1
|
Hirad A, Fakhouri FS, Raterman B, Lakony R, Wang M, Gonring D, Kedwai B, Kolipaka A, Mix D. Feasibility of measuring magnetic resonance elastography-derived stiffness in human thoracic aorta and aortic dissection phantoms. J Vasc Surg Cases Innov Tech 2025; 11:101697. [PMID: 39816441 PMCID: PMC11732680 DOI: 10.1016/j.jvscit.2024.101697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/20/2024] [Indexed: 01/18/2025] Open
Abstract
Type B aortic dissection (TBAD) represents a serious medical emergency with up to a 50% associated 5-year mortality caused by thoracic aorta, dissection-associated aneurysmal (DAA) degeneration, and rupture. Unfortunately, conventional size-related diagnostic methods cannot distinguish high-risk DAAs that benefit from surgical intervention from stable DAAs. Our goal is to use DAA stiffness measured with magnetic resonance elastography (MRE) as a biomarker to distinguish high-risk DAAs from stable DAAs. This is a feasibility study using MRE to (1) fabricate human-like geometries TBAD phantoms with different stiffnesses, (2) measure stiffness in TBAD phantoms with rheometry, and (3) demonstrate the first successful application of MRE to the thoracic aorta of a human volunteer. AD phantoms with heterogenous wall stiffness demonstrated the correlation between MRE-derived stiffness and rheometric measured stiffness. A pilot scan was performed in a healthy volunteer to test the technique's feasibility in the thoracic aorta.
Collapse
Affiliation(s)
- Adnan Hirad
- Department of Surgery, University of Rochester School of Medicine, Rochester, NY
| | - Faisal S. Fakhouri
- Department of Biomedical Technology, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Brian Raterman
- Department of Radiology, The Ohio State University, Wexner Medical Center, Columbus, OH
| | - Ronald Lakony
- Department of Surgery, University of Rochester School of Medicine, Rochester, NY
| | - Maxwell Wang
- Division of Vascular Surgery, Loma Linda University Health Medical Center, Loma Linda, CA
| | - Dakota Gonring
- Department of Surgery, University of Rochester School of Medicine, Rochester, NY
| | - Baqir Kedwai
- Department of Surgery, University of Rochester School of Medicine, Rochester, NY
| | - Arunark Kolipaka
- Department of Radiology, The Ohio State University, Wexner Medical Center, Columbus, OH
| | - Doran Mix
- Department of Surgery, University of Rochester School of Medicine, Rochester, NY
| |
Collapse
|
2
|
Fasen F, Aarle DACV, Horst AVD, Sambeek MRHMV, Lopata RGP. Geometry and local wall thickness of abdominal aortic aneurysms using intravascular ultrasound. Comput Biol Med 2025; 185:109514. [PMID: 39667054 DOI: 10.1016/j.compbiomed.2024.109514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/12/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024]
Abstract
Currently, abdominal aortic aneurysms (AAAs) are treated based on the diameter of the aorta, however, a more robust patient-specific marker is needed. The mean thickness of the wall is a potential indicator for AAA rupture risk, which varies significantly within and between patients. So far, regional thickness has not been used in previous rupture risk analysis studies, since it is challenging to measure in CT, MRI, and non-invasive ultrasound (US). This study shows how to map locally varying wall thickness of AAAs using intravascular ultrasound (IVUS). Since no ground truth of AAA wall thickness can be obtained in vivo, a novel ex vivo dataset was created of porcine, phantom and simulated aortas, of which ground truth data are available. A U-net model was trained on the ex vivo data and results show that the predicted wall segmentation is in good agreement with the ground truth (DSC = 0.86, HD = 0.97 mm). Wall thickness and geometry plots show that the variation in wall thickness can be recognized. The in vivo demonstration in patients shows that the diseased wall can be segmented, a regionally varying wall thickness can be measured, and detailed maps of AAA geometries can be created. The measured local wall thickness could be used for better general understanding of AAA wall properties resulting in more advanced rupture risk assessment of AAAs.
Collapse
Affiliation(s)
- Floor Fasen
- Photoacoustics and Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5600, The Netherlands; The Department of Vascular Surgery, Catharina Hospital, Eindhoven, 5602, The Netherlands; Image Guided Therapy Devices, Royal Philips, Best, 5684, The Netherlands.
| | - Daniek A C van Aarle
- Photoacoustics and Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5600, The Netherlands; The Department of Vascular Surgery, Catharina Hospital, Eindhoven, 5602, The Netherlands; Image Guided Therapy Devices, Royal Philips, Best, 5684, The Netherlands
| | | | - Marc R H M van Sambeek
- The Department of Vascular Surgery, Catharina Hospital, Eindhoven, 5602, The Netherlands
| | - Richard G P Lopata
- Photoacoustics and Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5600, The Netherlands
| |
Collapse
|
3
|
Maas EJ, Donkers KM, de Hoop H, Nievergeld AHM, Thirugnanasambandam M, van Sambeek MRHM, Lopata RGP. In vivo Multi-perspective 3D + t Ultrasound Imaging and Motion Estimation of Abdominal Aortic Aneurysms. ULTRASONIC IMAGING 2025; 47:3-13. [PMID: 39377418 DOI: 10.1177/01617346241285168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Time-resolved three-dimensional ultrasound (3D + t US) is a promising imaging modality for monitoring abdominal aortic aneurysms (AAAs), providing their 3D geometry and motion. The lateral contrast of US is poor, a well-documented drawback which multi-perspective (MP) imaging could resolve. This study aims to show the feasibility of in vivo multi-perspective 3D + t ultrasound imaging of AAAs for improving the image contrast and displacement accuracy. To achieve this, single-perspective (SP) aortic ultrasound images from three different angles were spatiotemporally registered and fused, and the displacements were compounded. The fused MP had a significantly higher wall-lumen contrast than the SP images, for both patients and volunteers (P < .001). MP radial displacements patterns are smoother than SP patterns in 67% of volunteers and 92% of patients. The MP images from three angles have a decreased tracking error (P < .001 for all participants), and an improved SNRe compared to two out of three SP images (P < .05). This study has shown the added value of MP 3D + t US, improving both image contrast and displacement accuracy in AAA imaging. This is a step toward using multiple or large transducers in the clinic to capture the 3D geometry and strain more accurately, for patient-specific characterization of AAAs.
Collapse
Affiliation(s)
- Esther J Maas
- PULS/e group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Kim M Donkers
- PULS/e group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Hein de Hoop
- PULS/e group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Arjet H M Nievergeld
- PULS/e group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Mirunalini Thirugnanasambandam
- PULS/e group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Marc R H M van Sambeek
- PULS/e group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Richard G P Lopata
- PULS/e group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
4
|
Lorenzen US, Bracco MI, Zielinski AH, Broda M, Avril S, Rouet L, Eiberg JP. Strain Patterns With Ultrasound for Assessment of Abdominal Aortic Aneurysm Vessel Wall Biomechanics. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:112-119. [PMID: 39366791 DOI: 10.1016/j.ultrasmedbio.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND Abdominal aortic aneurysms (AAAs) are an important cause of death. Small AAAs are surveyed with ultrasound (US) until a defined diameter threshold, often triggering a computer tomography scan and surgical repair. Nevertheless, 5%-10% of AAA ruptures are below threshold, and some large AAAs never rupture. AAA wall biomechanics may reveal vessel wall degradation with potential for patient-centred risk assessment. This clinical study investigated AAA vessel wall biomechanics and deformation patterns, including reproducibility. METHODS In 50 patients with AAA, 183 video clips were recorded by two sonographers. Prototype software extracted AAA vessel wall principal strain characteristics and patterns. Functional principal component analysis (FPCA) derived strain pattern statistics. RESULTS Strain patterns demonstrated reduced AAA wall strains close to the spine. The strain pattern "topography" (i.e., curve phases or "peaks" and "valleys") had a 3.9 times lower variance than simple numeric assessment of strain amplitudes, which allowed for clustering in two groups with FPCA. A high mean reproducibility of these clusters of 87.6% was found. Median pulse pressure-normalised mean principal strain (PPPS) was 0.038%/mm Hg (interquartile range: 0.029-0.051%/mm Hg) with no correlation to AAA size (Spearman's ρ = 0.02, false discovery rate-p = 0.15). Inter-operator reproducibility of PPPS was poor (limits of agreement: ±0.031%/mm Hg). DISCUSSION Strain patterns challenge previous numeric stiffness measures based on anterior-posterior-diameter and are reproducible for clustering. This study's PPPS aligned with prior findings, although clinical reproducibility was poor. In contrast, US-based strain patterns hold promising potential to enhance AAA risk assessment beyond traditional diameter-based metrics.
Collapse
Affiliation(s)
- Ulver S Lorenzen
- Department of Vascular Surgery, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Marta I Bracco
- Philips Health Technology Innovation, Paris, France; Centre for Biomedical and Healthcare Engineering, Soft Tissue BIOmechanics (STBio), MINES Saint-Étienne, Campus of Saint-Étienne, Saint-Priest-en-Jarez, France
| | - Alexander H Zielinski
- Department of Vascular Surgery, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Magdalena Broda
- Department of Vascular Surgery, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Stéphane Avril
- Centre for Biomedical and Healthcare Engineering, Soft Tissue BIOmechanics (STBio), MINES Saint-Étienne, Campus of Saint-Étienne, Saint-Priest-en-Jarez, France
| | - Laurence Rouet
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas P Eiberg
- Department of Vascular Surgery, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Copenhagen Academy for Medical Education and Simulation (CAMES), The Capital Region, Copenhagen, Denmark
| |
Collapse
|
5
|
Nievergeld A, Çetinkaya B, Maas E, van Sambeek M, Lopata R, Awasthi N. Deep learning-based segmentation of abdominal aortic aneurysms and intraluminal thrombus in 3D ultrasound images. Med Biol Eng Comput 2024:10.1007/s11517-024-03216-7. [PMID: 39448511 DOI: 10.1007/s11517-024-03216-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024]
Abstract
Ultrasound (US)-based patient-specific rupture risk analysis of abdominal aortic aneurysms (AAAs) has shown promising results. Input for these models is the patient-specific geometry of the AAA. However, segmentation of the intraluminal thrombus (ILT) remains challenging in US images due to the low ILT-blood contrast. This study aims to improve AAA and ILT segmentation in time-resolved three-dimensional (3D + t) US images using a deep learning approach. In this study a "no new net" (nnU-Net) model was trained on 3D + t US data using either US-based or (co-registered) computed tomography (CT)-based annotations. The optimal training strategy for this low-contrast data was determined for a limited dataset. The merit of augmentation was investigated, as well as the inclusion of low-contrast areas. Segmentation results were validated with CT-based geometries as the ground truth. The model trained on CT-based masks showed the best performance in terms of DICE index, Hausdorff distance, and diameter differences, covering a larger part of the AAA. With a higher accuracy and less manual input the model outperforms conventional methods, with a mean Hausdorff distance of 4.4 mm for the vessel and 7.8 mm for the lumen. However, visibility of the lumen-ILT interface remains the limiting factor, necessitating improvements in image acquisition to ensure broader patient inclusion and enable rupture risk assessment of AAAs in the future.
Collapse
Affiliation(s)
- Arjet Nievergeld
- PULS/e group, Department of Biomedical Engineering, Eindhoven University of Technology, De Rondom 70, 5612 AP, Eindhoven, The Netherlands
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Bünyamin Çetinkaya
- Faculty of Science, Mathematics and Computer Science, Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
- Department of Biomedical Engineering and Physics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Esther Maas
- PULS/e group, Department of Biomedical Engineering, Eindhoven University of Technology, De Rondom 70, 5612 AP, Eindhoven, The Netherlands
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Marc van Sambeek
- PULS/e group, Department of Biomedical Engineering, Eindhoven University of Technology, De Rondom 70, 5612 AP, Eindhoven, The Netherlands
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Richard Lopata
- PULS/e group, Department of Biomedical Engineering, Eindhoven University of Technology, De Rondom 70, 5612 AP, Eindhoven, The Netherlands.
| | - Navchetan Awasthi
- Faculty of Science, Mathematics and Computer Science, Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
- Department of Biomedical Engineering and Physics, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Sterpetti AV, Campagnol M, Di Marzo L. Education and information to reduce aortic aneurysm mortality rates. Eur Heart J Cardiovasc Imaging 2024; 25:e247-e249. [PMID: 39005065 DOI: 10.1093/ehjci/jeae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024] Open
Affiliation(s)
| | | | - Luca Di Marzo
- Department of Surgery, Sapienza University, Rome, Italy
| |
Collapse
|
7
|
Peng C, He W, Luan J, Yuan T, Fu W, Shi Y, Wang S. Preliminary establishment and validation of the inversion method for growth and remodeling parameters of patient-specific abdominal aortic aneurysm. Biomech Model Mechanobiol 2024; 23:1137-1148. [PMID: 38548952 DOI: 10.1007/s10237-024-01828-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/09/2024] [Indexed: 08/24/2024]
Abstract
Traditional medical imaging and biomechanical studies have challenges in analyzing the long-term evolution process of abdominal aortic aneurysm (AAA). The homogenized constrained mixture theory (HCMT) allows for quantitative analysis of the changes in the multidimensional morphology and composition of AAA. However, the accuracy of HCMT still requires further clinical verification. This study aims to establish a patient-specific AAA growth model based on HCMT, simulate the long-term growth and remodeling (G&R) process of AAA, and validate the feasibility and accuracy of the method using two additional AAA cases with five follow-up datasets. The media and adventitia layers of AAA were modeled as mixtures composed of elastin, collagen fibers, and smooth muscle cells (SMCs). The strain energy function was used to describe the continuous deposition and degradation effect of the mixture during the AAA evolution. Multiple sets of growth parameters were applied to finite element simulations, and the simulation results were compared with the follow-up data for gradually selecting the optimal growth parameters. Two additional AAA patients with different growth rates were used for validating this method, the optimal growth parameters were obtained using the first two follow-up imaging data, and the growth model was applied to simulate the subsequent four time points. The differences between the simulated diameters and the follow-up diameters of AAA were compared to validate the accuracy of the mechanistic model. The growth parameters, especially the stress-mediated substance deposition gain factor, are highly related to the AAA G&R process. When setting the optimal growth parameters to simulate AAA growth, the proportion of simulation results within the distance of less than 0.5 mm from the baseline models is above 80%. For the validating cases, the mean difference rates between the simulated diameter and the real-world diameter are within 2.5%, which basically meets the clinical demand for quantitatively predicting the AAA growth in maximum diameters. This study simulated the growth process of AAA, and validated the accuracy of this mechanistic model. This method was proved to be used to predict the G&R process of AAA caused by dynamic changes in the mixtures of the AAA vessel wall during long-term, assisting accurately and quantitatively predicting the multidimensional morphological development and mixtures evolution process of AAA in the clinic.
Collapse
Affiliation(s)
- Chen Peng
- Artificial Intelligence Research Institute, Zhejiang Lab, Hangzhou, Zhejiang, China
- Department of Aeronautics and Astronautics, Institute of Biomechanics, Fudan University, Shanghai, China
| | - Wei He
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jingyang Luan
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tong Yuan
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weiguo Fu
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Vascular Surgery, Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, China
| | - Yun Shi
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
- Institute of Vascular Surgery, Fudan University, Shanghai, China.
- National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, China.
| | - Shengzhang Wang
- Department of Aeronautics and Astronautics, Institute of Biomechanics, Fudan University, Shanghai, China.
- Institute of Biomedical Engineering Technology, Academy for Engineering and Technology, Fudan University, Shanghai, China.
- Yiwu Research Institute, Fudan University, Yiwu, Zhejiang, China.
| |
Collapse
|
8
|
Fonken J, Gillissen M, van Engelen E, van Sambeek M, van de Vosse F, Lopata R. On the feasibility of ultrasound Doppler-based personalized hemodynamic modeling of the abdominal aorta. Biomed Eng Online 2024; 23:71. [PMID: 39054524 PMCID: PMC11270776 DOI: 10.1186/s12938-024-01267-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/07/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Personalized modeling is a promising tool to improve abdominal aortic aneurysm (AAA) rupture risk assessment. Computed tomography (CT) and quantitative flow (Q-flow) magnetic resonance imaging (MRI) are widely regarded as the gold standard for acquiring patient-specific geometry and velocity profiles, respectively. However, their frequent utilization is hindered by various drawbacks. Ultrasound is used extensively in current clinical practice and offers a safe, rapid and cost-effective method to acquire patient-specific geometries and velocity profiles. This study aims to extract and validate patient-specific velocity profiles from Doppler ultrasound and to examine the impact of the velocity profiles on computed hemodynamics. METHODS Pulsed-wave Doppler (PWD) and color Doppler (CD) data were successfully obtained for six volunteers and seven patients and employed to extract the flow pulse and velocity profile over the cross-section, respectively. The US flow pulses and velocity profiles as well as generic Womersley profiles were compared to the MRI velocities and flows. Additionally, CFD simulations were performed to examine the combined impact of the velocity profile and flow pulse. RESULTS Large discrepancies were found between the US and MRI velocity profiles over the cross-sections, with differences for US in the same range as for the Womersley profile. Differences in flow pulses revealed that US generally performs best in terms of maximum flow, forward flow and ratios between forward and backward flow, whereas it often overestimates the backward flow. Both spatial patterns and magnitude of the computed hemodynamics were considerably affected by the prescribed velocity boundary conditions. Larger errors and smaller differences between the US and generic CFD cases were observed for patients compared to volunteers. CONCLUSION These results show that it is feasible to acquire the patient-specific flow pulse from PWD data, provided that the PWD acquisition could be performed proximal to the aneurysm region, and resulted in a triphasic flow pattern. However, obtaining the patient-specific velocity profile over the cross-section using CD data is not reliable. For the volunteers, utilizing the US flow profile instead of the generic flow profile generally resulted in improved performance, whereas this was the case in more than half of the cases for the patients.
Collapse
Affiliation(s)
- Judith Fonken
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Eindhoven University of Technology, Groene Loper 3, Eindhoven, 5612AE, The Netherlands.
- Department of Vascular Surgery, Catharina hospital, Michelangelolaan 2, Eindhoven, 5623EJ, The Netherlands.
| | - Milan Gillissen
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Eindhoven University of Technology, Groene Loper 3, Eindhoven, 5612AE, The Netherlands
- Department of Vascular Surgery, Catharina hospital, Michelangelolaan 2, Eindhoven, 5623EJ, The Netherlands
| | - Eline van Engelen
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Eindhoven University of Technology, Groene Loper 3, Eindhoven, 5612AE, The Netherlands
| | - Marc van Sambeek
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Eindhoven University of Technology, Groene Loper 3, Eindhoven, 5612AE, The Netherlands
- Department of Vascular Surgery, Catharina hospital, Michelangelolaan 2, Eindhoven, 5623EJ, The Netherlands
| | - Frans van de Vosse
- Cardiovascular Biomechanics, Eindhoven University of Technology, Groene Loper 3, Eindhoven, 5612AE, The Netherlands
| | - Richard Lopata
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Eindhoven University of Technology, Groene Loper 3, Eindhoven, 5612AE, The Netherlands
| |
Collapse
|
9
|
Jansen LC, Fekkes S, Schwab HM, Lopata RGP. Increasing abdominal aortic aneurysm curvature visibility using 3D dual probe bistatic ultrasound imaging combined with probe translation. ULTRASONICS 2024; 139:107284. [PMID: 38458061 DOI: 10.1016/j.ultras.2024.107284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
High frame rate ultrasound (US) imaging techniques in 3D are promising tools for capturing abdominal aortic aneurysms (AAAs) over time, however, with the limited number of channel-to-element connections current footprints are small, which limits the field of view. Moreover, the maximal steering angle of the ultrasound beams in transmit and the maximal receptance angle in receive are insufficient for capturing the curvy shape of the AAA. Therefore, an approach is needed towards large arrays. In this study, high frame rate bistatic 3D US data (17 Hz) were acquired with two synchronized matrix arrays positioned at different locations (multi-aperture imaging) using a translation stage to simulate what a larger array with limited channel-to-element connections can potentially achieve. Acquisitions were performed along an AAA shaped phantom with different probe tilting angles (0 up to ± 30°). The performance of different multi-aperture configurations was quantified using the generalized contrast-to-noise ratio of the wall and lumen (gCNR). Furthermore, a parametric model of the multi-aperture system was used to estimate in which AAA wall regions the contrast is expected to be high. This was evaluated for AAAs with increasing diameters and curvature. With an eight-aperture 0° probe angle configuration a 69 % increase in field of view was measured in the longitudinal direction compared to the field of view of a single aperture configuration. When increasing the number of apertures from two to eight, the gCNR improved for the upper wall and lower wall by 35 % and 13 % (monostatic) and by 36 % and 13 % (bistatic). Contrast improvements up to 22 % (upper wall) and 12 % (lower wall) are achieved with tilted probe configurations compared to non-tilted configurations. Moreover, with bistatic imaging with tilted probe configurations gCNR improvements up to 4 % (upper wall) and 7 % (lower wall) are achieved compared to monostatic imaging. Furthermore, imaging with a larger inter-probe distance improved the gCNR for a ± 15° probe angle configuration. The gCNR has an expected pattern over time, where the contrast is lower when there is more wall motion (systole) and higher when motion is reduced (diastole). Furthermore, a higher frame rate (45 Hz) yields a lower gCNR, because fewer compound angles are used. The results of the parametric model suggest that a flat array is suitable for imaging AAA shapes with limited curvature, but that it is not suitable for imaging larger AAA shapes with more curvature. According to the model, tilted multi-aperture configurations combined with bistatic imaging can achieve a larger region with high contrast compared to non-tilted configurations. The findings of the model are in agreement with experimental findings. To conclude, this study demonstrates the vast improvements in field of view and AAA wall visibility that a large, sparsely populated 3D array can potentially achieve when imaging AAAs compared to single or dual aperture imaging. In the future, larger arrays, less thermal noise, more steering, and more channel-to-element connections combined with carefully chosen orientations of (sub-) apertures will likely advance 3D imaging of AAAs.
Collapse
Affiliation(s)
- Larissa C Jansen
- Photoacoustics and Ultrasound Laboratory Eindhoven, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Stein Fekkes
- Medical Ultrasound Imaging Center (MUSIC), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hans-Martin Schwab
- Photoacoustics and Ultrasound Laboratory Eindhoven, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Richard G P Lopata
- Photoacoustics and Ultrasound Laboratory Eindhoven, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
10
|
van Hal VHJ, de Hoop H, van Sambeek MRHM, Schwab HM, Lopata RGP. In vivo bistatic dual-aperture ultrasound imaging and elastography of the abdominal aorta. Front Physiol 2024; 15:1320456. [PMID: 38606009 PMCID: PMC11007781 DOI: 10.3389/fphys.2024.1320456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/12/2024] [Indexed: 04/13/2024] Open
Abstract
Introduction: In this paper we introduce in vivo multi-aperture ultrasound imaging and elastography of the abdominal aorta. Monitoring of the geometry and growth of abdominal aortic aneurysms (AAA) is paramount for risk stratification and intervention planning. However, such an assessment is limited by the lateral lumen-wall contrast and resolution of conventional ultrasound. Here, an in vivo dual-aperture bistatic imaging approach is shown to improve abdominal ultrasound and strain imaging quality significantly. By scanning the aorta from different directions, a larger part of the vessel circumference can be visualized. Methods: In this first-in-man volunteer study, the performance of multi-aperture ultrasound imaging and elastography of the abdominal aortic wall was assessed in 20 healthy volunteers. Dual-probe acquisition was performed in which two curved array transducers were aligned in the same imaging plane. The transducers alternately transmit and both probes receive simultaneously on each transmit event, which allows for the reconstruction of four ultrasound signals. Automatic probe localization was achieved by optimizing the coherence of the trans-probe data, using a gradient descent algorithm. Speckle-tracking was performed on the four individual bistatic signals, after which the respective axial displacements were compounded and strains were calculated. Results: Using bistatic multi-aperture ultrasound imaging, the image quality of the ultrasound images, i.e., the angular coverage of the wall, was improved which enables accurate estimation of local motion dynamics and strain in the abdominal aortic wall. The motion tracking error was reduced from 1.3 mm ± 0.63 mm to 0.16 mm ± 0.076 mm, which increased the circumferential elastographic signal-to-noise ratio (SNRe) by 12.3 dB ± 8.3 dB on average, revealing more accurate and homogeneous strain estimates compared to single-perspective ultrasound. Conclusion: Multi-aperture ultrasound imaging and elastography is feasible in vivo and can provide the clinician with vital information about the anatomical and mechanical state of AAAs in the future.
Collapse
Affiliation(s)
- Vera H. J. van Hal
- Photoacoustics and Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Hein de Hoop
- Photoacoustics and Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Marc R. H. M. van Sambeek
- Photoacoustics and Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Department of Vascular Surgery, Catharina Hospital, Eindhoven, Netherlands
| | - Hans-Martin Schwab
- Photoacoustics and Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Richard G. P. Lopata
- Photoacoustics and Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
11
|
Lindenberger M, Ziegler M, Bjarnegård N, Ebbers T, Dyverfeldt P. Regional and Global Aortic Pulse Wave Velocity in Patients with Abdominal Aortic Aneurysm. Eur J Vasc Endovasc Surg 2024; 67:506-513. [PMID: 37777048 DOI: 10.1016/j.ejvs.2023.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/22/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023]
Abstract
OBJECTIVE Abdominal aortic aneurysm (AAA) is commonly defined as localised aortic dilatation with a diameter > 30 mm. The pathophysiology of AAA includes chronic inflammation and enzymatic degradation of elastin, possibly increasing aortic wall stiffness and pulse wave velocity (PWV). Whether aortic stiffness is more prominent in the abdominal aorta at the aneurysm site is not elucidated. The aim of this study was to evaluate global and regional aortic PWV in patients with AAA. METHODS Experimental study of local PWV in the thoracic descending and abdominal aorta in patients with AAA and matched controls. The study cohort comprised 25 patients with an AAA > 30 mm (range 36 - 70 mm, all male, age range 65 - 76 years) and 27 age and sex matched controls free of AAA. PWV was measured with applanation tonometry (carotid-femoral PWV, cfPWV) as well as a 4D flow MRI technique, assessing regional aortic PWV. Blood pressure and anthropometrics were measured. RESULTS Global aortic PWV was greater in men with an AAA than controls, both by MRI (AAA 8.9 ± 2.4 m/s vs. controls 7.1 ± 1.5 m/s; p = .007) and cfPWV (AAA 11.0 ± 2.1 m/s vs. controls 9.3 ± 2.3 m/s; p = .007). Regionally, PWV was greater in the abdominal aorta in the AAA group (AAA 7.0 ± 1.8 m/s vs. controls 5.8 ± 1.0 m/s; p = .022), but similar in the thoracic descending aorta (AAA 8.7 ± 3.2 m/s vs. controls 8.2 ± 2.4 m/s; p = .59). Furthermore, PWV was positively associated with indices of central adiposity both in men with AAA and controls. CONCLUSION PWV is higher in men with AAA compared with matched controls in the abdominal but not the thoracic descending aorta. Furthermore, aortic stiffness was linked with central fat deposition. It remains to be seen whether there is a causal link between AAA and increased regional aortic stiffness.
Collapse
Affiliation(s)
- Marcus Lindenberger
- Department of Cardiology in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.
| | - Magnus Ziegler
- Cardiovascular Sciences, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden; Centre for Medical Image Science and Visualisation (CMIV), Linköping University, Linköping, Sweden
| | - Niclas Bjarnegård
- Cardiovascular Sciences, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Tino Ebbers
- Cardiovascular Sciences, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden; Centre for Medical Image Science and Visualisation (CMIV), Linköping University, Linköping, Sweden
| | - Petter Dyverfeldt
- Cardiovascular Sciences, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden; Centre for Medical Image Science and Visualisation (CMIV), Linköping University, Linköping, Sweden
| |
Collapse
|
12
|
Crosier R, Lopez Laporte MA, Unni RR, Coutinho T. Female-Specific Considerations in Aortic Health and Disease. CJC Open 2024; 6:391-406. [PMID: 38487044 PMCID: PMC10935703 DOI: 10.1016/j.cjco.2023.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/06/2023] [Indexed: 03/17/2024] Open
Abstract
The aorta plays a central role in the modulation of blood flow to supply end organs and to optimize the workload of the left ventricle. The constant interaction of the arterial wall with protective and deleterious circulating factors, and the cumulative exposure to ventriculoarterial pulsatile load, with its associated intimal-medial changes, are important players in the complex process of vascular aging. Vascular aging is also modulated by biomolecular processes such as oxidative stress, genomic instability, and cellular senescence. Concomitantly with well-established cardiometabolic and sex-specific risk factors and environmental stressors, arterial stiffness is associated with cardiovascular disease, which remains the leading cause of morbidity and mortality in women worldwide. Sexual dimorphisms in aortic health and disease are increasingly recognized and explain-at least in part-some of the observable sex differences in cardiovascular disease, which will be explored in this review. Specifically, we will discuss how biological sex affects arterial health and vascular aging and the implications this has for development of certain cardiovascular diseases uniquely or predominantly affecting women. We will then expand on sex differences in thoracic and abdominal aortic aneurysms, with special considerations for aortopathies in pregnancy.
Collapse
Affiliation(s)
- Rebecca Crosier
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | | | - Rudy R. Unni
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Thais Coutinho
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
13
|
Maas EJ, Nievergeld AHM, Fonken JHC, Thirugnanasambandam M, van Sambeek MRHM, Lopata RGP. 3D-Ultrasound Based Mechanical and Geometrical Analysis of Abdominal Aortic Aneurysms and Relationship to Growth. Ann Biomed Eng 2023; 51:2554-2565. [PMID: 37410199 PMCID: PMC10598132 DOI: 10.1007/s10439-023-03301-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023]
Abstract
The heterogeneity of progression of abdominal aortic aneurysms (AAAs) is not well understood. This study investigates which geometrical and mechanical factors, determined using time-resolved 3D ultrasound (3D + t US), correlate with increased growth of the aneurysm. The AAA diameter, volume, wall curvature, distensibility, and compliance in the maximal diameter region were determined automatically from 3D + t echograms of 167 patients. Due to limitations in the field-of-view and visibility of aortic pulsation, measurements of the volume, compliance of a 60 mm long region and the distensibility were possible for 78, 67, and 122 patients, respectively. Validation of the geometrical parameters with CT showed high similarity, with a median similarity index of 0.92 and root-mean-square error (RMSE) of diameters of 3.5 mm. Investigation of Spearman correlation between parameters showed that the elasticity of the aneurysms decreases slightly with diameter (p = 0.034) and decreases significantly with mean arterial pressure (p < 0.0001). The growth of a AAA is significantly related to its diameter, volume, compliance, and surface curvature (p < 0.002). Investigation of a linear growth model showed that compliance is the best predictor for upcoming AAA growth (RMSE 1.70 mm/year). To conclude, mechanical and geometrical parameters of the maximally dilated region of AAAs can automatically and accurately be determined from 3D + t echograms. With this, a prediction can be made about the upcoming AAA growth. This is a step towards more patient-specific characterization of AAAs, leading to better predictability of the progression of the disease and, eventually, improved clinical decision making about the treatment of AAAs.
Collapse
Affiliation(s)
- Esther Jorien Maas
- PULS/e Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands.
| | - Arjet Helena Margaretha Nievergeld
- PULS/e Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Judith Helena Cornelia Fonken
- PULS/e Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Mirunalini Thirugnanasambandam
- PULS/e Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Marc Rodolph Henricus Maria van Sambeek
- PULS/e Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | | |
Collapse
|
14
|
Hegner A, Wittek A, Derwich W, Huß A, Gámez AJ, Blase C. Using averaged models from 4D ultrasound strain imaging allows to significantly differentiate local wall strains in calcified regions of abdominal aortic aneurysms. Biomech Model Mechanobiol 2023; 22:1709-1727. [PMID: 37405538 PMCID: PMC10511614 DOI: 10.1007/s10237-023-01738-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/13/2023] [Indexed: 07/06/2023]
Abstract
Abdominal aortic aneurysms are a degenerative disease of the aorta associated with high mortality. To date, in vivo information to characterize the individual elastic properties of the aneurysm wall in terms of rupture risk is lacking. We have used time-resolved 3D ultrasound strain imaging to calculate spatially resolved in-plane strain distributions characterized by mean and local maximum strains, as well as indices of local variations in strains. Likewise, we here present a method to generate averaged models from multiple segmentations. Strains were then calculated for single segmentations and averaged models. After registration with aneurysm geometries based on CT-A imaging, local strains were divided into two groups with and without calcifications and compared. Geometry comparison from both imaging modalities showed good agreement with a root mean squared error of 1.22 ± 0.15 mm and Hausdorff Distance of 5.45 ± 1.56 mm (mean ± sd, respectively). Using averaged models, circumferential strains in areas with calcifications were 23.2 ± 11.7% (mean ± sd) smaller and significantly distinguishable at the 5% level from areas without calcifications. For single segmentations, this was possible only in 50% of cases. The areas without calcifications showed greater heterogeneity, larger maximum strains, and smaller strain ratios when computed by use of the averaged models. Using these averaged models, reliable conclusions can be made about the local elastic properties of individual aneurysm (and long-term observations of their change), rather than just group comparisons. This is an important prerequisite for clinical application and provides qualitatively new information about the change of an abdominal aortic aneurysm in the course of disease progression compared to the diameter criterion.
Collapse
Affiliation(s)
- Achim Hegner
- Personalized Biomedical Engineering Lab, Frankfurt University of Applied Sciences, Frankfurt am Main, Germany
- Department of Mechanical Engineering and Industrial Design, School of Engineering, University of Cadiz, Cadiz, Spain
| | - Andreas Wittek
- Personalized Biomedical Engineering Lab, Frankfurt University of Applied Sciences, Frankfurt am Main, Germany
| | - Wojciech Derwich
- Department of Vascular and Endovascular Surgery, Goethe University Hospital, Frankfurt am Main, Germany
| | - Armin Huß
- Personalized Biomedical Engineering Lab, Frankfurt University of Applied Sciences, Frankfurt am Main, Germany
| | - Antonio J. Gámez
- Department of Mechanical Engineering and Industrial Design, School of Engineering, University of Cadiz, Cadiz, Spain
| | - Christopher Blase
- Personalized Biomedical Engineering Lab, Frankfurt University of Applied Sciences, Frankfurt am Main, Germany
- Cell and Vascular Mechanics, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
15
|
Bailey DM, Davies RG, Rose GA, Lewis MH, Aldayem AA, Twine CP, Awad W, Jubouri M, Mohammed I, Mestres CA, Chen EP, Coselli JS, Williams IM, Bashir M. Myths and methodologies: Cardiopulmonary exercise testing for surgical risk stratification in patients with an abdominal aortic aneurysm; balancing risk over benefit. Exp Physiol 2023; 108:1118-1131. [PMID: 37232485 PMCID: PMC10988440 DOI: 10.1113/ep090816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023]
Abstract
The extent to which patients with an abdominal aortic aneurysm (AAA) should exercise remains unclear, given theoretical concerns over the perceived risk of blood pressure-induced rupture, which is often catastrophic. This is especially pertinent during cardiopulmonary exercise testing, when patients are required to perform incremental exercise to symptom-limited exhaustion for the determination of cardiorespiratory fitness. This multimodal metric is being used increasingly as a complementary diagnostic tool to inform risk stratification and subsequent management of patients undergoing AAA surgery. In this review, we bring together a multidisciplinary group of physiologists, exercise scientists, anaesthetists, radiologists and surgeons to challenge the enduring 'myth' that AAA patients should be fearful of and avoid rigorous exercise. On the contrary, by appraising fundamental vascular mechanobiological forces associated with exercise, in conjunction with 'methodological' recommendations for risk mitigation specific to this patient population, we highlight that the benefits conferred by cardiopulmonary exercise testing and exercise training across the continuum of intensity far outweigh the short-term risks posed by potential AAA rupture.
Collapse
Affiliation(s)
- Damian M. Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesGlamorganUK
| | - Richard G. Davies
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesGlamorganUK
- Department of AnaestheticsUniversity Hospital of WalesCardiffUK
| | - George A. Rose
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesGlamorganUK
| | - Michael H. Lewis
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesGlamorganUK
| | | | | | - Wael Awad
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesGlamorganUK
- Department of Cardiothoracic SurgeryBart's Heart Centre, St Bartholomew's Hospital, Bart's Health NHS TrustLondonUK
| | | | - Idhrees Mohammed
- Institute of Cardiac and Aortic DisordersSRM Institutes for Medical Science (SIMS Hospital)ChennaiTamil NaduIndia
| | - Carlos A. Mestres
- Department of Cardiac SurgeryUniversity Hospital ZürichZürichSwitzerland
| | - Edward P. Chen
- Division of Cardiovascular and Thoracic SurgeryDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Joseph S. Coselli
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of SurgeryBaylor College of MedicineHoustonTexasUSA
- The Texas Heart InstituteHoustonTexasUSA
- St Luke's‐Baylor St. Luke's Medical CenterHoustonTexasUSA
| | - Ian M. Williams
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesGlamorganUK
- Department of Vascular SurgeryUniversity Hospital of WalesCardiffUK
| | - Mohamad Bashir
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesGlamorganUK
- Vascular and Endovascular SurgeryHealth & Education Improvement WalesCardiffUK
| | | |
Collapse
|
16
|
Zottola ZR, Kong DS, Medhekar AN, Frye LE, Hao SB, Gonring DW, Hirad AA, Stoner MC, Richards MS, Mix DS. Intermediate pressure-normalized principal wall strain values are associated with increased abdominal aortic aneurysmal growth rates. Front Cardiovasc Med 2023; 10:1232844. [PMID: 37719977 PMCID: PMC10501562 DOI: 10.3389/fcvm.2023.1232844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction Current abdominal aortic aneurysm (AAA) assessment relies on analysis of AAA diameter and growth rate. However, evidence demonstrates that AAA pathology varies among patients and morphometric analysis alone is insufficient to precisely predict individual rupture risk. Biomechanical parameters, such as pressure-normalized AAA principal wall strain (ε ρ + ¯ /PP, %/mmHg), can provide useful information for AAA assessment. Therefore, this study utilized a previously validated ultrasound elastography (USE) technique to correlate ε ρ + ¯ /PP with the current AAA assessment methods of maximal diameter and growth rate. Methods Our USE algorithm utilizes a finite element mesh, overlaid a 2D cross-sectional view of the user-defined AAA wall, at the location of maximum diameter, to track two-dimensional, frame-to-frame displacements over a full cardiac cycle, using a custom image registration algorithm to produce ε ρ + ¯ /PP. This metric was compared between patients with healthy aortas and AAAs (≥3 cm) and compared between small and large AAAs (≥5 cm). AAAs were then separated into terciles based on ε ρ + ¯ /PP values to further assess differences in our metric across maximal diameter and prospective growth rate. Non-parametric tests of hypotheses were used to assess statistical significance as appropriate. Results USE analysis was conducted on 129 patients, 16 healthy aortas and 113 AAAs, of which 86 were classified as small AAAs and 27 as large. Non-aneurysmal aortas showed higher ε ρ + ¯ /PP compared to AAAs (0.044 ± 0.015 vs. 0.034 ± 0.017%/mmHg, p = 0.01) indicating AAA walls to be stiffer. Small and large AAAs showed no difference in ε ρ + ¯ /PP. When divided into terciles based on ε ρ + ¯ /PP cutoffs of 0.0251 and 0.038%/mmHg, there was no difference in AAA diameter. There was a statistically significant difference in prospective growth rate between the intermediate tercile and the outer two terciles (1.46 ± 2.48 vs. 3.59 ± 3.83 vs. 1.78 ± 1.64 mm/yr, p = 0.014). Discussion There was no correlation between AAA diameter and ε ρ + ¯ /PP, indicating biomechanical markers of AAA pathology are likely independent of diameter. AAAs in the intermediate tercile of ε ρ + ¯ /PP values were found to have nearly double the growth rates than the highest or lowest tercile, indicating an intermediate range of ε ρ + ¯ /PP values for which patients are at risk for increased AAA expansion, likely necessitating more frequent imaging follow-up.
Collapse
Affiliation(s)
- Zachary R. Zottola
- Division of Vascular Surgery, Department of Surgery, Cardiovascular Engineering Lab, University of Rochester Medical Center, Rochester, NY, United States
| | - Daniel S. Kong
- Division of Vascular Surgery, Department of Surgery, Cardiovascular Engineering Lab, University of Rochester Medical Center, Rochester, NY, United States
| | - Ankit N. Medhekar
- Division of Vascular Surgery, Department of Surgery, Cardiovascular Engineering Lab, University of Rochester Medical Center, Rochester, NY, United States
| | - Lauren E. Frye
- Division of Vascular Surgery, Department of Surgery, Cardiovascular Engineering Lab, University of Rochester Medical Center, Rochester, NY, United States
| | - Scarlett B. Hao
- Division of Vascular Surgery, Department of Surgery, Cardiovascular Engineering Lab, University of Rochester Medical Center, Rochester, NY, United States
| | - Dakota W. Gonring
- Division of Vascular Surgery, Department of Surgery, Cardiovascular Engineering Lab, University of Rochester Medical Center, Rochester, NY, United States
| | - Adnan A. Hirad
- Division of Vascular Surgery, Department of Surgery, Cardiovascular Engineering Lab, University of Rochester Medical Center, Rochester, NY, United States
| | - Michael C. Stoner
- Division of Vascular Surgery, Department of Surgery, Cardiovascular Engineering Lab, University of Rochester Medical Center, Rochester, NY, United States
| | - Michael S. Richards
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, United States
| | - Doran S. Mix
- Division of Vascular Surgery, Department of Surgery, Cardiovascular Engineering Lab, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
17
|
Kim T, Tjahjadi NS, He X, van Herwaarden JA, Patel HJ, Burris NS, Figueroa CA. Three-Dimensional Characterization of Aortic Root Motion by Vascular Deformation Mapping. J Clin Med 2023; 12:4471. [PMID: 37445507 DOI: 10.3390/jcm12134471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
The aorta is in constant motion due to the combination of cyclic loading and unloading with its mechanical coupling to the contractile left ventricle (LV) myocardium. This aortic root motion has been proposed as a marker for aortic disease progression. Aortic root motion extraction techniques have been mostly based on 2D image analysis and have thus lacked a rigorous description of the different components of aortic root motion (e.g., axial versus in-plane). In this study, we utilized a novel technique termed vascular deformation mapping (VDM(D)) to extract 3D aortic root motion from dynamic computed tomography angiography images. Aortic root displacement (axial and in-plane), area ratio and distensibility, axial tilt, aortic rotation, and LV/Ao angles were extracted and compared for four different subject groups: non-aneurysmal, TAA, Marfan, and repair. The repair group showed smaller aortic root displacement, aortic rotation, and distensibility than the other groups. The repair group was also the only group that showed a larger relative in-plane displacement than relative axial displacement. The Marfan group showed the largest heterogeneity in aortic root displacement, distensibility, and age. The non-aneurysmal group showed a negative correlation between age and distensibility, consistent with previous studies. Our results revealed a strong positive correlation between LV/Ao angle and relative axial displacement and a strong negative correlation between LV/Ao angle and relative in-plane displacement. VDM(D)-derived 3D aortic root motion can be used in future studies to define improved boundary conditions for aortic wall stress analysis.
Collapse
Affiliation(s)
- Taeouk Kim
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nic S Tjahjadi
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xuehuan He
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - J A van Herwaarden
- Department of Vascular Surgery, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Himanshu J Patel
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicholas S Burris
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - C Alberto Figueroa
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
18
|
Aggarwal A, Mortensen P, Hao J, Kaczmarczyk Ł, Cheung AT, Al Ghofaily L, Gorman RC, Desai ND, Bavaria JE, Pouch AM. Strain estimation in aortic roots from 4D echocardiographic images using medial modeling and deformable registration. Med Image Anal 2023; 87:102804. [PMID: 37060701 PMCID: PMC10358753 DOI: 10.1016/j.media.2023.102804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/30/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Even though the central role of mechanics in the cardiovascular system is widely recognized, estimating mechanical deformation and strains in-vivo remains an ongoing practical challenge. Herein, we present a semi-automated framework to estimate strains from four-dimensional (4D) echocardiographic images and apply it to the aortic roots of patients with normal trileaflet aortic valves (TAV) and congenital bicuspid aortic valves (BAV). The method is based on fully nonlinear shell-based kinematics, which divides the strains into in-plane (shear and dilatational) and out-of-plane components. The results indicate that, even for size-matched non-aneurysmal aortic roots, BAV patients experience larger regional shear strains in their aortic roots. This elevated strains might be a contributing factor to the higher risk of aneurysm development in BAV patients. The proposed framework is openly available and applicable to any tubular structures.
Collapse
Affiliation(s)
- Ankush Aggarwal
- Glasgow Computational Engineering Centre, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, Scotland, United Kingdom
| | - Peter Mortensen
- Glasgow Computational Engineering Centre, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, Scotland, United Kingdom
| | - Jilei Hao
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Łukasz Kaczmarczyk
- Glasgow Computational Engineering Centre, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, Scotland, United Kingdom
| | - Albert T Cheung
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Lourdes Al Ghofaily
- Department of Anesthesiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert C Gorman
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Nimesh D Desai
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph E Bavaria
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Alison M Pouch
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Fonken J, Maas E, Nievergeld A, van Sambeek M, van de Vosse F, Lopata R. The Impact of a Limited Field-of-View on Computed Hemodynamics in Abdominal Aortic Aneurysms: Evaluating the Feasibility of Completing Ultrasound Segmentations with Parametric Geometries. Ann Biomed Eng 2023; 51:1296-1309. [PMID: 36709232 PMCID: PMC10172266 DOI: 10.1007/s10439-022-03133-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/25/2022] [Indexed: 01/30/2023]
Abstract
To improve abdominal aortic aneurysm (AAA) rupture risk assessment, a large, longitudinal study on AAA hemodynamics and biomechanics is necessary, using personalized fluid-structure interaction (FSI) modeling. 3-dimensional, time-resolved ultrasound (3D+t US) is the preferred image modality to obtain the patient-specific AAA geometry for such a study, since it is safe, affordable and provides temporal information. However, the 3D+t US field-of-view (FOV) is limited and therefore often fails to capture the inlet and aorto-iliac bifurcation geometry. In this study, a framework was developed to add parametric inlet and bifurcation geometries to the abdominal aortic aneurysm geometry by employing dataset statistics and parameters of the AAA geometry. The impact of replacing the patient-specific inlet and bifurcation geometries, acquired using computed tomography (CT) scans, by parametric geometries was evaluated by examining the differences in hemodynamics (systolic and time-averaged wall shear stress and oscillatory shear index) in the aneurysm region. The results show that the inlet geometry has a larger effect on the AAA hemodynamics (median differences of 7.5 to 18.8%) than the bifurcation geometry (median differences all below 1%). Therefore, it is not feasible to replace the patient-specific inlet geometry by a generic one. Future studies should investigate the possibilities of extending the proximal FOV of 3D+t US. However, this study did show the feasibility of adding a parametric bifurcation geometry to the aneurysm geometry. After extending the proximal FOV, the obtained framework can be used to extract AAA geometries from 3D+t US for FSI simulations, despite the absence of the bifurcation geometry.
Collapse
Affiliation(s)
- Judith Fonken
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands. .,Department of Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands.
| | - Esther Maas
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Department of Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Arjet Nievergeld
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Department of Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Marc van Sambeek
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Department of Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Frans van de Vosse
- Cardiovascular Biomechanics, Department of Biomechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Richard Lopata
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
20
|
Sjoerdsma M, Verstraeten SCFPM, Maas EJ, van de Vosse FN, van Sambeek MRHM, Lopata RGP. Spatiotemporal Registration of 3-D Multi-perspective Ultrasound Images of Abdominal Aortic Aneurysms. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:318-332. [PMID: 36441033 DOI: 10.1016/j.ultrasmedbio.2022.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/02/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Methods for patient-specific abdominal aortic aneurysm (AAA) progression monitoring and rupture risk assessment are widely investigated. Three-dimensional ultrasound can visualize the AAA's complex geometry and displacement fields. However, ultrasound has a limited field of view and low frame rate (i.e., 3-8 Hz). This article describes an approach to enhance the temporal resolution and the field of view. First, the frame rate was increased for each data set by sequencing multiple blood pulse cycles into one cycle. The sequencing method uses the original frame rate and the estimated pulse wave rate obtained from AAA distension curves. Second, the temporal registration was applied to multi-perspective acquisitions of the same AAA. Third, the field of view was increased through spatial registration and fusion using an image feature-based phase-only correlation method and a wavelet transform, respectively. Temporal sequencing was fully correct in aortic phantoms and was successful in 51 of 62 AAA patients, yielding a factor 5 frame rate increase. Spatial registration of proximal and distal ultrasound acquisitions was successful in 32 of 37 different AAA patients, based on the comparison between the fused ultrasound and computed tomography segmentation (95th percentile Haussdorf distances and similarity indices of 4.2 ± 1.7 mm and 0.92 ± 0.02 mm, respectively). Furthermore, the field of view was enlarged by 9%-49%.
Collapse
Affiliation(s)
- Marloes Sjoerdsma
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands.
| | - Sabine C F P M Verstraeten
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Cardiovascular Biomechanics Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Esther J Maas
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Frans N van de Vosse
- Cardiovascular Biomechanics Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Marc R H M van Sambeek
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Richard G P Lopata
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
21
|
Thomas E, Ficarra S, Nakamura M, Paoli A, Bellafiore M, Palma A, Bianco A. Effects of Different Long-Term Exercise Modalities on Tissue Stiffness. SPORTS MEDICINE - OPEN 2022; 8:71. [PMID: 35657537 PMCID: PMC9166919 DOI: 10.1186/s40798-022-00462-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/13/2022] [Indexed: 11/10/2022]
Abstract
AbstractStiffness is a fundamental property of living tissues, which may be modified by pathologies or traumatic events but also by nutritional, pharmacological and exercise interventions. This review aimed to understand if specific forms of exercise are able to determine specific forms of tissue stiffness adaptations. A literature search was performed on PubMed, Scopus and Web of Science databases to identify manuscripts addressing adaptations of tissue stiffness as a consequence of long-term exercise. Muscular, connective, peripheral nerve and arterial stiffness were considered for the purpose of this review. Resistance training, aerobic training, plyometric training and stretching were retrieved as exercise modalities responsible for tissue stiffness adaptations. Differences were observed related to each specific modality. When exercise was applied to pathological cohorts (i.e. tendinopathy or hypertension), stiffness changed towards a physiological condition. Exercise interventions are able to determine tissue stiffness adaptations. These should be considered for specific exercise prescriptions. Future studies should concentrate on identifying the effects of exercise on the stiffness of specific tissues in a broader spectrum of pathological populations, in which a tendency for increased stiffness is observed.
Collapse
|
22
|
Zottola ZR, Gonring DW, Wang ML, Hirad AA, Richards MS, Stoner MC, Mix DS. Changes in Intra-operative Aortic Strain as Detected by Ultrasound Elastography in Patients Following Abdominal Endovascular Aneurysm Repair. J Vasc Surg Cases Innov Tech 2022; 8:762-769. [DOI: 10.1016/j.jvscit.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/17/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022] Open
|
23
|
Ning H, Liu X, Ma C, Yang J, Li T. The Evaluation of Longitudinal Strain of Large and Small Abdominal Aortic Aneurysm by Two-Dimensional Speckle-Tracking Ultrasound. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2022; 41:1085-1093. [PMID: 34296470 DOI: 10.1002/jum.15792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/21/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES Abdominal aortic aneurysm (AAA) is a dangerous and lethal vascular disease. Non-invasive two-dimensional speckle-tracking imaging (2D STI) plays an important role in assessing aortic biomechanical properties. Our study aimed to evaluate the alterations of biomechanical characteristics using 2D STI in 91 AAA patients with different size. METHODS Aneurysm strain, elastic modulus, stiffness index β, and aortic distensibility determined by M-Mode ultrasound (US), and longitudinal strain (LS) derived from 2D STI were compared in 40 large AAA patients (diameter ≥ 55 mm) and 51 small AAA patients (diameter < 55 mm). RESULTS Compared with small AAA group, anterior wall longitudinal strain (ALS) and posterior wall longitudinal strain (PLS) were significantly decreased in large AAA group (all P < .05) and not affected by age, symptom, hypertension, and thrombus. Meanwhile, ALS and PLS correlated negatively with maximal aneurysm diameters (r = -0.628 and -0.469, respectively, all P < .001). And only ALS was associated with M-Mode US parameters (all P < .05). Based on receiver operating characteristic (ROC) analysis, ALS and PLS had strong diagnostic values for large AAA with the area under the curve (AUC) of 0.82 and 0.72, and cut-off points of 1.71 and 1.64% with a sensitivity of 78 and 72%, and a specificity of 75 and 70%, respectively. CONCLUSIONS LS measured by 2D STI could evaluate the biomechanical properties of aneurysm wall with different size, and add additional diagnostic value in distinguishing between small and large AAA.
Collapse
Affiliation(s)
- Hongxia Ning
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xiaozheng Liu
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Chunyan Ma
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Jun Yang
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Tan Li
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
24
|
Bracamonte JH, Saunders SK, Wilson JS, Truong UT, Soares JS. Patient-Specific Inverse Modeling of In Vivo Cardiovascular Mechanics with Medical Image-Derived Kinematics as Input Data: Concepts, Methods, and Applications. APPLIED SCIENCES-BASEL 2022; 12:3954. [PMID: 36911244 PMCID: PMC10004130 DOI: 10.3390/app12083954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inverse modeling approaches in cardiovascular medicine are a collection of methodologies that can provide non-invasive patient-specific estimations of tissue properties, mechanical loads, and other mechanics-based risk factors using medical imaging as inputs. Its incorporation into clinical practice has the potential to improve diagnosis and treatment planning with low associated risks and costs. These methods have become available for medical applications mainly due to the continuing development of image-based kinematic techniques, the maturity of the associated theories describing cardiovascular function, and recent progress in computer science, modeling, and simulation engineering. Inverse method applications are multidisciplinary, requiring tailored solutions to the available clinical data, pathology of interest, and available computational resources. Herein, we review biomechanical modeling and simulation principles, methods of solving inverse problems, and techniques for image-based kinematic analysis. In the final section, the major advances in inverse modeling of human cardiovascular mechanics since its early development in the early 2000s are reviewed with emphasis on method-specific descriptions, results, and conclusions. We draw selected studies on healthy and diseased hearts, aortas, and pulmonary arteries achieved through the incorporation of tissue mechanics, hemodynamics, and fluid-structure interaction methods paired with patient-specific data acquired with medical imaging in inverse modeling approaches.
Collapse
Affiliation(s)
- Johane H. Bracamonte
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Sarah K. Saunders
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - John S. Wilson
- Department of Biomedical Engineering and Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Uyen T. Truong
- Department of Pediatrics, School of Medicine, Children’s Hospital of Richmond at Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Joao S. Soares
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
- Correspondence:
| |
Collapse
|
25
|
Hossack M, Fisher R, Torella F, Madine J, Field M, Akhtar R. Micromechanical and Ultrastructural Properties of Abdominal Aortic Aneurysms. Artery Res 2022. [DOI: 10.1007/s44200-022-00011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
AbstractAbdominal aortic aneurysms are a common condition of uncertain pathogenesis that can rupture if left untreated. Current recommended thresholds for planned repair are empirical and based entirely on diameter. It has been observed that some aneurysms rupture before reaching the threshold for repair whilst other larger aneurysms do not rupture. It is likely that geometry is not the only factor influencing rupture risk. Biomechanical indices aiming to improve and personalise rupture risk prediction require, amongst other things, knowledge of the material properties of the tissue and realistic constitutive models. These depend on the composition and organisation of the vessel wall which has been shown to undergo drastic changes with aneurysmal degeneration, with loss of elastin, smooth muscle cells, and an accumulation of isotropically arranged collagen. Most aneurysms are lined with intraluminal thrombus, which has an uncertain effect on the underlying vessel wall, with some authors demonstrating a reduction in wall stress and others a reduction in wall strength. The majority of studies investigating biomechanical properties of ex vivo abdominal aortic aneurysm tissues have used low-resolution techniques, such as tensile testing, able to measure the global material properties at the macroscale. High-resolution engineering techniques such as nanoindentation and atomic force microscopy have been modified for use in soft biological tissues and applied to vascular tissues with promising results. These techniques have the potential to advance the understanding and improve the management of abdominal aortic aneurysmal disease.
Collapse
|
26
|
Mangarova DB, Bertalan G, Jordan J, Brangsch J, Kader A, Möckel J, Adams LC, Sack I, Taupitz M, Hamm B, Braun J, Makowski MR. Microscopic multifrequency magnetic resonance elastography of ex vivo abdominal aortic aneurysms for extracellular matrix imaging in a mouse model. Acta Biomater 2022; 140:389-397. [PMID: 34818577 DOI: 10.1016/j.actbio.2021.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/27/2022]
Abstract
An abdominal aortic aneurysm (AAA) is a permanent dilatation of the abdominal aorta, usually accompanied by thrombus formation. The current clinical imaging modalities cannot reliably visualize the thrombus composition. Remodeling of the extracellular matrix (ECM) during AAA development leads to stiffness changes, providing a potential imaging marker. 14 apolipoprotein E-deficient mice underwent surgery for angiotensin II-loaded osmotic minipump implantation. 4 weeks post-op, 5 animals developed an AAA. The aneurysm was imaged ex vivo by microscopic multifrequency magnetic resonance elastography (µMMRE) with an in-plane resolution of 40 microns. Experiments were performed on a 7-Tesla preclinical magnetic resonance imaging scanner with drive frequencies between 1000 Hz and 1400 Hz. Shear wave speed (SWS) maps indicating stiffness were computed based on tomoelastography multifrequency inversion. As control, the aortas of 5 C57BL/6J mice were examined with the same imaging protocol. The regional variation of SWS in the thrombus ranging from 0.44 ± 0.07 to 1.20 ± 0.31 m/s was correlated fairly strong with regional histology-quantified ECM accumulation (R2 = 0.79). Our results suggest that stiffness changes in aneurysmal thrombus reflect ECM remodeling, which is critical for AAA risk assessment. In the future, µMMRE could be used for a mechanics-based clinical characterization of AAAs in patients. STATEMENT OF SIGNIFICANCE: To our knowledge, this is the first study mapping the stiffness of abdominal aortic aneurysms with microscopic resolution of 40 µm. Our work revealed that stiffness critically changes due to extracellular matrix (ECM) remodeling in the aneurysmal thrombus. We were able to image various levels of ECM remodeling in the aneurysm reflected in distinct shear wave speed patterns with a strong correlation to regional histology-quantified ECM accumulation. The generated results are significant for the application of microscopic multifrequency magnetic resonance elastography for quantification of pathological remodeling of the ECM and may be of great interest for detailed characterization of AAAs in patients.
Collapse
Affiliation(s)
- Dilyana B Mangarova
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany; Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Str. 15, Building 12, Berlin 4163, Germany.
| | - Gergely Bertalan
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany.
| | - Jakob Jordan
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany.
| | - Julia Brangsch
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany.
| | - Avan Kader
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany; Department of Biology, Chemistry and Pharmacy, Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin 14195, Germany.
| | - Jana Möckel
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany.
| | - Lisa C Adams
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany.
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany.
| | - Matthias Taupitz
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany.
| | - Bernd Hamm
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany.
| | - Jürgen Braun
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany; Institute for Medical Informatics, Charité - Universitätsmedizin Berlin, Berlin, Germany, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, Berlin 12200, Germany.
| | - Marcus R Makowski
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany; Department of Diagnostic and Interventional Radiology, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany.
| |
Collapse
|
27
|
Sivakumaran L, Alturkistani H, Lerouge S, Bertrand-Grenier A, Zehtabi F, Thérasse É, Roy-Cardinal MH, Bhatnagar S, Cloutier G, Soulez G. Strain Ultrasound Elastography of Aneurysm Sac Content after Randomized Endoleak Embolization with Sclerosing and Non-sclerosing Chitosan-based Hydrogels in a Canine Model. J Vasc Interv Radiol 2022; 33:495-504.e3. [PMID: 35150836 DOI: 10.1016/j.jvir.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 01/07/2022] [Accepted: 02/01/2022] [Indexed: 11/29/2022] Open
Abstract
PURPOSE To compare the mechanical properties of aneurysm content after endoleak embolization with a chitosan hydrogel (CH) versus a chitosan hydrogel with sodium tetradecyl sulphate (CH-STS) using strain ultrasound elastography (SUE). MATERIALS AND METHODS Bilateral common iliac artery type Ia endoleaks were created in nine dogs. Per animal, one endoleak was randomized to blinded embolization with CH, and the other, with CH-STS. Brightness mode ultrasound, Doppler ultrasound, SUE radiofrequency ultrasound, and computed tomography were performed for up to six months until sacrifice. Radiological and histopathological studies were co-registered to identify three regions of interest: embolic agent, intraluminal thrombus (ILT), and aneurysm sac. SUE segmentations were performed by two blinded, independent observers. Maximum axial strain (MAS) was the primary outcome. Statistical analysis was performed using Fisher's exact test, multivariable linear mixed-effects models, and intraclass correlation coefficients (ICCs). RESULTS Residual endoleaks were identified in 7/9 (78%) and 4/9 (44%) aneurysms embolized with CH and CH-STS, respectively (p=0.3348). CH-STS had 66% lower MAS (p<0.001) than CH. The ILT had 37% lower MAS (p=0.01) than CH and 77% greater MAS (p=0.079) than CH-STS. There was no significant difference in ILT between treatments. Aneurysm sacs embolized with CH-STS had 29% lower MAS (p<0.001) than those embolized with CH. Residual endoleak was associated with 53% greater aneurysm sac MAS (p<0.001). The ICC for MAS was 0.807 (95% confidence interval: 0.754-0.849) between segmentations. CONCLUSION CH-STS confers stiffer intraluminal properties to embolized aneurysms. Persistent endoleaks are associated with increased sac strain, an observation which may help guide management.
Collapse
Affiliation(s)
- Lojan Sivakumaran
- Laboratoire clinique du traitement de l'image. Centre de recherche du Centre hospitalier de l'Université de Montréal. Montréal, Québec, Canada; Université de Montréal. Montréal, Québec, Canada; Department of Diagnostic Radiology. McGill University. Montréal, Québec, Canada
| | - Husain Alturkistani
- Laboratoire clinique du traitement de l'image. Centre de recherche du Centre hospitalier de l'Université de Montréal. Montréal, Québec, Canada; King Khalid University Hospital. Radiology and Medical Imaging Department. Riyadh, Riyadh, Saudi Arabia
| | - Sophie Lerouge
- Département de génie mécanique. École de technologie supérieure. Department of Mechanical Engineering. Montréal, Québec, Canada; Laboratoire de biomatériaux endovasculaires. Centre de recherche du Centre Hospitalier de l'Université de Montréal. Montréal, Québec, Canada
| | - Antony Bertrand-Grenier
- Laboratoire clinique du traitement de l'image. Centre de recherche du Centre hospitalier de l'Université de Montréal. Montréal, Québec, Canada; Université de Montréal. Montréal, Québec, Canada; Laboratoire de biorhéologie et d'ultrasonographie médicale. Centre de recherche du Centre hospitalier de l'Université de Montréal. Montréal, Québec, Canada; Département de chimie, biochimie et physique. Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Fatemeh Zehtabi
- Laboratoire de biomatériaux endovasculaires. Centre de recherche du Centre Hospitalier de l'Université de Montréal. Montréal, Québec, Canada
| | - Éric Thérasse
- Department of Radiology. Centre hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Marie-Hélène Roy-Cardinal
- Laboratoire de biorhéologie et d'ultrasonographie médicale. Centre de recherche du Centre hospitalier de l'Université de Montréal. Montréal, Québec, Canada
| | | | - Guy Cloutier
- Laboratoire de biorhéologie et d'ultrasonographie médicale. Centre de recherche du Centre hospitalier de l'Université de Montréal. Montréal, Québec, Canada
| | - Gilles Soulez
- Laboratoire clinique du traitement de l'image. Centre de recherche du Centre hospitalier de l'Université de Montréal. Montréal, Québec, Canada; Department of Radiology. Centre hospitalier de l'Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
28
|
Golemati S, Cokkinos DD. Recent advances in vascular ultrasound imaging technology and their clinical implications. ULTRASONICS 2022; 119:106599. [PMID: 34624584 DOI: 10.1016/j.ultras.2021.106599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 08/26/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
In this paper recent advances in vascular ultrasound imaging technology are discussed, including three-dimensional ultrasound (3DUS), contrast-enhanced ultrasound (CEUS) and strain- (SE) and shear-wave-elastography (SWE). 3DUS imaging allows visualisation of the actual 3D anatomy and more recently of flow, and assessment of geometrical, morphological and mechanical features in the carotid artery and the aorta. CEUS involves the use of microbubble contrast agents to estimate sensitive blood flow and neovascularisation (formation of new microvessels). Recent developments include the implementation of computerised tools for automated analysis and quantification of CEUS images, and the possibility to measure blood flow velocity in the aorta. SE, which yields anatomical maps of tissue strain, is increasingly being used to investigate the vulnerability of the carotid plaque, but is also promising for the coronary artery and the aorta. SWE relies on the generation of a shear wave by remote acoustic palpation and its acquisition by ultrafast imaging, and is useful for measuring arterial stiffness. Such advances in vascular ultrasound technology, with appropriate validation in clinical trials, could positively change current management of patients with vascular disease, and improve stratification of cardiovascular risk.
Collapse
Affiliation(s)
- Spyretta Golemati
- Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | | |
Collapse
|
29
|
Wang D, Chayer B, Destrempes F, Gesnik M, Tournoux F, Cloutier G. Deformability of ascending thoracic aorta aneurysms assessed using ultrafast ultrasound and a principal strain estimator: In vitro evaluation and in vivo feasibility. Med Phys 2022; 49:1759-1775. [PMID: 35045186 DOI: 10.1002/mp.15464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Noninvasive vascular strain imaging under conventional line-by-line scanning has a low frame rate and lateral resolution, and depends on the coordinate system. It is thus affected by high deformations due to image decorrelation between frames. PURPOSE To develop an ultrafast time-ensemble regularized tissue-Doppler optical-flow principal strain estimator for aorta deformability assessment in a long-axis view. METHODS This approach alleviated the impact of lateral resolution using image compounding and that of the coordinate system dependency using principal strain. Accuracy and feasibility were evaluated in two aorta-mimicking phantoms first, and then in four age-matched individuals with either a normal aorta or a pathological ascending thoracic aorta aneurysm (TAA). RESULTS Instantaneous aortic maximum and minimum principal strain maps and regional accumulated strains during each cardiac cycle were estimated at systolic and diastolic phases to characterize the normal aorta and TAA. In vitro, principal strain results matched sonomicrometry measurements. In vivo, a significant decrease in maximum and minimum principal strains was observed in TAA cases, whose range was respectively 7.9 ± 6.4% and 8.2 ± 2.6% smaller than in normal aortas. CONCLUSIONS The proposed principal strain estimator showed an ability to potentially assess TAA deformability, which may provide an individualized and reliable evaluation method for TAA rupture risk assessment. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Diya Wang
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 71049, P. R. China.,Laboratory of Biorheology and Medical Ultrasonics, Research Center, University of Montreal Hospital, Montreal, QC, H2×0A9, Canada
| | - Boris Chayer
- Laboratory of Biorheology and Medical Ultrasonics, Research Center, University of Montreal Hospital, Montreal, QC, H2×0A9, Canada
| | - François Destrempes
- Laboratory of Biorheology and Medical Ultrasonics, Research Center, University of Montreal Hospital, Montreal, QC, H2×0A9, Canada
| | - Marc Gesnik
- Laboratory of Biorheology and Medical Ultrasonics, Research Center, University of Montreal Hospital, Montreal, QC, H2×0A9, Canada
| | - François Tournoux
- Laboratory of Biorheology and Medical Ultrasonics, Research Center, University of Montreal Hospital, Montreal, QC, H2×0A9, Canada.,Department of Cardiology, Echocardiography Laboratory, University of Montreal Hospital, Montreal, QC, H2×0A9, Canada
| | - Guy Cloutier
- Laboratory of Biorheology and Medical Ultrasonics, Research Center, University of Montreal Hospital, Montreal, QC, H2×0A9, Canada.,Department of Radiology, Radio-Oncology and Nuclear Medicine, and Institute of Biomedical Engineering, University of Montreal, Montreal, QC, H3C 3J7, Canada
| |
Collapse
|
30
|
Lorenzen US, Eiberg JP, Hultgren R, Wanhainen A, Langenskiöld M, Sillesen HH, Bredahl KK. The Short-term Predictive Value of Vessel Wall Stiffness on Abdominal Aortic Aneurysm Growth. Ann Vasc Surg 2021; 77:187-194. [PMID: 34437978 DOI: 10.1016/j.avsg.2021.05.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) surveillance programs are currently based solely on AAA diameter. The diameter criterion alone, however, seems inadequate as small AAAs comprise 5-10 % of ruptured AAAs as well as some large AAAs never rupture. Aneurysm wall stiffness has been suggested to predict rupture and growth; this study aimed to investigate the prognostic value of AAA vessel wall stiffness for growth on prospectively collected data. METHODS Analysis was based on data from a randomised, placebo-controlled, multicentre trial investigating mast-cell-inhibitors to halt aneurysm growth (the AORTA trial). Systolic and diastolic AAA diameter was determined in 326 patients using electrocardiogram-gated ultrasound (US). Stiffness was calculated at baseline and after 1 year. RESULTS Maximum AAA diameter increased from 44.1 mm to 46.5 mm during the study period. Aneurysm growth after 1 year was not predicted by baseline stiffness (-0.003 mm/U; 95 % CI: -0.007 to 0.001 mm/U; P = 0.15). Throughout the study period, stiffness remained unchanged (8.3 U; 95 % CI: -2.5 to 19.1 U; P = 0.13) and without significant correlation to aneurysm growth (R: 0.053; P = 0.38). CONCLUSIONS Following a rigorous US protocol, this study could not confirm AAA vessel wall stiffness as a predictor of aneurysm growth in a 1-year follow-up design. The need for new and subtle methods to complement diameter for improved AAA risk assessment is warranted.
Collapse
Affiliation(s)
| | - Jonas P Eiberg
- Department of Vascular Surgery, Rigshospitalet, Denmark; Copenhagen Academy for Medical Education and Simulation (CAMES), Capital Region of Denmark, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rebecka Hultgren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Sweden; Department of Vascular Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Wanhainen
- Department of Surgical Sciences, Vascular Surgery, Uppsala University, Sweden
| | - Marcus Langenskiöld
- Department of Molecular and Clinical Medicine, University of Gothenurg, Sweden
| | - Henrik H Sillesen
- Department of Vascular Surgery, Rigshospitalet, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kim K Bredahl
- Department of Vascular Surgery, Rigshospitalet, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
31
|
Fonken JHC, Maas EJ, Nievergeld AHM, van Sambeek MRHM, van de Vosse FN, Lopata RGP. Ultrasound-Based Fluid-Structure Interaction Modeling of Abdominal Aortic Aneurysms Incorporating Pre-stress. Front Physiol 2021; 12:717593. [PMID: 34483971 PMCID: PMC8414835 DOI: 10.3389/fphys.2021.717593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/16/2021] [Indexed: 12/05/2022] Open
Abstract
Currently, the prediction of rupture risk in abdominal aortic aneurysms (AAAs) solely relies on maximum diameter. However, wall mechanics and hemodynamics have shown to provide better risk indicators. Patient-specific fluid-structure interaction (FSI) simulations based on a non-invasive image modality are required to establish a patient-specific risk indicator. In this study, a robust framework to execute FSI simulations based on time-resolved three-dimensional ultrasound (3D+t US) data was obtained and employed on a data set of 30 AAA patients. Furthermore, the effect of including a pre-stress estimation (PSE) to obtain the stresses present in the measured geometry was evaluated. The established workflow uses the patient-specific 3D+t US-based segmentation and brachial blood pressure as input to generate meshes and boundary conditions for the FSI simulations. The 3D+t US-based FSI framework was successfully employed on an extensive set of AAA patient data. Omitting the pre-stress results in increased displacements, decreased wall stresses, and deviating time-averaged wall shear stress and oscillatory shear index patterns. These results underline the importance of incorporating pre-stress in FSI simulations. After validation, the presented framework provides an important tool for personalized modeling and longitudinal studies on AAA growth and rupture risk.
Collapse
Affiliation(s)
- Judith H. C. Fonken
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomechanical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, Netherlands
| | - Esther J. Maas
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomechanical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, Netherlands
| | - Arjet H. M. Nievergeld
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomechanical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, Netherlands
| | - Marc R. H. M. van Sambeek
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomechanical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, Netherlands
| | - Frans N. van de Vosse
- Cardiovascular Biomechanics, Department of Biomechanical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Richard G. P. Lopata
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomechanical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
32
|
Bogunovic N, Meekel JP, Majolée J, Hekhuis M, Pyszkowski J, Jockenhövel S, Kruse M, Riesebos E, Micha D, Blankensteijn JD, Hordijk PL, Ghazanfari S, Yeung KK. Patient-Specific 3-Dimensional Model of Smooth Muscle Cell and Extracellular Matrix Dysfunction for the Study of Aortic Aneurysms. J Endovasc Ther 2021; 28:604-613. [PMID: 33902345 PMCID: PMC8276336 DOI: 10.1177/15266028211009272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Abdominal aortic aneurysms (AAAs) are associated with overall high mortality in case of rupture. Since the pathophysiology is unclear, no adequate pharmacological therapy exists. Smooth muscle cells (SMCs) dysfunction and extracellular matrix (ECM) degradation have been proposed as underlying causes. We investigated SMC spatial organization and SMC-ECM interactions in our novel 3-dimensional (3D) vascular model. We validated our model for future use by comparing it to existing 2-dimensional (2D) cell culture. Our model can be used for translational studies of SMC and their role in AAA pathophysiology. MATERIALS AND METHODS SMC isolated from the medial layer of were the aortic wall of controls and AAA patients seeded on electrospun poly-lactide-co-glycolide scaffolds and cultured for 5 weeks, after which endothelial cells (EC) are added. Cell morphology, orientation, mechanical properties and ECM production were quantified for validation and comparison between controls and patients. RESULTS We show that cultured SMC proliferate into multiple layers after 5 weeks in culture and produce ECM proteins, mimicking their behavior in the medial aortic layer. EC attach to multilayered SMC, mimicking layer interactions. The novel SMC model exhibits viscoelastic properties comparable to biological vessels; cytoskeletal organization increases during the 5 weeks in culture; increased cytoskeletal alignment and decreased ECM production indicate different organization of AAA patients' cells compared with control. CONCLUSION We present a valuable preclinical model of AAA constructed with patient specific cells with applications in both translational research and therapeutic developments. We observed SMC spatial reorganization in a time course of 5 weeks in our robust, patient-specific model of SMC-EC organization and ECM production.
Collapse
Affiliation(s)
- Natalija Bogunovic
- Amsterdam Cardiovascular Sciences, Department of Vascular Surgery, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Department of Clinical Genetics, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Jorn P. Meekel
- Amsterdam Cardiovascular Sciences, Department of Vascular Surgery, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Jisca Majolée
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Marije Hekhuis
- Amsterdam Cardiovascular Sciences, Department of Clinical Genetics, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | | | - Stefan Jockenhövel
- Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, Geleen, The Netherlands
- Department of Biohybrid & Medical Textiles (Biotex), RWTH Aachen University, Aachen, Germany
| | - Magnus Kruse
- Department of Biohybrid & Medical Textiles (Biotex), RWTH Aachen University, Aachen, Germany
- Institut für Textiltechnik der RWTH Aachen University, Aachen, Germany
| | - Elise Riesebos
- Amsterdam Cardiovascular Sciences, Department of Clinical Genetics, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Dimitra Micha
- Amsterdam Cardiovascular Sciences, Department of Clinical Genetics, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Jan D. Blankensteijn
- Amsterdam Cardiovascular Sciences, Department of Vascular Surgery, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Peter L. Hordijk
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Samaneh Ghazanfari
- Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, Geleen, The Netherlands
- Department of Biohybrid & Medical Textiles (Biotex), RWTH Aachen University, Aachen, Germany
| | - Kak K. Yeung
- Amsterdam Cardiovascular Sciences, Department of Vascular Surgery, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Rabin A, Palacio D, Saqib N, Bar-Yoseph P, Weiss D, Afifi RO. Aortic aneurysms and dissections: Unmet needs from physicians and engineers perspectives. J Biomech 2021; 122:110461. [PMID: 33901933 DOI: 10.1016/j.jbiomech.2021.110461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
The treatment of aortic disease is complex, requiring cardiothoracic and vascular surgeons to make pre-, post- and intraoperative decisions directly influencing patient survival and well-being. Despite tremendous advancement in vascular surgery and endovascular techniques in the last two decades, along with the abundance of research in the field, many unmet needs and unanswered questions remain. Tight collaboration between engineers and physicians is a keystone in translating new tools, techniques, and devices into practice. Here, we have gathered our perspective, as physicians and engineers, in several pressing issues associated with the diagnosis and treatment of aortic aneurysms and dissection, referring to the current knowledge and practice, signifying unmet needs as well as future directions.
Collapse
Affiliation(s)
- Asaf Rabin
- Department of Vascular and Endovascular Surgery Unit, B. Padeh M.C, Poriya, Israel.
| | - Diana Palacio
- Cardiothoracic Imaging Division, Department of Medical Imaging, The University of Arizona Banner Medical Center, Tucson, AZ, USA
| | - Naveed Saqib
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Pinhas Bar-Yoseph
- Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Dar Weiss
- Department of Biomedical Engineering, Yale university, CT, USA
| | - Rana O Afifi
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| |
Collapse
|
34
|
Petterson N, Sjoerdsma M, van Sambeek M, van de Vosse F, Lopata R. Mechanical characterization of abdominal aortas using multi-perspective ultrasound imaging. J Mech Behav Biomed Mater 2021; 119:104509. [PMID: 33865067 DOI: 10.1016/j.jmbbm.2021.104509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/13/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022]
Abstract
Mechanical characterization of abdominal aortic aneurysms using personalized biomechanical models is being widely investigated as an alternative criterion to assess risk of rupture. These methods rely on accurate wall motion detection and appropriate model boundary conditions. In this study, multi-perspective ultrasound is combined with finite element models to perform mechanical characterization of abdominal aortas in volunteers. Multi-perspective biplane radio frequency ultrasound recordings were made under seven angles (-45° to 45°) in one phantom set-up and eight volunteers, which were merged using automatic image registration. 2-D displacement fields were estimated in the seven longitudinal ultrasound views, creating a sparse, high resolution 3-D map of the wall motion at relatively high frame rates (20-27 Hz). The displacements were used to personalize the subject-specific finite element model of which the geometry of the aorta, spine, and surrounding tissue were determined from a single 3-D ultrasound acquisition. Automatic registration of the multi-perspective images was successful in six out of eight cases with an average error of 5.4° compared to the ground truth. Displacements of the aortic wall were measured and cyclic strain of the aortic diameter was found ranging from 4.2% to 8.6%. The subject-specific mesh and inverse FE analysis was performed yielding shear moduli estimates for the wall between 104 and 215 kPa. Comparative results from a single-perspective workflow revealed very low aortic wall motion signal, which resulted in relatively high modulus estimates, between 230 and 754 kPa. Multi-perspective biplane ultrasound imaging was used to personalize finite element models of the abdominal aorta and its surroundings, and performing mechanical characterization of the aortic shear modulus. The method was found to be a more robust method compared to a single-perspective 3-D ultrasound approach. Future research will focus on investigating the use of multiple 3-D ultrasound acquisitions, the feasibility of free-hand scanning, the creation of a full 3-D automatic registration process, and with that, enable a clinical continuation of this study.
Collapse
Affiliation(s)
- Niels Petterson
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Marloes Sjoerdsma
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands.
| | - Marc van Sambeek
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands; Department of Vascular Surgery, Catharina Hospital Eindhoven, Michelangelolaan 2, 5623 EJ, Eindhoven, the Netherlands
| | - Frans van de Vosse
- Cardiovascular Biomechanics Group, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Richard Lopata
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| |
Collapse
|
35
|
de Hoop H, Petterson NJ, van de Vosse FN, van Sambeek MRHM, Schwab HM, Lopata RGP. Multiperspective Ultrasound Strain Imaging of the Abdominal Aorta. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3714-3724. [PMID: 32746118 DOI: 10.1109/tmi.2020.3003430] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Current decision-making for clinical intervention of abdominal aortic aneurysms (AAAs) is based on the maximum diameter of the aortic wall, but this does not provide patient-specific information on rupture risk. Ultrasound (US) imaging can assess both geometry and deformation of the aortic wall. However, low lateral contrast and resolution are currently limiting the precision of both geometry and local strain estimates. To tackle these drawbacks, a multiperspective scanning mode was developed on a dual transducer US system to perform strain imaging at high frame rates. Experimental imaging was performed on porcine aortas embedded in a phantom of the abdomen, pressurized in a mock circulation loop. US images were acquired with three acquisition schemes: Multiperspective ultrafast imaging, single perspective ultrafast imaging, and conventional line-by-line scanning. Image registration was performed by automatic detection of the transducer surfaces. Multiperspective images and axial displacements were compounded for improved segmentation and tracking of the aortic wall, respectively. Performance was compared in terms of image quality, motion tracking, and strain estimation. Multiperspective compound displacement estimation reduced the mean motion tracking error over one cardiac cycle by a factor 10 compared to conventional scanning. Resolution increased in radial and circumferential strain images, and circumferential signal-to-noise ratio (SNRe) increased by 10 dB. Radial SNRe is high in wall regions moving towards the transducer. In other regions, radial strain estimates remain cumbersome for the frequency used. In conclusion, multiperspective US imaging was demonstrated to improve motion tracking and circumferential strain estimation of porcine aortas in an experimental set-up.
Collapse
|
36
|
Edvardsen T, Haugaa KH, Petersen SE, Gimelli A, Donal E, Maurer G, Popescu BA, Cosyns B. The year 2019 in the European Heart Journal-Cardiovascular Imaging: Part I. Eur Heart J Cardiovasc Imaging 2020; 21:1208-1215. [PMID: 32929466 DOI: 10.1093/ehjci/jeaa259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
The European Heart Journal-Cardiovascular Imaging was launched in 2012 and has during these years become one of the leading multimodality cardiovascular imaging journals. The journal is now established as one of the top cardiovascular journals and is the most important cardiovascular imaging journal in Europe. The most important studies published in our Journal in 2019 will be highlighted in two reports. Part I of the review will focus on studies about myocardial function and risk prediction, myocardial ischaemia, and emerging techniques in cardiovascular imaging, while Part II will focus on valvular heart disease, heart failure, cardiomyopathies, and congenital heart disease.
Collapse
Affiliation(s)
- Thor Edvardsen
- Department of Cardiology, Centre of Cardiological Innovation, Oslo University Hospital, Rikshospitalet, Postbox 4950 Nydalen, Sognsvannsveien 20, NO-0424 Oslo, Norway.,Institute for Clinical Medicine, University of Oslo, Postboks 1171, Blindern 0318 Oslo, Norway
| | - Kristina H Haugaa
- Department of Cardiology, Centre of Cardiological Innovation, Oslo University Hospital, Rikshospitalet, Postbox 4950 Nydalen, Sognsvannsveien 20, NO-0424 Oslo, Norway.,Institute for Clinical Medicine, University of Oslo, Postboks 1171, Blindern 0318 Oslo, Norway
| | - Steffen E Petersen
- Barts Heart Centre, Barts Health NHS Trust, West Smithfield, EC1A 7BE, London, UK.,William Harvey Research Institute, Queen Mary University of London, EC1M 6BQ, London, UK
| | - Alessia Gimelli
- Fondazione Toscana Gabriele Monasterio via Moruzzi n.1 - 56124 - Pisa, Italy
| | - Erwan Donal
- Cardiology and CIC-IT1414, CHU Rennes, Rennes, France.,LTSI INSERM 1099, University Rennes-1, Rennes, France
| | - Gerald Maurer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Wien, Austria
| | - Bogdan A Popescu
- Department of Cardiology, University of Medicine and Pharmacy "Carol Davila"-Euroecolab, Emergency Institute for Cardiovascular Diseases "Prof. Dr. C. C. Iliescu", Sos. Fundeni 258, Sector 2, 022328 Bucharest, Romania
| | - Bernard Cosyns
- Cardiology, CHVZ (Centrum voor Hart en Vaatziekten), ICMI (In Vivo Cellular and Molecular Imaging) Laboratory, Universitair Ziekenhuis Brussel, 109 Laarbeeklaan, B1090 Brussels, Belgium
| |
Collapse
|
37
|
Derwich W, Wittek A, Hegner A, Fritzen CP, Blase C, Schmitz-Rixen T. Comparison of Abdominal Aortic Aneurysm Sac and Neck Wall Motion with 4D Ultrasound Imaging. Eur J Vasc Endovasc Surg 2020; 60:539-547. [DOI: 10.1016/j.ejvs.2020.06.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 05/29/2020] [Accepted: 06/19/2020] [Indexed: 12/28/2022]
|
38
|
Lipp SN, Niedert EE, Cebull HL, Diorio TC, Ma JL, Rothenberger SM, Stevens Boster KA, Goergen CJ. Computational Hemodynamic Modeling of Arterial Aneurysms: A Mini-Review. Front Physiol 2020; 11:454. [PMID: 32477163 PMCID: PMC7235429 DOI: 10.3389/fphys.2020.00454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/09/2020] [Indexed: 01/02/2023] Open
Abstract
Arterial aneurysms are pathological dilations of blood vessels, which can be of clinical concern due to thrombosis, dissection, or rupture. Aneurysms can form throughout the arterial system, including intracranial, thoracic, abdominal, visceral, peripheral, or coronary arteries. Currently, aneurysm diameter and expansion rates are the most commonly used metrics to assess rupture risk. Surgical or endovascular interventions are clinical treatment options, but are invasive and associated with risk for the patient. For aneurysms in locations where thrombosis is the primary concern, diameter is also used to determine the level of therapeutic anticoagulation, a treatment that increases the possibility of internal bleeding. Since simple diameter is often insufficient to reliably determine rupture and thrombosis risk, computational hemodynamic simulations are being developed to help assess when an intervention is warranted. Created from subject-specific data, computational models have the potential to be used to predict growth, dissection, rupture, and thrombus-formation risk based on hemodynamic parameters, including wall shear stress, oscillatory shear index, residence time, and anomalous blood flow patterns. Generally, endothelial damage and flow stagnation within aneurysms can lead to coagulation, inflammation, and the release of proteases, which alter extracellular matrix composition, increasing risk of rupture. In this review, we highlight recent work that investigates aneurysm geometry, model parameter assumptions, and other specific considerations that influence computational aneurysm simulations. By highlighting modeling validation and verification approaches, we hope to inspire future computational efforts aimed at improving our understanding of aneurysm pathology and treatment risk stratification.
Collapse
Affiliation(s)
- Sarah N. Lipp
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Elizabeth E. Niedert
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Hannah L. Cebull
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Tyler C. Diorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Jessica L. Ma
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Sean M. Rothenberger
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Kimberly A. Stevens Boster
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States
| | - Craig J. Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
39
|
Perissiou M, Bailey TG, Windsor M, Greaves K, Nam MCY, Russell FD, O'Donnell J, Magee R, Jha P, Schulze K, Leicht AS, Golledge J, Askew CD. Aortic and Systemic Arterial Stiffness Responses to Acute Exercise in Patients With Small Abdominal Aortic Aneurysms. Eur J Vasc Endovasc Surg 2019; 58:708-718. [PMID: 31631005 DOI: 10.1016/j.ejvs.2019.02.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 02/24/2019] [Indexed: 11/25/2022]
Abstract
OBJECTIVE/BACKGROUND Elevated arterial stiffness is a characteristic of abdominal aortic aneurysm (AAA), and is associated with AAA growth and cardiovascular mortality. A bout of exercise transiently reduces aortic and systemic arterial stiffness in healthy adults. Whether the same response occurs in patients with AAA is unknown. The effect of moderate- and higher intensity exercise on arterial stiffness was assessed in patients with AAA and healthy adults. METHODS Twenty-two men with small diameter AAAs (36 ± 5 mm; mean age 74 ± 6 years) and 22 healthy adults (mean age 72 ± 5 years) were included. Aortic stiffness was measured using carotid to femoral pulse wave velocity (PWV), and systemic arterial stiffness was estimated from the wave reflection magnitude (RM) and augmentation index (Alx75). Measurements were performed at rest and during 90 min of recovery following three separate test sessions in a randomised order: (i) moderate intensity continuous exercise; (ii) higher intensity interval exercise; or (iii) seated rest. RESULTS At rest, PWV was higher in patients with AAA than in healthy adults (p < .001), while AIx75 and RM were similar between groups. No differences were observed between AAA patients and healthy adults in post-exercise aortic and systemic arterial stiffness after either exercise protocol. When assessed as the change from baseline (delta, Δ), post-exercise ΔAIx75 was not different to the seated rest protocol. Conversely, post-exercise ΔPWV and ΔRM were both lower at all time points than seated rest (p < .001). ΔPWV was lower immediately after higher intensity than after moderate intensity exercise (p = .015). CONCLUSION High resting aortic stiffness in patients with AAA is not exacerbated after exercise. There was a similar post-exercise attenuation in arterial stiffness between patients with AAA and healthy adults compared with seated rest. This effect was most pronounced following higher intensity interval exercise, suggesting that this form of exercise may be a safe and effective adjunctive therapy for patients with small AAAs.
Collapse
Affiliation(s)
- Maria Perissiou
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Tom G Bailey
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia; Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Mark Windsor
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Kim Greaves
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia; Sunshine Coast Hospital and Health Service, Birtinya, QLD, Australia
| | - Michael C Y Nam
- Sunshine Coast Hospital and Health Service, Birtinya, QLD, Australia
| | - Fraser D Russell
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Jill O'Donnell
- Sunshine Coast Hospital and Health Service, Birtinya, QLD, Australia
| | - Rebecca Magee
- Sunshine Coast Hospital and Health Service, Birtinya, QLD, Australia
| | - Pankaj Jha
- Sunshine Coast Hospital and Health Service, Birtinya, QLD, Australia
| | - Karl Schulze
- Sunshine Vascular Surgery, Buderim, QLD, Australia
| | - Anthony S Leicht
- Sport and Exercise Science, James Cook University, Townsville, QLD, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, James Cook University and the Townsville Hospital, Townsville, QLD, Australia.
| | - Christopher D Askew
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia; Sunshine Coast Hospital and Health Service, Birtinya, QLD, Australia.
| |
Collapse
|