1
|
Law M, Sachdeva R, Darrow D, Krassioukov A. Cardiovascular Effects of Spinal Cord Stimulation: The Highs, the Lows, and the Don't Knows. Neuromodulation 2024; 27:1164-1176. [PMID: 37665302 DOI: 10.1016/j.neurom.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND AND OBJECTIVES There are many potential etiologies of impaired cardiovascular control, from chronic stress to neurodegenerative conditions or central nervous system lesions. Since 1959, spinal cord stimulation (SCS) has been reported to modulate blood pressure (BP), heart rate (HR), and HR variability (HRV), yet the specific stimulation sites and parameters to induce a targeted cardiovascular (CV) change for mitigating abnormal hemodynamics remain unclear. To investigate the ability and parameters of SCS to modulate the CV, we reviewed clinical studies using SCS with reported HR, BP, or HRV findings. MATERIALS AND METHODS A keyword-based electronic search was conducted through MEDLINE, Embase, and PubMed data bases, last searched on February 3, 2023. Inclusion criteria were studies with human participants receiving SCS with comparison with SCS turned off, with reporting of either HR, HRV, or BP findings. Non-English studies, conference abstracts, and studies not reporting standalone effects of SCS when comparing SCS with non-SCS interventions were excluded. Results were plotted for visual analysis. When available, participant-specific stimulation parameters and effects were extracted and quantitatively analyzed using ordinary least squares regression. RESULTS A total of 59 studies were included in this review; 51 studies delivered SCS invasively through implanted/percutaneous leads. Eight studies used noninvasive, transcutaneous electrodes. We found numerous reports of cervical, high thoracic, and mid-to-low thoracolumbar SCS increasing resting BP, and cervical/mid-to-low thoracolumbar SCS decreasing BP. The effect of SCS location on HR and HRV was equivocal. We were unable to analyze stimulation parameters owing to inadequate parameter reporting in many publications. CONCLUSIONS Our findings suggest CV neuromodulation, particularly BP modulation, with SCS to be a promising frontier. Further research with larger randomized controlled trials and detailed reporting of SCS parameters will be necessary for appropriate evaluation of SCS as a CV therapy.
Collapse
Affiliation(s)
- Marco Law
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Rahul Sachdeva
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - David Darrow
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA; Division of Neurosurgery, Hennepin County Medical Center, Minneapolis, MN, USA
| | - Andrei Krassioukov
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Medicine, University of British Columbia, Vancouver, BC, Canada; G.F. Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, BC, Canada
| |
Collapse
|
2
|
Spinal Cord Stimulation Attenuates Neural Remodeling, Inflammation, and Fibrosis After Myocardial Infarction. Neuromodulation 2023; 26:57-67. [PMID: 35088742 DOI: 10.1016/j.neurom.2021.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/22/2020] [Accepted: 09/28/2021] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Spinal cord stimulation (SCS) is an established neuromodulation method that regulates the cardiac autonomic system. However, the biological mechanisms of the therapeutic effects of SCS after myocardial infarction (MI) remain unclear. MATERIALS AND METHODS Twenty-five rabbits were divided into five groups: SCS-MI (voltage: 0.5 v; pulse width: 0.2 ms; 50 Hz; ten minutes on and 30 minutes off; two weeks; n = 5), MI (n = 5), sham SCS-MI (voltage: 0 v; two weeks; n = 5), sham MI (n = 5), and blank control (n = 5) groups. MI was induced by permanent left anterior descending artery ligation. SCS-MI and sham SCS-MI rabbits received the corresponding interventions 24 hours after MI. Autonomic remodeling was evaluated using enzyme-linked immunosorbent assay and immunohistochemistry. Inflammation and myocardial fibrosis were assessed using immunohistochemistry, quantitative polymerase chain reaction, hematoxylin and eosin staining, Masson staining, and Western blot. RESULTS SCS improved the abnormal systemic autonomic activity. Cardiac norepinephrine decreased after MI (p < 0.01) and did not improve with SCS. Cardiac acetylcholine increased with SCS compared with the MI group (p < 0.05). However, no difference was observed between the MI and blank control groups. Growth-associated protein 43 (p < 0.001) and tyrosine hydroxylase (p < 0.001) increased whereas choline acetyltransferase (p < 0.05) decreased in the MI group compared with the blank control group. These changes were attenuated with SCS. SCS inhibited inflammation, decreased the ratio of phosphorylated-Erk to Erk (p < 0.001), and increased the ratio of phosphorylated-STAT3 to STAT3 (p < 0.001) compared with the MI group. Myocardial fibrosis was also attenuated by SCS. CONCLUSIONS SCS improved abnormal autonomic activity after MI, leading to reduced inflammation, reactivation of STAT3, and inhibition of Erk. Additionally, SCS attenuated myocardial fibrosis. Our results warrant future studies of biological mechanisms of the therapeutic effects of SCS after MI.
Collapse
|
3
|
Vervaat FE, van der Gaag A, Teeuwen K, van Suijlekom H, Wijnbergen I. Neuromodulation in patients with refractory angina pectoris: a review. EUROPEAN HEART JOURNAL OPEN 2022; 3:oeac083. [PMID: 36632476 PMCID: PMC9825802 DOI: 10.1093/ehjopen/oeac083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
The number of patients with coronary artery disease (CAD) who have persisting angina pectoris despite optimal medical treatment known as refractory angina pectoris (RAP) is growing. Current estimates indicate that 5-10% of patients with stable CAD have RAP. In absolute numbers, there are 50 000-100 000 new cases of RAP each year in the USA and 30 000-50 000 new cases each year in Europe. The term RAP was formulated in 2002. RAP is defined as a chronic disease (more than 3 months) characterized by diffuse CAD in the presence of proven ischaemia which is not amendable to a combination of medical therapy, angioplasty, or coronary bypass surgery. There are currently few treatment options for patients with RAP. One such last-resort treatment option is spinal cord stimulation (SCS) with a Class of recommendation IIB, level of evidence B in the 2019 European Society of Cardiology guidelines for the diagnosis and management of chronic coronary syndromes. The aim of this review is to give an overview of neuromodulation as treatment modality for patients with RAP. A comprehensive overview is given on the history, proposed mechanism of action, safety, efficacy, and current use of SCS.
Collapse
Affiliation(s)
| | - Antal van der Gaag
- Department of Anaesthesiology, Catharina Hospital, Eindhoven, the Netherlands
| | - Koen Teeuwen
- Department of Cardiology, Catharina Hospital, Michelangelolaan 2, 5623 EJ Eindhoven, the Netherlands
| | - Hans van Suijlekom
- Department of Anaesthesiology, Catharina Hospital, Eindhoven, the Netherlands
| | | |
Collapse
|
4
|
Wang J, Wu XC, Zhang MM, Ren JH, Sun Y, Liu JZ, Wu XQ, He SY, Li YQ, Zhang JB. Spinal cord stimulation reduces cardiac pain through microglial deactivation in rats with chronic myocardial ischemia. Mol Med Rep 2021; 24:835. [PMID: 34608504 PMCID: PMC8503748 DOI: 10.3892/mmr.2021.12475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/07/2021] [Indexed: 01/14/2023] Open
Abstract
Angina pectoris is cardiac pain that is a common clinical symptom often resulting from myocardial ischemia. Spinal cord stimulation (SCS) is effective in treating refractory angina pectoris, but its underlying mechanisms have not been fully elucidated. The spinal dorsal horn is the first region of the central nervous system that receives nociceptive information; it is also the target of SCS. In the spinal cord, glial (astrocytes and microglia) activation is involved in the initiation and persistence of chronic pain. Thus, the present study investigated the possible cardiac pain-relieving effects of SCS on spinal dorsal horn glia in chronic myocardial ischemia (CMI). CMI was established by left anterior descending artery ligation surgery, which induced significant spontaneous/ongoing cardiac pain behaviors, as measured using the open field test in rats. SCS effectively improved such behaviors as shown by open field and conditioned place preference tests in CMI model rats. SCS suppressed CMI-induced spinal dorsal horn microglial activation, with downregulation of ionized calcium-binding adaptor protein-1 expression. Moreover, SCS inhibited CMI-induced spinal expression of phosphorylated-p38 MAPK, which was specifically colocalized with the spinal dorsal horn microglia rather than astrocytes and neurons. Furthermore, SCS could depress spinal neuroinflammation by suppressing CMI-induced IL-1β and TNF-α release. Intrathecal administration of minocycline, a microglial inhibitor, alleviated the cardiac pain behaviors in CMI model rats. In addition, the injection of fractalkine (microglia-activating factor) partially reversed the SCS-produced analgesic effects on CMI-induced cardiac pain. These results indicated that the therapeutic mechanism of SCS on CMI may occur partially through the inhibition of spinal microglial p38 MAPK pathway activation. The present study identified a novel mechanism underlying the SCS-produced analgesic effects on chronic cardiac pain.
Collapse
Affiliation(s)
- Jian Wang
- Department of Cardiothoracic Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Xiao-Chen Wu
- Department of Cardiothoracic Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Ming-Ming Zhang
- Department of Anatomy and K.K. Leung Brain Research Centre, Air Force Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jia-Hao Ren
- Department of Anatomy and K.K. Leung Brain Research Centre, Air Force Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yi Sun
- Department of Anatomy and K.K. Leung Brain Research Centre, Air Force Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jing-Zhen Liu
- Department of Cardiothoracic Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Xi-Qiang Wu
- Department of Cardiothoracic Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Si-Yi He
- Department of Cardiothoracic Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Yun-Qing Li
- Department of Anatomy and K.K. Leung Brain Research Centre, Air Force Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jin-Bao Zhang
- Department of Cardiothoracic Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| |
Collapse
|
5
|
Bassetti B, Rurali E, Gambini E, Pompilio G. Son of a Lesser God: The Case of Cell Therapy for Refractory Angina. Front Cardiovasc Med 2021; 8:709795. [PMID: 34552966 PMCID: PMC8450394 DOI: 10.3389/fcvm.2021.709795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/02/2021] [Indexed: 11/20/2022] Open
Abstract
In the last decades, various non-pharmacological solutions have been tested on top of medical therapy for the treatment of patients affected by refractory angina (RA). Among these therapeutics, neuromodulation, external counter-pulsation and coronary sinus constriction have been recently introduced in the guidelines for the management of RA in United States and Europe. Notably and paradoxically, although a consistent body of evidence has proposed cell-based therapies (CT) as safe and salutary for RA outcome, CT has not been conversely incorporated into current international guidelines yet. As a matter of fact, published randomized controlled trials (RCT) and meta-analyses (MTA) cumulatively indicated that CT can effectively increase perfusion, physical function and well-being, thus reducing angina symptoms and drug assumption in RA patients. In this review, we (i) provide an updated overview of novel non-pharmacological therapeutics included in current guidelines for the management of patients with RA, (ii) discuss the Level of Evidence stemmed from available clinical trials for each recommended treatment, and (iii) focus on evidence-based CT application for the management of RA.
Collapse
Affiliation(s)
- Beatrice Bassetti
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Erica Rurali
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Elisa Gambini
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.,Oloker Therapeutics S.r.l., Bari, Italy
| | - Giulio Pompilio
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.,Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
6
|
Gallone G, Baldetti L, Tzanis G, Gramegna M, Latib A, Colombo A, Henry TD, Giannini F. Refractory Angina: From Pathophysiology to New Therapeutic Nonpharmacological Technologies. JACC Cardiovasc Interv 2020; 13:1-19. [PMID: 31918927 DOI: 10.1016/j.jcin.2019.08.055] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/12/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022]
Abstract
Despite optimal combination of guideline-directed anti-ischemic therapies and myocardial revascularization, a substantial proportion of patients with stable coronary artery disease continues to experience disabling symptoms and is often referred as "no-option." The appraisal of the pathways linking ischemia to symptom perception indicates a complex model of heart-brain interactions in the generation of the subjective anginal experience and inspired novel approaches that may be clinically effective in alleviating the angina burden of this population. Conversely, the prevailing ischemia-centered view of angina, with the focus on traditional myocardial revascularization as the sole option to address ischemia on top of medical therapy, hinders the experimental characterization and broad-scale clinical implementation of strongly needed therapeutic options. The interventionist, often the first physician to establish the diagnosis of refractory angina pectoris (RAP) following coronary angiography, should be aware of the numerous emerging technologies with the potential to improve quality of life in the growing population of RAP patients. This review describes the current landscape and the future perspectives on nonpharmacological treatment technologies for patients with RAP, with a view on the underlying physiopathological rationale and current clinical evidence.
Collapse
Affiliation(s)
- Guglielmo Gallone
- Division of Cardiology, Department of Medical Sciences, Città della Scienza e della Salute Hospital, University of Turin, Turin, Italy
| | - Luca Baldetti
- Unit of Cardiovascular Interventions, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Georgios Tzanis
- Unit of Cardiovascular Interventions, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mario Gramegna
- Unit of Cardiovascular Interventions, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Azeem Latib
- Department of Cardiology, Montefiore Medical Center, Bronx, New York. https://twitter.com/azeemlatib
| | - Antonio Colombo
- Interventional Cardiology Unit, GVM Care and Research Maria Cecilia Hospital, Cotignola, Italy
| | - Timothy D Henry
- The Christ Hospital Heart and Vascular Center / The Carl and Edyth Lindner Center for Research and Education at The Christ Hospital, Cincinnati, Ohio; University of Florida, Gainesville, Florida
| | - Francesco Giannini
- Interventional Cardiology Unit, GVM Care and Research Maria Cecilia Hospital, Cotignola, Italy.
| |
Collapse
|
7
|
Rakhimov K, Gori T. Non-pharmacological Treatment of Refractory Angina and Microvascular Angina. Biomedicines 2020; 8:biomedicines8080285. [PMID: 32823683 PMCID: PMC7460172 DOI: 10.3390/biomedicines8080285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022] Open
Abstract
Refractory angina (RA) is defined as debilitating anginal symptoms despite the optimal guideline-directed combination of medical, percutaneous, and surgical therapies. Often referred to as “no option”, these patients represent a significant unmet clinical need for healthcare institutions. Due to the ageing of the population, and increased survival from coronary artery disease, the number of patients with RA is expected to rise exponentially. Despite the developments of novel technologies for the treatment of RA, none of them found wide clinical application (to date). Microvascular dysfunction, alone or in combination with epicardial coronary disease, is thought to contribute significantly to refractory angina. However, most of the techniques developed to improve RA symptoms have not been tested specifically on patients with microvascular dysfunction. This review discusses the recent developments in the treatment of RA, and gives some perspectives on the future of these techniques.
Collapse
Affiliation(s)
- Kudrat Rakhimov
- Department of Cardiology, University Medical Center Mainz Langenbeckstr 1, 55131 Mainz, Germany
- Correspondence: (K.R.); (T.G.); Tel.: +49-6131-172829 (T.G.); Fax: +49-6131-176428 (T.G.)
| | - Tommaso Gori
- Department of Cardiology, University Medical Center Mainz and Deutsches Zentrum für Herz und Kreislauf Forschung, Standort Rhein-Main, Langenbeckstr 1, 55131 Mainz, Germany
- Correspondence: (K.R.); (T.G.); Tel.: +49-6131-172829 (T.G.); Fax: +49-6131-176428 (T.G.)
| |
Collapse
|
8
|
Urits I, Patel A, Leider J, Anya A, Franscioni H, Jung JW, Kassem H, Kaye AD, Viswanath O. An evidence-based review of neuromodulation for the treatment and management of refractory angina. Best Pract Res Clin Anaesthesiol 2020; 34:517-528. [PMID: 33004163 DOI: 10.1016/j.bpa.2020.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/03/2020] [Indexed: 11/29/2022]
Abstract
Angina pectoris is defined as substernal chest pain that is typically exacerbated by exertion, stress, or other exposures. There are various methods of treatment for angina. Lifestyle modification and pharmacological management are considered as conservative treatments. If these medications do not result in the resolution of pain, more invasive approaches are an option, like coronary revascularization. Refractory angina (RA) is differentiated from acute or chronic angina based on the persistence of symptoms despite conventional therapies. Overall, the prevalence of RA is estimated to be 5%-15% in patients with coronary artery disease, which can account for up to 1,500,000 current cases and 100,000 new cases in the United States per year. Spinal cord stimulation treatment is a viable option for patients who are suffering from RA pain and are either not candidates for revascularization surgery or are currently not being well managed on more traditional treatments. Many studies show a positive result.
Collapse
Affiliation(s)
- Ivan Urits
- Beth Israel Deaconess Medical Center, Department of Anesthesia, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA, USA.
| | - Anjana Patel
- Georgetown University School of Medicine, Washington, DC, USA
| | - Joseph Leider
- Georgetown University School of Medicine, Washington, DC, USA
| | - Anthony Anya
- Georgetown University School of Medicine, Washington, DC, USA
| | | | - Jai Won Jung
- Georgetown University School of Medicine, Washington, DC, USA
| | - Hisham Kassem
- Mount Sinai Medical Center, Department of Anesthesiology, Miami Beach, FL, USA
| | - Alan D Kaye
- Louisiana State University Health Shreveport, Department of Anesthesiology, Shreveport, LA, USA
| | - Omar Viswanath
- Louisiana State University Health Shreveport, Department of Anesthesiology, Shreveport, LA, USA; Valley Pain Consultants - Envision Physician Services, Phoenix, AZ, USA; Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE, USA; University of Arizona College of Medicine-Phoenix, Department of Anesthesiology, Phoenix, AZ, USA
| |
Collapse
|
9
|
Improvement in quality of life and angina pectoris: 1-year follow-up of patients with refractory angina pectoris and spinal cord stimulation. Neth Heart J 2020; 28:478-484. [PMID: 32430654 PMCID: PMC7431482 DOI: 10.1007/s12471-020-01422-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aims Spinal cord stimulation (SCS) is a treatment for patients with refractory angina pectoris (RAP) who remain symptomatic despite optimal medical therapy and without revascularisation options. Previous studies have shown that SCS improves the quality of life in this patient group and reduces the severity of the angina pectoris. The aim of this prospective, single-arm observational study is to show this effect in a single-centre cohort using a multidisciplinary team approach to the selection process, with a follow-up period of 1 year. Methods and results Between July 2010 and March 2017, 87 patients with RAP referred to our centre received SCS. The Seattle Angina Questionnaire (SAQ) and RAND 36-Item Health Survey (RAND-36) were completed at baseline, prior to implantation, and 1 year post-implantation. After 1 year of follow-up there was a statistically significant decrease in the frequency of angina pectoris attacks from more than 4 times a day to 1–2 times a week (p < 0.001). The SAQ showed statistically significant improvement in four of the five dimensions: physical limitation (p < 0.001), angina frequency (p < 0.001), angina stability (p < 0.001) and quality of life (p < 0.001). The RAND-36 showed statistically significant improvement in all nine dimensions: physical functioning (p = 0.001), role/physical (p < 0.001), social functioning (p = 0.03), role/emotional (p < 0.05), bodily pain (p < 0.001), general health (p < 0.001), vitality (p < 0.001), mental health (p = 0.02) and health change (p < 0.001). Conclusion This study showed a significant improvement in quality of life and reduction of angina pectoris severity after 1 year of follow-up in patients treated with SCS for RAP. Electronic supplementary material The online version of this article (10.1007/s12471-020-01422-0) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
Abstract
Spinal cord stimulation (SCS) has been well established as a safe and effective treatment of pain derived from a wide variety of etiologies. Careful patient selection including a rigorous trial period and psychological evaluation are essential. When patients proceed to permanent implantation, various considerations should be made, such as the type of lead, type of anesthesia, and waveform patterns for SCS. This article discusses the common indications for SCS, patient selection criteria, and pertinent outcomes from randomized clinical trials related to common indications treated with SCS. Technical considerations, such as type of implant, anesthesia, and programming, are also discussed.
Collapse
Affiliation(s)
- Andrew K Rock
- Department of Neurosurgery, Albany Medical College, 43 New Scotland Avenue, Albany, NY 12208, USA
| | - Huy Truong
- Department of Neurosurgery, Albany Medical College, 43 New Scotland Avenue, Albany, NY 12208, USA
| | - Yunseo Linda Park
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 43 New Scotland Avenue, Albany, NY 12208, USA
| | - Julie G Pilitsis
- Department of Neurosurgery, Albany Medical College, 43 New Scotland Avenue, Albany, NY 12208, USA; Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 43 New Scotland Avenue, Albany, NY 12208, USA.
| |
Collapse
|
11
|
Spinal Cord Stimulation 50 Years Later: Clinical Outcomes of Spinal Cord Stimulation Based on Randomized Clinical Trials-A Systematic Review. Reg Anesth Pain Med 2019; 43:391-406. [PMID: 29481371 DOI: 10.1097/aap.0000000000000744] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To assess the efficacy of spinal cord stimulation (SCS) for each indication, one must critically assess each specific clinical outcome to identify outcomes that benefit from SCS therapy. To date, a comprehensive review of clinically relevant outcome-specific evidence regarding SCS has not been published. We aimed to assess all randomized controlled trials from the world literature for the purpose of evaluating the clinical outcome-specific efficacy of SCS for the following outcomes: perceived pain relief or change pain score, quality of life, functional status, psychological impact, analgesic medication utilization, patient satisfaction, and health care cost and utilization. Interventions were SCS, without limitation to the type of controls or the type of SCS in the active arms. For each study analyzed, a quality assessment was performed using a validated scale that assesses reporting, external validity, bias, confounding, and power. Each outcome was assessed specific to its indication, and the primary measure of each abovementioned outcome was a summary of the level of evidence. Twenty-one randomized controlled trials were analyzed (7 for trunk and limb pain, inclusive of failed back surgery syndrome; 8 for refractory angina pectoris; 1 for cardiac X syndrome; 3 for critical limb ischemia; 2 for complex regional pain syndrome; and 2 for painful diabetic neuropathy). Evidence assessments for each outcome for each indication were depicted in tabular format. Outcome-specific evidence scores were established for each of the abovementioned indications, providing both physicians and patients with a summary of evidence to assist in choosing the optimal evidence-based intervention. The evidence presented herein has broad applicability as it encompasses a breadth of patient populations, variations of SCS therapy, and comparable controls that, together, reflect comprehensive clinical decision making.
Collapse
|
12
|
Spinal Cord Stimulation for Pain Treatment After Spinal Cord Injury. Neurosci Bull 2018; 35:527-539. [PMID: 30560438 DOI: 10.1007/s12264-018-0320-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/11/2018] [Indexed: 12/30/2022] Open
Abstract
In addition to restoration of bladder, bowel, and motor functions, alleviating the accompanying debilitating pain is equally important for improving the quality of life of patients with spinal cord injury (SCI). Currently, however, the treatment of chronic pain after SCI remains a largely unmet need. Electrical spinal cord stimulation (SCS) has been used to manage a variety of chronic pain conditions that are refractory to pharmacotherapy. Yet, its efficacy, benefit profiles, and mechanisms of action in SCI pain remain elusive, due to limited research, methodological weaknesses in previous clinical studies, and a lack of mechanistic exploration of SCS for SCI pain control. We aim to review recent studies and outline the therapeutic potential of different SCS paradigms for traumatic SCI pain. We begin with an overview of its manifestations, classification, potential underlying etiology, and current challenges for its treatment. The clinical evidence for using SCS in SCI pain is then reviewed. Finally, future perspectives of pre-clinical research and clinical study of SCS for SCI pain treatment are discussed.
Collapse
|
13
|
Saraste A, Ukkonen H, Knuuti J. Protection of coronary circulation: Evaluation by PET perfusion imaging. J Nucl Cardiol 2018; 25:897-899. [PMID: 28050860 DOI: 10.1007/s12350-016-0765-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 12/01/2016] [Indexed: 10/20/2022]
Affiliation(s)
- Antti Saraste
- Turku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, 20520, Turku, Finland.
- Heart Center, Turku University Hospital, Hämeentie 11, 20520, Turku, Finland.
| | - Heikki Ukkonen
- Heart Center, Turku University Hospital, Hämeentie 11, 20520, Turku, Finland
| | - Juhani Knuuti
- Turku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| |
Collapse
|
14
|
Hartikainen J, Hassinen I, Hedman A, Kivelä A, Saraste A, Knuuti J, Husso M, Mussalo H, Hedman M, Rissanen TT, Toivanen P, Heikura T, Witztum JL, Tsimikas S, Ylä-Herttuala S. Adenoviral intramyocardial VEGF-DΔNΔC gene transfer increases myocardial perfusion reserve in refractory angina patients: a phase I/IIa study with 1-year follow-up. Eur Heart J 2018; 38:2547-2555. [PMID: 28903476 PMCID: PMC5837555 DOI: 10.1093/eurheartj/ehx352] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/02/2017] [Indexed: 12/18/2022] Open
Abstract
Aims We evaluated for the first time the effects of angiogenic and lymphangiogenic AdVEGF-DΔNΔC gene therapy in patients with refractory angina. Methods and results Thirty patients were randomized to AdVEGF-DΔNΔC (AdVEGF-D) or placebo (control) groups. Electromechanical NOGA mapping and radiowater PET were used to identify hibernating viable myocardium where treatment was targeted. Safety, severity of symptoms, quality of life, lipoprotein(a) [Lp(a)] and routine clinical chemistry were measured. Myocardial perfusion reserve (MPR) was assessed with radiowater PET at baseline and after 3- and 12-months follow-up. Treatment was well tolerated. Myocardial perfusion reserve increased significantly in the treated area in the AdVEGF-D group compared with baseline (1.00 ± 0.36) at 3 months (1.31 ± 0.46, P = 0.045) and 12 months (1.44 ± 0.48, P = 0.009) whereas MPR in the reference area tended to decrease (2.05 ± 0.69, 1.76 ± 0.62, and 1.87 ± 0.69; baseline, 3 and 12 months, respectively, P = 0.551). Myocardial perfusion reserve in the control group showed no significant change from baseline to 3 and 12 months (1.26 ± 0.37, 1.57 ± 0.55, and 1.48 ± 0.48; respectively, P = 0.690). No major changes were found in clinical chemistry but anti-adenovirus antibodies increased in 54% of the treated patients compared with baseline. AdVEGF-D patients in the highest Lp(a) tertile at baseline showed the best response to therapy (MPR 0.94 ± 0.32 and 1.76 ± 0.41 baseline and 12 months, respectively, P = 0.023). Conclusion AdVEGF-DΔNΔC gene therapy was safe, feasible, and well tolerated. Myocardial perfusion increased at 1 year in the treated areas with impaired MPR at baseline. Plasma Lp(a) may be a potential biomarker to identify patients that may have the greatest benefit with this therapy.
Collapse
Affiliation(s)
- Juha Hartikainen
- Heart Center, Kuopio University Hospital, Kuopio 70029, Finland.,Institute of Clinical Medicine, University of Eastern Finland, Kuopio 70211, Finland
| | - Iiro Hassinen
- Heart Center, Kuopio University Hospital, Kuopio 70029, Finland
| | - Antti Hedman
- Heart Center, Kuopio University Hospital, Kuopio 70029, Finland
| | - Antti Kivelä
- Heart Center, Kuopio University Hospital, Kuopio 70029, Finland
| | - Antti Saraste
- Turku PET Centre, Turku University Hospital, Turku 20521, Finland
| | - Juhani Knuuti
- Turku PET Centre, Turku University Hospital, Turku 20521, Finland
| | - Minna Husso
- Center of Diagnostic Imaging, Kuopio University Hospital, Kuopio 70029, Finland
| | - Hanna Mussalo
- Center of Diagnostic Imaging, Kuopio University Hospital, Kuopio 70029, Finland
| | - Marja Hedman
- Heart Center, Kuopio University Hospital, Kuopio 70029, Finland.,Center of Diagnostic Imaging, Kuopio University Hospital, Kuopio 70029, Finland
| | - Tuomas T Rissanen
- Heart Center, Kuopio University Hospital, Kuopio 70029, Finland.,Heart Center, Central Hospital of North Karelia, Joensuu 80210, Finland
| | - Pyry Toivanen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio 70211, Finland
| | - Tommi Heikura
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio 70211, Finland
| | | | | | - Seppo Ylä-Herttuala
- Heart Center, Kuopio University Hospital, Kuopio 70029, Finland.,A.I. Virtanen Institute, University of Eastern Finland, Kuopio 70211, Finland.,Gene Therapy Unit, Kuopio University Hospital, Kuopio 70029, Finland
| |
Collapse
|
15
|
Phillips AA, Squair JW, Sayenko DG, Edgerton VR, Gerasimenko Y, Krassioukov AV. An Autonomic Neuroprosthesis: Noninvasive Electrical Spinal Cord Stimulation Restores Autonomic Cardiovascular Function in Individuals with Spinal Cord Injury. J Neurotrauma 2017; 35:446-451. [PMID: 28967294 PMCID: PMC5793952 DOI: 10.1089/neu.2017.5082] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite autonomic dysfunction after spinal cord injury (SCI) being the major cause of death and a top health priority, the clinical management options for these conditions are limited to drugs with delayed onset and nonpharmacological interventions with equivocal effectiveness. We tested the capacity of electrical stimulation, applied transcutaneously over the spinal cord, to manage autonomic dysfunction in the form of orthostatic hypotension after SCI. We assessed beat-by-beat blood pressure (BP), stroke volume, and cardiac contractility (dP/dt; Finometer), as well as cerebral blood flow (transcranial Doppler) in 5 individuals with motor-complete SCI (4 cervical, 1 thoracic) during an orthostatic challenge with and without transcutaneous electrical stimulation applied at the TVII level. During the orthostatic challenge, all individuals experienced hypotension characterized by a 37 ± 4 mm Hg decrease in systolic BP, a 52 ± 10% reduction in cardiac contractility, and a 23 ± 6% reduction in cerebral blood flow (all p < 0.05), along with severe self-reported symptoms. Electrical stimulation completely normalized BP, cardiac contractility, cerebral blood flow, and abrogated all symptoms. Noninvasive transcutaneous electrical spinal cord stimulation may be a viable therapy for restoring autonomic cardiovascular control after SCI.
Collapse
Affiliation(s)
- Aaron A Phillips
- 1 ICORD-BSCC, University of British Columbia , Vancouver, British Columbia, Canada
| | - Jordan W Squair
- 1 ICORD-BSCC, University of British Columbia , Vancouver, British Columbia, Canada
| | - Dimitry G Sayenko
- 2 Department of Integrative Biology and Physiology, University of California , Los Angeles, Los Angeles, California
| | - V Reggie Edgerton
- 2 Department of Integrative Biology and Physiology, University of California , Los Angeles, Los Angeles, California.,3 Neurobiology, University of California , Los Angeles, Los Angeles, California.,4 Department of Neurosurgery, David Geffen School of Medicine, University of California , Los Angeles, Los Angeles, California.,5 Brain Research Institute, University of California , Los Angeles, Los Angeles, California
| | - Yury Gerasimenko
- 2 Department of Integrative Biology and Physiology, University of California , Los Angeles, Los Angeles, California.,6 Pavlov Institute of Physiology , Saint-Petersburg, Russia
| | - Andrei V Krassioukov
- 1 ICORD-BSCC, University of British Columbia , Vancouver, British Columbia, Canada
| |
Collapse
|
16
|
Efficacy of spinal cord stimulation as an adjunct therapy for chronic refractory angina pectoris. Int J Cardiol 2017; 227:535-542. [DOI: 10.1016/j.ijcard.2016.10.105] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/30/2016] [Indexed: 10/20/2022]
|
17
|
Visnjevac O, Costandi S, Patel BA, Azer G, Agarwal P, Bolash R, Mekhail NA. A Comprehensive Outcome-Specific Review of the Use of Spinal Cord Stimulation for Complex Regional Pain Syndrome. Pain Pract 2016; 17:533-545. [PMID: 27739179 DOI: 10.1111/papr.12513] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/27/2016] [Accepted: 07/08/2016] [Indexed: 01/04/2023]
Abstract
BACKGROUND Complex regional pain syndrome (CRPS) is a painful, debilitating affliction that is often difficult to treat. It has become common international practice to use spinal cord stimulation (SCS) for the treatment of CRPS as other therapies fail to provide adequate relief, quality of life, or improvement in function. This comprehensive outcome-specific systematic review of the use of SCS for CRPS was performed to elucidate the available evidence with focus on clinically relevant patient-specific outcomes. METHODS A systematic review of the literature was conducted to evaluate the effects of SCS on patients with CRPS for the following outcomes and provide summary levels of evidence in regard to each outcome: perceived pain relief, pain score, resolution of CRPS signs, functional status, quality of life, psychological impact, sleep hygiene, analgesic medication utilization, and patient satisfaction with SCS therapy. Search terms included "complex regional pain syndrome," "spinal cord stimulation," and "reflex sympathetic dystrophy," without restriction of language, date, or type of publication, albeit only original data were included in analyses. Of 30 studies selected, seven systematic reviews were excluded, as were four studies reporting combination therapy that included SCS and other therapies (ie, concurrent peripheral nerve stimulation, intrathecal therapy) without clear delineation to the effect of SCS alone on outcomes. A total of 19 manuscripts were evaluated. RESULTS Perceived pain relief, pain score improvement, quality of life, and satisfaction with SCS were all rated 1B+, reflecting positive high-level (randomized controlled trial) evidence favoring SCS use for the treatment of CRPS. Evidence for functional status improvements and psychological effects of SCS was inconclusive, albeit emanating from a randomized controlled trial (evidence level 2B±), and outcomes evidence for both sleep hygiene and resolution of CRPS signs was either nonexistent or of too low quality from which to draw conclusions (evidence level 0). An analgesic sparing effect was observed in nonrandomized reports, reflecting an evidence level of 2C+. CONCLUSIONS Spinal cord stimulation remains a favorable and effective modality for treating CRPS with high-level evidence (1B+) supporting its role in improving CRPS patients' perceived pain relief, pain score, and quality of life. A paucity of evidence for functional improvements, resolution of CRPS signs, sleep hygiene, psychological impact, and analgesic sparing effects mandate further investigation before conclusions can be drawn for these specific outcomes.
Collapse
Affiliation(s)
- Ognjen Visnjevac
- Pain Management Department, Cleveland Clinic, Cleveland, Ohio, U.S.A
| | - Shrif Costandi
- Evidence-Based Pain Management Research, Cleveland Clinic, Cleveland, Ohio, U.S.A
| | - Bimal A Patel
- Pain Management Department, Cleveland Clinic, Cleveland, Ohio, U.S.A
| | - Girgis Azer
- Evidence-Based Pain Management Research, Cleveland Clinic, Cleveland, Ohio, U.S.A
| | - Priya Agarwal
- Pain Management Department, Cleveland Clinic, Cleveland, Ohio, U.S.A
| | - Robert Bolash
- Evidence-Based Pain Management Research, Cleveland Clinic, Cleveland, Ohio, U.S.A
| | - Nagy A Mekhail
- Evidence-Based Pain Management Research, Cleveland Clinic, Cleveland, Ohio, U.S.A
| |
Collapse
|
18
|
Hassinen I, Kivelä A, Hedman A, Saraste A, Knuuti J, Hartikainen J, Ylä-Herttuala S. Intramyocardial Gene Therapy Directed to Hibernating Heart Muscle Using a Combination of Electromechanical Mapping and Positron Emission Tomography. Hum Gene Ther 2016; 27:830-834. [DOI: 10.1089/hum.2016.131] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Iiro Hassinen
- Heart Center, Kuopio University Hospital, Kuopio, Finland
| | - Antti Kivelä
- Heart Center, Kuopio University Hospital, Kuopio, Finland
| | - Antti Hedman
- Heart Center, Kuopio University Hospital, Kuopio, Finland
| | - Antti Saraste
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Juhani Knuuti
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Juha Hartikainen
- Heart Center, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- Heart Center, Kuopio University Hospital, Kuopio, Finland
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Science Service Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
19
|
Zipes DP, Neuzil P, Theres H, Caraway D, Mann DL, Mannheimer C, Van Buren P, Linde C, Linderoth B, Kueffer F, Sarazin SA, DeJongste MJ. Determining the Feasibility of Spinal Cord Neuromodulation for the Treatment of Chronic Systolic Heart Failure. JACC-HEART FAILURE 2016; 4:129-136. [DOI: 10.1016/j.jchf.2015.10.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/30/2015] [Accepted: 10/02/2015] [Indexed: 01/22/2023]
|