1
|
师 轲, 喻 诗, 夏 冬, 郭 应, 杨 志. [Clincial Research Progress in Using Magnetic Resonance Imaging to Assess Myocardial Fibrosis in Hypertrophic Cardiomyopathy]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:1357-1363. [PMID: 39990836 PMCID: PMC11839347 DOI: 10.12182/20241160601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Indexed: 02/25/2025]
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common type of primary cardiomyopathy that causes sudden cardiac death in adolescents and athletes. With over 1 million HCM patients, China has the largest population of HCM patients in the world, and the total number of cases is increasing year on year. Myocardial fibrosis is the most important histopathological characterization in HCM and is regarded as the primary cause of malignant ventricular arrhythmia, cardiac remodeling, and heart failure. At present, cardiac magnetic resonance imaging (MRI) serves as the gold-standard imaging modality for noninvasive evaluation of myocardial fibrosis. Several techniques, such as late gadolinium enhancement and T1 mapping, are showing considerable promise for potential applications. These techniques have emerged as viable imaging approaches to the elucidation of HCM tissue characterization. They are also helpful in predicting the long-term prognosis of patients. Herein, we summarized recent advances in using cardiac MRI to assess myocardial fibrosis in HCM from four perspectives, including late gadolinium enhancement, T1 mapping, T1ρ mapping, and MRI-based radiomics and machine learning models.
Collapse
Affiliation(s)
- 轲 师
- 四川大学华西医院 放射科 (成都 610041)Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 诗琴 喻
- 四川大学华西医院 放射科 (成都 610041)Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 冬 夏
- 四川大学华西医院 放射科 (成都 610041)Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
- 中国科学院大学经济与管理学院 (北京 100190)School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, China
| | - 应坤 郭
- 四川大学华西医院 放射科 (成都 610041)Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 志刚 杨
- 四川大学华西医院 放射科 (成都 610041)Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Deng W, Wang Z, Jia Z, Liu F, Wu J, Yang J, An S, Yu Y, Han Y, Zhao R, Li X. Cardiac T1ρ Mapping Values Affected by Age and Sex in a Healthy Chinese Cohort. J Magn Reson Imaging 2024; 60:1617-1625. [PMID: 38168067 DOI: 10.1002/jmri.29196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND To facilitate the clinical use of cardiac T1ρ, it is important to understand the impact of age and sex on T1ρ values of the myocardium. PURPOSE To investigate the impact of age and gender on myocardial T1ρ values. STUDY TYPE Cross-sectional. POPULATION Two hundred ten healthy Han Chinese volunteers without cardiovascular risk factors (85 males, mean age 34.4 ± 12.5 years; 125 females, mean age 37.9 ± 14.8 years). FIELD STRENGTH/SEQUENCE 1.5 T; T1ρ-prepared steady-state free precession (T1ρ mapping) sequence. ASSESSMENT Basal, mid, and apical short-axis left ventricular T1ρ maps were acquired. T1ρ maps acquired with spin-lock frequencies of 5 and 400 Hz were subtracted to create a myocardial fibrosis index (mFI) map. T1ρ and mFI values across different age decades, sex, and slice locations were compared. STATISTICAL TESTS Shapiro-Wilk test, Student's t test, Mann-Whitney U test, linear regression analysis, one-way analysis of variance and intraclass correlation coefficient. SIGNIFICANCE P value <0.05. RESULTS Women had significantly higher T1ρ and mFI values than men (50.3 ± 2.0 msec vs. 47.7 ± 2.4 msec and 4.7 ± 1.0 msec vs. 4.3 ± 1.1 msec, respectively). Additionally, in males and females combined, there was a significant positive but weak correlation between T1ρ values and age (r = 0.27), while no correlation was observed between the mFI values and age (P = 0.969). DATA CONCLUSION We report potential reference values for cardiac T1ρ by sex, age distribution, and slice location in a Chinese population. T1ρ was significantly correlated with age and sex, while mFI was only associated with sex. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Wei Deng
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Zhen Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Zhuoran Jia
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Fang Liu
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jian Wu
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jinxiu Yang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Shutian An
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Yuchi Han
- Cardiovascular Division, Wexner Medical Center, College of Medicine, The Ohio State University Medical Center, Columbus, Ohio, USA
| | - Ren Zhao
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaohu Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| |
Collapse
|
3
|
Miao Q, Hua S, Gong Y, Lyu Z, Qian P, Liu C, Jin W, Hu P, Qi H. Free-breathing non-contrast T1ρ dispersion magnetic resonance imaging of myocardial interstitial fibrosis in comparison with extracellular volume fraction. J Cardiovasc Magn Reson 2024; 26:101093. [PMID: 39245148 PMCID: PMC11612770 DOI: 10.1016/j.jocmr.2024.101093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND Myocardial fibrosis is a common feature in various cardiac diseases. It causes adverse cardiac remodeling and is associated with poor clinical outcomes. Late gadolinium enhancement (LGE) and extracellular volume fraction (ECV) are the standard magnetic resonance imaging techniques for detecting focal and diffuse myocardial fibrosis. However, these contrast-enhanced techniques require the administration of gadolinium contrast agents, which is not applicable to patients with gadolinium contraindications. To eliminate the need for contrast agents, we developed and applied an endogenous free-breathing T1ρ dispersion imaging technique (FB-MultiMap) for diagnosing diffuse myocardial fibrosis in a cohort with suspected cardiomyopathies. METHODS The proposed FB-MultiMap technique, enabling T2, T1ρ, and their difference (myocardial fibrosis index [mFI]) quantification in a single scan was developed in phantoms and 15 healthy subjects. In the clinical study, 55 patients with suspected cardiomyopathies were imaged using FB-MultiMap, conventional native T1 mapping, LGE, and ECV imaging. The accuracy of the endogenous parameters for predicting increased ECV was evaluated using receiver operating characteristic curve analysis. In addition, the correlation of native T1, T1ρ, and mFI with ECV was, respectively, assessed using Pearson correlation coefficients. RESULTS FB-MultiMap showed a good agreement with conventional separate breath-hold mapping techniques in phantoms and healthy subjects. Considering all the patients, T1ρ was more accurate than mFI and native T1 for predicting increased ECV, with area under the curve (AUC) values of 0.91, 0.79, and 0.75, respectively, and showed a stronger correlation with ECV (correlation coefficient r: 0.72 vs 0.52 vs 0.40). In the subset of 47 patients with normal T2 values, the diagnostic performance of mFI was significantly strengthened (AUC = 0.90, r = 0.83), outperforming T1ρ and native T1. CONCLUSION The proposed free-breathing T1ρ dispersion imaging technique enabling simultaneous quantification of T2, T1ρ, and mFI in a single scan has shown great potential for diagnosing diffuse myocardial fibrosis in patients with complex cardiomyopathies without contrast agents.
Collapse
Affiliation(s)
- Qinfang Miao
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China; Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Sha Hua
- Department of Cardiovascular Medicine, Heart Failure Center, Ruijin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Gong
- Department of Cardiovascular Medicine, Heart Failure Center, Ruijin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenfeng Lyu
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China; Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Pengfang Qian
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China; Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Chun Liu
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China; Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Wei Jin
- Department of Cardiovascular Medicine, Heart Failure Center, Ruijin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Hu
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China; Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Haikun Qi
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China; Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
4
|
Han C, Xu H, Gao H, Liu F, Wu J, Liu Y, Cheng Y, Deng W, Yue X, Wu Z, Yu Y, Zhao R, Han Y, Li X. Effect of spin-lock frequency on quantitative myocardial T1ρ mapping. Insights Imaging 2024; 15:176. [PMID: 38992330 PMCID: PMC11239636 DOI: 10.1186/s13244-024-01762-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024] Open
Abstract
OBJECTIVES To use T1ρ mapping to assess myocardial fibrosis and to provide a reference for future clinical application, it is necessary to understand the factors influencing T1ρ values. This study explored the influence of different spin-locking frequencies on T1ρ values under a 3.0-T MR system. METHODS Fifty-seven healthy subjects were prospectively and consecutively included in this study, and T1ρ mapping was performed on them in 3 short-axis slices with three spin-lock frequencies at the amplitude of 300 Hz, 400 Hz, and 500 Hz, then nine T1ρ images were acquired per subject. Four T1ρ-weighted images were acquired using a spin-lock preparation pulse with varying durations (0 msec, 13.3 msec, 26.6 msec, 40 msec). T1ρ relaxation times were quantified for each slice and each myocardial segment. The results were analyzed using Student's t-test and one-way analysis of variance (ANOVA) methods. RESULTS Mean T1ρ relaxation times were 43.5 ± 2.8 msec at 300 Hz, 44.9 ± 3.6 msec at 400 Hz, and 46.2 ± 3.1 msec at 500 Hz, showing a significant progressive increase from low to high spin-lock frequency (300 Hz vs. 400 Hz, p = 0.046; 300 Hz vs. 500 Hz, p < 0.001; 400 Hz vs. 500 Hz, p = 0.043). In addition, The T1ρ values of females were significantly higher than those of males (300 Hz, p = 0.049; 400 Hz, p = 0.01; 500 Hz, p = 0.002). CONCLUSION In this prospective study, myocardial T1ρ values for the specific CMR setting are provided, and we found that gender and spin-lock frequency can affect the T1ρ values. CRITICAL RELEVANCE STATEMENT T1ρ mapping could supersede late gadolinium enhancement for detection of myocardial fibrosis. Establishing reference mean values that take key technical elements into account will facilitate interpretation of data in disease states. KEY POINTS This study established myocardial T1ρ reference values for different spin-lock frequencies. T1ρ values increased with spin-lock frequency, but numerical differences were minimal. Females had higher T1ρ values than males at all frequencies.
Collapse
Affiliation(s)
- Caiyun Han
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University; Research Center of Clinical Medical Imaging; Anhui Province Clinical Image Quality Control Center, Hefei, 230032, Anhui Province, China
| | - Huimin Xu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University; Research Center of Clinical Medical Imaging; Anhui Province Clinical Image Quality Control Center, Hefei, 230032, Anhui Province, China
| | - Hui Gao
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University; Research Center of Clinical Medical Imaging; Anhui Province Clinical Image Quality Control Center, Hefei, 230032, Anhui Province, China
| | - Fang Liu
- Department of Cardiology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, 230022, Hefei, China
| | - Jian Wu
- Department of Cardiology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, 230022, Hefei, China
| | - Yan Liu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University; Research Center of Clinical Medical Imaging; Anhui Province Clinical Image Quality Control Center, Hefei, 230032, Anhui Province, China
| | - Yong Cheng
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University; Research Center of Clinical Medical Imaging; Anhui Province Clinical Image Quality Control Center, Hefei, 230032, Anhui Province, China
| | - Wei Deng
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University; Research Center of Clinical Medical Imaging; Anhui Province Clinical Image Quality Control Center, Hefei, 230032, Anhui Province, China
| | | | | | - Yongqiang Yu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University; Research Center of Clinical Medical Imaging; Anhui Province Clinical Image Quality Control Center, Hefei, 230032, Anhui Province, China.
| | - Ren Zhao
- Department of Cardiology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, 230022, Hefei, China.
| | - Yuchi Han
- Cardiovascular Division, Wexner Medical Center, College of Medicine, the Ohio State University Medical Center, Columbus, Ohio, USA
| | - Xiaohu Li
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University; Research Center of Clinical Medical Imaging; Anhui Province Clinical Image Quality Control Center, Hefei, 230032, Anhui Province, China.
| |
Collapse
|
5
|
Wang L, Wang X, Jiang F, Cao Y, Liu S, Chen H, Yang J, Zhang X, Yu T, Xu H, Lin M, Wu Y, Zhang J. Adding quantitative T1rho-weighted imaging to conventional MRI improves specificity and sensitivity for differentiating malignant from benign breast lesions. Magn Reson Imaging 2024; 108:98-103. [PMID: 38331054 DOI: 10.1016/j.mri.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
OBJECTIVES To investigate the feasibility of T1rho-weighted imaging in differentiating malignant from benign breast lesions and to explore the additional value of T1rho to conventional MRI. MATERIALS AND METHODS We prospectively enrolled consecutive women with breast lesions who underwent preoperative T1rho-weighted imaging, diffusion-weighted imaging, and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) between November 2021 and July 2023. The T1rho, apparent diffusion coefficient (ADC), and semi-quantitative parameters from DCE-MRI were obtained and compared between benign and malignant groups. The diagnostic performance was analyzed and compared using receiver operating characteristic (ROC) curves and the Delong Test. RESULTS This study included 113 patients (74 malignant and 39 benign lesions). The mean T1rho value in the benign group (92.61 ± 22.10 ms) was significantly higher than that in the malignant group (72.18 ± 16.37 ms) (P < 0.001). The ADC value and time to peak (TTP) value in the malignant group (1.13 ± 0.45 and 269.06 ± 106.01, respectively) were lower than those in the benign group (1.57 ± 0.45 and 388.30 ± 81.13, respectively) (all P < 0.001). T1rho combined with ADC and TTP showed good diagnostic performance with an area under the curve (AUC) of 0.896, a sensitivity of 81.0%, and a specificity of 87.1%. The specificity and sensitivity of the combination of T1rho, ADC, and TTP were significantly higher than those of the combination of ADC and TTP (87.1% vs. 84.6%, P < 0.005; 81.0% vs. 77.0%, P < 0.001). CONCLUSION T1rho-weighted imaging was a feasible MRI sequence for differentiating malignant from benign breast lesions. The combination of T1rho, ADC and TTP could achieve a favorable diagnostic performance with improved specificity and sensitivity, T1rho could serve as a supplementary approach to conventional MRI.
Collapse
Affiliation(s)
- Lu Wang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing 400030, China
| | - Xiaoxia Wang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing 400030, China
| | - Fujie Jiang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing 400030, China
| | - Ying Cao
- School of Medicine, Chongqing University, Chongqing 400030, China
| | - Shuling Liu
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing 400030, China
| | - Huifang Chen
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing 400030, China
| | - Jing Yang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing 400030, China
| | | | - Tao Yu
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing 400030, China
| | - Hanshan Xu
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing 400030, China
| | - Meng Lin
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing 400030, China
| | - Yongzhong Wu
- Radiation Oncology Center, Chongqing University, Chongqing 400030, China
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing 400030, China.
| |
Collapse
|
6
|
Shu H, Xu H, Pan Z, Liu Y, Deng W, Zhao R, Sun Y, Wang Z, Yang J, Gao H, Yao K, Zheng J, Yu Y, Li X. Early detection of myocardial involvement by non-contrast T1ρ mapping of cardiac magnetic resonance in type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2024; 15:1335899. [PMID: 38510696 PMCID: PMC10952821 DOI: 10.3389/fendo.2024.1335899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/07/2024] [Indexed: 03/22/2024] Open
Abstract
Objective This study aims to determine the effectiveness of T1ρ in detecting myocardial fibrosis in type 2 diabetes mellitus (T2DM) patients by comparing with native T1 and extracellular volume (ECV) fraction. Methods T2DM patients (n = 35) and healthy controls (n = 30) underwent cardiac magnetic resonance. ECV, T1ρ, native T1, and global longitudinal strain (GLS) values were assessed. Diagnostic performance was analyzed using receiver operating curves. Results The global ECV and T1ρ of T2DM group (ECV = 32.1 ± 3.2%, T1ρ = 51.6 ± 3.8 msec) were significantly higher than those of controls (ECV = 26.2 ± 1.6%, T1ρ = 46.8 ± 2.0 msec) (all P < 0.001), whether there was no significant difference in native T1 between T2DM and controls (P = 0.264). The GLS decreased significantly in T2DM patients compared with controls (-16.5 ± 2.4% vs. -18.3 ± 2.6%, P = 0.015). The T1ρ and native T1 were associated with ECV (Pearson's r = 0.50 and 0.25, respectively, both P < 0.001); the native T1, T1ρ, and ECV were associated with hemoglobin A1c (Pearson's r = 0.41, 0.52, and 0.61, respectively, all P < 0.05); and the ECV was associated with diabetes duration (Pearson's r = 0.41, P = 0.016). The AUC of ECV, T1ρ, GLS, and native T1 were 0.869, 0.810, 0.659, and 0.524, respectively. Conclusion In T2DM patients, T1ρ may be a new non-contrast cardiac magnetic resonance technique for identifying myocardial diffuse fibrosis, and T1ρ may be more sensitive than native T1 in the detection of myocardial diffuse fibrosis.
Collapse
Affiliation(s)
- Hongmin Shu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Huimin Xu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Zixiang Pan
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Yan Liu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Wei Deng
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Ren Zhao
- Department of Cardiology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yan Sun
- Department of Geriatric Endocrinology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhen Wang
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Jinxiu Yang
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Hui Gao
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Kaixuan Yao
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Jie Zheng
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Yongqiang Yu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Xiaohu Li
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| |
Collapse
|
7
|
Normal Values of Magnetic Resonance T
1
ρ
Relaxation Times in the Adult Heart at 1.5 T
MRI. J Magn Reson Imaging 2022. [DOI: 10.1002/jmri.28506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/27/2022] Open
|