1
|
Tzolos E, Lassen ML, Pan T, Kwiecinski J, Cadet S, Dey D, Dweck MR, Newby DE, Berman D, Slomka P. Respiration-averaged CT versus standard CT attenuation map for correction of 18F-sodium fluoride uptake in coronary atherosclerotic lesions on hybrid PET/CT. J Nucl Cardiol 2022; 29:430-439. [PMID: 32617857 PMCID: PMC7775905 DOI: 10.1007/s12350-020-02245-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND To evaluate the impact of respiratory-averaged computed tomography attenuation correction (RACTAC) compared to standard single-phase computed tomography attenuation correction (CTAC) map, on the quantitative measures of coronary atherosclerotic lesions of 18F-sodium fluoride (18F-NaF) uptake in hybrid positron emission tomography and computed tomography (PET/CT). METHODS This study comprised 23 patients who underwent 18F-NaF coronary PET in a hybrid PET/CT system. All patients had a standard single-phase CTAC obtained during free-breathing and a 4D cine-CT scan. From the cine-CT acquisition, RACTAC maps were obtained by averaging all images acquired over 5 seconds. PET reconstructions using either CTAC or RACTAC were compared. The quantitative impact of employing RACTAC was assessed using maximum target-to-background (TBRMAX) and coronary microcalcification activity (CMA). Statistical differences were analyzed using reproducibility coefficients and Bland-Altman plots. RESULTS In 23 patients, we evaluated 34 coronary lesions using CTAC and RACTAC reconstructions. There was good agreement between CTAC and RACTAC for TBRMAX (median [Interquartile range]): CTAC = 1.65 [1.23 to 2.38], RACTAC = 1.63 [1.23 to 2.33], p = 0.55), with coefficient of reproducibility of 0.18, and CMA: CTAC = 0.10 [0 to 1.0], RACTAC = 0.15 [0 to 1.03], p = 0.55 with coefficient of reproducibility of 0.17 CONCLUSION: Respiratory-averaged and standard single-phase attenuation correction maps provide similar and reproducible methods of quantifying coronary 18F-NaF uptake on PET/CT.
Collapse
Affiliation(s)
- Evangelos Tzolos
- Department of Imaging (Division of Nuclear Medicine), Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Martin Lyngby Lassen
- Department of Imaging (Division of Nuclear Medicine), Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tinsu Pan
- Department of Imaging Physics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Jacek Kwiecinski
- Department of Imaging (Division of Nuclear Medicine), Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Interventional Cardiology and Angiology, Institute of Cardiology, Warsaw, Poland
| | - Sebastien Cadet
- Department of Imaging (Division of Nuclear Medicine), Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Damini Dey
- Department of Imaging (Division of Nuclear Medicine), Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Marc R Dweck
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - David E Newby
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Daniel Berman
- Department of Imaging (Division of Nuclear Medicine), Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Piotr Slomka
- Department of Imaging (Division of Nuclear Medicine), Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Artificial Intelligence in Medicine Program, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Ste A047N, Los Angeles, CA, 90048, USA.
| |
Collapse
|
2
|
Tzolos E, Kwiecinski J, Lassen ML, Cadet S, Adamson PD, Moss AJ, Joshi N, Williams MC, van Beek EJR, Dey D, Berman DS, Dweck MR, Newby DE, Slomka PJ. Observer repeatability and interscan reproducibility of 18F-sodium fluoride coronary microcalcification activity. J Nucl Cardiol 2022; 29:126-135. [PMID: 32529531 PMCID: PMC7728624 DOI: 10.1007/s12350-020-02221-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/28/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND We aimed to establish the observer repeatability and interscan reproducibility of coronary 18F-sodium-fluoride positron emission tomography (PET) uptake using a novel semi-automated approach, coronary microcalcification activity (CMA). METHODS Patients with multivessel coronary artery disease underwent repeated hybrid PET and computed tomography angiography (CTA) imaging (PET/CTA). CMA was defined as the integrated standardized uptake values (SUV) in the entire coronary tree exceeding 2 standard deviations above the background SUV. Coefficients of repeatability between the same observer (intraobserver repeatability), between 2 observers (interobserver repeatability) and coefficient of reproducibility between 2 scans (interscan reproducibility), were determined at vessel and patient level. RESULTS In 19 patients, CMA was assessed twice in 43 coronary vessels on two PET/CT scans performed 12 ± 5 days apart. There was excellent intraclass correlation for intraobserver and interobserver repeatability as well as interscan reproducibility (all ≥ 0.991). There was 100% intraobserver, interobserver and interscan agreement for the presence (CMA > 0) or absence (CMA = 0) of coronary18F-NaF uptake. Mean CMA was 3.12 ± 0.62 with coefficients of repeatability of ≤ 10% for all measures: intraobserver 0.24 and 0.22, interobserver 0.30 and 0.29 and interscan 0.33 and 0.32 at a per-vessel and per-patient level, respectively. CONCLUSIONS CMA is a repeatable and reproducible global measure of coronary atherosclerotic activity.
Collapse
Affiliation(s)
- Evangelos Tzolos
- Department of Imaging (Division of Nuclear Medicine), Medicine, and Biomedical Sciences, Artificial Intelligence in Medicine Program, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Ste A047N, Los Angeles, CA, 90048, USA
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Jacek Kwiecinski
- Department of Imaging (Division of Nuclear Medicine), Medicine, and Biomedical Sciences, Artificial Intelligence in Medicine Program, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Ste A047N, Los Angeles, CA, 90048, USA
- Department of Interventional Cardiology and Angiology, Institute of Cardiology, Warsaw, Poland
| | - Martin Lyngby Lassen
- Department of Imaging (Division of Nuclear Medicine), Medicine, and Biomedical Sciences, Artificial Intelligence in Medicine Program, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Ste A047N, Los Angeles, CA, 90048, USA
| | - Sebastien Cadet
- Department of Imaging (Division of Nuclear Medicine), Medicine, and Biomedical Sciences, Artificial Intelligence in Medicine Program, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Ste A047N, Los Angeles, CA, 90048, USA
| | - Philip D Adamson
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
| | - Alastair J Moss
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- BHF Cardiovascular Research Centre, University of Leicester, Leicester, UK
| | - Nikhil Joshi
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- BHF Cardiovascular Research Centre, University of Leicester, Leicester, UK
| | - Michelle C Williams
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Edwin J R van Beek
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Damini Dey
- Department of Imaging (Division of Nuclear Medicine), Medicine, and Biomedical Sciences, Artificial Intelligence in Medicine Program, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Ste A047N, Los Angeles, CA, 90048, USA
| | - Daniel S Berman
- Department of Imaging (Division of Nuclear Medicine), Medicine, and Biomedical Sciences, Artificial Intelligence in Medicine Program, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Ste A047N, Los Angeles, CA, 90048, USA
| | - Marc R Dweck
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - David E Newby
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- BHF Cardiovascular Research Centre, University of Leicester, Leicester, UK
| | - Piotr J Slomka
- Department of Imaging (Division of Nuclear Medicine), Medicine, and Biomedical Sciences, Artificial Intelligence in Medicine Program, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Ste A047N, Los Angeles, CA, 90048, USA.
| |
Collapse
|