1
|
Koch JBU, Sim SB, Scheffler B, Lozier JD, Geib SM. Chromosome-scale genome assembly of the hunt bumble bee, Bombus huntii Greene, 1860, a species of agricultural interest. G3 (BETHESDA, MD.) 2024; 14:jkae160. [PMID: 39028118 PMCID: PMC11457055 DOI: 10.1093/g3journal/jkae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
The Hunt bumble bee, Bombus huntii, is a widely distributed pollinator in western North America. The species produces large colony sizes in captive rearing conditions, experiences low parasite and pathogen loads, and has been demonstrated to be an effective pollinator of tomatoes grown in controlled environment agriculture systems. These desirable traits have galvanized producer efforts to develop commercial Bombus huntii colonies for growers to deliver pollination services to crops. To better understand Bombus huntii biology and support population genetic studies and breeding decisions, we sequenced and assembled the Bombus huntii genome from a single haploid male. High-fidelity sequencing of the entire genome using PacBio, along with HiC sequencing, led to a comprehensive contig assembly of high continuity. This assembly was further organized into a chromosomal arrangement, successfully identifying 18 chromosomes spread across the 317.4 Mb assembly with a BUSCO score indicating 97.6% completeness. Synteny analysis demonstrates shared chromosome number (n = 18) with Bombus terrestris, a species belonging to a different subgenus, matching the expectation that presence of 18 haploid chromosomes is an ancestral trait at least between the subgenera Pyrobombus and Bombus sensu stricto. In conclusion, the assembly outcome, alongside the minimal tissue sampled destructively, showcases efficient techniques for producing a comprehensive, highly contiguous genome.
Collapse
Affiliation(s)
- Jonathan Berenguer Uhuad Koch
- U.S. Department of Agriculture, Agricultural Research Service, Pollinating Insects Biology, Management, Systematics Research Unit, Logan, UT 84341, USA
| | - Sheina B Sim
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Pacific Basin Agricultural Research Center, Tropical Pest Genetics and Molecular Biology Research Unit, Hilo, HI 96720, USA
| | - Brian Scheffler
- U.S. Department of Agriculture, Agricultural Research Service, Jamie Whitten Delta States Research Center, Genomics and Bioinformatics Research Unit, Stoneville, MS 38776, USA
| | - Jeffrey D Lozier
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Scott M Geib
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Pacific Basin Agricultural Research Center, Tropical Pest Genetics and Molecular Biology Research Unit, Hilo, HI 96720, USA
| |
Collapse
|
2
|
Madrigal G, Minhas BF, Catchen J. Klumpy: A tool to evaluate the integrity of long-read genome assemblies and illusive sequence motifs. Mol Ecol Resour 2024:e13982. [PMID: 38800997 DOI: 10.1111/1755-0998.13982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
The improvement and decreasing costs of third-generation sequencing technologies has widened the scope of biological questions researchers can address with de novo genome assemblies. With the increasing number of reference genomes, validating their integrity with minimal overhead is vital for establishing confident results in their applications. Here, we present Klumpy, a tool for detecting and visualizing both misassembled regions in a genome assembly and genetic elements (e.g. genes) of interest in a set of sequences. By leveraging the initial raw reads in combination with their respective genome assembly, we illustrate Klumpy's utility by investigating antifreeze glycoprotein (afgp) loci across two icefishes, by searching for a reported absent gene in the northern snakehead fish, and by scanning the reference genomes of a mudskipper and bumblebee for misassembled regions. In the two former cases, we were able to provide support for the noncanonical placement of an afgp locus in the icefishes and locate the missing snakehead gene. Furthermore, our genome scans were able identify an unmappable locus in the mudskipper reference genome and identify a putative repetitive element shared among several species of bees.
Collapse
Affiliation(s)
- Giovanni Madrigal
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Bushra Fazal Minhas
- Informatics Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Julian Catchen
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Informatics Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
3
|
Crone MK, Biddinger DJ, Grozinger CM. Wild Bee Nutritional Ecology: Integrative Strategies to Assess Foraging Preferences and Nutritional Requirements. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.847003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Bees depend on flowering plants for their nutrition, and reduced availability of floral resources is a major driver of declines in both managed and wild bee populations. Understanding the nutritional needs of different bee species, and how these needs are met by the varying nutritional resources provided by different flowering plant taxa, can greatly inform land management recommendations to support bee populations and their associated ecosystem services. However, most bee nutrition research has focused on the three most commonly managed and commercially reared bee taxa—honey bees, bumble bees, and mason bees—with fewer studies focused on wild bees and other managed species, such as leafcutting bees, stingless bees, and alkali bees. Thus, we have limited information about the nutritional requirements and foraging preferences of the vast majority of bee species. Here, we discuss the approaches traditionally used to understand bee nutritional ecology: identification of floral visitors of selected focal plant species, evaluation of the foraging preferences of adults in selected focal bee species, evaluation of the nutritional requirements of focal bee species (larvae or adults) in controlled settings, and examine how these methods may be adapted to study a wider range of bee species. We also highlight emerging technologies that have the potential to greatly facilitate studies of the nutritional ecology of wild bee species, as well as evaluate bee nutritional ecology at significantly larger spatio-temporal scales than were previously feasible. While the focus of this review is on bee species, many of these techniques can be applied to other pollinator taxa as well.
Collapse
|
4
|
Belsky JE, Camp AA, Lehmann DM. The Importance of Males to Bumble Bee ( Bombus Species) Nest Development and Colony Viability. INSECTS 2020; 11:E506. [PMID: 32764336 PMCID: PMC7469185 DOI: 10.3390/insects11080506] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 11/18/2022]
Abstract
Bumble bee population declines over the last decade have stimulated strong interest in determining causative factors and necessary conservation measures. Research attention has largely been directed toward bumble bee worker and queen health and their contributions to population stability, while male bees (i.e., drones) have typically been overlooked regarding their role in influencing colony fitness and longevity. In this review we assess existing literature on the diverse role of males within bumble bee nests and their importance to queen health and fitness, as well as to overall nest success. The implications of reproductive measures, including sperm transfer, mating behavior, mating plugs, and male immunity, among other topics, are examined. Overall, bumble bee males are found to drive colony function in a unique manner. Current knowledge gaps pertaining to the role of males are discussed. We highlight the importance of drones to queen success and fitness in many ways, and suggest future research exploring impacts of this often-neglected caste.
Collapse
Affiliation(s)
- Joseph E Belsky
- Public Health & Environmental Systems Division, Integrated Health Assessment Branch Center for Public Health and Environmental Assessment (CPHEA), US-Environmental Protection Agency, Research Triangle Park, Durham, NC 27711, USA
| | - Allison A Camp
- ORISE Researcher, Research Triangle Park Oak Ridge Associated Universities, Research Triangle Park, Durham, NC 27711, USA
| | - David M Lehmann
- Public Health & Environmental Systems Division, Integrated Health Assessment Branch Center for Public Health and Environmental Assessment (CPHEA), US-Environmental Protection Agency, Research Triangle Park, Durham, NC 27711, USA
| |
Collapse
|
5
|
Mullins JL, Strange JP, Tripodi AD. Why Are Queens Broodless? Failed Nest Initiation Not Linked to Parasites, Mating Status, or Ovary Development in Two Bumble Bee Species of Pyrobombus (Hymenoptera: Apidae: Bombus). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:575-581. [PMID: 31814010 DOI: 10.1093/jee/toz330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Bumble bees (Bombus [Hymenoptera: Apidae]) are important pollinators for agricultural crops, which has led to their commercial domestication. Despite their importance, little is known about the reproductive biology of bumble bees native to North America. The Hunt bumble bee (Bombus huntii Greene [Hymenoptera: Apidae]) and the Vosnesensky bumble bee (Bombus vosnesenskii Radoszkowski [Hymenoptera: Apidae] are native candidates for commercial production in western North America due to their efficacy in providing commercial pollination services. Availability of pollinators native to the region in which services would be provided would minimize the likelihood of introducing exotic species and spreading novel disease. Some parasites are known to affect bumble bee reproduction, but little is known about their prevalence in North America or how they affect queen success. Only 38% of wild-caught B. huntii and 51% wild-caught B. vosnesenskii queens collected between 2015 and 2017 initiated nests in the laboratory. Our objective was to identify causal factors leading to a queen's inability to oviposit. To address this, we dissected each broodless queen and diagnosed diseases, assessed mating status, and characterized ovary development. Nematodes, arthropods, and microorganisms were detected in both species. Overall, 20% of queens were infected by parasites, with higher rates in B. vosnesenskii. Over 95% of both species were mated, and over 88% had developed ovaries. This suggests that parasitism and mating status were not primary causes of broodlessness. Although some failure to nest can be attributed to assessed factors, additional research is needed to fully understand the challenges presented by captive rearing.
Collapse
Affiliation(s)
- Jessica L Mullins
- United States Department of Agriculture, Agricultural Research Service-Pollinating Insects Research Unit, Logan, UT
- University of Colorado Museum of Natural History, 265 UCB-MCOL, Boulder, CO
| | - James P Strange
- United States Department of Agriculture, Agricultural Research Service-Pollinating Insects Research Unit, Logan, UT
- Department of Entomology, The Ohio State University, 216 Kottman Hall, Columbus, OH
| | - Amber D Tripodi
- United States Department of Agriculture, Agricultural Research Service-Pollinating Insects Research Unit, Logan, UT
| |
Collapse
|