1
|
Nagasawa N, Nakamura S, Ota H, Ogawa R, Nakashima H, Hatori N, Wang Y, Kurita T, Dohi K, Sakuma H, Kitagawa K. Relationship between microvascular status and diagnostic performance of stress dynamic CT perfusion imaging. Eur Radiol 2024:10.1007/s00330-024-11136-1. [PMID: 39419862 DOI: 10.1007/s00330-024-11136-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/22/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVES This study aimed to investigate the relationship between microvascular status in the non-ischemic myocardium and the diagnostic performance of stress dynamic CT perfusion imaging (CTP) in detecting hemodynamically significant stenosis. MATERIALS AND METHODS This study included 157 patients who underwent coronary computed tomography angiography (CTA), CTP, and invasive coronary angiography (ICA), including fractional flow reserve (FFR). Hemodynamically significant stenosis was defined by FFR and ICA. A relative myocardial blood flow (MBF) for each myocardial segment was normalized to the highest MBF (remote MBF) among 16 segments. RESULTS The receiver operating characteristic curve analysis for detecting hemodynamically significant stenosis at the vessel level indicated that patients with lower, intermediate, and higher remote MBF had areas under the curve (AUC) of 0.66, 0.70, and 0.80, respectively, for absolute MBF and AUCs of 0.63, 0.70, and 0.83, respectively, for relative MBF. The optimal cut-off values for absolute MBF were proportional to the levels of remote MBFs, while the ones for relative MBF were more consistent across lower to higher remote MBFs. For the patients with high remote MBF, the relative MBF demonstrated a sensitivity of 69%, specificity of 88%, and accuracy of 85% in detecting hemodynamically significant stenosis. CONCLUSION The microvascular status in the non-ischemic myocardium influenced the diagnostic performance of dynamic CTP and threshold values of absolute MBFs, suggesting the potential preference for relative MBF over absolute MBF in clinical settings. Dynamic CTP's quantification of MBF offers the benefit of indicating reliability in ischemia detection relative to microvascular status. KEY POINTS Question The relationship between microvascular status and diagnostic performance of dynamic CTP imaging has not been fully investigated. Findings The diagnostic performance of dynamic CTP and threshold values of absolute MBF were impacted by microvascular status. Clinical relevance The differences in diagnostic accuracy of dynamic CTP related to varying remote MBF values necessitate a personalized evaluation of myocardial perfusion in dynamic CTP images.
Collapse
Affiliation(s)
- Naoki Nagasawa
- Department of Radiology, Mie University Hospital, Tsu, Japan
- Department of Radiological Technology, Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Japan
| | - Satoshi Nakamura
- Department of Advanced Diagnostic Imaging, Mie University Graduate School of Medicine, Tsu, Japan.
| | - Hideki Ota
- Department of Diagnostic Radiology, Tohoku University Hospital, Sendai, Japan
| | - Ryo Ogawa
- Department of Radiology, Ehime University Graduate School of Medicine, Matsuyama, Japan
| | - Hitoshi Nakashima
- Department of Cardiovascular Medicine, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan
| | - Naoki Hatori
- Department of Cardiology, National Hospital Organization Takasaki General Medical Center, Takasaki, Japan
| | - Yining Wang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tairo Kurita
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kaoru Dohi
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hajime Sakuma
- Department of Radiology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kakuya Kitagawa
- Department of Advanced Diagnostic Imaging, Mie University Graduate School of Medicine, Tsu, Japan
- Regional Co-creation Deployment Center, Mie Regional Plan Co-creation Organization, Tsu, Japan
| |
Collapse
|
2
|
Scala A, Marchini F, Meossi S, Zanarelli L, Sanguettoli F, Frascaro F, Bianchi N, Cocco M, Erriquez A, Tonet E, Campo G, Pavasini R. Future of invasive and non-invasive hemodynamic assessment for coronary artery disease management. Minerva Cardiol Angiol 2024; 72:385-404. [PMID: 38934267 DOI: 10.23736/s2724-5683.23.06461-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Coronary artery disease represents a global health challenge. Accurate diagnosis and evaluation of hemodynamic parameters are crucial for optimizing patient management and outcomes. Nowadays a wide range of both non-invasive and invasive methods are available to assess the hemodynamic impact of both epicardial coronary stenosis and vasomotor disorders. In fact, over the years, important developments have reshaped the nature of both invasive and non-invasive diagnostic techniques, and the future holds promises for further innovation and integration. Non-invasive techniques have progressively evolved and currently a broad spectrum of methods are available, from cardiac magnetic resonance imaging with pharmacological stress and coronary computed tomography (CT) to the newer application of FFR-CT and perfusion CT. Invasive methods, on the contrary, have developed to a full-physiology approach, able not only to identify functionally significant lesions but also to evaluate microcirculation and vasospastic disease. The aim of this review is to summarize the current state-of-the-art of invasive and non-invasive hemodynamic assessment for CAD management.
Collapse
Affiliation(s)
- Antonella Scala
- Cardiology Unit, Azienda Ospedaliero Universitaria di Ferrara, Ferrara, Italy
| | - Federico Marchini
- Cardiology Unit, Azienda Ospedaliero Universitaria di Ferrara, Ferrara, Italy
| | - Sofia Meossi
- Cardiology Unit, Azienda Ospedaliero Universitaria di Ferrara, Ferrara, Italy
| | - Luca Zanarelli
- Cardiology Unit, Azienda Ospedaliero Universitaria di Ferrara, Ferrara, Italy
| | | | - Federica Frascaro
- Cardiology Unit, Azienda Ospedaliero Universitaria di Ferrara, Ferrara, Italy
| | - Nicola Bianchi
- Cardiology Unit, Azienda Ospedaliero Universitaria di Ferrara, Ferrara, Italy
| | - Marta Cocco
- Cardiology Unit, Azienda Ospedaliero Universitaria di Ferrara, Ferrara, Italy
| | - Andrea Erriquez
- Cardiology Unit, Azienda Ospedaliero Universitaria di Ferrara, Ferrara, Italy
| | - Elisabetta Tonet
- Cardiology Unit, Azienda Ospedaliero Universitaria di Ferrara, Ferrara, Italy
| | - Gianluca Campo
- Cardiology Unit, Azienda Ospedaliero Universitaria di Ferrara, Ferrara, Italy -
| | - Rita Pavasini
- Cardiology Unit, Azienda Ospedaliero Universitaria di Ferrara, Ferrara, Italy
| |
Collapse
|
3
|
One-stop patient-specific myocardial blood flow quantification technique based on allometric scaling law. J Biomech 2023; 151:111513. [PMID: 36868983 DOI: 10.1016/j.jbiomech.2023.111513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/23/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
Establishing a patient-specific and non-invasive technique to derive blood flow as well as coronary structural information from one single cardiac CT imaging modality. 336 patients with chest pain or ST segment depression on electrocardiogram were retrospectively enrolled. All patients underwent adenosine-stressed dynamic CT myocardial perfusion imaging (CT-MPI) and coronary computed tomography angiography (CCTA) in sequence. Relationship between myocardial mass (M) and blood flow (Q), defined as log(Q) = b · log(M) + log(Q0), was explored based on the general allometric scaling law. We used 267 patients to obtain the regression results and found strong linear relationship between M (gram) and Q (mL/min) (b = 0.786, log(Q0) = 0.546, r = 0.704; p < 0.001). We Also found this correlation was applicable for patients with either normal or abnormal myocardial perfusion (p < 0.001). Datasets from the other 69 patients were used to validate this M-Q correlation and found the patient-specific blood flow could be accurately estimated from CCTA compared to that measured from CT-MPI (146.480 ± 39.607 vs 137.967 ± 36.227, r = 0.816, and 146.480 ± 39.607 vs 137.967 ± 36.227, r = 0.817, for the left ventricle region and LAD-subtended region, respectively, all unit in mL/min). In conclusion, we established a technique to provide general and patient-specific myocardial mass-blood flow correlation obeyed to allometric scaling law. Blood flow information could be directly derived from structural information acquired from CCTA.
Collapse
|
4
|
Reiss S, Wäscher K, Caglar Özen A, Lottner T, Timo Heidt, von Zur Mühlen C, Bock M. Quantifying myocardial perfusion during MR-guided interventions without exogenous contrast agents: intra-arterial spin labeling. Z Med Phys 2023:S0939-3889(23)00002-8. [PMID: 36717310 DOI: 10.1016/j.zemedi.2023.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/30/2023]
Abstract
PURPOSE To test intra-arterial spin labeling (iASL) using active guiding catheters for myocardial perfusion measurements during magnetic resonance (MR)-guided interventions in a pig study. METHODS In this work, a single-loop radiofrequency (RF) coil at the tip of a 6F active coronary catheter was used as a transmit coil for local spin labeling. The transmit magnetic RF field (B1) of the coil and the labeling efficiency were determined, and iASL was tested in two pigs after the catheter was engaged in the aortic root, the ostium of the left coronary artery (LCA) under MR-guidance. The iASL effect was assessed by the signal difference between spin-labeling On and control (spin-labeling OFF) images, and in a cross-correlation between ON/Off states of spin-labeling a binary labeling paradigm. In addition, quantitative myocardial perfusion was calculated from the iASL experiments. RESULTS The maximum B1 in the vicinity of the catheter coil was 2.1 µT. A strong local labeling effect with a labeling efficiency of 0.45 was achieved with iASL both in vitro and in vivo. In both pigs, the proximal myocardial segments supplied by the LCA showed significant labelling effect up to distances of 60 mm from the aortic root with a relative signal difference of (3.14 ± 2.89)% in the first and (3.50 ± 1.25)% in the second animal. The mean correlation coefficients were R = 0.63 ± 0.22 and 0.42 ± 0.16, respectively. The corresponding computed myocardial perfusion values in this region of the myocardium were similar to those obtained with contrast perfusion methods ((1.2 ± 1.1) mL/min/g and (0.8 ± 0.6) mL/min/g). CONCLUSION The proposed iASL method demonstrates the feasibility of selective myocardial perfusion measurements during MR-guided coronary interventions, which with further technical improvements may provide an alternative to exogenous contrast-based perfusion. Due to the invasive nature of the iASL method, it can potentially be used in concert with MRI-guided coronary angioplasty.
Collapse
Affiliation(s)
- Simon Reiss
- Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Kevin Wäscher
- Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ali Caglar Özen
- Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Lottner
- Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Timo Heidt
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Constantin von Zur Mühlen
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Bock
- Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Canan A, Barbosa MF, Nomura CH, Abbara S, Kay FU. Cardiac CT Perfusion Imaging. CURRENT RADIOLOGY REPORTS 2022. [DOI: 10.1007/s40134-022-00406-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Michallek F, Nakamura S, Kurita T, Ota H, Nishimiya K, Ogawa R, Shizuka T, Nakashima H, Wang Y, Ito T, Sakuma H, Dewey M, Kitagawa K. Fractal Analysis of Dynamic Stress CT-Perfusion Imaging for Detection of Hemodynamically Relevant Coronary Artery Disease. JACC Cardiovasc Imaging 2022; 15:1591-1601. [PMID: 36075619 DOI: 10.1016/j.jcmg.2022.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Combined computed tomography-derived myocardial blood flow (CTP-MBF) and computed tomography angiography (CTA) has shown good diagnostic performance for detection of coronary artery disease (CAD). However, fractal analysis might provide additional insight into ischemia pathophysiology by characterizing multiscale perfusion patterns and, therefore, may be useful in diagnosing hemodynamically significant CAD. OBJECTIVES The purpose of this study was to investigate, in a multicenter setting, whether fractal analysis of perfusion improves detection of hemodynamically relevant CAD over myocardial blood flow quantification (CTP-MBF) using dynamic, 4-dimensional, dynamic stress myocardial computed tomography perfusion (CTP) imaging. METHODS In total, 7 centers participating in the prospective AMPLIFiED (Assessment of Myocardial Perfusion Linked to Infarction and Fibrosis Explored with Dual-source CT) study acquired CTP and CTA data in patients with suspected or known CAD. Hemodynamically relevant CAD was defined as ≥90% stenosis on invasive coronary angiography or fractional flow reserve <0.80. Both fractal analysis and CTP-MBF quantification were performed on CTP images and were combined with CTA results. RESULTS This study population included 127 participants, among them 61 patients, or 79 vessels, with CAD as per invasive reference standard. Compared with the combination of CTP-MBF and CTA, combined fractal analysis and CTA improved sensitivity on the per-patient level from 84% (95% CI: 72%-92%) to 95% (95% CI: 86%-99%; P = 0.01) and specificity from 70% (95% CI: 57%-82%) to 89% (95% CI: 78%-96%; P = 0.02). The area under the receiver-operating characteristic curve improved from 0.83 (95% CI: 0.75-0.90) to 0.92 (95% CI: 0.86-0.98; P = 0.01). CONCLUSIONS Fractal analysis constitutes a quantitative and pathophysiologically meaningful approach to myocardial perfusion analysis using dynamic stress CTP, which improved diagnostic performance over CTP-MBF when combined with anatomical information from CTA.
Collapse
Affiliation(s)
- Florian Michallek
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Radiology, Berlin, Germany.
| | - Satoshi Nakamura
- Department of Radiology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Tairo Kurita
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hideki Ota
- Department of Advanced MRI Collaborative Research, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kensuke Nishimiya
- Department of Cardiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryo Ogawa
- Saiseikai Matsuyama Hospital, Matsuyama, Japan
| | | | - Hitoshi Nakashima
- National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan
| | - Yining Wang
- Peking Union Medical College Hospital, Beijing, China
| | - Tatsuro Ito
- Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hajime Sakuma
- Department of Radiology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Marc Dewey
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Radiology, Berlin, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Kakuya Kitagawa
- Department of Advanced Diagnostic Imaging, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
7
|
Michallek F, Nakamura S, Ota H, Ogawa R, Shizuka T, Nakashima H, Wang YN, Ito T, Sakuma H, Dewey M, Kitagawa K. Fractal analysis of 4D dynamic myocardial stress-CT perfusion imaging differentiates micro- and macrovascular ischemia in a multi-center proof-of-concept study. Sci Rep 2022; 12:5085. [PMID: 35332236 PMCID: PMC8948301 DOI: 10.1038/s41598-022-09144-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/17/2022] [Indexed: 12/30/2022] Open
Abstract
Fractal analysis of dynamic, four-dimensional computed tomography myocardial perfusion (4D-CTP) imaging might have potential for noninvasive differentiation of microvascular ischemia and macrovascular coronary artery disease (CAD) using fractal dimension (FD) as quantitative parameter for perfusion complexity. This multi-center proof-of-concept study included 30 rigorously characterized patients from the AMPLIFiED trial with nonoverlapping and confirmed microvascular ischemia (nmicro = 10), macrovascular CAD (nmacro = 10), or normal myocardial perfusion (nnormal = 10) with invasive coronary angiography and fractional flow reserve (FFR) measurements as reference standard. Perfusion complexity was comparatively high in normal perfusion (FDnormal = 4.49, interquartile range [IQR]:4.46-4.53), moderately reduced in microvascular ischemia (FDmicro = 4.37, IQR:4.36-4.37), and strongly reduced in macrovascular CAD (FDmacro = 4.26, IQR:4.24-4.27), which allowed to differentiate both ischemia types, p < 0.001. Fractal analysis agreed excellently with perfusion state (κ = 0.96, AUC = 0.98), whereas myocardial blood flow (MBF) showed moderate agreement (κ = 0.77, AUC = 0.78). For detecting CAD patients, fractal analysis outperformed MBF estimation with sensitivity and specificity of 100% and 85% versus 100% and 25%, p = 0.02. In conclusion, fractal analysis of 4D-CTP allows to differentiate microvascular from macrovascular ischemia and improves detection of hemodynamically significant CAD in comparison to MBF estimation.
Collapse
Affiliation(s)
- Florian Michallek
- grid.6363.00000 0001 2218 4662Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Satoshi Nakamura
- grid.260026.00000 0004 0372 555XDepartment of Radiology, Mie University Graduate School of Medicine, Mie, Japan
| | - Hideki Ota
- grid.69566.3a0000 0001 2248 6943Department of Advanced MRI Collaborative Research, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Ryo Ogawa
- grid.459909.80000 0004 0640 6159Saiseikai Matsuyama Hospital, Matsuyama, Japan
| | | | - Hitoshi Nakashima
- grid.416799.4National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan
| | - Yi-Ning Wang
- grid.413106.10000 0000 9889 6335Peking Union Medical College Hospital, Beijing, China
| | - Tatsuro Ito
- grid.31432.370000 0001 1092 3077Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hajime Sakuma
- grid.260026.00000 0004 0372 555XDepartment of Radiology, Mie University Graduate School of Medicine, Mie, Japan
| | - Marc Dewey
- grid.6363.00000 0001 2218 4662Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany ,grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Kakuya Kitagawa
- grid.260026.00000 0004 0372 555XDepartment of Advanced Diagnostic Imaging, Mie University Graduate School of Medicine, Mie, Japan
| |
Collapse
|
8
|
Geng W, Gao Y, Zhao N, Yan H, Ma W, An Y, Jia L, Lu B. Dose Reduction of Dynamic Computed Tomography Myocardial Perfusion Imaging by Tube Voltage Change: Investigation in a Swine Model. Front Cardiovasc Med 2022; 9:823974. [PMID: 35310988 PMCID: PMC8927626 DOI: 10.3389/fcvm.2022.823974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/15/2022] [Indexed: 11/18/2022] Open
Abstract
Background It is unclear whether tube voltage influences the measurement of perfusion parameters. The present study sought to evaluate the influence of tube voltage change on myocardial blood flow (MBF) measurements in dynamic computed tomography myocardial perfusion imaging (CTP). Methods and Results Seven swine [mean weight 55.8 kg ± 1.6 (standard deviation)] underwent rest and stress dynamic CTP with tube voltages of 100 and 70 kV. The image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), radiation dose and MBF value were compared. The 70 kV images had higher CT attenuation and higher image noise (27.9 ± 2.4 vs. 21.5 ± 1.9, P < 0.001) than the 100 kV images, resulting in a higher SNR (20.5 ± 1.6 vs. 15.6 ± 1.8, P < 0.001) and CNR (17.6 ± 1.5 vs. 12.4 ± 1.7, P < 0.001). Compared to the use of conventional 100 kV, 70 kV yielded an approximately 64.6% radiation dose reduction while generating comparable MBF values, both at rest (88.3 ± 14.9 ml/100 g/min vs. 85.6 ± 17.4 ml/100 g/min, P = 0.21) and stress (101.4 ± 21.5 ml/100 g/min vs. 99.6 ± 21.4 ml/100 g/min, P = 0.58) states. Conclusion Dynamic CTP using 70 kV instead of 100 kV does not substantially influence the MBF value but significantly reduces the radiation dose. Additional research is required to investigate the clinical significance of this change.
Collapse
Affiliation(s)
- Wenlei Geng
- Department of Radiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yang Gao
- Department of Radiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Na Zhao
- Department of Radiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Hankun Yan
- Department of Radiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Wei Ma
- Department of Radiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yunqiang An
- Department of Radiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Liujun Jia
- Animal Experimental Center, Beijing Key Laboratory of Pre-Clinical Research and Evaluation for Cardiovascular Implant Materials, State Key Laboratory of Cardiovascular Disease, Beijing, China
| | - Bin Lu
- Department of Radiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- *Correspondence: Bin Lu,
| |
Collapse
|
9
|
Weyers JJ, Ramanan V, Javed A, Barry J, Larsen M, Nayak K, Wright GA, Ghugre NR. Myocardial blood flow is the dominant factor influencing cardiac magnetic resonance adenosine stress T2. NMR IN BIOMEDICINE 2022; 35:e4643. [PMID: 34791720 PMCID: PMC8828684 DOI: 10.1002/nbm.4643] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/24/2021] [Accepted: 10/10/2021] [Indexed: 06/02/2023]
Abstract
Stress imaging identifies ischemic myocardium by comparing hemodynamics during rest and hyperemic stress. Hyperemia affects multiple hemodynamic parameters in myocardium, including myocardial blood flow (MBF), myocardial blood volume (MBV), and venous blood oxygen levels (PvO2 ). Cardiac T2 is sensitive to these changes and therefore is a promising non-contrast option for stress imaging; however, the impact of individual hemodynamic factors on T2 is poorly understood, making the connection from altered T2 to changes within the tissue difficult. To better understand this interplay, we performed T2 mapping and measured various hemodynamic factors independently in healthy pigs at multiple levels of hyperemic stress, induced by different doses of adenosine (0.14-0.56 mg/kg/min). T1 mapping quantified changes in MBV. MBF was assessed with microspheres, and oxygen consumption was determined by the rate pressure product (RPP). Simulations were also run to better characterize individual contributions to T2. Myocardial T2, MBF, oxygen consumption, and MBV all changed to varying extents between each level of adenosine stress (T2 = 37.6-41.8 ms; MBF = 0.48-1.32 mL/min/g; RPP = 6507-4001 bmp*mmHg; maximum percent change in MBV = 1.31%). Multivariable analyses revealed MBF as the dominant influence on T2 during hyperemia (significant β-values >7). Myocardial oxygen consumption had almost no effect on T2 (β-values <0.002); since PvO2 is influenced by both oxygen consumption and MBF, PvO2 changes detected by T2 during adenosine stress can be attributed to MBF. Simulations varying PvO2 and MBV confirmed that PvO2 had the strongest influence on T2, but MBV became important at high PvO2 . Together, these data suggest a model where, during adenosine stress, myocardial T2 responds predominantly to changes in MBF, but at high hyperemia MBV is also influential. Thus, changes in adenosine stress T2 can now be interpreted in terms of the physiological changes that led to it, enabling T2 mapping to become a viable non-contrast option to detect ischemic myocardial tissue.
Collapse
Affiliation(s)
- Jill J Weyers
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Venkat Ramanan
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Ahsan Javed
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California
| | - Jennifer Barry
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Melissa Larsen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Krishna Nayak
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California
| | - Graham A Wright
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Schulich Heart Research Program, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Nilesh R Ghugre
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Schulich Heart Research Program, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Kitagawa K, Nakamura S, Ota H, Ogawa R, Shizuka T, Kubo T, Yi Y, Ito T, Nagasawa N, Omori T, Nakamori S, Kurita T, Sugisawa J, Hatori N, Nakashima H, Wang Y, Kido T, Watanabe K, Matsumoto Y, Dohi K, Sakuma H. Diagnostic Performance of Dynamic Myocardial Perfusion Imaging Using Dual-Source Computed Tomography. J Am Coll Cardiol 2021; 78:1937-1949. [PMID: 34763770 DOI: 10.1016/j.jacc.2021.08.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 08/05/2021] [Accepted: 08/25/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Single-center studies indicated a high diagnostic accuracy of dynamic computed tomography perfusion (CTP) imaging in the diagnosis of coronary artery disease (CAD). OBJECTIVES This prospective multicenter study determined the diagnostic performance of combined coronary computed tomography angiography (CTA) and CTP for detecting hemodynamically significant CAD defined by invasive coronary angiography (ICA) with fractional flow reserve (FFR). METHODS Seven centers enrolled 174 patients with suspected or known CAD who were clinically referred for ICA. CTA and dynamic CTP were performed using dual-source CT before ICA. FFR was done as part of ICA in the case of 26% to 90% coronary diameter stenosis. Hemodynamically significant stenosis was defined as FFR of <0.8 or >90% stenosis on ICA. RESULTS The study protocol was completed in 157 participants, and hemodynamically significant stenosis was detected in 76 of 157 patients (48%) and 112 of 442 vessels (25%). According to receiver-operating characteristic curve analysis, adding dynamic CTP to CTA significantly increased the area under the curve from 0.65 (95% CI: 0.57-0.72) to 0.74 (95% CI: 0.66-0.81; P = 0.011) on the patient level, with decreased sensitivity (93% vs 72%; P < 0.001), improved specificity (36% vs 75%; P < 0.001), and improved overall accuracy (64% vs 74%; P < 0.001). CONCLUSIONS In this prospective multicenter study on dynamic CTP, the combination of anatomic assessment with coronary CTA and functional evaluation with dynamic CTP allowed more accurate identification of hemodynamically significant CAD compared with CTA alone. However, the clinical significance of this approach needs to be further investigated, including its usefulness in improving prognosis. (Assessment of Myocardial Perfusion Linked to Infarction and Fibrosis Explored With Dual-Source CT [AMPLIFiED]; UMIN000016353).
Collapse
Affiliation(s)
- Kakuya Kitagawa
- Department of Advanced Diagnostic Imaging, Mie University Graduate School of Medicine, Tsu, Japan.
| | | | - Hideki Ota
- Department of Diagnostic Radiology, Tohoku University Hospital, Sendai, Japan
| | - Ryo Ogawa
- Department of Radiology, Ehime University Graduate School of Medicine, Matsuyama, Japan
| | - Takehito Shizuka
- Department of Cardiology, National Hospital Organization Takasaki General Medical Center, Takasaki, Japan
| | - Tadahiro Kubo
- Department of Cardiovascular Medicine, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan
| | - Yan Yi
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tatsuro Ito
- Department of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naoki Nagasawa
- Department of Radiology, Mie University Hospital, Tsu, Japan
| | - Taku Omori
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Shiro Nakamori
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Tairo Kurita
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Jun Sugisawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoki Hatori
- Department of Cardiology, National Hospital Organization Takasaki General Medical Center, Takasaki, Japan
| | - Hitoshi Nakashima
- Department of Cardiovascular Medicine, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan
| | - Yining Wang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Teruhito Kido
- Department of Radiology, Ehime University Graduate School of Medicine, Matsuyama, Japan
| | - Kouki Watanabe
- Division of Cardiology, Saiseikai Matsuyama Hospital, Matsuyama, Japan
| | - Yasuharu Matsumoto
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Cardiovascular Medicine, Shioya Hospital, International University of Health and Welfare, Yaita, Japan
| | - Kaoru Dohi
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hajime Sakuma
- Department of Radiology, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
11
|
van Assen M, Duguay TM, Litwin SE, Bayer RR, Nance JW, Suranyi P, De Cecco CN, Varga-Szemes A, Jacobs BE, Johnson AA, Tesche C, Schoepf UJ. The Feasibility, Tolerability, Safety, and Accuracy of Low-radiation Dynamic Computed Tomography Myocardial Perfusion Imaging With Regadenoson Compared With Single-photon Emission Computed Tomography. J Thorac Imaging 2021; 36:345-352. [PMID: 32205821 DOI: 10.1097/rti.0000000000000502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Computed tomography (CT) myocardial perfusion imaging (CT-MPI) with hyperemia induced by regadenoson was evaluated for the detection of myocardial ischemia, safety, relative radiation exposure, and patient experience compared with single-photon emission computed tomography (SPECT) imaging. MATERIALS AND METHODS Twenty-four patients (66.5 y, 29% male) who had undergone clinically indicated SPECT imaging and provided written informed consent were included in this phase II, IRB-approved, and FDA-approved clinical trial. All patients underwent coronary CT angiography and CT-MPI with hyperemia induced by the intravenous administration of regadenoson (0.4 mg/5 mL). Patient experience and findings on CT-MPI images were compared to SPECT imaging. RESULTS Patient experience and safety were similar between CT-MPI and SPECT procedures and no serious adverse events due to the administration of regadenoson occurred. SPECT resulted in a higher number of mild adverse events than CT-MPI. Patient radiation exposure was similar during the combined coronary computed tomography angiography and CT-MPI (4.4 [2.7] mSv) and SPECT imaging (5.6 [1.7] mSv) (P-value 0.401) procedures. Using SPECT as the reference standard, CT-MPI analysis showed a sensitivity of 58.3% (95% confidence interval [CI]: 27.7-84.8), a specificity of 100% (95% CI: 73.5-100), and an accuracy of 79.1% (95% CI: 57.9-92.87). Low apparent sensitivity occurred when the SPECT defects were small and highly suspicious for artifacts. CONCLUSIONS This study demonstrated that CT-MPI is safe, well tolerated, and can be performed with comparable radiation exposure to SPECT. CT-MPI has the benefit of providing both complete anatomic coronary evaluation and assessment of myocardial perfusion.
Collapse
Affiliation(s)
- Marly van Assen
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging.,Department of Radiology, Center for Medical Imaging, University Medical Center Groningen, Groningen, The Netherlands
| | - Taylor M Duguay
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging
| | - Sheldon E Litwin
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging.,Department of Medicine, Medical University of South Carolina, Division of Cardiology, Charleston, SC
| | - Richard R Bayer
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging.,Department of Medicine, Medical University of South Carolina, Division of Cardiology, Charleston, SC
| | - John W Nance
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging
| | - Pal Suranyi
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging.,Department of Medicine, Medical University of South Carolina, Division of Cardiology, Charleston, SC
| | - Carlo N De Cecco
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging
| | - Akos Varga-Szemes
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging
| | - Brian E Jacobs
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging
| | - Addison A Johnson
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging
| | - Christian Tesche
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging.,Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Munich, Germany
| | - U Joseph Schoepf
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging.,Department of Medicine, Medical University of South Carolina, Division of Cardiology, Charleston, SC
| |
Collapse
|
12
|
Sirajuddin A, Mirmomen SM, Kligerman SJ, Groves DW, Burke AP, Kureshi F, White CS, Arai AE. Ischemic Heart Disease: Noninvasive Imaging Techniques and Findings. Radiographics 2021; 41:990-1021. [PMID: 34019437 PMCID: PMC8262179 DOI: 10.1148/rg.2021200125] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Ischemic heart disease is a leading cause of death worldwide and comprises a large proportion of annual health care expenditure. Management of ischemic heart disease is now best guided by the physiologic significance of coronary artery stenosis. Invasive coronary angiography is the standard for diagnosing coronary artery stenosis. However, it is expensive and has risks including vascular access site complications and contrast material–induced nephropathy. Invasive coronary angiography requires fractional flow reserve (FFR) measurement to determine the physiologic significance of a coronary artery stenosis. Multiple noninvasive cardiac imaging modalities can also anatomically delineate or functionally assess for significant coronary artery stenosis, as well as detect the presence of myocardial infarction (MI). While coronary CT angiography can help assess the degree of anatomic stenosis, its inability to assess the physiologic significance of lesions limits its specificity. Physiologic significance of coronary artery stenosis can be determined by cardiac MR vasodilator or dobutamine stress imaging, CT stress perfusion imaging, FFR CT, PET myocardial perfusion imaging (MPI), SPECT MPI, and stress echocardiography. Clinically unrecognized MI, another clear indicator of physiologically significant coronary artery disease, is relatively common and is best evaluated with cardiac MRI. The authors illustrate the spectrum of imaging findings of ischemic heart disease (coronary artery disease, myocardial ischemia, and MI); highlight the advantages and disadvantages of the various noninvasive imaging methods used to assess ischemic heart disease, as illustrated by recent clinical trials; and summarize current indications and contraindications for noninvasive imaging techniques for detection of ischemic heart disease. Online supplemental material is available for this article. Published under a CC BY 4.0 license.
Collapse
Affiliation(s)
- Arlene Sirajuddin
- From the Cardiovascular and Pulmonary Branch, National Heart Lung and Blood Institute, National Institutes of Health, 10 Center Dr, Building 10, Room B1D416, Bethesda, MD 20814 (A.S., S.M.M., A.E.A.); Department of Radiology, University of California San Diego, San Diego, Calif (S.J.K.); Departments of Medicine and Radiology, Divisions of Cardiology and Cardiothoracic Imaging, University of Colorado Anschutz Medical Campus, Aurora, Colo (D.W.G.); Department of Pathology (A.P.B.) and Department of Radiology and Nuclear Medicine (C.S.W.), School of Medicine, University of Maryland, Baltimore, Md; and St David's Healthcare and Austin Heart, Austin, Tex (F.K.)
| | - S Mojdeh Mirmomen
- From the Cardiovascular and Pulmonary Branch, National Heart Lung and Blood Institute, National Institutes of Health, 10 Center Dr, Building 10, Room B1D416, Bethesda, MD 20814 (A.S., S.M.M., A.E.A.); Department of Radiology, University of California San Diego, San Diego, Calif (S.J.K.); Departments of Medicine and Radiology, Divisions of Cardiology and Cardiothoracic Imaging, University of Colorado Anschutz Medical Campus, Aurora, Colo (D.W.G.); Department of Pathology (A.P.B.) and Department of Radiology and Nuclear Medicine (C.S.W.), School of Medicine, University of Maryland, Baltimore, Md; and St David's Healthcare and Austin Heart, Austin, Tex (F.K.)
| | - Seth J Kligerman
- From the Cardiovascular and Pulmonary Branch, National Heart Lung and Blood Institute, National Institutes of Health, 10 Center Dr, Building 10, Room B1D416, Bethesda, MD 20814 (A.S., S.M.M., A.E.A.); Department of Radiology, University of California San Diego, San Diego, Calif (S.J.K.); Departments of Medicine and Radiology, Divisions of Cardiology and Cardiothoracic Imaging, University of Colorado Anschutz Medical Campus, Aurora, Colo (D.W.G.); Department of Pathology (A.P.B.) and Department of Radiology and Nuclear Medicine (C.S.W.), School of Medicine, University of Maryland, Baltimore, Md; and St David's Healthcare and Austin Heart, Austin, Tex (F.K.)
| | - Daniel W Groves
- From the Cardiovascular and Pulmonary Branch, National Heart Lung and Blood Institute, National Institutes of Health, 10 Center Dr, Building 10, Room B1D416, Bethesda, MD 20814 (A.S., S.M.M., A.E.A.); Department of Radiology, University of California San Diego, San Diego, Calif (S.J.K.); Departments of Medicine and Radiology, Divisions of Cardiology and Cardiothoracic Imaging, University of Colorado Anschutz Medical Campus, Aurora, Colo (D.W.G.); Department of Pathology (A.P.B.) and Department of Radiology and Nuclear Medicine (C.S.W.), School of Medicine, University of Maryland, Baltimore, Md; and St David's Healthcare and Austin Heart, Austin, Tex (F.K.)
| | - Allen P Burke
- From the Cardiovascular and Pulmonary Branch, National Heart Lung and Blood Institute, National Institutes of Health, 10 Center Dr, Building 10, Room B1D416, Bethesda, MD 20814 (A.S., S.M.M., A.E.A.); Department of Radiology, University of California San Diego, San Diego, Calif (S.J.K.); Departments of Medicine and Radiology, Divisions of Cardiology and Cardiothoracic Imaging, University of Colorado Anschutz Medical Campus, Aurora, Colo (D.W.G.); Department of Pathology (A.P.B.) and Department of Radiology and Nuclear Medicine (C.S.W.), School of Medicine, University of Maryland, Baltimore, Md; and St David's Healthcare and Austin Heart, Austin, Tex (F.K.)
| | - Faraz Kureshi
- From the Cardiovascular and Pulmonary Branch, National Heart Lung and Blood Institute, National Institutes of Health, 10 Center Dr, Building 10, Room B1D416, Bethesda, MD 20814 (A.S., S.M.M., A.E.A.); Department of Radiology, University of California San Diego, San Diego, Calif (S.J.K.); Departments of Medicine and Radiology, Divisions of Cardiology and Cardiothoracic Imaging, University of Colorado Anschutz Medical Campus, Aurora, Colo (D.W.G.); Department of Pathology (A.P.B.) and Department of Radiology and Nuclear Medicine (C.S.W.), School of Medicine, University of Maryland, Baltimore, Md; and St David's Healthcare and Austin Heart, Austin, Tex (F.K.)
| | - Charles S White
- From the Cardiovascular and Pulmonary Branch, National Heart Lung and Blood Institute, National Institutes of Health, 10 Center Dr, Building 10, Room B1D416, Bethesda, MD 20814 (A.S., S.M.M., A.E.A.); Department of Radiology, University of California San Diego, San Diego, Calif (S.J.K.); Departments of Medicine and Radiology, Divisions of Cardiology and Cardiothoracic Imaging, University of Colorado Anschutz Medical Campus, Aurora, Colo (D.W.G.); Department of Pathology (A.P.B.) and Department of Radiology and Nuclear Medicine (C.S.W.), School of Medicine, University of Maryland, Baltimore, Md; and St David's Healthcare and Austin Heart, Austin, Tex (F.K.)
| | - Andrew E Arai
- From the Cardiovascular and Pulmonary Branch, National Heart Lung and Blood Institute, National Institutes of Health, 10 Center Dr, Building 10, Room B1D416, Bethesda, MD 20814 (A.S., S.M.M., A.E.A.); Department of Radiology, University of California San Diego, San Diego, Calif (S.J.K.); Departments of Medicine and Radiology, Divisions of Cardiology and Cardiothoracic Imaging, University of Colorado Anschutz Medical Campus, Aurora, Colo (D.W.G.); Department of Pathology (A.P.B.) and Department of Radiology and Nuclear Medicine (C.S.W.), School of Medicine, University of Maryland, Baltimore, Md; and St David's Healthcare and Austin Heart, Austin, Tex (F.K.)
| |
Collapse
|
13
|
Seitun S, Clemente A, De Lorenzi C, Benenati S, Chiappino D, Mantini C, Sakellarios AI, Cademartiri F, Bezante GP, Porto I. Cardiac CT perfusion and FFR CTA: pathophysiological features in ischemic heart disease. Cardiovasc Diagn Ther 2020; 10:1954-1978. [PMID: 33381437 PMCID: PMC7758766 DOI: 10.21037/cdt-20-414] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 04/22/2020] [Indexed: 01/24/2023]
Abstract
Cardiac computed tomography (CCT) has rapidly evolved, becoming a powerful integrated tool for the evaluation of coronary artery disease (CAD), and being superior to other noninvasive methods due to its high accuracy and ability to simultaneously assess both lumen stenosis and atherosclerotic plaque burden. Furthermore, CCT is regarded as an effective gatekeeper for coronary angiography, and carries independent important prognostic information. In the last decade, the introduction of new functional CCT applications, namely CCT perfusion (CCTP) imaging and CT-derived fractional flow reserve (FFRCTA), has opened the door for accurate assessment of the haemodynamic significance of stenoses. These new CCT technologies, thus, share the unique advantage of assessing both myocardial ischemia and patient-specific coronary artery anatomy, providing an integrated anatomical/functional analysis. In the present review, starting from the pathophysiology of myocardial ischemia, we evaluate the existing evidence for functional CCT imaging and its value in relation to alternative, well-established, non-invasive imaging modalities and invasive indices of ischemia (currently the gold-standard). The knowledge of clinical applications, benefits, and limitations of these new CCT technologies will allow efficient and optimal use in clinical practice in the near future.
Collapse
Affiliation(s)
- Sara Seitun
- Department of Radiology, IRCCS Policlinico San Martino Hospital, Genoa, Italy
| | - Alberto Clemente
- Department of Radiology, CNR (National Council of Research)/Tuscany Region ‘Gabriele Monasterio’ Foundation (FTGM), Massa, Italy
| | - Cecilia De Lorenzi
- Department of Radiology, IRCCS Policlinico San Martino Hospital, Genoa, Italy
| | - Stefano Benenati
- Clinic of Cardiovascular Diseases, IRCCS Policlinico San Martino Hospital, University of Genoa, Genoa, Italy
| | - Dante Chiappino
- Department of Radiology, CNR (National Council of Research)/Tuscany Region ‘Gabriele Monasterio’ Foundation (FTGM), Massa, Italy
| | - Cesare Mantini
- Department of Neuroscience, Imaging and Clinical Science, Institute of Radiology, “G. d’Annunzio” University, Chieti, Italy
| | - Antonis I. Sakellarios
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, Ioannina, Greece
| | | | - Gian Paolo Bezante
- Clinic of Cardiovascular Diseases, IRCCS Policlinico San Martino Hospital, University of Genoa, Genoa, Italy
| | - Italo Porto
- Clinic of Cardiovascular Diseases, IRCCS Policlinico San Martino Hospital, University of Genoa, Genoa, Italy
| |
Collapse
|
14
|
de Knegt MC, Rossi A, Petersen SE, Wragg A, Khurram R, Westwood M, Saberwal B, Mathur A, Nieman K, Bamberg F, Jensen MT, Pugliese F. Stress myocardial perfusion with qualitative magnetic resonance and quantitative dynamic computed tomography: comparison of diagnostic performance and incremental value over coronary computed tomography angiography. Eur Heart J Cardiovasc Imaging 2020:jeaa270. [PMID: 33029616 DOI: 10.1093/ehjci/jeaa270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022] Open
Abstract
AIMS Assessment of haemodynamically significant coronary artery disease (CAD) using cardiovascular magnetic resonance (CMR) imaging perfusion or dynamic stress myocardial perfusion imaging by computed tomography (CT perfusion) may aid patient selection for invasive coronary angiography (ICA). We evaluated the diagnostic performance and incremental value of qualitative CMR perfusion and quantitative CT perfusion complementary to cardiac computed tomography angiography (CCTA) for the diagnosis of haemodynamically significant CAD using fractional flow reserve (FFR) and quantitative coronary angiography (QCA) as reference standard. METHODS AND RESULTS CCTA, qualitative visual CMR perfusion, visual CT perfusion, and quantitative relative myocardial blood flow (CT-MBF) were performed in patients with stable angina pectoris. FFR was measured in coronary vessels with stenosis visually estimated between 30% and 90% diameter reduction on ICA. Haemodynamically significant CAD was defined as FFR <0.80, or QCA ≥80% in those cases where FFR could not be performed. A total of 218 vessels from 93 patients were assessed. An optimal cut-off of 0.72 for relative CT-MBF was determined. The diagnostic performances (area under the receiver-operating characteristics curves, 95% CI) of visual CMR perfusion (0.84, 0.77-0.90) and relative CT-MBF (0.86, 0.81-0.92) were comparable and outperformed visual CT perfusion (0.64, 0.57-0.71). In combination with CCTA ≥50%, CCTA + visual CMR perfusion (0.91, 0.86-0.96), CCTA + relative CT-MBF (0.92, 0.88-0.96), and CCTA + visual CT perfusion (0.82, 0.75-0.90) improved discrimination compared with CCTA alone (all P < 0.05). CONCLUSION Visual CMR perfusion and relative CT-MBF outperformed visual CT perfusion and provided incremental discrimination compared with CCTA alone for the diagnosis of haemodynamically significant CAD.
Collapse
Affiliation(s)
- Martina C de Knegt
- Centre for Advanced Cardiovascular Imaging, William Harvey Research Institute, Barts NIHR Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Alexia Rossi
- Centre for Advanced Cardiovascular Imaging, William Harvey Research Institute, Barts NIHR Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK
| | - Steffen E Petersen
- Centre for Advanced Cardiovascular Imaging, William Harvey Research Institute, Barts NIHR Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK
| | - Andrew Wragg
- Centre for Advanced Cardiovascular Imaging, William Harvey Research Institute, Barts NIHR Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK
| | - Ruhaid Khurram
- Centre for Advanced Cardiovascular Imaging, William Harvey Research Institute, Barts NIHR Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Mark Westwood
- Centre for Advanced Cardiovascular Imaging, William Harvey Research Institute, Barts NIHR Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK
| | - Bunny Saberwal
- Centre for Advanced Cardiovascular Imaging, William Harvey Research Institute, Barts NIHR Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK
| | - Anthony Mathur
- Centre for Advanced Cardiovascular Imaging, William Harvey Research Institute, Barts NIHR Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK
| | - Koen Nieman
- Department of Radiology and Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, Medical Center, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Magnus T Jensen
- Centre for Advanced Cardiovascular Imaging, William Harvey Research Institute, Barts NIHR Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Department of Cardiology, Copenhagen University Hospital Herlev-Gentofte, Kildegaardsvej 28, 2900 Hellerup, Denmark
| | - Francesca Pugliese
- Centre for Advanced Cardiovascular Imaging, William Harvey Research Institute, Barts NIHR Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK
| |
Collapse
|
15
|
Society of cardiovascular computed tomography expert consensus document on myocardial computed tomography perfusion imaging. J Cardiovasc Comput Tomogr 2020; 14:87-100. [DOI: 10.1016/j.jcct.2019.10.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 10/15/2019] [Indexed: 01/06/2023]
|
16
|
Martens J, Panzer S, den Wijngaard J, Siebes M, Schreiber LM. Influence of contrast agent dispersion on bolus‐based MRI myocardial perfusion measurements: A computational fluid dynamics study. Magn Reson Med 2019; 84:467-483. [DOI: 10.1002/mrm.28125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Johannes Martens
- Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure CenterUniversity Hospitals Würzburg Germany
- Department of Cardiovascular Imaging Comprehensive Heart Failure Center University Hospitals Würzburg Germany
| | - Sabine Panzer
- Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure CenterUniversity Hospitals Würzburg Germany
- Department of Cardiovascular Imaging Comprehensive Heart Failure Center University Hospitals Würzburg Germany
| | - Jeroen den Wijngaard
- Department of Biomedical Engineering & Physics Amsterdam University Medical Center University of Amsterdam Amsterdam Cardiovascular Sciences Amsterdam Netherlands
- Department of Clinical Chemistry and Hematology Diakonessenhuis Utrecht Netherlands
| | - Maria Siebes
- Department of Biomedical Engineering & Physics Amsterdam University Medical Center University of Amsterdam Amsterdam Cardiovascular Sciences Amsterdam Netherlands
| | - Laura M. Schreiber
- Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure CenterUniversity Hospitals Würzburg Germany
- Department of Cardiovascular Imaging Comprehensive Heart Failure Center University Hospitals Würzburg Germany
| |
Collapse
|
17
|
Myocardial CT perfusion imaging and atherosclerotic plaque characteristics on coronary CT angiography for the identification of myocardial ischaemia. Clin Radiol 2019; 74:763-768. [DOI: 10.1016/j.crad.2019.04.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/09/2019] [Indexed: 01/20/2023]
|
18
|
Husso M, Nissi MJ, Kuivanen A, Halonen P, Tarkia M, Teuho J, Saunavaara V, Vainio P, Sipola P, Manninen H, Ylä-Herttuala S, Knuuti J, Töyräs J. Quantification of porcine myocardial perfusion with modified dual bolus MRI - a prospective study with a PET reference. BMC Med Imaging 2019; 19:58. [PMID: 31349798 PMCID: PMC6660956 DOI: 10.1186/s12880-019-0359-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 07/17/2019] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The reliable quantification of myocardial blood flow (MBF) with MRI, necessitates the correction of errors in arterial input function (AIF) caused by the T1 saturation effect. The aim of this study was to compare MBF determined by a traditional dual bolus method against a modified dual bolus approach and to evaluate both methods against PET in a porcine model of myocardial ischemia. METHODS Local myocardial ischemia was induced in five pigs, which were subsequently examined with contrast enhanced MRI (gadoteric acid) and PET (O-15 water). In the determination of MBF, the initial high concentration AIF was corrected using the ratio of low and high contrast AIF areas, normalized according to the corresponding heart rates. MBF was determined from the MRI, during stress and at rest, using the dual bolus and the modified dual bolus methods in 24 segments of the myocardium (total of 240 segments, five pigs in stress and rest). Due to image artifacts and technical problems 53% of the segments had to be rejected from further analyses. These two estimates were later compared against respective rest and stress PET-based MBF measurements. RESULTS Values of MBF were determined for 112/240 regions. Correlations for MBF between the modified dual bolus method and PET was rs = 0.84, and between the traditional dual bolus method and PET rs = 0.79. The intraclass correlation was very good (ICC = 0.85) between the modified dual bolus method and PET, but poor between the traditional dual bolus method and PET (ICC = 0.07). CONCLUSIONS The modified dual bolus method showed a better agreement with PET than the traditional dual bolus method. The modified dual bolus method was found to be more reliable than the traditional dual bolus method, especially when there was variation in the heart rate. However, the difference between the MBF values estimated with either of the two MRI-based dual-bolus methods and those estimated with the gold-standard PET method were statistically significant.
Collapse
Affiliation(s)
- Minna Husso
- Diagnostic Imaging Center, Kuopio University Hospital, PO Box 100, 70029, Kuopio, KYS, Finland.
| | - Mikko J Nissi
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Antti Kuivanen
- A.I. Virtanen Institute for Molecule Sciences, University of Eastern Finland, Kuopio, Finland
| | - Paavo Halonen
- A.I. Virtanen Institute for Molecule Sciences, University of Eastern Finland, Kuopio, Finland
| | - Miikka Tarkia
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Jarmo Teuho
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Virva Saunavaara
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland.,Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Pauli Vainio
- Diagnostic Imaging Center, Kuopio University Hospital, PO Box 100, 70029, Kuopio, KYS, Finland
| | - Petri Sipola
- Diagnostic Imaging Center, Kuopio University Hospital, PO Box 100, 70029, Kuopio, KYS, Finland
| | - Hannu Manninen
- Diagnostic Imaging Center, Kuopio University Hospital, PO Box 100, 70029, Kuopio, KYS, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecule Sciences, University of Eastern Finland, Kuopio, Finland.,Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Juhani Knuuti
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Juha Töyräs
- Diagnostic Imaging Center, Kuopio University Hospital, PO Box 100, 70029, Kuopio, KYS, Finland.,Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| |
Collapse
|
19
|
Rossi A, Ferrante G. Imaging of coronary flow capacity: is there a role for dynamic CT perfusion imaging? Eur J Nucl Med Mol Imaging 2019; 46:1765-1767. [PMID: 31152206 DOI: 10.1007/s00259-019-04362-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/13/2019] [Indexed: 11/26/2022]
Affiliation(s)
- Alexia Rossi
- Department of Biomedical Sciences, Humanitas Clinical and Research Hospital, Humanitas University, Pieve Emanuele, Milan, Italy.
- Department of Diagnostic Imaging, Humanitas Clinical and Research Hospital - IRCCS, Rozzano, Milan, Italy.
| | - Giuseppe Ferrante
- Department of Biomedical Sciences, Humanitas Clinical and Research Hospital, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Cardiovascular Medicine, Humanitas Clinical and Research Hospital - IRCCS, Rozzano, Milan, Italy
| |
Collapse
|
20
|
Fuetterer M, Busch J, Traechtler J, Wespi P, Peereboom SM, Sauer M, Lipiski M, Fleischmann T, Cesarovic N, Stoeck CT, Kozerke S. Quantitative myocardial first-pass cardiovascular magnetic resonance perfusion imaging using hyperpolarized [1- 13C] pyruvate. J Cardiovasc Magn Reson 2018; 20:73. [PMID: 30415642 PMCID: PMC6231262 DOI: 10.1186/s12968-018-0495-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 10/09/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The feasibility of absolute myocardial blood flow quantification and suitability of hyperpolarized [1-13C] pyruvate as contrast agent for first-pass cardiovascular magnetic resonance (CMR) perfusion measurements are investigated with simulations and demonstrated in vivo in a swine model. METHODS A versatile simulation framework for hyperpolarized CMR subject to physical, physiological and technical constraints was developed and applied to investigate experimental conditions for accurate perfusion CMR with hyperpolarized [1-13C] pyruvate. Absolute and semi-quantitative perfusion indices were analyzed with respect to experimental parameter variations and different signal-to-noise ratio (SNR) levels. Absolute myocardial blood flow quantification was implemented with an iterative deconvolution approach based on Fermi functions. To demonstrate in vivo feasibility, velocity-selective excitation with an echo-planar imaging readout was used to acquire dynamic myocardial stress perfusion images in four healthy swine. Arterial input functions were extracted from an additional image slice with conventional excitation that was acquired within the same heartbeat. RESULTS Simulations suggest that obtainable SNR and B0 inhomogeneity in vivo are sufficient for the determination of absolute and semi-quantitative perfusion with ≤25% error. It is shown that for expected metabolic conversion rates, metabolic conversion of pyruvate can be neglected over the short duration of acquisition in first-pass perfusion CMR. In vivo measurements suggest that absolute myocardial blood flow quantification using hyperpolarized [1-13C] pyruvate is feasible with an intra-myocardial variability comparable to semi-quantitative perfusion indices. CONCLUSION The feasibility of quantitative hyperpolarized first-pass perfusion CMR using [1-13C] pyruvate has been investigated in simulations and demonstrated in swine. Using an approved and metabolically active compound is envisioned to increase the value of hyperpolarized perfusion CMR in patients.
Collapse
Affiliation(s)
- Maximilian Fuetterer
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse, 35 8092 Zurich, Switzerland
| | - Julia Busch
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse, 35 8092 Zurich, Switzerland
| | - Julia Traechtler
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse, 35 8092 Zurich, Switzerland
| | - Patrick Wespi
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse, 35 8092 Zurich, Switzerland
| | - Sophie M. Peereboom
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse, 35 8092 Zurich, Switzerland
| | - Mareike Sauer
- Division of Surgical Research, University Hospital Zurich, Sternwartstrasse, 14 8091 Zurich, Switzerland
| | - Miriam Lipiski
- Division of Surgical Research, University Hospital Zurich, Sternwartstrasse, 14 8091 Zurich, Switzerland
| | - Thea Fleischmann
- Division of Surgical Research, University Hospital Zurich, Sternwartstrasse, 14 8091 Zurich, Switzerland
| | - Nikola Cesarovic
- Division of Surgical Research, University Hospital Zurich, Sternwartstrasse, 14 8091 Zurich, Switzerland
| | - Christian T. Stoeck
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse, 35 8092 Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse, 35 8092 Zurich, Switzerland
| |
Collapse
|
21
|
Comprehensive Cardiac CT With Myocardial Perfusion Imaging Versus Functional Testing in Suspected Coronary Artery Disease. JACC Cardiovasc Imaging 2018; 11:1625-1636. [DOI: 10.1016/j.jcmg.2017.10.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 09/26/2017] [Accepted: 10/06/2017] [Indexed: 02/02/2023]
|
22
|
CT Myocardial Perfusion Imaging: A New Frontier in Cardiac Imaging. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7295460. [PMID: 30406139 PMCID: PMC6204157 DOI: 10.1155/2018/7295460] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/09/2018] [Indexed: 12/21/2022]
Abstract
The past two decades have witnessed rapid and remarkable technical improvement of multidetector computed tomography (CT) in both image quality and diagnostic accuracy. These improvements include higher temporal resolution, high-definition and wider detectors, the introduction of dual-source and dual-energy scanners, and advanced postprocessing. Current new generation multidetector row (≥64 slices) CT systems allow an accurate and reliable assessment of both coronary epicardial stenosis and myocardial CT perfusion (CTP) imaging at rest and during pharmacologic stress in the same examination. This novel application makes CT the unique noninvasive "one-stop-shop" method for a comprehensive assessment of both anatomical coronary atherosclerosis and its physiological consequences. Myocardial CTP imaging can be performed with different approaches such as static arterial first-pass imaging, and dynamic CTP imaging, with their own advantages and disadvantages. Static CTP can be performed using single-energy or dual-energy CT, employing qualitative or semiquantitative analysis. In addition, dynamic CTP can obtain quantitative data of myocardial blood flow and coronary flow reserve. The purpose of this review was to summarize all available evidence about the emerging role of myocardial CTP to identify ischemia-associated lesions, focusing on technical considerations, clinical applications, strengths, limitations, and the more promising future fields of interest in the broad spectra of ischemic heart disease.
Collapse
|
23
|
Ramsey BC, Fentanes E, Choi AD, Branch KR, Thomas DM. Myocardial Assessment with Cardiac CT: Ischemic Heart Disease and Beyond. CURRENT CARDIOVASCULAR IMAGING REPORTS 2018; 11:16. [PMID: 29963220 PMCID: PMC5984644 DOI: 10.1007/s12410-018-9456-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW The aim of this review is to highlight recent advancements, current trends, and the expanding role for cardiac CT (CCT) in the evaluation of ischemic heart disease, nonischemic cardiomyopathies, and some specific congenital myocardial disease states. RECENT FINDINGS CCT is a highly versatile imaging modality for the assessment of numerous cardiovascular disease states. Coronary CT angiography (CCTA) is now a well-established first-line imaging modality for the exclusion of significant coronary artery disease (CAD); however, CCTA has modest positive predictive value and specificity for diagnosing obstructive CAD in addition to limited capability to evaluate myocardial tissue characteristics. SUMMARY CTP, when combined with CCTA, presents the potential for full functional and anatomic assessment with a single modality. CCT is a useful adjunct in select patients to both TTE and CMR in the evaluation of ventricular volumes and systolic function. Newer applications, such as dynamic CTP and DECT, are promising diagnostic tools offering the possibility of more quantitative assessment of ischemia. The superior spatial resolution and volumetric acquisition of CCT has an important role in the diagnosis of other nonischemic causes of cardiomyopathies.
Collapse
Affiliation(s)
- Bryan C. Ramsey
- Cardiology Division, Department of Medicine, San Antonio Military Medical Center, San Antonio, TX USA
| | - Emilio Fentanes
- Cardiology Division, Department of Medicine, Tripler Army Medical Center, Honolulu, HI USA
| | - Andrew D. Choi
- Division of Cardiology, Department of Radiology, The George Washington University School of Medicine, Washington, DC USA
| | | | - Dustin M. Thomas
- Cardiology Division, Department of Medicine, San Antonio Military Medical Center, San Antonio, TX USA
| |
Collapse
|
24
|
Cai W, Li Y, Liu F, Luo J. Quantitative evaluation of graded hindlimb ischemia based on pharmacokinetic modelling and hemodynamic analysis of indocyanine green. Physiol Meas 2018; 39:015009. [PMID: 29231185 DOI: 10.1088/1361-6579/aaa108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Accurate evaluation of the degree of hindlimb ischemia is challenging but essential for the diagnosis and treatment of peripheral vascular insufficiency. The aim of the study is to apply a multiparametric method for the quantitative estimation of mouse models with different degrees of hindlimb ischemia based on a dynamic fluorescence imaging-based strategy. APPROACH An adjustable hydraulic occluder was placed around the thigh root of one hindlimb to induce six different degrees of hindlimb ischemia. Five parameters were extracted to quantitatively evaluate the degree of ischemia, including perfusion rate (PR) and perfusion vascular density (PVD) from a mathematical model of indocyanine green (ICG) pharmacokinetics, rising time (T rise), blood flow index (BFI) and mean fluorescence intensity (MFI) from time-series analysis of ICG hemodynamics. MAIN RESULTS The results showed that the normalized PR and BFI decreased while the normalized T rise increased progressively with the degree of ischemia. The normalized PVD and MFI first increased and then decreased with the degree of ischemia. High correlation was observed between the degree of ischemia and the arterial oxygen saturation which was measured by an oximeter. SIGNIFICANCE The results of this work demonstrated that PR, BFI and T rise can be used for the quantitative and comprehensive evaluation of graded hindlimb ischemia.
Collapse
Affiliation(s)
- Wenjuan Cai
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| | | | | | | |
Collapse
|
25
|
Kitagawa K, Goto Y, Nakamura S, Takafuji M, Hamdy A, Ishida M, Sakuma H. Dynamic CT Perfusion Imaging: State of the Art. ACTA ACUST UNITED AC 2018. [DOI: 10.22468/cvia.2018.00031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Kakuya Kitagawa
- Department of Radiology, Mie University School of Medicine, Tsu, Japan
| | - Yoshitaka Goto
- Department of Radiology, Mie University School of Medicine, Tsu, Japan
| | - Satoshi Nakamura
- Department of Radiology, Mie University School of Medicine, Tsu, Japan
| | - Masafumi Takafuji
- Department of Radiology, Mie University School of Medicine, Tsu, Japan
| | - Ahmed Hamdy
- Department of Radiology, Mie University School of Medicine, Tsu, Japan
| | - Masaki Ishida
- Department of Radiology, Mie University School of Medicine, Tsu, Japan
| | - Hajime Sakuma
- Department of Radiology, Mie University School of Medicine, Tsu, Japan
| |
Collapse
|
26
|
Marini C, Seitun S, Zawaideh C, Bauckneht M, Morelli MC, Ameri P, Ferrarazzo G, Budaj I, Balbi M, Fiz F, Boccalini S, Pregliasco AG, Buschiazzo A, Saracco A, Bagnara MC, Bruzzi P, Brunelli C, Ferro C, Bezante GP, Sambuceti G. Comparison of coronary flow reserve estimated by dynamic radionuclide SPECT and multi-detector x-ray CT. J Nucl Cardiol 2017; 24:1712-1721. [PMID: 27151303 DOI: 10.1007/s12350-016-0492-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 03/28/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND Recent technical advances in multi-detector computed tomography (MDCT) allow for assessment of coronary flow reserve (CFR). We compared regional CFR by dynamic SPECT and by dynamic MDCT in patients with suspected or known coronary artery disease (CAD). METHODS Thirty-five patients, (29 males, mean age 69 years) with greater than average Framingham risk of CAD, underwent dipyridamole vasodilator stress imaging. CFR was estimated using dynamic SPECT and dynamic MDCT imaging in the same patients. Myocardial perfusion findings were correlated with obstructive CAD (≥50% luminal narrowing) on CT coronary angiography (CA). RESULTS Mean CFR estimated by SPECT and MDCT in 595 myocardial segments was not different (1.51 ± 0.46 vs. 1.50 ± 0.37, p = NS). Correlation of segmental CFR by SPECT and MDCT was fair (r 2 = 0.39, p < 0.001). Bland-Altman analysis revealed that MDCT in comparison to SPECT systematically underestimated CFR in higher CFR ranges. By CTCA, 12 patients had normal CA, 11 had non-obstructive, and 12 had obstructive CAD. CFR by both techniques was significantly higher in territories of normal CA than in territories subtended by non-obstructive or obstructive CAD. SPECT CFR was also significantly different in territories subtended by non-obstructive and obstructive CAD, whereas MDCT CFR was not. CONCLUSION Despite relative underestimation of high CFR values, MDCT CFR shows promise for assessing the pathophysiological significance of anatomic CAD.
Collapse
Affiliation(s)
- Cecilia Marini
- CNR Institute of Bioimaging and Molecular Physiology, Milan, Section of Genoa, Italy
| | - Sara Seitun
- Interventional Radiology, IRCCS-AOU San Martino-IST, Genoa, Italy
| | - Camilla Zawaideh
- Clinic of Cardiovascular Diseases, IRCCS-AOU San Martino-IST, Genoa, Italy
| | | | | | - Pietro Ameri
- Clinic of Cardiovascular Diseases, IRCCS-AOU San Martino-IST, Genoa, Italy
| | | | - Irilda Budaj
- Interventional Radiology, IRCCS-AOU San Martino-IST, Genoa, Italy
| | - Manrico Balbi
- Clinic of Cardiovascular Diseases, IRCCS-AOU San Martino-IST, Genoa, Italy
| | - Francesco Fiz
- Nuclear Medicine, IRCCS-AOU San Martino-IST, Genoa, Italy
| | - Sara Boccalini
- Interventional Radiology, IRCCS-AOU San Martino-IST, Genoa, Italy
| | | | | | | | | | - Paolo Bruzzi
- Epidemiology Unit, IRCCS-AOU San Martino-IST, Genoa, Italy
| | - Claudio Brunelli
- Clinic of Cardiovascular Diseases, IRCCS-AOU San Martino-IST, Genoa, Italy
| | - Carlo Ferro
- Interventional Radiology, IRCCS-AOU San Martino-IST, Genoa, Italy
| | - Gian Paolo Bezante
- Clinic of Cardiovascular Diseases, IRCCS-AOU San Martino-IST, Genoa, Italy
| | | |
Collapse
|
27
|
|
28
|
Pelgrim GJ, Das M, van Tuijl S, van Assen M, Prinzen FW, Stijnen M, Oudkerk M, Wildberger JE, Vliegenthart R. Validation of myocardial perfusion quantification by dynamic CT in an ex-vivo porcine heart model. Int J Cardiovasc Imaging 2017; 33:1821-1830. [PMID: 28536897 PMCID: PMC5682851 DOI: 10.1007/s10554-017-1171-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/17/2017] [Indexed: 12/23/2022]
Abstract
To test the accuracy of quantification of myocardial perfusion imaging (MPI) using computed tomography (CT) in ex-vivo porcine models. Five isolated porcine hearts were perfused according to Langendorff. Hearts were perfused using retrograde flow through the aorta and blood flow, blood pressure and heart rate were monitored throughout the experiment. An inflatable cuff was placed around the circumflex (Cx) artery to create stenosis grades which were monitored using a pressure wire, analysing perfusion at several fractional flow reserve values of 1.0, 0.7, 0.5, 0.3, and total occlusion. Second-generation dual-source CT was used to acquire dynamic MPI in shuttle mode with 350 mAs/rot at 100 kVp. CT MPI was performed using VPCT myocardium software, calculating myocardial blood flow (MBF, ml/100 ml/min) for segments perfused by Cx artery and non-Cx myocardial segments. Microspheres were successfully infused at three stenosis grades in three of the five hearts. Heart rate ranged from 75 to 134 beats per minute. Arterial blood flow ranged from 0.5 to 1.4 l min and blood pressure ranged from 54 to 107 mmHg. MBF was determined in 400 myocardial segments of which 115 were classified as ‘Cx-territory’. MBF was significantly different between non-Cx and Cx segments at stenosis grades with an FFR ≤0.70 (Mann–Whitney U test, p < 0.05). MBF showed a moderate correlation with microsphere MBF for the three individual hearts (Pearson correlation 0.62–0.76, p < 0.01). CT MPI can be used to determine regional differences in myocardial perfusion parameters, based on severity of coronary stenosis. Significant differences in MBF could be measured between non-ischemic and ischemic segments.
Collapse
Affiliation(s)
- Gert Jan Pelgrim
- Center for Medical Imaging - North East Netherlands, University Medical Center Groningen, University of Groningen, Hanzeplein 1, P.O. Box EB44, 9713 GZ, Groningen, The Netherlands
| | - Marco Das
- Department of Radiology and Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | | | - Marly van Assen
- Center for Medical Imaging - North East Netherlands, University Medical Center Groningen, University of Groningen, Hanzeplein 1, P.O. Box EB44, 9713 GZ, Groningen, The Netherlands
| | - Frits W Prinzen
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | | | - Matthijs Oudkerk
- Center for Medical Imaging - North East Netherlands, University Medical Center Groningen, University of Groningen, Hanzeplein 1, P.O. Box EB44, 9713 GZ, Groningen, The Netherlands
| | - Joachim E Wildberger
- Department of Radiology and Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Rozemarijn Vliegenthart
- Center for Medical Imaging - North East Netherlands, University Medical Center Groningen, University of Groningen, Hanzeplein 1, P.O. Box EB44, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
29
|
Detection of Hemodynamically Significant Coronary Artery Stenosis With CT Enhancement Ratio: A Validation Study in a Porcine Model. AJR Am J Roentgenol 2017; 209:103-109. [PMID: 28504545 DOI: 10.2214/ajr.16.16698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Although numerous techniques that are based on CT number analysis have been proposed, the assessment of hemodynamically significant coronary artery stenosis remains a great challenge. The purpose of this study is to validate use of the CT enhancement ratio in the detection of hemodynamically significant coronary artery stenosis in a porcine model. MATERIALS AND METHODS Experiments involving eight closed-chest swine were performed. A balloon catheter was placed into the left anterior descending coronary artery to simulate different degrees of luminal stenosis. The myocardial blood flow (MBF) ratio was measured using the colored microsphere technique. The fractional flow reserve was measured using an invasive pressure wire. CT scans were performed during the first-pass phase, while the pigs were undergoing adenosine stress tests. The CT enhancement ratio and the CT attenuation ratio were calculated using data from the CT images obtained. RESULTS Results suggested that the CT enhancement ratio had a strong correlation (y = 0.07245 + 0.09963x; r2 = 0.898; p < 0.001) with the MBF ratio measured using the microsphere technique, whereas only moderate correlation (y = -1.5508 + 2.2684x; r2 = 0.498; p < 0.001) was noted between the CT attenuation ratio and the MBF ratio measured using the microsphere technique. In ROC curve analysis, the AUC values of the CT enhancement ratio and the CT attenuation ratio were 0.927 and 0.829, respectively, with regard to the detection of significant ischemia during adenosine stress tests, as defined by the fractional flow reserve. CONCLUSION The CT enhancement ratio provides a reliable prediction of the MBF ratio measured using the microsphere technique, indicating that this metric has good diagnostic performance in the detection of hemodynamically significant coronary artery stenosis. The CT enhancement ratio may have potential for use as an imaging biomarker for the relative quantitative assessment of myocardial perfusion.
Collapse
|
30
|
Rossi A, Wragg A, Klotz E, Pirro F, Moon JC, Nieman K, Pugliese F. Dynamic Computed Tomography Myocardial Perfusion Imaging: Comparison of Clinical Analysis Methods for the Detection of Vessel-Specific Ischemia. Circ Cardiovasc Imaging 2017; 10:CIRCIMAGING.116.005505. [PMID: 28389506 DOI: 10.1161/circimaging.116.005505] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 02/03/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND The clinical analysis of myocardial dynamic computed tomography myocardial perfusion imaging lacks standardization. The objective of this prospective study was to compare different analysis approaches to diagnose ischemia in patients with stable angina referred for invasive coronary angiography. METHODS AND RESULTS Patients referred for evaluation of stable angina symptoms underwent adenosine-stress dynamic computed tomography myocardial perfusion imaging with a second-generation dual-source scanner. Quantitative perfusion parameters, such as blood flow, were calculated by parametric deconvolution for each myocardial voxel. Initially, perfusion parameters were extracted according to standard 17-segment model of the left ventricle (fully automatic analysis). These were then manually sampled by an operator (semiautomatic analysis). Areas under the receiver-operating characteristic curves of the 2 different approaches were compared. Invasive fractional flow reserve ≤0.80 or diameter stenosis ≥80% on quantitative coronary angiography was used as reference standard to define ischemia. We enrolled 115 patients (88 men; age 57±9 years). There were 72 of 286 (25%) vessels causing ischemia in 52 of 115 (45%) patients. The semiautomatic analysis method was better than the fully automatic method at predicting ischemia (areas under the receiver-operating characteristic curves, 0.87 versus 0.69; P<0.001) with readings obtained in the endocardial myocardium performing better than those in the epicardial myocardium (areas under the receiver-operating characteristic curves, 0.87 versus 0.72; P<0.001). The difference in performance between blood flow, expressed as relative to remote myocardium, and absolute blood flow was not statistically significant (areas under the receiver-operating characteristic curves, 0.90 versus 0.87; P=ns). CONCLUSIONS Endocardial perfusion parameters obtained by semiautomatic analysis of dynamic computed tomography myocardial perfusion imaging may permit robust discrimination between coronary vessels causing ischemia versus not causing ischemia.
Collapse
Affiliation(s)
- Alexia Rossi
- From the Centre for Advanced Cardiovascular Imaging, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom and Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom (A.R., A.W., F. Pirro, F. Pugliese); Siemens Healthineers, Forchheim, Germany (E.K.); Institute of Cardiovascular Science, University College London, United Kingdom (J.C.M.); and Departments of Cardiology and Radiology, Erasmus MC University Medical Centre Rotterdam, The Netherlands (K.N.)
| | - Andrew Wragg
- From the Centre for Advanced Cardiovascular Imaging, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom and Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom (A.R., A.W., F. Pirro, F. Pugliese); Siemens Healthineers, Forchheim, Germany (E.K.); Institute of Cardiovascular Science, University College London, United Kingdom (J.C.M.); and Departments of Cardiology and Radiology, Erasmus MC University Medical Centre Rotterdam, The Netherlands (K.N.)
| | - Ernst Klotz
- From the Centre for Advanced Cardiovascular Imaging, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom and Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom (A.R., A.W., F. Pirro, F. Pugliese); Siemens Healthineers, Forchheim, Germany (E.K.); Institute of Cardiovascular Science, University College London, United Kingdom (J.C.M.); and Departments of Cardiology and Radiology, Erasmus MC University Medical Centre Rotterdam, The Netherlands (K.N.)
| | - Federica Pirro
- From the Centre for Advanced Cardiovascular Imaging, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom and Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom (A.R., A.W., F. Pirro, F. Pugliese); Siemens Healthineers, Forchheim, Germany (E.K.); Institute of Cardiovascular Science, University College London, United Kingdom (J.C.M.); and Departments of Cardiology and Radiology, Erasmus MC University Medical Centre Rotterdam, The Netherlands (K.N.)
| | - James C Moon
- From the Centre for Advanced Cardiovascular Imaging, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom and Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom (A.R., A.W., F. Pirro, F. Pugliese); Siemens Healthineers, Forchheim, Germany (E.K.); Institute of Cardiovascular Science, University College London, United Kingdom (J.C.M.); and Departments of Cardiology and Radiology, Erasmus MC University Medical Centre Rotterdam, The Netherlands (K.N.)
| | - Koen Nieman
- From the Centre for Advanced Cardiovascular Imaging, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom and Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom (A.R., A.W., F. Pirro, F. Pugliese); Siemens Healthineers, Forchheim, Germany (E.K.); Institute of Cardiovascular Science, University College London, United Kingdom (J.C.M.); and Departments of Cardiology and Radiology, Erasmus MC University Medical Centre Rotterdam, The Netherlands (K.N.)
| | - Francesca Pugliese
- From the Centre for Advanced Cardiovascular Imaging, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom and Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom (A.R., A.W., F. Pirro, F. Pugliese); Siemens Healthineers, Forchheim, Germany (E.K.); Institute of Cardiovascular Science, University College London, United Kingdom (J.C.M.); and Departments of Cardiology and Radiology, Erasmus MC University Medical Centre Rotterdam, The Netherlands (K.N.).
| |
Collapse
|
31
|
Cademartiri F, Seitun S, Clemente A, La Grutta L, Toia P, Runza G, Midiri M, Maffei E. Myocardial blood flow quantification for evaluation of coronary artery disease by computed tomography. Cardiovasc Diagn Ther 2017; 7:129-150. [PMID: 28540209 DOI: 10.21037/cdt.2017.03.22] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
During the last decade coronary computed tomography angiography (CTA) has become the preeminent non-invasive imaging modality to detect coronary artery disease (CAD) with high accuracy. However, CTA has a limited value in assessing the hemodynamic significance of a given stenosis due to a modest specificity and positive predictive value. In recent years, different CT techniques for detecting myocardial ischemia have emerged, such as CT-derived fractional flow reserve (FFR-CT), transluminal attenuation gradient (TAG), and myocardial CT perfusion (CTP) imaging. Myocardial CTP imaging can be performed with a single static scan during first pass of the contrast agent, with monoenergetic or dual-energy acquisition, or as a dynamic, time-resolved scan during stress by using coronary vasodilator agents (adenosine, dipyridamole, or regadenoson). A number of CTP techniques are available, which can assess myocardial perfusion in both a qualitative, semi-quantitative or quantitative manner. Once used primarily as research tools, these modalities are increasingly being used in routine clinical practice. All these techniques offer the substantial advantage of combining anatomical and functional evaluation of flow-limiting coronary stenosis in the same examination that would be beneficial for clinical decision-making. This review focuses on the state-of the-art and future trends of these evolving imaging modalities in the field of cardiology for the physiologic assessments of CAD.
Collapse
Affiliation(s)
- Filippo Cademartiri
- Department of Radiology, Montreal Heart Institute, Université de Montreal, Montreal, Canada.,Department of Radiology, Erasmus Medical Center University, Rotterdam, The Netherlands
| | - Sara Seitun
- Department of Radiology, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Alberto Clemente
- Department of Radiology, Fondazione Toscana Gabriele Monasterio, Pisa and Massa, Italy
| | | | - Patrizia Toia
- Department of Radiology, University of Palermo, Palermo, Italy
| | - Giuseppe Runza
- Department of Radiology, P.O. Umberto I, Azienda Sanitaria Provinciale 8, Siracusa, Italy
| | - Massimo Midiri
- Department of Radiology, University of Palermo, Palermo, Italy
| | - Erica Maffei
- Department of Radiology, Montreal Heart Institute, Université de Montreal, Montreal, Canada
| |
Collapse
|
32
|
Pelgrim GJ, Duguay TM, Stijnen JMA, Varga-Szemes A, Van Tuijl S, Schoepf UJ, Oudkerk M, Vliegenthart R. Analysis of myocardial perfusion parameters in an ex-vivo porcine heart model using third generation dual-source CT. J Cardiovasc Comput Tomogr 2017; 11:141-147. [PMID: 28202246 DOI: 10.1016/j.jcct.2017.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/29/2017] [Indexed: 10/20/2022]
Abstract
PURPOSE To evaluate the relationship between fractional flow reserve (FFR)-determined coronary artery stenosis severity and myocardial perfusion parameters derived from dynamic myocardial CT perfusion imaging (CTP) in an ex-vivo porcine heart model. METHODS Six porcine hearts were perfused according to Langendorff. Circulatory parameters such as arterial blood flow (ABF) (L/min), mean arterial pressure (MAP) (mmHg) and heart rate (bpm) were monitored. Using an inflatable cuff and monitored via a pressure wire, coronary artery stenoses of different FFR grades were created (no stenosis, FFR = 0.80, FFR = 0.70, FFR = 0.60, and FFR = 0.50). Third generation dual-source CT was used to perform dynamic CTP in shuttle mode at 70 kV. Using the AHA-16-segment model, myocardial blood flow (MBF) (mL/100 mL/min) and volume (MBV) (mL/100 mL) were analyzed using dedicated software for all ischaemic and non-ischaemic segments. RESULTS During five successful experiments, ABF ranged from 0.8 to 1.2 L/min, MAP from 73 to 90 mmHg and heart rate from 83 to 115 bpm. Non-ischaemic and ischaemic segments showed significant differences in MBF for stenosis grades of FFR ≤ 0.70. At this degree of obstruction, median MBF was 79 (interquartile range [IQR]: 66-90) for non-ischaemic segments versus 56 mL/100 mL/min (IQR: 46-73) for ischaemic segments (p < 0.05). For MBV, a significant difference was found at FFR ≤ 0.80 with median MBV values of 7.6 (IQR: 7.0-8.3) and 7.1 mL/100 mL (IQR: 6.0-8.2) for non-ischaemic and ischaemic myocardial segments, respectively (p < 0.05). CONCLUSION Artificial flow alterations in a Langendorff porcine heart model could be detected and measured by CTP-derived myocardial perfusion parameters and showed significant systematic correlation with stepwise flow reduction that permitted early detection of ischaemic myocardium. Additional research in clinical setting is required to develop absolute quantitative CTP.
Collapse
Affiliation(s)
- Gert Jan Pelgrim
- University of Groningen, University Medical Center Groningen, Center for Medical Imaging - North East Netherlands, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Taylor M Duguay
- Medical University of South Carolina, Department of Radiology, 25 Courtenay Drive, 29425 SC, Charleston, SC, USA
| | - J Marco A Stijnen
- LifeTec Group BV, Kennedyplein 10-11, 5611 ZS, Eindhoven, The Netherlands
| | - Akos Varga-Szemes
- Medical University of South Carolina, Department of Radiology, 25 Courtenay Drive, 29425 SC, Charleston, SC, USA
| | - Sjoerd Van Tuijl
- LifeTec Group BV, Kennedyplein 10-11, 5611 ZS, Eindhoven, The Netherlands
| | - U Joseph Schoepf
- Medical University of South Carolina, Department of Radiology, 25 Courtenay Drive, 29425 SC, Charleston, SC, USA
| | - Matthijs Oudkerk
- University of Groningen, University Medical Center Groningen, Center for Medical Imaging - North East Netherlands, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Rozemarijn Vliegenthart
- University of Groningen, University Medical Center Groningen, Center for Medical Imaging - North East Netherlands, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, Department of Radiology, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
33
|
Tanabe Y, Kido T, Kurata A, Uetani T, Fukuyama N, Yokoi T, Nishiyama H, Kido T, Miyagawa M, Mochizuki T. Optimal Scan Time for Single-Phase Myocardial Computed Tomography Perfusion to Detect Myocardial Ischemia - Derivation Cohort From Dynamic Myocardial Computed Tomography Perfusion. Circ J 2016; 80:2506-2512. [PMID: 27795485 DOI: 10.1253/circj.cj-16-0834] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Single-phase myocardial computed tomography perfusion (CTP) is useful for detecting myocardial ischemia, but determining the optimal scan time is difficult. The present study evaluated this by analyzing dynamic CTP data.Methods and Results:We retrospectively selected 32 patients, all of whom had undergone stress dynamic CTP and magnetic resonance myocardial perfusion imaging (MR-MPI). Myocardial ischemia was assessed by MR-MPI using the 16-segment model. Whole-heart dynamic CTP data were acquired for 30 consecutive heartbeats without spatial or temporal gaps using a wide-detector CT, and redistributed into 11 series of single-phase CTP acquired from -2 s to 8 s from the time of maximal enhancement (Tmax) in the ascending aorta. Single-phase CTP images were visually assessed at the segment level, and diagnostic performance of single-phase CTP images for detecting myocardial ischemia was compared with dynamic CTP. Of 512 segments, 177 segments (35%) were diagnosed as ischemic by MR-MPI. The diagnostic accuracy of single-phase CTP acquired at 2-6 s from Tmax in the ascending aorta (median 86%, range 84-87%) was comparable to that of dynamic CTP. CONCLUSIONS The optimal scan time for detecting myocardial ischemia with single-phase CTP was at 2-6 s from Tmax in the ascending aorta. (Circ J 2016; 80: 2506-2512).
Collapse
Affiliation(s)
- Yuki Tanabe
- Department of Radiology, Ehime University Graduate School of Medicine
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gonçalves PDA, Rodríguez-Granillo GA, Spitzer E, Suwannasom P, Loewe C, Nieman K, Garcia-Garcia HM. Functional Evaluation of Coronary Disease by CT Angiography. JACC Cardiovasc Imaging 2016; 8:1322-35. [PMID: 26563862 DOI: 10.1016/j.jcmg.2015.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 08/30/2015] [Accepted: 09/03/2015] [Indexed: 12/24/2022]
Abstract
In recent years, several technical developments in the field of cardiac computed tomography (CT) have made possible the extraction of functional information from an anatomy-based examination. Several different lines have been explored and will be reviewed in the present paper, namely: 1) myocardial perfusion imaging; 2) transluminal attenuation gradients and corrected coronary opacification indexes; 3) fractional flow reserve computed from CT; and 4) extrapolation from atherosclerotic plaque characteristics. In view of these developments, cardiac CT has the potential to become in the near future a truly 2-in-1 noninvasive evaluation for coronary artery disease.
Collapse
Affiliation(s)
| | - Gastón A Rodríguez-Granillo
- Department of Cardiovascular Imaging, Diagnostico Maipu, and Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Buenos Aires, Argentina
| | | | | | - Christian Loewe
- Section of Cardiovascular and Interventional Radiology, Department of Bioimaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Koen Nieman
- Departments of Cardiology and Radiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Hector M Garcia-Garcia
- Cardialysis B.V., Rotterdam, the Netherlands; Thoraxcenter, Erasmus Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
35
|
Caruso D, Eid M, Schoepf UJ, Jin KN, Varga-Szemes A, Tesche C, Mangold S, Spandorfer A, Laghi A, De Cecco CN. Dynamic CT myocardial perfusion imaging. Eur J Radiol 2016; 85:1893-1899. [PMID: 27510361 DOI: 10.1016/j.ejrad.2016.07.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/21/2016] [Accepted: 07/24/2016] [Indexed: 10/21/2022]
Abstract
Non-invasive cardiac imaging has rapidly evolved during the last decade due to advancements in CT based technologies. Coronary CT angiography has been shown to reliably assess coronary anatomy and detect high risk coronary artery disease. However, this technique is limited to anatomical assessment, thus non-invasive techniques for functional assessment of the heart are necessary. CT myocardial perfusion is a new CT based technique that provides functional assessment of the myocardium and allows for a comprehensive assessment of coronary artery disease with a single modality when combined with CTA. This review aims to discuss dynamic CT myocardial perfusion as a new technique in the assessment of CAD.
Collapse
Affiliation(s)
- Damiano Caruso
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, United States; Department of Radiological Sciences, Oncological and Pathological Sciences, University of Rome "Sapienza", Latina, Italy
| | - Marwen Eid
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, United States
| | - U Joseph Schoepf
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, United States; Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States.
| | - Kwang Nam Jin
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, United States; Department of Radiology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Akos Varga-Szemes
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, United States
| | - Christian Tesche
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, United States; Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Munich, Germany
| | - Stefanie Mangold
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, United States; Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Adam Spandorfer
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, United States
| | - Andrea Laghi
- Department of Radiological Sciences, Oncological and Pathological Sciences, University of Rome "Sapienza", Latina, Italy
| | - Carlo N De Cecco
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
36
|
Bindschadler M, Modgil D, Branch KR, La Riviere PJ, Alessio AM. Evaluation of static and dynamic perfusion cardiac computed tomography for quantitation and classification tasks. J Med Imaging (Bellingham) 2016; 3:024001. [PMID: 27175377 DOI: 10.1117/1.jmi.3.2.024001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 03/24/2016] [Indexed: 11/14/2022] Open
Abstract
Cardiac computed tomography (CT) acquisitions for perfusion assessment can be performed in a dynamic or static mode. Either method may be used for a variety of clinical tasks, including (1) stratifying patients into categories of ischemia and (2) using a quantitative myocardial blood flow (MBF) estimate to evaluate disease severity. In this simulation study, we compare method performance on these classification and quantification tasks for matched radiation dose levels and for different flow states, patient sizes, and injected contrast levels. Under conditions simulated, the dynamic method has low bias in MBF estimates (0 to [Formula: see text]) compared to linearly interpreted static assessment (0.45 to [Formula: see text]), making it more suitable for quantitative estimation. At matched radiation dose levels, receiver operating characteristic analysis demonstrated that the static method, with its high bias but generally lower variance, had superior performance ([Formula: see text]) in stratifying patients, especially for larger patients and lower contrast doses [area under the curve [Formula: see text] to 96 versus 0.86]. We also demonstrate that static assessment with a correctly tuned exponential relationship between the apparent CT number and MBF has superior quantification performance to static assessment with a linear relationship and to dynamic assessment. However, tuning the exponential relationship to the patient and scan characteristics will likely prove challenging. This study demonstrates that the selection and optimization of static or dynamic acquisition modes should depend on the specific clinical task.
Collapse
Affiliation(s)
- Michael Bindschadler
- University of Washington , Department of Radiology, Seattle, Washington 98195, United States
| | - Dimple Modgil
- The University of Chicago , Department of Radiology, Chicago, Illinois 60637, United States
| | - Kelley R Branch
- University of Washington , Department of Radiology, Seattle, Washington 98195, United States
| | - Patrick J La Riviere
- The University of Chicago , Department of Radiology, Chicago, Illinois 60637, United States
| | - Adam M Alessio
- University of Washington , Department of Radiology, Seattle, Washington 98195, United States
| |
Collapse
|
37
|
Melero-Ferrer JL, López-Vilella R, Morillas-Climent H, Sanz-Sánchez J, Sánchez-Lázaro IJ, Almenar-Bonet L, Martínez-Dolz L. Novel Imaging Techniques for Heart Failure. Card Fail Rev 2016; 2:27-34. [PMID: 28875038 DOI: 10.15420/cfr.2015:29:2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Imaging techniques play a main role in heart failure (HF) diagnosis, assessment of aetiology and treatment guidance. Echocardiography is the method of choice for its availability, cost and it provides most of the information required for the management and follow up of HF patients. Other non-invasive cardiac imaging modalities, such as cardiovascular magnetic resonance (CMR), nuclear imaging-positron emission tomography (PET) and single-photon emission computed tomography (SPECT) and computed tomography (CT) could provide additional aetiological, prognostic and therapeutic information, especially in selected populations. This article reviews current indications and possible future applications of imaging modalities to improve the management of HF patients.
Collapse
Affiliation(s)
- Josep L Melero-Ferrer
- Advanced Heart Failure and Heart Transplantation Unit, Cardiology Department, Hospital Universitari i Politècnic La Fe,Valencia, Spain
| | - Raquel López-Vilella
- Advanced Heart Failure and Heart Transplantation Unit, Cardiology Department, Hospital Universitari i Politècnic La Fe,Valencia, Spain
| | - Herminio Morillas-Climent
- Advanced Heart Failure and Heart Transplantation Unit, Cardiology Department, Hospital Universitari i Politècnic La Fe,Valencia, Spain
| | - Jorge Sanz-Sánchez
- Advanced Heart Failure and Heart Transplantation Unit, Cardiology Department, Hospital Universitari i Politècnic La Fe,Valencia, Spain
| | - Ignacio J Sánchez-Lázaro
- Advanced Heart Failure and Heart Transplantation Unit, Cardiology Department, Hospital Universitari i Politècnic La Fe,Valencia, Spain
| | - Luis Almenar-Bonet
- Advanced Heart Failure and Heart Transplantation Unit, Cardiology Department, Hospital Universitari i Politècnic La Fe,Valencia, Spain
| | - Luis Martínez-Dolz
- Advanced Heart Failure and Heart Transplantation Unit, Cardiology Department, Hospital Universitari i Politècnic La Fe,Valencia, Spain
| |
Collapse
|
38
|
Técnica de imagen de perfusión miocárdica con tomografía computarizada de estrés: un nuevo tema en cardiología. Rev Esp Cardiol 2016. [DOI: 10.1016/j.recesp.2015.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Stress Computed Tomography Myocardial Perfusion Imaging: A New Topic in Cardiology. ACTA ACUST UNITED AC 2016; 69:188-200. [PMID: 26774540 DOI: 10.1016/j.rec.2015.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 10/21/2015] [Indexed: 02/07/2023]
Abstract
Since its introduction about 15 years ago, coronary computed tomography angiography has become today the most accurate clinical instrument for noninvasive assessment of coronary atherosclerosis. Important technical developments have led to a continuous stream of new clinical applications together with a significant reduction in radiation dose exposure. Latest generation computed tomography scanners (≥ 64 slices) allow the possibility of performing static or dynamic perfusion imaging during stress by using coronary vasodilator agents (adenosine, dipyridamole, or regadenoson), combining both functional and anatomical information in the same examination. In this article, the emerging role and state-of-the-art of myocardial computed tomography perfusion imaging are reviewed and are illustrated by clinical cases from our experience with a second-generation dual-source 128-slice scanner (Somatom Definition Flash, Siemens; Erlangen, Germany). Technical aspects, data analysis, diagnostic accuracy, radiation dose and future prospects are reviewed.
Collapse
|
40
|
The dream of a one-stop-shop: Meta-analysis on myocardial perfusion CT. Eur J Radiol 2015; 84:2411-20. [DOI: 10.1016/j.ejrad.2014.12.032] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/21/2014] [Accepted: 12/31/2014] [Indexed: 11/19/2022]
|
41
|
Computed tomography segmental calcium score (SCS) to predict stenosis severity of calcified coronary lesions. Int J Cardiovasc Imaging 2015; 31:1663-75. [DOI: 10.1007/s10554-015-0750-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/29/2015] [Indexed: 11/26/2022]
|
42
|
Ziemer BP, Hubbard L, Lipinski J, Molloi S. Dynamic CT perfusion measurement in a cardiac phantom. Int J Cardiovasc Imaging 2015; 31:1451-9. [PMID: 26156231 DOI: 10.1007/s10554-015-0700-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 07/01/2015] [Indexed: 12/22/2022]
Abstract
Widespread clinical implementation of dynamic CT myocardial perfusion has been hampered by its limited accuracy and high radiation dose. The purpose of this study was to evaluate the accuracy and radiation dose reduction of a dynamic CT myocardial perfusion technique based on first pass analysis (FPA). To test the FPA technique, a pulsatile pump was used to generate known perfusion rates in a range of 0.96-2.49 mL/min/g. All the known perfusion rates were determined using an ultrasonic flow probe and the known mass of the perfusion volume. FPA and maximum slope model (MSM) perfusion rates were measured using volume scans acquired from a 320-slice CT scanner, and then compared to the known perfusion rates. The measured perfusion using FPA (P(FPA)), with two volume scans, and the maximum slope model (P(MSM)) were related to known perfusion (P(K)) by P(FPA) = 0.91P(K) + 0.06 (r = 0.98) and P(MSM) = 0.25P(K) - 0.02 (r = 0.96), respectively. The standard error of estimate for the FPA technique, using two volume scans, and the MSM was 0.14 and 0.30 mL/min/g, respectively. The estimated radiation dose required for the FPA technique with two volume scans and the MSM was 2.6 and 11.7-17.5 mSv, respectively. Therefore, the FPA technique can yield accurate perfusion measurements using as few as two volume scans, corresponding to approximately a factor of four reductions in radiation dose as compared with the currently available MSM. In conclusion, the results of the study indicate that the FPA technique can make accurate dynamic CT perfusion measurements over a range of clinically relevant perfusion rates, while substantially reducing radiation dose, as compared to currently available dynamic CT perfusion techniques.
Collapse
Affiliation(s)
- Benjamin P Ziemer
- Department of Radiological Sciences, Medical Sciences I, B-140, University of California, Irvine, CA, 92697, USA
| | - Logan Hubbard
- Department of Radiological Sciences, Medical Sciences I, B-140, University of California, Irvine, CA, 92697, USA
| | - Jerry Lipinski
- Department of Radiological Sciences, Medical Sciences I, B-140, University of California, Irvine, CA, 92697, USA
| | - Sabee Molloi
- Department of Radiological Sciences, Medical Sciences I, B-140, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
43
|
Regadenoson-Stress Dynamic Myocardial Perfusion Improves Diagnostic Performance of CT Angiography in Assessment of Intermediate Coronary Artery Stenosis in Asymptomatic Patients. BIOMED RESEARCH INTERNATIONAL 2015; 2015:105629. [PMID: 26236712 PMCID: PMC4506745 DOI: 10.1155/2015/105629] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/16/2015] [Accepted: 06/22/2015] [Indexed: 11/21/2022]
Abstract
The prospective study included 54 asymptomatic high-risk patients who underwent coronary CT angiography (CTA) and regadenoson-induced stress CT perfusion (rsCTP). Diagnostic accuracy of significant stenosis (≥50%) determination was evaluated for CTA alone and CTA + rsCTP in 27 patients referred to ICA due to the positive rsCTP findings. Combined evaluation of CTA + rsCTP had higher diagnostic accuracy over CTA alone (per-segment: specificity 96 versus 68%, p = 0.002; per-vessel: specificity 95 versus 75%, p = 0.012) and high overruling rate of rsCTP was proved in intermediate stenosis (40–70%). Results demonstrate a significant additional value of rsCTP in the assessment of intermediate coronary artery stenosis found with CTA.
Collapse
|
44
|
Development of an Ex Vivo, Beating Heart Model for CT Myocardial Perfusion. BIOMED RESEARCH INTERNATIONAL 2015; 2015:412716. [PMID: 26185756 PMCID: PMC4491382 DOI: 10.1155/2015/412716] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/23/2014] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To test the feasibility of a CT-compatible, ex vivo, perfused porcine heart model for myocardial perfusion CT imaging. METHODS One porcine heart was perfused according to Langendorff. Dynamic perfusion scanning was performed with a second-generation dual source CT scanner. Circulatory parameters like blood flow, aortic pressure, and heart rate were monitored throughout the experiment. Stenosis was induced in the circumflex artery, controlled by a fractional flow reserve (FFR) pressure wire. CT-derived myocardial perfusion parameters were analysed at FFR of 1 to 0.10/0.0. RESULTS CT images did not show major artefacts due to interference of the model setup. The pacemaker-induced heart rhythm was generally stable at 70 beats per minute. During most of the experiment, blood flow was 0.9-1.0 L/min, and arterial pressure varied between 80 and 95 mm/Hg. Blood flow decreased and arterial pressure increased by approximately 10% after inducing a stenosis with FFR ≤ 0.50. Dynamic perfusion scanning was possible across the range of stenosis grades. Perfusion parameters of circumflex-perfused myocardial segments were affected at increasing stenosis grades. CONCLUSION An adapted Langendorff porcine heart model is feasible in a CT environment. This model provides control over physiological parameters and may allow in-depth validation of quantitative CT perfusion techniques.
Collapse
|
45
|
Park JB, Koo BK. Noninvasive hemodynamic assessment using coronary computed tomography angiography: the present and future. Interv Cardiol 2015. [DOI: 10.2217/ica.14.65] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
46
|
Myocardial blood flow quantification for evaluation of coronary artery disease by positron emission tomography, cardiac magnetic resonance imaging, and computed tomography. Curr Cardiol Rep 2014; 16:483. [PMID: 24718671 DOI: 10.1007/s11886-014-0483-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The noninvasive detection of the presence and functional significance of coronary artery stenosis is important in the diagnosis, risk assessment, and management of patients with known or suspected coronary artery disease. Quantitative assessment of myocardial perfusion can provide an objective and reproducible estimate of myocardial ischemia and risk prediction. Positron emission tomography, cardiac magnetic resonance, and cardiac computed tomography perfusion are modalities capable of measuring myocardial blood flow and coronary flow reserve. In this review, we will discuss the technical aspects of quantitative myocardial perfusion imaging with positron emission tomography, cardiac magnetic resonance imaging, and computed tomography, and its emerging clinical applications.
Collapse
|
47
|
Relative Myocardial Blood Flow by Dynamic Computed Tomographic Perfusion Imaging Predicts Hemodynamic Significance of Coronary Stenosis Better Than Absolute Blood Flow. Invest Radiol 2014; 49:801-7. [DOI: 10.1097/rli.0000000000000087] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
48
|
Ohira H, Dowsley T, Dwivedi G, deKemp RA, Chow BJ, Ruddy TD, Davies RA, DaSilva J, Beanlands RSB, Hessian R. Quantification of myocardial blood flow using PET to improve the management of patients with stable ischemic coronary artery disease. Future Cardiol 2014; 10:611-31. [DOI: 10.2217/fca.14.44] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
ABSTRACT Cardiac PET has been evolving over the past 30 years. Today, it is accepted as a valuable imaging modality for the noninvasive assessment of coronary artery disease. PET has demonstrated superior diagnostic accuracy for the detection of coronary artery disease compared with single-photon emission computed tomography, and also has a well-established prognostic value. The routine addition of absolute quantification of myocardial blood flow increases the diagnostic accuracy for three-vessel disease and provides incremental functional and prognostic information. Moreover, the characterization of the vasodilator capacity of the coronary circulation may guide proper decision-making and monitor the effects of lifestyle changes, exercise training, risk factor modification or medical therapy for improving regional and global myocardial blood flow. This type of image-guided approach to individualized patient therapy is now attainable with the routine use of cardiac PET flow reserve imaging.
Collapse
Affiliation(s)
- Hiroshi Ohira
- MFI program, National Cardiac PET Center, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Taylor Dowsley
- MFI program, National Cardiac PET Center, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Girish Dwivedi
- MFI program, National Cardiac PET Center, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Robert A deKemp
- MFI program, National Cardiac PET Center, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Benjamin J Chow
- MFI program, National Cardiac PET Center, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Terrence D Ruddy
- MFI program, National Cardiac PET Center, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Ross A Davies
- MFI program, National Cardiac PET Center, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Jean DaSilva
- MFI program, National Cardiac PET Center, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Rob SB Beanlands
- MFI program, National Cardiac PET Center, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Renee Hessian
- MFI program, National Cardiac PET Center, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
| |
Collapse
|
49
|
Abstract
Cardiac multimodality (hybrid) imaging can be obtained from a variety of techniques, such as nuclear medicine with single photon emission computed tomography (SPECT) and positron emission tomography (PET), or radiology with multislice computed tomography (CT), magnetic resonance (MR) and echography. They are typically combined in a side-by-side or fusion mode in order to provide functional and morphological data to better characterise coronary artery disease, with more proven efficacy than when used separately. The gained information is then used to guide revascularisation procedures. We present an up-to-date comprehensive overview of multimodality imaging already in clinical use, as well as a combination of techniques with promising or developing applications.
Collapse
|
50
|
Edvardsen T, Plein S, Saraste A, Pierard LA, Knuuti J, Maurer G, Lancellotti P. The year 2013 in the European Heart Journal - Cardiovascular Imaging. Part I. Eur Heart J Cardiovasc Imaging 2014; 15:730-5. [DOI: 10.1093/ehjci/jeu094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|