1
|
Gianazza E, Papaianni GG, Brocca L, Banfi C, Mallia A. Omics Approaches to Study Perilipins and Their Significant Biological Role in Cardiometabolic Disorders. Int J Mol Sci 2025; 26:557. [PMID: 39859272 PMCID: PMC11765208 DOI: 10.3390/ijms26020557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Lipid droplets (LDs), highly dynamic cellular organelles specialized in lipid storage and maintenance of lipid homeostasis, contain several proteins on their surface, among which the perilipin (Plin) family stands out as the most abundant group of LD-binding proteins. They play a pivotal role in influencing the behavior and functionality of LDs, regulating lipase activity, and preserving a balance between lipid synthesis and degradation, which is crucial in the development of obesity and abnormal accumulation of fat in non-adipose tissues, causing negative adverse biological effects, such as insulin resistance, mitochondrial dysfunction, and inflammation. The expression levels of Plins are often associated with various diseases, such as hepatic steatosis and atherosclerotic plaque formation. Thus, it becomes of interest to investigate the Plin roles by using appropriate "omics" approaches that may provide additional insight into the mechanisms through which these proteins contribute to cellular and tissue homeostasis. This review is intended to give an overview of the most significant omics studies focused on the characterization of Plin proteins and the identification of their potential targets involved in the development and progression of cardiovascular and cardiometabolic complications, as well as their interactors that could be useful for more efficient therapeutic and preventive approaches for patients.
Collapse
Affiliation(s)
| | | | | | - Cristina Banfi
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (E.G.); (G.G.P.); (L.B.); (A.M.)
| | | |
Collapse
|
2
|
Wei Z, Cui C, Li Z, Li J, Shao Y, Wang J, Guo J, Song L. Major cell types in the coronary thrombosis of acute myocardial infarction patients revealed by scRNA-seq. Clin Transl Med 2025; 15:e70181. [PMID: 39804415 PMCID: PMC11727574 DOI: 10.1002/ctm2.70181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/22/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025] Open
Affiliation(s)
- Zhiyao Wei
- State Key Laboratory of Cardiovascular DiseaseFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Cheng Cui
- Division of CardiologyFuwai HospitalNational Center for Cardiovascular DiseaseChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zixuan Li
- Division of CardiologyBeijing Luhe HospitalCapital Medical UniversityBeijingChina
| | - Jianping Li
- Division of CardiologyPeking University First HospitalBeijingChina
| | - Yibing Shao
- Division of CardiologyQingdao Municipal HospitalQingdaoChina
| | - Jizheng Wang
- State Key Laboratory of Cardiovascular DiseaseFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jincheng Guo
- Division of CardiologyBeijing Luhe HospitalCapital Medical UniversityBeijingChina
| | - Lei Song
- State Key Laboratory of Cardiovascular DiseaseFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Division of CardiologyFuwai HospitalNational Center for Cardiovascular DiseaseChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
3
|
Zhao J, Guo C, Cheng M, Li J, Liu Y, Wang H, Shen J. Identification of transcription factor-lipid droplet-related gene biomarkers for the prognosis of post-acute myocardial infarction-induced heart failure. Front Cardiovasc Med 2024; 11:1429387. [PMID: 39726946 PMCID: PMC11669577 DOI: 10.3389/fcvm.2024.1429387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Patients with acute myocardial infarction (AMI) are at high risk of progressing to heart failure (HF). Recent research has shown that lipid droplet-related genes (LDRGs) play a crucial role in myocardial metabolism following MI, thereby influencing the progression to HF. Methods Weighted gene co-expression network analysis (WGCNA) and differential expression gene analysis were used to screen a transcriptome dataset of whole blood cells from AMI patients with (AMI HF, n = 16) and without progression (AMI no-HF, n = 16). Functional enrichment analysis were performed to observe the involved function. Machine learning methods were used to screen the genes related to prognosis. Transcriptional factors (TF) were predicted by using relevant databases. ROC curves were drawn to evaluate the TF-LDRG pair in predicting HF in the validation dataset (n = 16) and the clinical trial (n = 13). Results The 235 identified genes were primarily involved in pathways related to fatty acid and energy metabolism. 22 genes were screened out that they were strongly associated with prognosis. 35 corresponding transcription factors were predicted. The TF-LDRG pair, ABHD5-ARID3a, was demonstrated good predictive accuracy. Discussion Our findings suggest that ABHD5-ARID3a have significant potential as predictive biomarkers for heart failure post-AMI which also provides a foundation for further exploration into the molecular mechanisms underlying the progression from AMI to HF.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jianping Shen
- Department of Cardiology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Ebrahimi R, Rahmani M, Fallahtafti P, Ghaseminejad-Raeini A, Azarboo A, Jalali A, Mehrani M. Predicting the no-reflow phenomenon in ST-elevation myocardial infarction patients undergoing primary percutaneous coronary intervention: a systematic review of clinical prediction models. Ther Adv Cardiovasc Dis 2024; 18:17539447241290438. [PMID: 39470690 PMCID: PMC11618966 DOI: 10.1177/17539447241290438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/04/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND The no-reflow (NRF) phenomenon is the "Achilles heel" of interventionists after performing percutaneous coronary intervention (PCI) in patients with ST-segment elevation myocardial infarction (STEMI). No definitive treatment has been proposed for NRF, and preventive strategies are central to improving care for patients who develop NRF. OBJECTIVES In this study, we aim to investigate the clinical prediction models developed to predict NRF in STEMI patients undergoing primary PCI. DESIGN Systematic review. DATA SOURCES AND METHODS Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were observed. Studies that developed clinical prediction modeling for NRF after primary PCI in STEMI patients were included. Data extraction was performed using the Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modeling Studies (CHARMS) checklist. The Prediction Model Risk of Bias Assessment Tool (PROBAST) tool was used for critical appraisal of the included studies. RESULTS The three most common predictors were age, total ischemic time, and preoperative thrombolysis in myocardial infarction flow grade. Most of the included studies internally validated their developed model via various methods: random split, bootstrapping, and cross-validation. Only three studies (18%) externally validated their model. Six studies (37%) reported a calibration plot with or without the Hosmer-Lemeshow test. The reported area under the curve ranged from 0.648 to 0.925. The most common biases were in the statistical domain. CONCLUSION Clinical prediction models aid in individualizing care for STEMI patients with NRF after primary PCI. Of the 16 included studies, we report four to have a low risk of bias and low concern with regard to our research question, which should undergo external validation with or without updating in future studies.
Collapse
Affiliation(s)
- Reza Ebrahimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Rahmani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Fallahtafti
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Alireza Azarboo
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Jalali
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mehrani
- Tehran Heart Center, Cardiovascular Disease Research Institute, Tehran University of Medical Sciences, Tehran 1419733141, Iran
| |
Collapse
|
5
|
Rowe PS, McCarthy EM, Yu AL, Stubbs JR. Correction of Vascular Calcification and Hyperphosphatemia in CKD Rats Treated with ASARM Peptide. KIDNEY360 2022; 3:1683-1698. [PMID: 36514737 PMCID: PMC9717652 DOI: 10.34067/kid.0002782022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/25/2022] [Indexed: 01/11/2023]
Abstract
Background Abnormalities in calcium, phosphorus, PTH, vitamin D metabolism, bone, and vascular calcification occur in chronic kidney disease mineral bone disorder (CKD-MBD). Calciphylaxis, involving painful, ulcerative skin lesions, is also a major problem associated with CKD-MBD. There are no quality medical interventions to address these clinical issues. Bone ASARM peptides are strong inhibitors of mineralization and induce hypophosphatemia by inhibiting phosphate uptake from the gut. We hypothesize treatment of CKD-MBD rats with ASARM peptides will reverse hyperphosphatemia, reduce soft-tissue calcification, and prevent calciphylaxis. Methods To test our hypothesis, we assessed the effects of synthetic ASARM peptide in rats that had undergone a subtotal 5/6th nephrectomy (56NEPHREX), a rodent model of CKD-MBD. All rats were fed a high phosphate diet (2% Pi) to worsen mineral metabolism defects. Changes in serum potassium, phosphate, BUN, creatinine, PTH, FGF23, and calcium were assessed in response to 28 days of ASARM peptide infusion. Also, changes in bone quality, soft-tissue calcification, and expression of gut Npt2b (Slc34a2) were studied following ASARM peptide treatment. Results Rats that had undergone 56NEPHREX treated with ASARM peptide showed major improvements in hyperphosphatemia, blood urea nitrogen (BUN), and bone quality compared with vehicle controls. Also, ASARM-infused 56NEPHREX rats displayed improved renal, brain, and cardiovascular calcification. Notably, ASARM peptide infusion prevented the genesis of subdermal medial blood vessel calcification and calciphylaxis-like lesions in 56NEPHREX rats compared with vehicle controls. Conclusions ASARM peptide infusion corrects hyperphosphatemia and improves vascular calcification, renal calcification, brain calcification, bone quality, renal function, and skin mineralization abnormalities in 56NEPHREX rats. These findings confirm our hypothesis and support the utility of ASARM peptide treatment in patients with CKD-MBD.
Collapse
Affiliation(s)
- Peter S. Rowe
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Ellen M. McCarthy
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Alan L. Yu
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Jason R. Stubbs
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
6
|
He Y, Dong Y, Zhang X, Ding Z, Song Y, Huang X, Chen S, Wang Z, Ni Y, Ding L. Lipid Droplet-Related PLIN2 in CD68 + Tumor-Associated Macrophage of Oral Squamous Cell Carcinoma: Implications for Cancer Prognosis and Immunotherapy. Front Oncol 2022; 12:824235. [PMID: 35372038 PMCID: PMC8967322 DOI: 10.3389/fonc.2022.824235] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/14/2022] [Indexed: 12/28/2022] Open
Abstract
Background PLIN2 (adipose differentiation-related protein) belongs to the perilipin family and is a marker of lipid droplets (LDs). Numerous types of tumor exhibit a high PLIN2 level, but its tumorigenic or tumor-suppressive role has been in debate. Recently, LDs serve as innate immune hubs and show antimicrobial capacity. We here aimed to investigate the heterogeneous functions of PLIN2 in the tumor microenvironment and immune regulation. Methods This retrospective study included 96 oral squamous cell carcinoma (OSCC) samples and analyzed the spatial distribution of PLIN2 by immunohistochemistry (IHC) and LD level by oil red O staining. A total of 21 serial sections were obtained to analyze the relationship between PLIN2 and immune cells by IHC and immunofluorescence (IF). Single-cell sequencing was used to analyze the cell locations of PLIN2. The values of diagnosis and prognosis of PLIN2 were also evaluated. Tumor Immune Estimation Resource (TIMER), cBioPortal databases, and IHC analysis were used to investigate the relationship between PLIN2 and OSCC immune microenvironment. Results PLIN2 was mainly expressed in tumor-infiltrating immunocytes (TIIs) of OSCC. Patients with high PLIN2 harbored more cytoplastic LDs. CD68+ tumor-associated macrophages (TAMs), instead of T cells and B cells, were found to be the main resource of PLIN2 in OSCC stroma and lung, pancreas, prostate, and testis. However, CD56+ NK cells also showed less extent of PLIN2 staining in OSCC. Moreover, patients with a high PLIN2 level in immune cells had a higher TNM stage and were susceptible to postoperative metastasis, but the escalated PLIN2 level in invasive tumor front independently predicted shorter metastasis-free survival. Furthermore, a high PLIN2 presentation in the microenvironment induced immune suppression which was featured as less infiltration of CD8+ T cells and more CD68+ TAMs and Foxp3+ Tregs, accompanied by more immune checkpoint molecules such as CSF1R, LGALS9, IL-10, CTLA-4, and TIGIT. Conclusion CD68+ TAM-derived PLIN2 might participate in regulating immune balance of OSCC patients, which provides new insight into immune checkpoint therapy.
Collapse
Affiliation(s)
- Yijia He
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuexin Dong
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xinwen Zhang
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhuang Ding
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuxian Song
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaofeng Huang
- Department of Oral Pathology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Sheng Chen
- Department of Oral Pathology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhiyong Wang
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yanhong Ni
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Liang Ding
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
7
|
Serum Perilipin 2 (PLIN2) Predicts Multiple Organ Dysfunction in Critically Ill Patients. Biomedicines 2021; 9:biomedicines9091210. [PMID: 34572396 PMCID: PMC8468514 DOI: 10.3390/biomedicines9091210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022] Open
Abstract
Perilipin 2 (PLIN2) is a lipid droplet protein with various metabolic functions. However, studies investigating PLIN2 in the context of inflammation, especially in systemic and acute inflammation, are lacking. Hence, we assessed the relevance of serum PLIN2 in critically ill patients. We measured serum PLIN2 serum in 259 critically ill patients (166 with sepsis) upon admission to a medical intensive care unit (ICU) compared to 12 healthy controls. A subset of 36 patients underwent computed tomography to quantify body composition. Compared to controls, serum PLIN2 concentrations were elevated in critically ill patients at ICU admission. Interestingly, PLIN2 independently indicated multiple organ dysfunction (MOD), defined as a SOFA score > 9 points, at ICU admission, and was also able to independently predict MOD after 48 h. Moreover, serum PLIN2 levels were associated with severe respiratory failure potentially reflecting a moribund state. However, PLIN2 was neither a predictor of ICU mortality nor did it reflect metabolic dysregulation. Conclusively, the first study assessing serum PLIN2 in critical illness proved that it may assist in risk stratification because it is capable of independently indicating MOD at admission and predicting MOD 48 h after PLIN2 measurement. Further evaluation regarding the underlying mechanisms is warranted.
Collapse
|