
Affiliation(s)
- Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apartado de Correos 28, 36080, Pontevedra, Galicia, Spain.
| | - Lucía Martín-Cacheda
- Misión Biológica de Galicia (MBG-CSIC), Apartado de Correos 28, 36080, Pontevedra, Galicia, Spain
| | - Gabriela Quiroga
- Centro de Investigaciones Agrarias de Mabegondo (CIAM), Apartado de Correos 10, 15080 A, Coruña, Spain
| | - Beatriz Lago-Núñez
- Misión Biológica de Galicia (MBG-CSIC), Apartado de Correos 28, 36080, Pontevedra, Galicia, Spain
| | - Gregory Röder
- Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Itzimná, 97000, Mérida, Yucatán, México
| |
Collapse
|
4
|
Cortez AO, Yoshinaga N, Mori N, Hwang SY. Plant growth-promoting rhizobacteria modulate induced corn defense against Spodoptera litura (Lepidoptera: Noctuidae). Biosci Biotechnol Biochem 2024; 88:872-884. [PMID: 38782714 DOI: 10.1093/bbb/zbae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Common cutworm, Spodoptera litura is an important pest of corn causing significant crop yield loss. Synthetic insecticides have mostly been used to combat this pest, raising human and environmental health concerns. Plant growth-promoting rhizobacteria (PGPR) could compensate for or augment the harmful effects of agrochemicals. Herein, we aimed to assess whether PGPR-induced defenses in corn plants impact the host-plant selection behavior of S. litura. Headspace volatile organic compounds were analyzed using gas chromatography-mass spectrometry. Larvae fed inoculated corn exhibited lower weights and relative growth rate than noninoculated plants. Under choice experiments, PGPR-treated plants significantly reduced percentage leaf damage area and oviposition rate compared to untreated plants. Volatile organic compound ratio emission varied significantly between control and PGPR treatments, which, in part, explains feeding and oviposition deterrence in PGPR-treated plants. The results demonstrate that PGPR inoculation can enhance corn resistance to S. litura, making it a promising candidate for crop protection strategies.
Collapse
Affiliation(s)
- Amado O Cortez
- Insect-Plant Interaction Laboratory, Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
- Department of Crop Science, College of Agriculture, Isabela State University, Echague, Isabela, the Philippines
| | - Naoko Yoshinaga
- Chemical Ecology Laboratory, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Naoki Mori
- Chemical Ecology Laboratory, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shaw-Yhi Hwang
- Insect-Plant Interaction Laboratory, Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
5
|
Xing H, Chen W, Liu Y, Cahill JF. Local Community Assembly Mechanisms and the Size of Species Pool Jointly Explain the Beta Diversity of Soil Fungi. MICROBIAL ECOLOGY 2024; 87:58. [PMID: 38602532 PMCID: PMC11008070 DOI: 10.1007/s00248-024-02374-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Fungi play vital regulatory roles in terrestrial ecosystems. Local community assembly mechanisms, including deterministic and stochastic processes, as well as the size of regional species pools (gamma diversity), typically influence overall soil microbial community beta diversity patterns. However, there is limited evidence supporting their direct and indirect effects on beta diversity of different soil fungal functional groups in forest ecosystems. To address this gap, we collected 1606 soil samples from a 25-ha subtropical forest plot in southern China. Our goal was to determine the direct effects and indirect effects of regional species pools on the beta diversity of soil fungi, specifically arbuscular mycorrhizal (AM), ectomycorrhizal (EcM), plant-pathogenic, and saprotrophic fungi. We quantified the effects of soil properties, mycorrhizal tree abundances, and topographical factors on soil fungal diversity. The beta diversity of plant-pathogenic fungi was predominantly influenced by the size of the species pool. In contrast, the beta diversity of EcM fungi was primarily driven indirectly through community assembly processes. Neither of them had significant effects on the beta diversity of AM and saprotrophic fungi. Our results highlight that the direct and indirect effects of species pools on the beta diversity of soil functional groups of fungi can significantly differ even within a relatively small area. They also demonstrate the independent and combined effects of various factors in regulating the diversities of soil functional groups of fungi. Consequently, it is crucial to study the fungal community not only as a whole but also by considering different functional groups within the community.
Collapse
Affiliation(s)
- Hua Xing
- ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Road, Minhuang District, 200241, Shanghai, China
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Wuwei Chen
- Qingyuan Bureau Natural Resources and Planning, Qingyuan, 323800, China
| | - Yu Liu
- ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Road, Minhuang District, 200241, Shanghai, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200082, China.
| | - James F Cahill
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| |
Collapse
|
6
|
Shafiei F, Shahidi-Noghabi S, Sedaghati E, Smagghe G. Arbuscular Mycorrhizal Fungi Inducing Tomato Plant Resistance and Its Role in Control of Bemisia tabaci Under Greenhouse Conditions. NEOTROPICAL ENTOMOLOGY 2024; 53:424-438. [PMID: 38356097 DOI: 10.1007/s13744-024-01135-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) are one of the environment-friendly organisms that enhance plant performance. AMF affect the herbivorous insect community by indirectly modifying host plant nutrient uptake, growth, and defense, also known as priming. In the current study, under greenhouse conditions, the effects of inoculating tomato seedlings with four species of AMF, i.e., Funneliformis mosseae, Rhizophagus intraradices, Rhizophagus irregularis, and Glomus iranicus, were studied in relation to tomato plant growth parameters, plant defense enzymes, and total phenol content, and additionally, the life table of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) feeding on these plants was determined. The results demonstrated that the growth parameters of tomato plants, including plant height, stem diameter, number of leaves, root volume, leaf surface area, weight of the root, and aerial organs (containing the leaves and stem), were greater and larger in the AMF-inoculated plants compared to the non-inoculated plants. Furthermore, there were higher defense enzyme activities, including peroxidase, phenylalanine ammonia lyase and polyphenol oxidase, and also higher total phenol contents in the AMF-inoculated plants. The whitefly life table characteristics were decreased in the group feeding on the AMF-inoculated plants. All together, the AMF colonization made the tomato plants more resistant against B. tabaci by improving plant growth and increasing defense enzymes. The degree of priming observed here suggests the potential of AMF to have expansive applications, including their implementation in sustainable agriculture.
Collapse
Affiliation(s)
- Fateme Shafiei
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Shahnaz Shahidi-Noghabi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
| | - Ebrahim Sedaghati
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Guy Smagghe
- Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
- Department of Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
7
|
Dai HY, Zhang XK, Bi Y, Chen D, Long XN, Wu Y, Cao GH, He S. Improvement of Panax notoginseng saponin accumulation triggered by methyl jasmonate under arbuscular mycorrhizal fungi. FRONTIERS IN PLANT SCIENCE 2024; 15:1360919. [PMID: 38545393 PMCID: PMC10965624 DOI: 10.3389/fpls.2024.1360919] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/29/2024] [Indexed: 11/11/2024]
Abstract
Panax notoginseng is a highly valued perennial medicinal herb plant in Yunnan Province, China, and the taproots are the main medicinal parts that are rich in active substances of P. notoginseng saponins. The main purpose of this study is to uncover the physiological and molecular mechanism of Panax notoginseng saponin accumulation triggered by methyl jasmonate (MeJA) under arbuscular mycorrhizal fungi (AMF) by determining physiological indices, high-throughput sequencing and correlation analysis. Physiological results showed that the biomass and saponin contents of P. notoginseng, the concentrations of jasmonic acids (JAs) and the key enzyme activities involved in notoginsenoside biosynthesis significantly increased under AMF or MeJA, but the interactive treatment of AMF and MeJA weakened the effect of AMF, suggesting that a high concentration of endogenous JA have inhibitory effect. Transcriptome sequencing results indicated that differential expressed genes (DEGs) involved in notoginsenoside and JA biosynthesis were significantly enriched in response to AMF induction, e.g., upregulated genes of diphosphocytidyl-2-C-methyl-d-erythritol kinases (ISPEs), cytochrome P450 monooxygenases (CYP450s)_and glycosyltransferases (GTs), while treatments AMF-MeJA and salicylhydroxamic acid (SHAM) decreased the abundance of these DEGs. Interestingly, a high correlation presented between any two of saponin contents, key enzyme activities and expression levels of DEGs. Taken together, the inoculation of AMF can improve the growth and saponin accumulation of P. notoginseng by strengthening the activities of key enzymes and the expression levels of encoding genes, in which the JA regulatory pathway is a key link. This study provides references for implementing ecological planting of P. notoginseng, improving saponin accumulation and illustrating the biosynthesis mechanism.
Collapse
Affiliation(s)
- Hong-Yang Dai
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
- Kunming Lancang-Mekong Regional R&D Central for the Development Utilization of Traditional Medicine Resources, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
- College of Pharmacy, Zhaotong Health Vocational College, Yunnan, Zhaotong, China
| | - Xing-Kai Zhang
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Yue Bi
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Di Chen
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Xian-Nv Long
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Yue Wu
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Guan-Hua Cao
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
- Kunming Lancang-Mekong Regional R&D Central for the Development Utilization of Traditional Medicine Resources, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Sen He
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
- Kunming Lancang-Mekong Regional R&D Central for the Development Utilization of Traditional Medicine Resources, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| |
Collapse
|
8
|
Li Y, Nan Z, Matthew C, Wang Y, Duan T. Arbuscular mycorrhizal fungus changes alfalfa (Medicago sativa) metabolites in response to leaf spot (Phoma medicaginis) infection, with subsequent effects on pea aphid (Acyrthosiphon pisum) behavior. THE NEW PHYTOLOGIST 2023; 239:286-300. [PMID: 37010085 DOI: 10.1111/nph.18924] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/27/2023] [Indexed: 06/02/2023]
Abstract
Plant disease occurs simultaneously with insect attack. Arbuscular mycorrhizal fungi (AMF) modify plant biotic stress response. Arbuscular mycorrhizal fungi and pathogens may modify plant volatile organic compound (VOC) production and insect behavior. Nevertheless, such effects are rarely studied, particularly for mesocosms where component organisms interact with each other. Plant-mediated effects of leaf pathogen (Phoma medicaginis) infection on aphid (Acyrthosiphon pisum) infestation, and role of AMF (Rhizophagus intraradices) in modifying these interactions were elucidated in a glasshouse experiment. We evaluated alfalfa disease occurrence, photosynthesis, phytohormones, trypsin inhibitor (TI) and total phenol response to pathogen and aphid attack, with or without AMF, and aphid behavior towards VOCs from AMF inoculated and non-mycorrhizal alfalfa, with or without pathogen infection. AM fungus enhanced alfalfa resistance to pathogen and aphid infestation. Plant biomass, root : shoot ratio, net photosynthetic rate, transpiration rate, stomatal conductance, salicylic acid, and TI were significantly increased in AM-inoculated alfalfa. Arbuscular mycorrhizal fungi and pathogen significantly changed alfalfa VOCs. Aphids preferred VOCs of AM-inoculated and nonpathogen-infected to nonmycorrhizal and pathogen-infected alfalfa. We propose that AMF alter plant response to multiple biotic stresses in ways both beneficial and harmful to the plant host, providing a basis for strategies to manage pathogens and herbivore pests.
Collapse
Affiliation(s)
- Yingde Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, 730020, China
| | - Zhibiao Nan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, 730020, China
| | - Cory Matthew
- School of Agriculture and Environment, College of Sciences, Massey University, Private Bag 11-222, Palmerston North, 4442, New Zealand
| | - Yajie Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, 730020, China
| | - Tingyu Duan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, 730020, China
| |
Collapse
|
9
|
Mukhtar H, Wunderlich RF, Muzaffar A, Ansari A, Shipin OV, Cao TND, Lin YP. Soil microbiome feedback to climate change and options for mitigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163412. [PMID: 37059149 DOI: 10.1016/j.scitotenv.2023.163412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/14/2023] [Accepted: 04/06/2023] [Indexed: 05/12/2023]
Abstract
Microbes are a critical component of soil ecosystems, performing crucial functions in biogeochemical cycling, carbon sequestration, and plant health. However, it remains uncertain how their community structure, functioning, and resultant nutrient cycling, including net GHG fluxes, would respond to climate change at different scales. Here, we review global and regional climate change effects on soil microbial community structure and functioning, as well as the climate-microbe feedback and plant-microbe interactions. We also synthesize recent studies on climate change impacts on terrestrial nutrient cycles and GHG fluxes across different climate-sensitive ecosystems. It is generally assumed that climate change factors (e.g., elevated CO2 and temperature) will have varying impacts on the microbial community structure (e.g., fungi-to-bacteria ratio) and their contribution toward nutrient turnover, with potential interactions that may either enhance or mitigate each other's effects. Such climate change responses, however, are difficult to generalize, even within an ecosystem, since they are subjected to not only a strong regional influence of current ambient environmental and edaphic conditions, historical exposure to fluctuations, and time horizon but also to methodological choices (e.g., network construction). Finally, the potential of chemical intrusions and emerging tools, such as genetically engineered plants and microbes, as mitigation strategies against global change impacts, particularly for agroecosystems, is presented. In a rapidly evolving field, this review identifies the knowledge gaps complicating assessments and predictions of microbial climate responses and hindering the development of effective mitigation strategies.
Collapse
Affiliation(s)
- Hussnain Mukhtar
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taiwan
| | | | | | - Andrianto Ansari
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taiwan
| | - Oleg V Shipin
- School of Environmental Engineering and Management, Asian Institute of Technology, Thailand
| | - Thanh Ngoc-Dan Cao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taiwan
| | - Yu-Pin Lin
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taiwan.
| |
Collapse
|
10
|
Domingo G, Vannini C, Bracale M, Bonfante P. Proteomics as a tool to decipher plant responses in arbuscular mycorrhizal interactions: a meta-analysis. Proteomics 2023; 23:e2200108. [PMID: 36571480 DOI: 10.1002/pmic.202200108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/09/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
The beneficial symbiosis between plants and arbuscular mycorrhizal (AM) fungi leads to a deep reprogramming of plant metabolism, involving the regulation of several molecular mechanisms, many of which are poorly characterized. In this regard, proteomics is a powerful tool to explore changes related to plant-microbe interactions. This study provides a comprehensive proteomic meta-analysis conducted on AM-modulated proteins at local (roots) and systemic (shoots/leaves) level. The analysis was implemented by an in-depth study of root membrane-associated proteins and by a comparison with a transcriptome meta-analysis. A total of 4262 differentially abundant proteins were retrieved and, to identify the most relevant AM-regulated processes, a range of bioinformatic studies were conducted, including functional enrichment and protein-protein interaction network analysis. In addition to several protein transporters which are present in higher amounts in AM plants, and which are expected due to the well-known enhancement of AM-induced mineral uptake, our analysis revealed some novel traits. We detected a massive systemic reprogramming of translation with a central role played by the ribosomal translational apparatus. On one hand, these new protein-synthesis efforts well support the root cellular re-organization required by the fungal penetration, and on the other they have a systemic impact on primary metabolism.
Collapse
Affiliation(s)
- Guido Domingo
- Biotechnology and Life Science Department, University of Insubria, Varese, Italy
| | - Candida Vannini
- Biotechnology and Life Science Department, University of Insubria, Varese, Italy
| | - Marcella Bracale
- Biotechnology and Life Science Department, University of Insubria, Varese, Italy
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, Università degli Studi di Torino, Torino, Italy
| |
Collapse
|
11
|
Yuan W, Yuan W, Zhou R, Lv G, Sun M, Zhao Y, Zheng W. Production of hispidin polyphenols from medicinal mushroom Sanghuangporus vaninii in submerged cultures. CHINESE HERBAL MEDICINES 2023. [DOI: 10.1016/j.chmed.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
|
12
|
Sarmiento-López LG, López-Espinoza MY, Juárez-Verdayes MA, López-Meyer M. Genome-wide characterization of the xyloglucan endotransglucosylase/hydrolase gene family in Solanum lycopersicum L. and gene expression analysis in response to arbuscular mycorrhizal symbiosis. PeerJ 2023; 11:e15257. [PMID: 37159836 PMCID: PMC10163873 DOI: 10.7717/peerj.15257] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/28/2023] [Indexed: 05/11/2023] Open
Abstract
Xyloglucan endotransglucosylase/hydrolases (XTHs) are a glycoside hydrolase protein family involved in the biosynthesis of xyloglucans, with essential roles in the regulation of plant cell wall extensibility. By taking advantage of the whole genome sequence in Solanum lycopersicum, 37 SlXTHs were identified in the present work. SlXTHs were classified into four subfamilies (ancestral, I/II, III-A, III-B) when aligned to XTHs of other plant species. Gene structure and conserved motifs showed similar compositions in each subfamily. Segmental duplication was the primary mechanism accounting for the expansion of SlXTH genes. In silico expression analysis showed that SlXTH genes exhibited differential expression in several tissues. GO analysis and 3D protein structure indicated that all 37 SlXTHs participate in cell wall biogenesis and xyloglucan metabolism. Promoter analysis revealed that some SlXTHs have MeJA- and stress-responsive elements. qRT-PCR expression analysis of nine SlXTHs in leaves and roots of mycorrhizal colonized vs. non-colonized plants showed that eight of these genes were differentially expressed in leaves and four in roots, suggesting that SlXTHs might play roles in plant defense induced by arbuscular mycorrhiza. Our results provide valuable insight into the function of XTHs in S. lycopersicum, in addition to the response of plants to mycorrhizal colonization.
Collapse
Affiliation(s)
- Luis G. Sarmiento-López
- Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa-Instituto Politécnico Nacional, Guasave, Sinaloa, México
| | - Maury Yanitze López-Espinoza
- Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa-Instituto Politécnico Nacional, Guasave, Sinaloa, México
| | - Marco Adán Juárez-Verdayes
- Departamento de Ciencias Básicas, Universidad Autónoma Agraria Antonio Narro, Saltillo, Coahuila, México
| | - Melina López-Meyer
- Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa-Instituto Politécnico Nacional, Guasave, Sinaloa, México
| |
Collapse
|
13
|
Dejana L, Ramírez-Serrano B, Rivero J, Gamir J, López-Ráez JA, Pozo MJ. Phosphorus availability drives mycorrhiza induced resistance in tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:1060926. [PMID: 36600909 PMCID: PMC9806178 DOI: 10.3389/fpls.2022.1060926] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Arbuscular mycorrhizal (AM) symbiosis can provide multiple benefits to the host plant, including improved nutrition and protection against biotic stress. Mycorrhiza induced resistance (MIR) against pathogens and insect herbivores has been reported in different plant systems, but nutrient availability may influence the outcome of the interaction. Phosphorus (P) is a key nutrient for plants and insects, but also a regulatory factor for AM establishment and functioning. However, little is known about how AM symbiosis and P interact to regulate plant resistance to pests. Here, using the tomato-Funneliformis mosseae mycorrhizal system, we analyzed the effect of moderate differences in P fertilization on plant and pest performance, and on MIR against biotic stressors including the fungal pathogen Botrytis cinerea and the insect herbivore Spodoperta exigua. P fertilization impacted plant nutritional value, plant defenses, disease development and caterpillar survival, but these effects were modulated by the mycorrhizal status of the plant. Enhanced resistance of F. mosseae-inoculated plants against B. cinerea and S. exigua depended on P availability, as no protection was observed under the most P-limiting conditions. MIR was not directly explained by changes in the plant nutritional status nor to basal differences in defense-related phytohormones. Analysis of early plant defense responses to the damage associated molecules oligogalacturonides showed primed transcriptional activation of plant defenses occurring at intermediate P levels, but not under severe P limitation. The results show that P influences mycorrhizal priming of plant defenses and the resulting induced-resistance is dependent on P availability, and suggest that mycorrhiza fine-tunes the plant growth vs defense prioritization depending on P availability. Our results highlight how MIR is context dependent, thus unravel molecular mechanism based on plant defence in will contribute to improve the efficacy of mycorrhizal inoculants in crop protection.
Collapse
Affiliation(s)
- Laura Dejana
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Beatriz Ramírez-Serrano
- Institut de Recherche sur la Biologie de l’Insecte (IRBI), UMR 7261, /Universite de Tours Centre National de la Recherche Scientifique (CNRS), Tours, France
| | - Javier Rivero
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Jordi Gamir
- Plant Immunity and Biochemistry Group, Department of Biology Biochemistry and Natural Sciences, Universitat Jaume I, Avd. Vicente Sos Baynat s/n, Castellón, Spain
| | - Juan A. López-Ráez
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - María J. Pozo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
14
|
Zeng M, Hause B, van Dam NM, Uthe H, Hoffmann P, Krajinski F, Martínez-Medina A. The mycorrhizal symbiosis alters the plant defence strategy in a model legume plant. PLANT, CELL & ENVIRONMENT 2022; 45:3412-3428. [PMID: 35982608 DOI: 10.1111/pce.14421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Arbuscular mycorrhizal (AM) symbiosis modulates plant-herbivore interactions. Still, how it shapes the overall plant defence strategy and the mechanisms involved remain unclear. We investigated how AM symbiosis simultaneously modulates plant resistance and tolerance to a shoot herbivore, and explored the underlying mechanisms. Bioassays with Medicago truncatula plants were used to study the effect of the AM fungus Rhizophagus irregularis on plant resistance and tolerance to Spodoptera exigua herbivory. By performing molecular and chemical analyses, we assessed the impact of AM symbiosis on herbivore-triggered phosphate (Pi)- and jasmonate (JA)-related responses. Upon herbivory, AM symbiosis led to an increased leaf Pi content by boosting the mycorrhizal Pi-uptake pathway. This enhanced both plant tolerance and herbivore performance. AM symbiosis counteracted the herbivore-triggered JA burst, reducing plant resistance. To disentangle the role of the mycorrhizal Pi-uptake pathway in the plant's response to herbivory, we used the mutant line ha1-2, impaired in the H+ -ATPase gene HA1, which is essential for Pi-uptake via the mycorrhizal pathway. We found that mycorrhiza-triggered enhancement of herbivore performance was compromised in ha1-2 plants. AM symbiosis thus affects the defence pattern of M. truncatula by altering resistance and tolerance simultaneously. We propose that the mycorrhizal Pi-uptake pathway is involved in the modulation of the plant defence strategy.
Collapse
Affiliation(s)
- Ming Zeng
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, General and Applied Botany, Universität Leipzig, Leipzig, Germany
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Nicole M van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Moelcular Interaction Ecology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Henriette Uthe
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Moelcular Interaction Ecology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Petra Hoffmann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Physiological Diversity, Helmholtz-Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Franziska Krajinski
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, General and Applied Botany, Universität Leipzig, Leipzig, Germany
| | - Ainhoa Martínez-Medina
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Moelcular Interaction Ecology, Friedrich-Schiller-University Jena, Jena, Germany
- Plant-Microorganism Interactions Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| |
Collapse
|
15
|
Tan M, Li Y, Xu J, Yan S, Jiang D. Effects of Arbuscular Mycorrhizal Fungi-Colonized Populus alba × P. berolinensis Seedlings on the Microbial and Metabolic Status of Gypsy Moth Larvae. INSECTS 2022; 13:1002. [PMID: 36354825 PMCID: PMC9697668 DOI: 10.3390/insects13111002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are considered as important biological factors that can affect insect resistance of plants. Herein, we used AMF-poplar seedlings that could either increase or decrease the resistance to gypsy moth larvae, to elucidate the mechanism of mycorrhizal-induced insect resistance/susceptibility at the larval microbial and metabolic levels. Our results found that larval plant consumption and growth were significantly inhibited in the Glomus mossae (GM)-colonized seedlings, whereas they were enhanced in the Glomus intraradices (GI)-colonized seedlings. GM inoculation reduced the beneficial bacteria abundance in the larval gut and inhibited the detoxification and metabolic functions of gut microbiota. However, GI inoculation improved the larval gut environment by decreasing the pathogenic bacteria and activating specific metabolic pathways. Furthermore, GM inoculation triggers a metabolic disorder in the larval fat body, accompanied by the suppression of detoxification and energy production pathways. The levels of differentially accumulated metabolites related to amino acid synthesis and metabolism and exogenous toxin metabolism pathways were significantly increased in the GI group. Taken together, the disadaptation of gypsy moth larvae to leaves of GM-colonized seedlings led to the GM-induced insect resistance in poplar, and to the GI-induced insect susceptibility involved in the improvement of larval gut environment and fat body energy metabolism.
Collapse
Affiliation(s)
- Mingtao Tan
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Yaning Li
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jinsheng Xu
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Shanchun Yan
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Dun Jiang
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
16
|
Gao Z, Ju X, Yang M, Xue R, Li Q, Fu K, Guo W, Tong L, Song Y, Zeng R, Wang J. Colorado potato beetle exploits frass-associated bacteria to suppress defense responses in potato plants. PEST MANAGEMENT SCIENCE 2022; 78:3778-3787. [PMID: 35102699 DOI: 10.1002/ps.6823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Colorado potato beetle (CPB; Leptinotarsa decemlineata) is a destructive quarantine pest that develops broad physiological adaptations to potato plants. During feeding, CPB deposits a copious amount of wet frass onto the surface of leaves and stems that remains in place for long periods. Insect behaviors such as feeding, crawling and oviposition are able to mediate plant defenses. However, the specific role of CPB defecation-associated cues in manipulating plant defenses remains unclear. RESULTS CPB larval frass significantly suppressed potato polyphenol oxidase activity and enhanced larval growth on treated potato plants. The incorporation of antibiotics into larval frass triggered higher jasmonic acid (JA)-regulated defense responses in potato plants compared with antibiotic-free frass. Four bacterial symbionts belonging to the genera Acinetobacter, Citrobacter, Enterobacter and Pantoea were isolated from larval frass and suppressed plant defenses. After reinoculation of these bacteria into axenic larvae, Acinetobacter and Citrobacter were found to be highly abundant in the frass, whereas Enterobacter and Pantoea were less abundant probably due to the negative effect of potato steroidal glycoalkaloids (SGA) such as α-solanine. Furthermore, direct application of Acinetobacter and Citrobacter to wounded potato plants significantly inhibited the expression of genes associated with the JA-mediated defense signaling pathway and SGA biosynthesis. CONCLUSION Our findings demonstrate that CPB exploits frass-associated bacteria as a deceptive strategy of plant defense suppression, adding an interesting dimension to our understanding of how CPB successfully specializes on potato plants. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhou Gao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xueyang Ju
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingyu Yang
- Department of Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rongrong Xue
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qing Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kaiyun Fu
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Wenchao Guo
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Lu Tong
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
17
|
Song H, Li Y, Wang Z, Duan Z, Wang Y, Yang E, Que Q, Chen X, Li P. Transcriptome profiling of Toona ciliata young stems in response to Hypsipyla robusta Moore. FRONTIERS IN PLANT SCIENCE 2022; 13:950945. [PMID: 36105698 PMCID: PMC9465623 DOI: 10.3389/fpls.2022.950945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Toona ciliata is a traditional woody plant that can be used as a medicinal material in China. The extracts of its roots, stems, leaves, and flowers all have a wide range of bioactive compounds. However, T. ciliata has been facing an unresolved pest problem caused by Hypsipyla robusta Moore (HRM), which seriously affects its growth and development. In this study, the expression level of TcMYB3 gene reached the maximum (28-fold) at 12 h and transcriptome sequencing of young stems eaten by HRM for 0, 3, 12, and 21 h were performed. A large number of differentially expressed genes (DEGs) were identified including jointly up-regulated genes (263) and down-regulated genes (378). JA synthesis and signaling transduction, terpene biosynthesis, and MAPKs signaling pathway were analyzed in depth and found that TcOPR3, TcJAR1, TcJAZs, and TcTPS9 genes possessed anti-insect potential. Moreover, MYB and ERF transcription factor (TF) families were significantly strengthened to the point that they may participate in induced defense mechanisms in T. ciliata. These data not only provide insights into the molecular mechanisms in resistance of T. ciliata to HRM but also helps to explore the new biocontrol strategies against insects in eco-friendly woody plants.
Collapse
Affiliation(s)
- Huiyun Song
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Yue Li
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Zhi Wang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Zhihao Duan
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Yueyang Wang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Endian Yang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Qingmin Que
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Xiaoyang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Pei Li
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| |
Collapse
|
18
|
Zhang W, Yu L, Han B, Liu K, Shao X. Mycorrhizal Inoculation Enhances Nutrient Absorption and Induces Insect-Resistant Defense of Elymus nutans. FRONTIERS IN PLANT SCIENCE 2022; 13:898969. [PMID: 35712553 PMCID: PMC9194685 DOI: 10.3389/fpls.2022.898969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/10/2022] [Indexed: 05/26/2023]
Abstract
The majority of terrestrial plants can form symbiotic associations on their roots with arbuscular mycorrhizal fungi (AMF) in the soil to stimulate the growth and nutrient uptake of the host plant and to improve plant resistance to insects and disease. However, the use of AMF for insect control on gramineous forages requires further study. Here, we evaluated the effects of AMF (Funneliformis mosseae) inoculation on the defense against Locusta migratoria attack in Elymus nutans. Inoculation assays showed that mycorrhizal plants had a higher resistance than non-inoculated plants, as evidenced by plants having more plant biomass, a higher nitrogen and phosphorus content, and greater lipoxygenase (LOX) activity. The results of insect damage showed that in addition to a decrease in the enzyme phenylalanine-ammonia-lyase, the activities of other plant defense-related enzymes (including polyphenol oxidase and β-1,3-glucanase) were increased. A key enzyme, LOX, belonging to the jasmonic acid (JA) signaling pathway was notably increased in mycorrhizal treatment. Volatile organic compounds (VOCs) were identified using gas chromatography mass spectrometry and the results showed that several metabolites with insect-resistant properties, including D-Limonene, p-Xylene, 1,3-Diethylbenzene were detected in mycorrhizal plants. These findings suggest that mycorrhizal inoculation has potential applications in insect management on forage grasses and demonstrates that the JA signaling pathway is essential for insect resistance in Elymus nutans.
Collapse
|
19
|
Jiang D, Lin R, Tan M, Yan J, Yan S. The mycorrhizal-induced growth promotion and insect resistance reduction in Populus alba × P. berolinensis seedlings: a multi-omics study. TREE PHYSIOLOGY 2022; 42:1059-1069. [PMID: 35022794 DOI: 10.1093/treephys/tpab155] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/13/2021] [Indexed: 06/14/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi are an alternative to chemical insecticides or fertilizers, and there is an urgent need to extend the application of AM fungi to woody plants. This study aims to investigate the growth and resistance against the gypsy moth larvae (Lymantria dispar) in Glomus intraradices-colonized Populus alba × P. berolinensis seedlings, and to unravel the transcriptome and metabolome phenotypes recruited by AM fungus colonization that affect plant growth and insect resistance. Our results showed a positive mycorrhizal growth response, i.e., growth and biomass of mycorrhizal seedlings were enhanced. However, AM fungus inoculation reduced the resistance of poplar to gypsy moth larvae, as evidenced by the decreased carbon/nitrogen ratio in leaves, as well as the increased larval growth and shortened larval developmental duration. Transcriptome analysis revealed that in both auxin and gibberellin signaling transductions, all nodes were responsive to AM symbiosis and most differentially expressed genes belonging to effectors were up-regulated in mycorrhizal seedlings. Furthermore, the two key enzymes (4-coumarate-CoA ligase and trans-cinnamate 4-monooxygenase) involved in the synthesis of p-Coumaroyl-CoA, an initial metabolite in flavonoid biosynthesis and the first rate-limiting enzyme (chalcone synthase) in flavonoid biosynthesis, were down-regulated at the transcriptional level. Consistent with the transcriptome results, metabolome analysis found that the amounts of all differentially accumulated flavonoid compounds (e.g., catechin and quercetin) identified in mycorrhizal seedlings were decreased. Taken together, these findings highlight the diverse outcomes of AM fungi-host plant-insect interaction and reveal the regulatory network of the positive mycorrhizal growth response and mycorrhizal-induced reduction of insect resistance in poplar.
Collapse
Affiliation(s)
- Dun Jiang
- Department of Forestry School of Forestry, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, P. R. China
- College of Forestry Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, P. R. China
| | - Ruoxuan Lin
- Department of Economics College of Economics and Management, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, P. R.China
| | - Mingtao Tan
- Department of Forestry School of Forestry, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, P. R. China
- College of Forestry Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, P. R. China
| | - Junxin Yan
- Department of Landscape Architecture College of Landscape Architecture, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, P. R. China
| | - Shanchun Yan
- Department of Forestry School of Forestry, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, P. R. China
- College of Forestry Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, P. R. China
| |
Collapse
|
20
|
Arbuscular Mycorrhizal Fungi Induced Plant Resistance against Fusarium Wilt in Jasmonate Biosynthesis Defective Mutant and Wild Type of Tomato. J Fungi (Basel) 2022; 8:jof8050422. [PMID: 35628678 PMCID: PMC9146357 DOI: 10.3390/jof8050422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 12/04/2022] Open
Abstract
Arbuscular mycorrhizal (AM) fungi can form mutual symbiotic associations with most terrestrial plants and improve the resistance of host plants against pathogens. However, the bioprotection provided by AM fungi can depend on the host–fungus combinations. In this study, we unraveled the effects of pre-inoculation with AM fungus Rhizophagus irregularis on plant resistance against the hemibiotrophic fungal pathogen Fusarium oxysporum in jasmonate (JA) biosynthesis mutant tomato, suppressor of prosystemin-mediated responses8 (spr8) and the wild type Castlemart (CM). Results showed that R. irregularis colonization in CM plants significantly decreased the disease index, which was not observed in spr8 plants, suggesting that the disease protection of AM fungi was a plant-genotype-specific trait. Inoculation with R. irregularis significantly increased the shoot dry weight of CM plants when infected with F. oxysporum, with increased plant P content and net photosynthetic rate. Induced expression of the JA synthesis genes, including allene oxide cyclase gene (AOC) and lipoxygenase D gene (LOXD), and increased activities of polyphenol oxidase (PPO) and phenylalanine ammonia lyase (PAL) were recorded in mycorrhizal CM plants infected with F. oxysporum, but not in spr8 plants. Thus, mycorrhiza-induced resistance (MIR) to fungal pathogen in tomato was highly relevant to the JA signaling pathway.
Collapse
|
21
|
Cabral MJS, Silva IM, Pinheiro RA, Santos MM, Soares MA, Plata-Rueda A, Castro BMC, Silva WM, Silva ES, Zanuncio JC. Protonectarina sylveirae (Hymenoptera: Vespidae): first report preying Bedellia somnulentella (Lepidoptera: Bedelliidae) in Brazil. BRAZ J BIOL 2022; 84:e256779. [PMID: 35239790 DOI: 10.1590/1519-6984.256779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/13/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
- M J S Cabral
- Programa de Pós-graduação em Produção Vegetal, Laboratório de Entomologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri - UFVJM, Diamantina, MG, Brasil
| | - I M Silva
- Programa de Pós-graduação em Produção Vegetal, Laboratório de Entomologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri - UFVJM, Diamantina, MG, Brasil
| | - R A Pinheiro
- Programa de Pós-graduação em Produção Vegetal, Laboratório de Entomologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri - UFVJM, Diamantina, MG, Brasil
| | - M M Santos
- Programa de Pós-graduação em Produção Vegetal, Laboratório de Entomologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri - UFVJM, Diamantina, MG, Brasil
| | - M A Soares
- Programa de Pós-graduação em Produção Vegetal, Laboratório de Entomologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri - UFVJM, Diamantina, MG, Brasil
| | - A Plata-Rueda
- Departamento de Entomologia, Instituto de Biotecnologia Aplicada à Agropecuária - BIOAGRO, Universidade Federal de Viçosa - UFV, Viçosa, MG, Brasil
| | - B M C Castro
- Departamento de Entomologia, Instituto de Biotecnologia Aplicada à Agropecuária - BIOAGRO, Universidade Federal de Viçosa - UFV, Viçosa, MG, Brasil
| | - W M Silva
- Departamento de Engenharia Florestal, Universidade Federal de Viçosa - UFV, Viçosa, MG, Brasil
| | - E S Silva
- Departamento de Entomologia, Instituto de Biotecnologia Aplicada à Agropecuária - BIOAGRO, Universidade Federal de Viçosa - UFV, Viçosa, MG, Brasil
| | - J C Zanuncio
- Departamento de Entomologia, Instituto de Biotecnologia Aplicada à Agropecuária - BIOAGRO, Universidade Federal de Viçosa - UFV, Viçosa, MG, Brasil
| |
Collapse
|
22
|
Frew A, Antunes PM, Cameron DD, Hartley SE, Johnson SN, Rillig MC, Bennett AE. Plant herbivore protection by arbuscular mycorrhizas: a role for fungal diversity? THE NEW PHYTOLOGIST 2022; 233:1022-1031. [PMID: 34618922 DOI: 10.1111/nph.17781] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Adam Frew
- School of Sciences, University of Southern Queensland, Toowoomba, Qld, 4350, Australia
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Qld, 4350, Australia
| | - Pedro M Antunes
- Department of Biology, Algoma University, Sault Ste. Marie, ON, P6A 2G4, Canada
| | - Duncan D Cameron
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
- Institute for Sustainable Food, University of Sheffield, Sheffield, S10 2TN, UK
| | - Susan E Hartley
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Scott N Johnson
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, NSW, 2751, Australia
| | - Matthias C Rillig
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, Berlin, D-14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, D-14195, Germany
| | - Alison E Bennett
- Department of Evolution, Ecology & Organismal Biology, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
23
|
Jiang D, Tan M, Wu S, Zheng L, Wang Q, Wang G, Yan S. Defense responses of arbuscular mycorrhizal fungus-colonized poplar seedlings against gypsy moth larvae: a multiomics study. HORTICULTURE RESEARCH 2021; 8:245. [PMID: 34848684 PMCID: PMC8632881 DOI: 10.1038/s41438-021-00671-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 05/25/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi may help protect plants against herbivores; however, their use for the pest control of woody plants requires further study. Here, we investigated the effect of Glomus mosseae colonization on the interactions between gypsy moth larvae and Populus alba × P. berolinensis seedlings and deciphered the regulatory mechanisms underlying the mycorrhizal-induced resistance in the leaves of mycorrhizal poplar using RNA-seq and nontargeted metabolomics. The resistance assay showed that AM fungus inoculation protected poplar seedlings against gypsy moth larvae, as evidenced by the decreased larval growth and reduced larval survival. A transcriptome analysis revealed that differentially expressed genes (DEGs) were involved in jasmonic acid biosynthesis (lipoxygenase, hydroperoxide dehydratase, and allene oxide cyclase) and signal transduction (jasmonate-ZIM domain and transcription factor MYC2) and identified the genes that were upregulated in mycorrhizal seedlings. Except for chalcone synthase and anthocyanidin synthase, which were downregulated in mycorrhizal seedlings, all DEGs related to flavonoid biosynthesis were upregulated, including 4-coumarate-CoA ligase, chalcone isomerase, flavanone 3-hydroxylase, flavonol synthase, and leucoanthocyanidin reductase. The metabolome analysis showed that several metabolites with insecticidal properties, including coumarin, stachydrine, artocarpin, norizalpinin, abietic acid, 6-formylumbelliferone, and vanillic acid, were significantly accumulated in the mycorrhizal seedlings. These findings suggest the potential of mycorrhiza-induced resistance for use in pest management of woody plants and demonstrate that the priming of JA-dependent responses in poplar seedlings contributes to mycorrhiza-induced resistance to insect pests.
Collapse
Affiliation(s)
- Dun Jiang
- School of Forestry, Northeast Forestry University, 150040, Harbin, P. R. China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 150040, Harbin, P. R. China
| | - Mingtao Tan
- School of Forestry, Northeast Forestry University, 150040, Harbin, P. R. China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 150040, Harbin, P. R. China
| | - Shuai Wu
- School of Forestry, Northeast Forestry University, 150040, Harbin, P. R. China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 150040, Harbin, P. R. China
| | - Lin Zheng
- School of Forestry, Northeast Forestry University, 150040, Harbin, P. R. China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 150040, Harbin, P. R. China
| | - Qing Wang
- School of Forestry, Northeast Forestry University, 150040, Harbin, P. R. China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 150040, Harbin, P. R. China
| | - Guirong Wang
- School of Forestry, Northeast Forestry University, 150040, Harbin, P. R. China.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China.
| | - Shanchun Yan
- School of Forestry, Northeast Forestry University, 150040, Harbin, P. R. China.
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 150040, Harbin, P. R. China.
| |
Collapse
|
24
|
Assessment of Silicon- and Mycorrhizae- Mediated Constitutive and Induced Systemic Resistance in Rice, Oryza sativa L., against the Fall Armyworm, Spodoptera frugiperda Smith. PLANTS 2021; 10:plants10102126. [PMID: 34685935 PMCID: PMC8539287 DOI: 10.3390/plants10102126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022]
Abstract
Induced resistance provides protection in plants against insect herbivores. Silicon and mycorrhizae often prime plant defenses and thereby enhance plant resistance against herbivores. In rice, Oryza sativa L., insect injury has been shown to induce resistance against future defoliators. However, it is unknown if silicon and mycorrhizae treatments in combination with insect injury result in greater induced resistance. Using the fall armyworm (FAW), Spodoptera frugiperda Smith, two experiments were conducted to investigate whether (1) silicon or mycorrhizae treatment alters resistance in rice and (2) induced systemic resistance in response to insect injury is augmented in silicon- or mycorrhizae- treated plants. In the first experiment, silicon treatment reduced FAW growth by 20% while mycorrhizae increased FAW growth by 8%. In the second experiment, insect injury induced systemic resistance, resulting in a 23% reduction in FAW larval weight gains on injured compared to uninjured plants, irrespective of treatment. Neither silicon nor mycorrhizae enhanced this systemic resistance in insect-injured plants. Furthermore, mycorrhizae resulted in the systemic increase of peroxidase (POD) and polyphenol oxidase (PPO) activities, and injury caused a slight decrease in these enzyme activities in mycorrhizae plants. Silicon treatment did not result in a stronger induction of POD and PPO activity in injured plants. Taken together, these results indicate a lack of silicon and mycorrhizae priming of plant defenses in rice. Regardless of injury, silicon reduced FAW weight gains by 36%. Based on these results, it appears silicon-mediated biomechanical rather than biochemical defenses may play a greater role in increased resistance against FAW in rice.
Collapse
|
25
|
Quo vadis: signaling molecules and small secreted proteins from mycorrhizal fungi at the early stage of mycorrhiza formation. Symbiosis 2021. [DOI: 10.1007/s13199-021-00793-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Mony C, Gaudu V, Ricono C, Jambon O, Vandenkoornhuyse P. Plant neighbours shape fungal assemblages associated with plant roots: A new understanding of niche‐partitioning in plant communities. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13804] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cendrine Mony
- UMR 6553 Ecobio CNRS ‐ University of Rennes Rennes Cedex France
| | - Valentin Gaudu
- UMR 6553 Ecobio CNRS ‐ University of Rennes Rennes Cedex France
| | - Claire Ricono
- UMR 6553 Ecobio CNRS ‐ University of Rennes Rennes Cedex France
| | - Olivier Jambon
- UMR 6553 Ecobio CNRS ‐ University of Rennes Rennes Cedex France
| | | |
Collapse
|
27
|
Dreischhoff S, Das IS, Jakobi M, Kasper K, Polle A. Local Responses and Systemic Induced Resistance Mediated by Ectomycorrhizal Fungi. FRONTIERS IN PLANT SCIENCE 2020; 11:590063. [PMID: 33381131 PMCID: PMC7767828 DOI: 10.3389/fpls.2020.590063] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/10/2020] [Indexed: 05/13/2023]
Abstract
Ectomycorrhizal fungi (EMF) grow as saprotrophs in soil and interact with plants, forming mutualistic associations with roots of many economically and ecologically important forest tree genera. EMF ensheath the root tips and produce an extensive extramatrical mycelium for nutrient uptake from the soil. In contrast to other mycorrhizal fungal symbioses, EMF do not invade plant cells but form an interface for nutrient exchange adjacent to the cortex cells. The interaction of roots and EMF affects host stress resistance but uncovering the underlying molecular mechanisms is an emerging topic. Here, we focused on local and systemic effects of EMF modulating defenses against insects or pathogens in aboveground tissues in comparison with arbuscular mycorrhizal induced systemic resistance. Molecular studies indicate a role of chitin in defense activation by EMF in local tissues and an immune response that is induced by yet unknown signals in aboveground tissues. Volatile organic compounds may be involved in long-distance communication between below- and aboveground tissues, in addition to metabolite signals in the xylem or phloem. In leaves of EMF-colonized plants, jasmonate signaling is involved in transcriptional re-wiring, leading to metabolic shifts in the secondary and nitrogen-based defense metabolism but cross talk with salicylate-related signaling is likely. Ectomycorrhizal-induced plant immunity shares commonalities with systemic acquired resistance and induced systemic resistance. We highlight novel developments and provide a guide to future research directions in EMF-induced resistance.
Collapse
Affiliation(s)
| | | | | | | | - Andrea Polle
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
28
|
Sanmartín N, Sánchez-Bel P, Pastor V, Pastor-Fernández J, Mateu D, Pozo MJ, Cerezo M, Flors V. Root-to-shoot signalling in mycorrhizal tomato plants upon Botrytis cinerea infection. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110595. [PMID: 32771152 DOI: 10.1016/j.plantsci.2020.110595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 05/27/2023]
Abstract
Arbuscular mycorrhizal symbiosis is restricted in roots, but it also improves shoot responses against leaf challenges, a phenomenon known as Mycorrhiza-Induced Resistance (MIR). This study focuses on mycorrhizal root signals that may orchestrate shoot defence responses. Metabolomic analysis of non-mycorrhizal and mycorrhizal plants upon Botrytis cinerea infection showed that roots rearrange their metabolome mostly in response to the symbiosis, whereas in shoots a stronger impact of the infection is observed. Specific clusters of compounds in shoots and roots display a priming profile suggesting an implication in the enhanced resistance observed in mycorrhizal plants. Among the primed pathways in roots, lignans showed the highest number of hits followed by oxocarboxylic acids, compounds of the amino acid metabolism, and phytohormones. The lignan yatein was present at higher concentrations in roots, root efflux and leaves of mycorrhizal plants This lignan displayed in vitro antimicrobial activity against B. cinerea and it was also functional protecting tomato plants. Besides, several JA defence-related genes were upregulated in mycorrhizal roots regardless of the pathogen infection, whereas PIN-II was primed in roots of mycorrhizal infected plants. These observations suggest that the enhanced resistance in shoots during MIR may be coordinated by lignans and oxylipins with the participation of roots.
Collapse
Affiliation(s)
- Neus Sanmartín
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC), Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, Spain
| | - Paloma Sánchez-Bel
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC), Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, Spain
| | - Victoria Pastor
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC), Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, Spain
| | - Julia Pastor-Fernández
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC), Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, Spain
| | - Diego Mateu
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC), Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, Spain
| | - María José Pozo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Miguel Cerezo
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC), Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, Spain
| | - Víctor Flors
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC), Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, Spain.
| |
Collapse
|
29
|
Rizzo E, Sherman T, Manosalva P, Gomez SK. Assessment of Local and Systemic Changes in Plant Gene Expression and Aphid Responses during Potato Interactions with Arbuscular Mycorrhizal Fungi and Potato Aphids. PLANTS (BASEL, SWITZERLAND) 2020; 9:E82. [PMID: 31936508 PMCID: PMC7020417 DOI: 10.3390/plants9010082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 01/04/2020] [Indexed: 12/03/2022]
Abstract
This research examined aphid and plant responses to distinct levels (none, low, and high) of arbuscular mycorrhizal (AM) fungal root colonization by studying the association between potato aphids (Macrosiphum euphorbiae), potatoes (Solanum tuberosum), and AM fungi (Rhizophagus intraradices). It extends knowledge on gene expression changes, assessed by RT-qPCR, of ten defense-related genes at two time-points post-herbivory (24 h and 10 days), focusing on aphid-infested local leaves, non-infested systemic leaves, and roots. The results showed that aphid fitness was not altered by AM symbiosis. At 24 h, ETHYLENE RECEPTOR 1 gene expression was repressed in roots of aphid-infested non-mycorrhizal plants and aphid-infested plants with a high level of AM fungal root colonization, but not on aphid-infested plants with a low level of AM fungal root colonization. At 10 days, ALLENE OXIDE CYCLASE and POTATO TYPE I PROTEASE INHIBITOR were upregulated exclusively in local leaves of aphid-infested plants with a low level of AM fungal root colonization. In addition, local and systemic changes in plant gene expression appeared to be regulated exclusively by AM status and aphid herbivory. In summary, the gene expression data provide insights on mycorrhizal potato responses to aphid herbivory and serve as a starting point for future studies using this system.
Collapse
Affiliation(s)
- Eric Rizzo
- School of Biological Sciences, University of Northern Colorado, 501 20th St., Greeley, CO 80639, USA; (E.R.); (T.S.)
| | - Tyler Sherman
- School of Biological Sciences, University of Northern Colorado, 501 20th St., Greeley, CO 80639, USA; (E.R.); (T.S.)
| | - Patricia Manosalva
- Department of Microbiology and Plant Pathology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA;
| | - S. Karen Gomez
- School of Biological Sciences, University of Northern Colorado, 501 20th St., Greeley, CO 80639, USA; (E.R.); (T.S.)
| |
Collapse
|
30
|
Arbuscular Mycorrhizal Fungi and Their Potential Applications for Sustainable Agriculture. Fungal Biol 2020. [DOI: 10.1007/978-3-030-45971-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Zytynska SE, Eicher M, Rothballer M, Weisser WW. Microbial-Mediated Plant Growth Promotion and Pest Suppression Varies Under Climate Change. FRONTIERS IN PLANT SCIENCE 2020; 11:573578. [PMID: 33013998 PMCID: PMC7511531 DOI: 10.3389/fpls.2020.573578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/21/2020] [Indexed: 05/22/2023]
Abstract
Climate change is altering the dynamics of crop pests and diseases resulting in reduced crop yields. Using beneficial soil bacterial to increase crop health is a quickly developing area in sustainable agriculture, but it is unknown if climate change or interactions with other species could alter their effect. The plant growth-promoting rhizobacterium Acidovorax radicis N35 is known to increase barley (Hordeum vulgare) plant growth under laboratory conditions, and we tested the stability of the plant-bacterial interactions when exposed to elevated carbon dioxide (CO2) and ozone (O3) levels while infesting the aboveground leaves with cereal aphids (Sitobion avenae) and the soil with beneficial earthworms. Acidovorax radicis N35 increased plant growth and reduced insect growth - with greatest effect in a high-stress elevated O3 environment, but reduced effects under elevated CO2. Earthworms promoted both plant and insect growth, but inoculation with A. radicis N35 alleviated some of the earthworm-mediated increase in pest abundance, particularly in the ambient environment. The consistency of these beneficial effects highlights the potential of exploiting local species interactions for predicting and mitigating climate change effects in managed systems. We conclude that microbial bioprotectants have high potential for benefiting agriculture via plant-growth promotion and pest suppression.
Collapse
Affiliation(s)
- Sharon E. Zytynska
- Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- *Correspondence: Sharon E. Zytynska,
| | - Moritz Eicher
- Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Michael Rothballer
- Institute of Network Biology, Helmholtz Zentrum München GmbH, Neuherberg, Germany
| | - Wolfgang W. Weisser
- Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| |
Collapse
|
32
|
Selvaraj A, Thangavel K, Uthandi S. Arbuscular mycorrhizal fungi (Glomus intraradices) and diazotrophic bacterium (Rhizobium BMBS) primed defense in blackgram against herbivorous insect (Spodoptera litura) infestation. Microbiol Res 2020; 231:126355. [DOI: 10.1016/j.micres.2019.126355] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 01/13/2023]
|
33
|
Grunseich JM, Thompson MN, Aguirre NM, Helms AM. The Role of Plant-Associated Microbes in Mediating Host-Plant Selection by Insect Herbivores. PLANTS (BASEL, SWITZERLAND) 2019; 9:E6. [PMID: 31861487 PMCID: PMC7020435 DOI: 10.3390/plants9010006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 02/05/2023]
Abstract
There is increasing evidence that plant-associated microorganisms play important roles in shaping interactions between plants and insect herbivores. Studies of both pathogenic and beneficial plant microbes have documented wide-ranging effects on herbivore behavior and performance. Some studies, for example, have reported enhanced insect-repellent traits or reduced performance of herbivores on microbe-associated plants, while others have documented increased herbivore attraction or performance. Insect herbivores frequently rely on plant cues during foraging and oviposition, suggesting that plant-associated microbes affecting these cues can indirectly influence herbivore preference. We review and synthesize recent literature to provide new insights into the ways pathogenic and beneficial plant-associated microbes alter visual, olfactory, and gustatory cues of plants that affect host-plant selection by insect herbivores. We discuss the underlying mechanisms, ecological implications, and future directions for studies of plant-microbial symbionts that indirectly influence herbivore behavior by altering plant traits.
Collapse
Affiliation(s)
- John M. Grunseich
- Department of Entomology, Texas A&M University, College Station, TX 77840, USA; (J.M.G.); (M.N.T.)
| | - Morgan N. Thompson
- Department of Entomology, Texas A&M University, College Station, TX 77840, USA; (J.M.G.); (M.N.T.)
| | - Natalie M. Aguirre
- Ecology and Evolutionary Biology Program, Texas A&M University; College Station, TX 77840, USA;
| | - Anjel M. Helms
- Department of Entomology, Texas A&M University, College Station, TX 77840, USA; (J.M.G.); (M.N.T.)
- Ecology and Evolutionary Biology Program, Texas A&M University; College Station, TX 77840, USA;
| |
Collapse
|
34
|
Tree Diversity Reduces Fungal Endophyte Richness and Diversity in a Large-Scale Temperate Forest Experiment. DIVERSITY 2019. [DOI: 10.3390/d11120234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although decades of research have typically demonstrated a positive correlation between biodiversity of primary producers and associated trophic levels, the ecological drivers of this association are poorly understood. Recent evidence suggests that the plant microbiome, or the fungi and bacteria found on and inside plant hosts, may be cryptic yet important drivers of important processes, including primary production and trophic interactions. Here, using high-throughput sequencing, we characterized foliar fungal community diversity, composition, and function from 15 broadleaved tree species (N = 545) in a recently established, large-scale temperate tree diversity experiment using over 17,000 seedlings. Specifically, we tested whether increases in tree richness and phylogenetic diversity would increase fungal endophyte diversity (the “Diversity Begets Diversity” hypothesis), as well as alter community composition (the “Tree Diversity–Endophyte Community” hypothesis) and function (the “Tree Diversity–Endophyte Function” hypothesis) at different spatial scales. We demonstrated that increasing tree richness and phylogenetic diversity decreased fungal species and functional guild richness and diversity, including pathogens, saprotrophs, and parasites, within the first three years of a forest diversity experiment. These patterns were consistent at the neighborhood and tree plot scale. Our results suggest that fungal endophytes, unlike other trophic levels (e.g., herbivores as well as epiphytic bacteria), respond negatively to increasing plant diversity.
Collapse
|