1
|
Tanaka A, Safi HJ, Estrera AL. Open Thoracoabdominal Aortic Aneurysm Repair. Ann Thorac Surg 2024:S0003-4975(24)00676-3. [PMID: 39178928 DOI: 10.1016/j.athoracsur.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/20/2024] [Accepted: 08/06/2024] [Indexed: 08/26/2024]
Abstract
Operative techniques and perioperative management for thoracoabdominal aortic aneurysm (TAAA) have been modified and refined, but the morbidity and mortality remain high. Major challenges in open TAAA repair are prevention of ischemic insults to multiple organs, especially the spinal cord, and minimizing bleeding. The purpose of this narrative review is to provide currently available techniques and management strategies for open TAAA repair that optimize outcomes.
Collapse
Affiliation(s)
- Akiko Tanaka
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at UTHealth, Houston, Texas.
| | - Hazim J Safi
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at UTHealth, Houston, Texas
| | - Anthony L Estrera
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at UTHealth, Houston, Texas
| |
Collapse
|
2
|
Wu F, Lin Y, Xiao L, Chen Q, Lin F, Li R. Administration with curcumin alleviates spinal cord ischemia-reperfusion injury by regulating anti-oxidative stress and microglia activation-mediated neuroinflammation via Nrf2/NF-κB axis. In Vitro Cell Dev Biol Anim 2024; 60:172-182. [PMID: 38228998 DOI: 10.1007/s11626-023-00846-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/08/2023] [Indexed: 01/18/2024]
Abstract
Spinal cord ischemia-reperfusion injury (SCII) ranks as the common complication after aortic surgery, usually leading to devastating post-operative paraplegia. Microglia over-activation and neuronal cell loss are key pathological features of SCII. Curcumin is involved in several I/R injuries. However, its underlying mechanism in SCII remains elusive. Here, curcumin attenuated oxygen and glucose deprivation/reoxygenation (OGD/R)-induced oxidative injury in PC12 neuronal cells by increasing cell viability, inhibiting cell apoptosis, lactate dehydrogenase, malondialdehyde levels, but elevating anti-oxidative superoxide dismutase and glutathione peroxidase levels. Furthermore, curcumin restrained OGD/R-evoked microglia M1 activation by decreasing microglia M1 polarization marker IBA-1 and iNOS transcripts. Moreover, the increased inflammatory cytokine levels of TNF-α and IL-6 in microglia under OGD/R conditions were suppressed after curcumin treatment. Importantly, neuronal cells incubated with a conditioned medium from OGD/R-treated microglia exhibited lower cell viability and higher apoptotic ratio, which were overturned when microglia were treated with curcumin. Intriguingly, curcumin could inhibit the activation of the NF-κB pathway by Nrf2 enhancement in OGD/R-treated PC12 cells and microglia. Notably, targeting Nrf2 signaling reversed the protective efficacy of curcumin against OGD/R-evoked oxidative insult in neuronal, microglia M1 activation, inflammatory response, and microglial activation-evoked neuronal death. In vivo, curcumin improved histopathologic injury and neurologic motor function in SCII rats and attenuated oxidative stress, microglia activation and neuroinflammation in spinal cord tissues, and activation of the Nrf2/NF-κB pathway. Thus, curcumin may alleviate SCII by mitigating I/R-evoked oxidative injury in neuron and microglia activation-induced neuroinflammation and neuron death through Nrf2/NF-κB signaling, supporting a promising therapeutic agent for SCII.
Collapse
Affiliation(s)
- Fengchun Wu
- Department of Orthopaedics, Third Clinical College, Fujian Medical University, Fuzhou, 350007, People's Republic of China
- Department of Orthopaedics, Fuzhou Second Hospital, Fuzhou, 350007, People's Republic of China
| | - Yu Lin
- Department of Orthopaedics, Third Clinical College, Fujian Medical University, Fuzhou, 350007, People's Republic of China
- Department of Orthopaedics, Fuzhou Second Hospital, Fuzhou, 350007, People's Republic of China
| | - Lili Xiao
- Department of Orthopaedics, Third Clinical College, Fujian Medical University, Fuzhou, 350007, People's Republic of China
- Department of Orthopaedics, Fuzhou Second Hospital, Fuzhou, 350007, People's Republic of China
| | - Qiyong Chen
- Department of Orthopaedics, Third Clinical College, Fujian Medical University, Fuzhou, 350007, People's Republic of China
| | - Fengfei Lin
- Department of Orthopaedics, Third Clinical College, Fujian Medical University, Fuzhou, 350007, People's Republic of China
- Department of Orthopaedics, Fuzhou Second Hospital, Fuzhou, 350007, People's Republic of China
| | - Renbin Li
- Department of Orthopaedics, Third Clinical College, Fujian Medical University, Fuzhou, 350007, People's Republic of China.
- Department of Orthopaedics, Fuzhou Second Hospital, Fuzhou, 350007, People's Republic of China.
| |
Collapse
|
3
|
Marturano F, Nisi F, Giustiniano E, Benedetto F, Piccioni F, Ripani U. Prevention of Spinal Cord Injury during Thoracoabdominal Aortic Aneurysms Repair: What the Anaesthesiologist Should Know. J Pers Med 2022; 12:1629. [PMID: 36294768 PMCID: PMC9605294 DOI: 10.3390/jpm12101629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022] Open
Abstract
Thoraco-abdominal aortic repair is a high-risk surgery for both mortality and morbidity. A major complication is paraplegia-paralysis due to spinal cord injury. Modern thoracic and abdominal aortic aneurysm repair techniques involve multiple strategies to reduce the risk of spinal cord ischemia during and after surgery. These include both surgical and anaesthesiologic approaches to optimize spinal cord perfusion by staging the procedure, guaranteeing perfusion of the distal aorta through various techniques (left atrium-left femoral artery by-pass) by pharmacological and monitoring interventions or by maximizing oxygen delivery and inducing spinal cord hypothermia. Lumbar CSF drainage alone or in combination with other techniques remains one of the most used and effective strategies. This narrative review overviews the current techniques to prevent or avoid spinal cord injury during thoracoabdominal aortic aneurysms repair.
Collapse
Affiliation(s)
- Federico Marturano
- Department of Anaesthesia, Analgesia and Intensive Care, Vito Fazzi Hospital, 73100 Lecce, Italy
| | - Fulvio Nisi
- Department of Anaesthesia and Intensive Care Unit, IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Enrico Giustiniano
- Department of Anaesthesia and Intensive Care Unit, IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Francesco Benedetto
- Department of Anaesthesia and Intensive Care Unit, IRCCS Humanitas Research Hospital, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy
| | - Federico Piccioni
- Department of Anaesthesia and Intensive Care Unit, IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Umberto Ripani
- Division of Clinic Anaesthesia, Department of Emergency Hospital Riuniti, Conca Street 71, 60126 Ancona, Italy
| |
Collapse
|
4
|
Mohebali J, Latz CA, Cambria RP, Patel VI, Ergul EA, Lancaster RT, Conrad MF, Clouse WD. The Long-term Fate of Renal and Visceral Vessel Reconstruction After Open Thoracoabdominal Aortic Aneurysm Repair. J Vasc Surg 2021; 74:1825-1832. [PMID: 34171425 DOI: 10.1016/j.jvs.2021.05.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES In the ever-advancing era of endovascular thoracoabdominal aneurysm (TAAA) repair, understanding long-term patency of renovisceral reconstructions after open TAAA repair provides important benchmarks. METHODS Institutional open TAAA repair patient data were queried. Patients dying during index admission or with incomplete operative detail were excluded. Visceral and renal reconstructions were categorized as bypass, incorporation into a proximal or distal beveled aortic anastomosis, inclusion button, Carrel patch, or hybrid stent along with endarterectomy/stent adjuncts. Axial imaging or angiography determined long-term patency. Vessel event was defined as new occlusion or reintervention after repair. Overall time-to-event analysis was performed as well as separate analyses for each vessel (Celiac, SMA, right renal, left renal) by reconstruction type utilizing Kaplan-Meier methods. Log-rank testing was employed to compare reconstructive strategies. RESULTS Over 28-years, 604 repairs [Type I 106(18%), Type II 73(12%), Type III 195(32%), Type IV 230(38%)] were identified. Follow-up (median 500 days) was available in 410/570(72%) Celiac, 406/573(71%) SMA, 379/532(71.2%) right renal, and 370/515(72%) left renal reconstructions. There were five celiac, one SMA, eight right renal, and ten left renal events. No type of reconstruction or adjunct was significantly associated with event. Overall 5-year patency of all renal/visceral reconstructions was 94% (95%CI [90%-96%]). Estimated 5-year patency of the Celiac, SMA, left renal, and right renal were similar, and were 99%, 100%, 97%, and 96%, respectively (p = .09). CONCLUSIONS Visceral and renal long-term patency after open TAAA repair is excellent regardless of reconstructive technique. No differences are appreciated even when target vessel disease is addressed at the time of reconstruction. These findings continue to substantiate the effective long-term durability of open TAAA repair and are particularly germane to the ongoing evolution of endovascular strategies.
Collapse
Affiliation(s)
- Jahan Mohebali
- Massachusetts General Hospital Division of Vascular and Endovascular Surgery, Harvard Medical School, Boston, MA
| | - Christopher A Latz
- Massachusetts General Hospital Division of Vascular and Endovascular Surgery, Harvard Medical School, Boston, MA
| | - Richard P Cambria
- Divison of Vascular Surgery, Steward Medical Group, St. Elizabeth's Medical Center, Brighton, MA
| | - Virendra I Patel
- Divison of Vascular Surgery and Endovascular Interventions, Columbia University Medical Center, Columbia University College of Physicians and Surgeons, New York, NY
| | - Emel A Ergul
- Massachusetts General Hospital Division of Vascular and Endovascular Surgery, Harvard Medical School, Boston, MA
| | - R Todd Lancaster
- Massachusetts General Hospital Division of Vascular and Endovascular Surgery, Harvard Medical School, Boston, MA
| | - Mark F Conrad
- Massachusetts General Hospital Division of Vascular and Endovascular Surgery, Harvard Medical School, Boston, MA
| | - W Darrin Clouse
- Division of Vascular and Endovascular Surgery, University of Virginia, Charlottesville, VA
| |
Collapse
|
5
|
Haunschild J, VON Aspern K, Misfeld M, Davierwala P, Borger MA, Etz CD. Spinal cord protection in thoracoabdominal aortic aneurysm surgery: a multimodal approach. THE JOURNAL OF CARDIOVASCULAR SURGERY 2021; 62:316-325. [PMID: 33496426 DOI: 10.23736/s0021-9509.21.11783-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spinal cord injury (SCI) is one major complication of open and endovascular thoracic and thoracoabdominal aortic aneurysm repair. Despite numerous neuroprotective adjuncts, the incidence of SCI remains high. This review article discusses established and novel adjuncts for spinal cord protection, including priming and preconditioning of the paraspinal collateral network, intraoperative systemic hypothermia, distal aortic perfusion, motor- and somatosensory evoked potentials and noninvasive cnNIRS monitoring as well as peri- and postoperative drainage of cerebrospinal fluid. Regardless of the positive influence of many of these strategies on neurologic outcome, to date no strategy assures definitive preservation of spinal cord integrity during and after aortic aneurysm repair.
Collapse
Affiliation(s)
| | | | - Martin Misfeld
- Department of Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany.,Department of Cardiothoracic Surgery, Royal Prince Alfred Hospital, Sydney, Australia.,Faculty of Medicine and Health, Central Clinical School, University of Sydney, Sydney, Australia.,Institute of Academic Surgery, RPAH, Sydney, Australia.,The Baird Institute of Applied Heart and Lung Surgical Research, Sydney, Australia
| | - Piroze Davierwala
- Department of Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany
| | - Michael A Borger
- Department of Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany
| | - Christian D Etz
- Department of Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany -
| |
Collapse
|
6
|
Vandiver MS, Vacas S. Interventions to improve perioperative neurologic outcomes. Curr Opin Anaesthesiol 2020; 33:661-667. [PMID: 32769748 DOI: 10.1097/aco.0000000000000905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE OF REVIEW Few outcomes in surgery are as important to patients as that of their neurologic status. The purpose of this review is to discuss and categorize the most common perioperative neurologic complications. We will also discuss strategies to help prevent and mitigate these complications for our patients. RECENT FINDINGS There are several strategies the anesthesiologist can undertake to prevent or treat conditions, such as perioperative neurocognitive disorders, spinal cord ischemia, perioperative stroke, and postoperative visual loss. SUMMARY A thorough understanding of threats to patients' neurologic well-being is essential to excellent clinical practice.
Collapse
Affiliation(s)
- Matthew S Vandiver
- Department of Anesthesiology and Perioperative Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | | |
Collapse
|
7
|
Tanaka A, Charlton-Ouw KM. Open thoracoabdominal aortic aneurysm repair in the endovascular era. ITALIAN JOURNAL OF VASCULAR AND ENDOVASCULAR SURGERY 2020. [DOI: 10.23736/s1824-4777.19.01428-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
8
|
Spinal cord perfusion protection for thoraco-abdominal aortic aneurysm surgery. Curr Opin Anaesthesiol 2019; 32:72-79. [DOI: 10.1097/aco.0000000000000670] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Mongardon N, Kohlhauer M, Lidouren F, Barretto M, Micheau P, Adam C, Dhonneur G, Ghaleh B, Tissier R. Targeted Temperature Management With Total Liquid Ventilation After Ischemic Spinal Cord Injury. Ann Thorac Surg 2018; 106:1797-1803. [PMID: 30120942 DOI: 10.1016/j.athoracsur.2018.06.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/08/2018] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Ischemic spinal cord injury is a devastating condition after aortic surgery. We determined whether ultrafast and short whole-body hypothermia provided by total liquid ventilation (TLV) attenuated lower limb paralysis after aortic cross-clamping with a targeted temperature management at 33°C versus 36°C. METHODS Anesthetized rabbits were submitted to infrarenal aortic cross-clamping during 15 min. A control group (n = 7) was maintained at normothermia (38°C to 38.5°C) with conventional mechanical ventilation. In TLV groups, TLV was started after reperfusion and maintained during 30 min with a target temperature at either 33°C or 36°C (TLV-33°C and TLV-36°C, respectively; n = 7 in each condition). After TLV, animals were resumed to conventional ventilation. Hypothermia was maintained during 120 min, before rewarming and awakening. Hind limb motor function was assessed with modified Tarlov score at day 2 and infarct size in the spinal cord was determined using triphenyltetrazolium chloride staining. RESULTS Target temperature was achieved within 20 minutes in the two TLV groups. At day 2, the modified Tarlov score was significantly lower in the control group, as compared with TLV-33°C and TLV-36°C groups (0.0 ± 0.0 versus 3.1 ± 0.7 and 2.6 ± 0.6, respectively). The infarct size of the spinal cord was also significantly higher in the control group compared with TLV-33°C and TLV-36°C groups (75% ± 10% versus 32% ± 7% and 28% ± 10%, respectively). Neither motor function nor infarct size differed significantly between TLV-33°C and TLV-36°C groups. CONCLUSIONS Ultrafast hypothermic TLV attenuates spinal cord injury when applied after ischemic insult. Neurological outcome was similar with targeted temperature management at either 33°C or 36°C.
Collapse
Affiliation(s)
- Nicolas Mongardon
- Inserm, U955, Equipe 3, Créteil, France; Université Paris Est, UMR_S955, UPEC, DHU A-TVB, Créteil, France; Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France; Service d'Anesthésie-Réanimation, DHU A-TVB, Hôpitaux Universitaires Henri Mondor, Assistance Publique des Hôpitaux de Paris, Créteil, France
| | - Matthias Kohlhauer
- Inserm, U955, Equipe 3, Créteil, France; Université Paris Est, UMR_S955, UPEC, DHU A-TVB, Créteil, France; Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Fanny Lidouren
- Inserm, U955, Equipe 3, Créteil, France; Université Paris Est, UMR_S955, UPEC, DHU A-TVB, Créteil, France; Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Mariana Barretto
- Inserm, U955, Equipe 3, Créteil, France; Université Paris Est, UMR_S955, UPEC, DHU A-TVB, Créteil, France; Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | | | - Clovis Adam
- Service d'Anatomo-pathologie, Hôpital Bicêtre, Assistance Publique des Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Gilles Dhonneur
- Service d'Anesthésie-Réanimation, DHU A-TVB, Hôpitaux Universitaires Henri Mondor, Assistance Publique des Hôpitaux de Paris, Créteil, France
| | - Bijan Ghaleh
- Inserm, U955, Equipe 3, Créteil, France; Université Paris Est, UMR_S955, UPEC, DHU A-TVB, Créteil, France; Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Renaud Tissier
- Inserm, U955, Equipe 3, Créteil, France; Université Paris Est, UMR_S955, UPEC, DHU A-TVB, Créteil, France; Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France.
| |
Collapse
|
10
|
Scott DA, Denton MJ. Spinal cord protection in aortic endovascular surgery. Br J Anaesth 2018; 117 Suppl 2:ii26-ii31. [PMID: 27566805 DOI: 10.1093/bja/aew217] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2016] [Indexed: 11/13/2022] Open
Abstract
A persistent neurological deficit, such as paraplegia or paraparesis, secondary to spinal cord injury remains one of the most feared complications of surgery on the descending thoracic or abdominal aorta. This is despite sophisticated advances in imaging and the use of less invasive endovascular procedures. Extensive fenestrated endovascular aortic graft prostheses still carry a risk of spinal cord injury of up to 10%; thus, this risk should be identified and strategies implemented to protect the spinal cord and maintain perfusion. The patients at highest risk are those undergoing extensive thoracic aortic stenting including thoracic, abdominal, and pelvic vessels. Although many techniques are available, lumbar cerebrospinal fluid drainage remains the most frequent intervention, along with maintenance of perfusion pressure and possibly staged procedures to allow collateral vessel stabilization. Many questions remain regarding other technical aspects, spinal cord monitoring and cooling, pharmacological protection, and the optimal duration of interventions into the postoperative period.
Collapse
Affiliation(s)
- D A Scott
- University of Melbourne, Parkville, VIC 3052, Australia Department of Anaesthesia and Acute Pain Medicine
| | - M J Denton
- University of Melbourne, Parkville, VIC 3052, Australia Vascular Surgical Unit, St Vincent's Hospital Melbourne, PO Box 2900, Fitzroy, VIC 3065, Australia
| |
Collapse
|
11
|
Tanaka A, Safi HJ, Estrera AL. Current strategies of spinal cord protection during thoracoabdominal aortic surgery. Gen Thorac Cardiovasc Surg 2018; 66:307-314. [DOI: 10.1007/s11748-018-0906-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/05/2018] [Indexed: 10/17/2022]
|
12
|
Nardone R, Pikija S, Mutzenbach JS, Seidl M, Leis S, Trinka E, Sellner J. Current and emerging treatment options for spinal cord ischemia. Drug Discov Today 2016; 21:1632-1641. [PMID: 27326910 DOI: 10.1016/j.drudis.2016.06.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 05/21/2016] [Accepted: 06/14/2016] [Indexed: 11/19/2022]
Abstract
Spinal cord infarction (SCI) is a rare but disabling disorder caused by a wide spectrum of conditions. Given the lack of randomized-controlled trials, contemporary treatment concepts are adapted from guidelines for cerebral ischemia, atherosclerotic vascular disease, and acute traumatic spinal cord injury. In addition, patients with SCI are at risk for several potentially life-threatening but preventable systemic and neurologic complications. Notably, there is emerging evidence from preclinical studies for the use of neuroprotection in acute ischemic injury of the spinal cord. In this review, we discuss the current state of the art for the therapy and prevention of SCI and highlight potential emerging treatment concepts awaiting translational adoption.
Collapse
Affiliation(s)
- Raffaele Nardone
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria; Department of Neurology, Franz Tappeiner Hospital, Merano, Italy
| | - Slaven Pikija
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria
| | - J Sebastian Mutzenbach
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria
| | - Martin Seidl
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria
| | - Stefan Leis
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria
| | - Eugen Trinka
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria
| | - Johann Sellner
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria; Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Germany.
| |
Collapse
|
13
|
Lobenwein D, Tepeköylü C, Kozaryn R, Pechriggl EJ, Bitsche M, Graber M, Fritsch H, Semsroth S, Stefanova N, Paulus P, Czerny M, Grimm M, Holfeld J. Shock Wave Treatment Protects From Neuronal Degeneration via a Toll-Like Receptor 3 Dependent Mechanism: Implications of a First-Ever Causal Treatment for Ischemic Spinal Cord Injury. J Am Heart Assoc 2015; 4:e002440. [PMID: 26508745 PMCID: PMC4845137 DOI: 10.1161/jaha.115.002440] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background Paraplegia following spinal cord ischemia represents a devastating complication of both aortic surgery and endovascular aortic repair. Shock wave treatment was shown to induce angiogenesis and regeneration in ischemic tissue by modulation of early inflammatory response via Toll‐like receptor (TLR) 3 signaling. In preclinical and clinical studies, shock wave treatment had a favorable effect on ischemic myocardium. We hypothesized that shock wave treatment also may have a beneficial effect on spinal cord ischemia. Methods and Results A spinal cord ischemia model in mice and spinal slice cultures ex vivo were performed. Treatment groups received immediate shock wave therapy, which resulted in decreased neuronal degeneration and improved motor function. In spinal slice cultures, the activation of TLR3 could be observed. Shock wave effects were abolished in spinal slice cultures from TLR3−/− mice, whereas the effect was still present in TLR4−/− mice. TLR4 protein was found to be downregulated parallel to TLR3 signaling. Shock wave–treated animals showed significantly better functional outcome and survival. The protective effect on neurons could be reproduced in human spinal slices. Conclusions Shock wave treatment protects from neuronal degeneration via TLR3 signaling and subsequent TLR4 downregulation. Consequently, it represents a promising treatment option for the devastating complication of spinal cord ischemia after aortic repair.
Collapse
Affiliation(s)
- Daniela Lobenwein
- University Hospital for Cardiac Surgery, Innsbruck Medical University, Innsbruck, Austria (D.L., C.T., R.K., E.J.P., M.G., S.S., M.G., J.H.)
| | - Can Tepeköylü
- University Hospital for Cardiac Surgery, Innsbruck Medical University, Innsbruck, Austria (D.L., C.T., R.K., E.J.P., M.G., S.S., M.G., J.H.)
| | - Radoslaw Kozaryn
- University Hospital for Cardiac Surgery, Innsbruck Medical University, Innsbruck, Austria (D.L., C.T., R.K., E.J.P., M.G., S.S., M.G., J.H.)
| | - Elisabeth J Pechriggl
- University Hospital for Cardiac Surgery, Innsbruck Medical University, Innsbruck, Austria (D.L., C.T., R.K., E.J.P., M.G., S.S., M.G., J.H.) Division of Clinical and Functional Anatomy, Department of Anatomy, Histology and Embryology, Innsbruck Medical University, Innsbruck, Austria (E.J.P., M.B., H.F.)
| | - Mario Bitsche
- Division of Clinical and Functional Anatomy, Department of Anatomy, Histology and Embryology, Innsbruck Medical University, Innsbruck, Austria (E.J.P., M.B., H.F.)
| | - Michael Graber
- University Hospital for Cardiac Surgery, Innsbruck Medical University, Innsbruck, Austria (D.L., C.T., R.K., E.J.P., M.G., S.S., M.G., J.H.)
| | - Helga Fritsch
- Division of Clinical and Functional Anatomy, Department of Anatomy, Histology and Embryology, Innsbruck Medical University, Innsbruck, Austria (E.J.P., M.B., H.F.)
| | - Severin Semsroth
- University Hospital for Cardiac Surgery, Innsbruck Medical University, Innsbruck, Austria (D.L., C.T., R.K., E.J.P., M.G., S.S., M.G., J.H.)
| | - Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Innsbruck Medical University, Innsbruck, Austria (N.S.)
| | - Patrick Paulus
- Department of Anesthesiology and Operative Intensive Care Medicine, Kepler University Hospital Linz, Linz, Austria (P.P.)
| | - Martin Czerny
- Department for Cardiovascular Surgery, University Hospital Freiburg, Freiburg, Germany (M.C.)
| | - Michael Grimm
- University Hospital for Cardiac Surgery, Innsbruck Medical University, Innsbruck, Austria (D.L., C.T., R.K., E.J.P., M.G., S.S., M.G., J.H.)
| | - Johannes Holfeld
- University Hospital for Cardiac Surgery, Innsbruck Medical University, Innsbruck, Austria (D.L., C.T., R.K., E.J.P., M.G., S.S., M.G., J.H.)
| |
Collapse
|
14
|
Elevated neuronal α-synuclein promotes microglia activation after spinal cord ischemic/reperfused injury. Neuroreport 2015; 26:656-61. [DOI: 10.1097/wnr.0000000000000406] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Kato M, Motoki M, Isaji T, Suzuki T, Kawai Y, Ohkubo N. Spinal cord injury after endovascular treatment for thoracoabdominal aneurysm or dissection. Eur J Cardiothorac Surg 2014; 48:571-7. [DOI: 10.1093/ejcts/ezu497] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/13/2014] [Indexed: 11/13/2022] Open
|