2
|
Bracalini M, Benigno A, Aglietti C, Panzavolta T, Moricca S. Thousand Cankers Disease in Walnut Trees in Europe: Current Status and Management. Pathogens 2023; 12:pathogens12020164. [PMID: 36839436 PMCID: PMC9959596 DOI: 10.3390/pathogens12020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/28/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Thousand cankers disease (TCD) is a new deadly disease in walnut trees (Juglans spp.), which is plaguing commercial plantations, natural groves, and ornamental black walnut trees (Juglans nigra) in their native and invasion areas in the US and, more recently, in artificial plantations and amenity trees in the newly-invaded areas in Europe (Italy). This insect/fungus complex arises from the intense trophic activity of the bark beetle vector Pityophthorus juglandis in the phloem of Juglans spp. and the subsequent development of multiple Geosmithia morbida cankers around beetles' entry/exit holes. After an analysis of the main biological and ecological traits of both members of this insect/fungus complex, this review explores the options available for TCD prevention and management. Special focus is given to those diagnostic tools developed for disease detection, surveillance, and monitoring, as well as to existing phytosanitary regulations, protocols, and measures that comply with TCD eradication and containment. Only integrated disease management can effectively curtail the pervasive spread of TCD, thus limiting the damage to natural ecosystems, plantations, and ornamental walnuts.
Collapse
|
3
|
Pietsch GM, Gazis R, Klingeman WE, Huff ML, Staton ME, Kolarik M, Hadziabdic D. Characterization and microsatellite marker development for a common bark and ambrosia beetle associate, Geosmithia obscura. Microbiologyopen 2022; 11:e1286. [PMID: 35765178 PMCID: PMC9108439 DOI: 10.1002/mbo3.1286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/27/2022] [Indexed: 11/12/2022] Open
Abstract
Symbioses between Geosmithia fungi and wood-boring and bark beetles seldom result in disease induction within the plant host. Yet, exceptions exist such as Geosmithia morbida, the causal agent of Thousand Cankers Disease (TCD) of walnuts and wingnuts, and Geosmithia sp. 41, the causal agent of Foamy Bark Canker disease of oaks. Isolates of G. obscura were recovered from black walnut trees in eastern Tennessee and at least one isolate induced cankers following artificial inoculation. Due to the putative pathogenicity and lack of recovery of G. obscura from natural lesions, a molecular diagnostic screening tool was developed using microsatellite markers mined from the G. obscura genome. A total of 3256 candidate microsatellite markers were identified (2236, 789, 137 di-, tri-, and tetranucleotide motifs, respectively), with 2011, 703, 101 di-, tri-, and tetranucleotide motifs, respectively, containing markers with primers. From these, 75 microsatellite markers were randomly selected, screened, and optimized, resulting in 28 polymorphic markers that yielded single, consistently recovered bands, which were used in downstream analyses. Five of these microsatellite markers were found to be specific to G. obscura and did not cross-amplify into other, closely related species. Although the remaining tested markers could be useful, they cross-amplified within different Geosmithia species, making them not reliable for G. obscura detection. Five novel microsatellite markers (GOBS9, GOBS10, GOBS41, GOBS43, and GOBS50) were developed based on the G. obscura genome. These species-specific microsatellite markers are available as a tool for use in molecular diagnostics and can assist future surveillance studies.
Collapse
Affiliation(s)
- Grace M. Pietsch
- Department of Plant SciencesThe University of TennesseeKnoxvilleTennesseeUSA
| | - Romina Gazis
- Department of Plant PathologyUniversity of FloridaHomesteadFloridaUSA
| | | | - Matthew L. Huff
- Department of Entomology and Plant PathologyThe University of TennesseeKnoxvilleTennesseeUSA
| | - Margaret E. Staton
- Department of Entomology and Plant PathologyThe University of TennesseeKnoxvilleTennesseeUSA
| | - Miroslav Kolarik
- Institute of MicrobiologyCzech Academy of SciencesPragueCzech Republic
| | - Denita Hadziabdic
- Department of Entomology and Plant PathologyThe University of TennesseeKnoxvilleTennesseeUSA
| |
Collapse
|
4
|
Stackhouse T, Boggess SL, Hadziabdic D, Trigiano RN, Ginzel MD, Klingeman WE. Conventional Gel Electrophoresis and TaqMan Probes Enable Rapid Confirmation of Thousand Cankers Disease from Diagnostic Samples. PLANT DISEASE 2021; 105:3171-3180. [PMID: 33591833 DOI: 10.1094/pdis-10-20-2258-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Thousand cankers disease (TCD) is caused by the fungal pathogen Geosmithia morbida and vectored by the walnut twig beetle Pityophthorus juglandis. In infected walnut and butternut (Juglans spp.) hosts and wingnut species (Pterocarya spp.) hosts, tree decline and death results in ecological disruption and economic losses. A rapid molecular detection protocol for TCD using microsatellite markers can confirm the presence of insect vector or fungal pathogen DNA, but it requires specialized expensive equipment and technical expertise. Using four different experimental approaches, capillary and conventional gel electrophoresis, and traditional polymerase chain reaction (PCR) and quantitative PCR (qPCR), we describe simplified and inexpensive processes for diagnostic confirmation of TCD. The improved and rapid detection protocols reported in this study reduce time and equipment costs associated with detection of molecular pest and pathogen DNA by (1) using conventional gel electrophoresis or TaqMan molecular probes to elucidate the detection limits for G. morbida and P. juglandis DNA and (2) identifying resources that allow visualization of positive test results for infected host plant tissue samples. Conventional gel electrophoresis and TaqMan molecular probe protocols detected presence of DNA from TCD-associated fungal and insect samples. These procedural improvements can be readily adopted by diagnostic end-users and adapted for use with other complex disease systems to enable rapid pest and pathogen detection.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Tammy Stackhouse
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996
| | - Sarah L Boggess
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996
| | - Denita Hadziabdic
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996
| | - Robert N Trigiano
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996
| | - Matthew D Ginzel
- Department of Entomology, Purdue University, West Lafayette, IN 47907
- Department of Forestry & Natural Resources, Purdue University, West Lafayette, IN 47907
| | | |
Collapse
|
5
|
Rizzo D, Moricca S, Bracalini M, Benigno A, Bernardo U, Luchi N, Da Lio D, Nugnes F, Cappellini G, Salemi C, Cacciola SO, Panzavolta T. Rapid Detection of Pityophthorus juglandis (Blackman) (Coleoptera, Curculionidae) with the Loop-Mediated Isothermal Amplification (LAMP) Method. PLANTS 2021; 10:plants10061048. [PMID: 34067342 PMCID: PMC8224600 DOI: 10.3390/plants10061048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022]
Abstract
The walnut twig beetle Pityophthorus juglandis is a phloem-boring bark beetle responsible, in association with the ascomycete Geosmithia morbida, for the Thousand Cankers Disease (TCD) of walnut trees. The recent finding of TCD in Europe prompted the development of effective diagnostic protocols for the early detection of members of this insect/fungus complex. Here we report the development of a highly efficient, low-cost, and rapid method for detecting the beetle, or even just its biological traces, from environmental samples: the loop-mediated isothermal amplification (LAMP) assay. The method, designed on the 28S ribosomal RNA gene, showed high specificity and sensitivity, with no cross reactivity to other bark beetles and wood-boring insects. The test was successful even with very small amounts of the target insect’s nucleic acid, with limit values of 0.64 pg/µL and 3.2 pg/µL for WTB adults and frass, respectively. A comparison of the method (both in real time and visual) with conventional PCR did not display significant differences in terms of LoD. This LAMP protocol will enable quick, low-cost, and early detection of P. juglandis in areas with new infestations and for phytosanitary inspections at vulnerable sites (e.g., seaports, airports, loading stations, storage facilities, and wood processing companies).
Collapse
Affiliation(s)
- Domenico Rizzo
- Laboratory of Phytopathological Diagnostics and Molecular Biology, Plant Protection Service of Tuscany, Via Ciliegiole 99, 51100 Pistoia, Italy; (D.R.); (G.C.)
| | - Salvatore Moricca
- Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), Plant Pathology and Entomology Section, University of Florence, Piazzale delle Cascine 28, 50144 Florence, Italy; (M.B.); (A.B.); (T.P.)
- Correspondence:
| | - Matteo Bracalini
- Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), Plant Pathology and Entomology Section, University of Florence, Piazzale delle Cascine 28, 50144 Florence, Italy; (M.B.); (A.B.); (T.P.)
| | - Alessandra Benigno
- Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), Plant Pathology and Entomology Section, University of Florence, Piazzale delle Cascine 28, 50144 Florence, Italy; (M.B.); (A.B.); (T.P.)
| | - Umberto Bernardo
- Portici Unit, Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), P. le Enrico Fermi 1, 80055 Portici, Italy; (U.B.); (F.N.)
| | - Nicola Luchi
- Florence Unit, Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy;
| | - Daniele Da Lio
- Department of Agricultural, Food and Agro-Environmental Sciences, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (D.D.L.); (C.S.)
| | - Francesco Nugnes
- Portici Unit, Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), P. le Enrico Fermi 1, 80055 Portici, Italy; (U.B.); (F.N.)
| | - Giovanni Cappellini
- Laboratory of Phytopathological Diagnostics and Molecular Biology, Plant Protection Service of Tuscany, Via Ciliegiole 99, 51100 Pistoia, Italy; (D.R.); (G.C.)
| | - Chiara Salemi
- Department of Agricultural, Food and Agro-Environmental Sciences, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (D.D.L.); (C.S.)
| | - Santa Olga Cacciola
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy;
| | - Tiziana Panzavolta
- Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), Plant Pathology and Entomology Section, University of Florence, Piazzale delle Cascine 28, 50144 Florence, Italy; (M.B.); (A.B.); (T.P.)
| |
Collapse
|
6
|
Moricca S, Bracalini M, Benigno A, Ghelardini L, Furtado EL, Marino CL, Panzavolta T. Observations on the non-native thousand cankers disease of walnut in Europe’s southernmost outbreak. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
7
|
Rassati D, Marini L, Malacrinò A. Acquisition of fungi from the environment modifies ambrosia beetle mycobiome during invasion. PeerJ 2019; 7:e8103. [PMID: 31763076 PMCID: PMC6870512 DOI: 10.7717/peerj.8103] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/25/2019] [Indexed: 01/05/2023] Open
Abstract
Microbial symbionts can play critical roles when their host attempts to colonize a new habitat. The lack of symbiont adaptation can in fact hinder the invasion process of their host. This scenario could change if the exotic species are able to acquire microorganisms from the invaded environment. Understanding the ecological factors that influence the take-up of new microorganisms is thus essential to clarify the mechanisms behind biological invasions. In this study, we tested whether different forest habitats influence the structure of the fungal communities associated with ambrosia beetles. We collected individuals of the most widespread exotic (Xylosandrus germanus) and native (Xyleborinus saxesenii) ambrosia beetle species in Europe in several old-growth and restored forests. We characterized the fungal communities associated with both species via metabarcoding. We showed that forest habitat shaped the community of fungi associated with both species, but the effect was stronger for the exotic X. germanus. Our results support the hypothesis that the direct contact with the mycobiome of the invaded environment might lead an exotic species to acquire native fungi. This process is likely favored by the occurrence of a bottleneck effect at the mycobiome level and/or the disruption of the mechanisms sustaining co-evolved insect-fungi symbiosis. Our study contributes to the understanding of the factors affecting insect-microbes interactions, helping to clarify the mechanisms behind biological invasions.
Collapse
Affiliation(s)
- Davide Rassati
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Padova, Italy
| | - Lorenzo Marini
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Padova, Italy
| | - Antonino Malacrinò
- Department of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, OH, United States of America
| |
Collapse
|