1
|
Casós K, Llatjós R, Blasco-Lucas A, Kuguel SG, Sbraga F, Galli C, Padler-Karavani V, Le Tourneau T, Vadori M, Perota A, Roussel JC, Bottio T, Cozzi E, Soulillou JP, Galiñanes M, Máñez R, Costa C. Differential Immune Response to Bioprosthetic Heart Valve Tissues in the α1,3Galactosyltransferase-Knockout Mouse Model. Bioengineering (Basel) 2023; 10:833. [PMID: 37508860 PMCID: PMC10376745 DOI: 10.3390/bioengineering10070833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Structural valve deterioration (SVD) of bioprosthetic heart valves (BHVs) has great clinical and economic consequences. Notably, immunity against BHVs plays a major role in SVD, especially when implanted in young and middle-aged patients. However, the complex pathogenesis of SVD remains to be fully characterized, and analyses of commercial BHVs in standardized-preclinical settings are needed for further advancement. Here, we studied the immune response to commercial BHV tissue of bovine, porcine, and equine origin after subcutaneous implantation into adult α1,3-galactosyltransferase-knockout (Gal KO) mice. The levels of serum anti-galactose α1,3-galactose (Gal) and -non-Gal IgM and IgG antibodies were determined up to 2 months post-implantation. Based on histological analyses, all BHV tissues studied triggered distinct infiltrating cellular immune responses that related to tissue degeneration. Increased anti-Gal antibody levels were found in serum after ATS 3f and Freedom/Solo implantation but not for Crown or Hancock II grafts. Overall, there were no correlations between cellular-immunity scores and post-implantation antibodies, suggesting these are independent factors differentially affecting the outcome of distinct commercial BHVs. These findings provide further insights into the understanding of SVD immunopathogenesis and highlight the need to evaluate immune responses as a confounding factor.
Collapse
Affiliation(s)
- Kelly Casós
- Infectious Diseases and Transplantation Division, Institut d'Investigació Biomèdica de Bellvitge [IDIBELL], L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Roger Llatjós
- Pathology Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Arnau Blasco-Lucas
- Cardiac Surgery Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Sebastián G Kuguel
- Infectious Diseases and Transplantation Division, Institut d'Investigació Biomèdica de Bellvitge [IDIBELL], L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Fabrizio Sbraga
- Cardiac Surgery Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | | | - Vered Padler-Karavani
- Department of Cell Research and Immunology, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Thierry Le Tourneau
- Institut du Thorax, INSERM UMR1087, Nantes University Hospital, 44093 Nantes, France
| | - Marta Vadori
- Transplantation Immunology Unit, Padua University Hospital, 35128 Padova, Italy
| | | | | | - Tomaso Bottio
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua Medical School, 35121 Padova, Italy
| | - Emanuele Cozzi
- Transplantation Immunology Unit, Padua University Hospital, 35128 Padova, Italy
| | - Jean-Paul Soulillou
- Institut de Transplantation-Urologie-Néphrologie, INSERM Unité Mixte de Recherche 1064, Nantes University Hospital, 44093 Nantes, France
| | - Manuel Galiñanes
- Department of Cardiac Surgery and Reparative Therapy of the Heart, Vall d'Hebron Research Institute [VHIR], University Hospital Vall Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Rafael Máñez
- Infectious Diseases and Transplantation Division, Institut d'Investigació Biomèdica de Bellvitge [IDIBELL], L'Hospitalet de Llobregat, 08908 Barcelona, Spain
- Intensive Care Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Cristina Costa
- Infectious Diseases and Transplantation Division, Institut d'Investigació Biomèdica de Bellvitge [IDIBELL], L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| |
Collapse
|
2
|
Wei L, Mu Y, Deng J, Wu Y, Qiao Y, Zhang K, Wang X, Huang W, Shao A, Chen L, Zhang Y, Li Z, Lai L, Qu S, Xu L. α-Gal antigen-deficient rabbits with GGTA1 gene disruption via CRISPR/Cas9. BMC Genom Data 2022; 23:54. [PMID: 35820824 PMCID: PMC9275273 DOI: 10.1186/s12863-022-01068-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 07/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previous studies have identified the carbohydrate epitope Galα1-3Galβ1-4GlcNAc-R (termed the α-galactosyl epitope), known as the α-Gal antigen as the primary xenoantigen recognized by the human immune system. The α-Gal antigen is regulated by galactosyltransferase (GGTA1), and α-Gal antigen-deficient mice have been widely used in xenoimmunological studies, as well as for the immunogenic risk evaluation of animal-derived medical devices. The objective of this study was to develop α-Gal antigen-deficient rabbits by GGTA1 gene editing with the CRISPR/Cas9 system. RESULTS The mutation efficiency of GGTA1 gene-editing in rabbits was as high as 92.3% in F0 pups. Phenotype analysis showed that the α-Gal antigen expression in the major organs of F0 rabbits was decreased by more than 99.96% compared with that in wild-type (WT) rabbits, and the specific anti-Gal IgG and IgM antibody levels in F1 rabbits increased with increasing age, peaking at approximately 5 or 6 months. Further study showed that GGTA1 gene expression in F2-edited rabbits was dramatically reduced compared to that in WT rabbits. CONCLUSIONS α-Gal antigen-deficient rabbits were successfully generated by GGTA1 gene editing via the CRISPR/Cas9 system in this study. The feasibility of using these α-Gal antigen-deficient rabbits for the in situ implantation and residual immunogenic risk evaluation of animal tissue-derived medical devices was also preliminarily confirmed.
Collapse
Affiliation(s)
- Lina Wei
- National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Yufeng Mu
- National Institutes for Food and Drug Control, Beijing, 102629, China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Jichao Deng
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, G9A5H7, Canada
| | - Yong Wu
- National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Ying Qiao
- Beijing YiSai Biotechnology Co., Ltd, Beijing, 100176, China
| | - Kun Zhang
- National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Xuewen Wang
- National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Wenpeng Huang
- Beijing YiSai Biotechnology Co., Ltd, Beijing, 100176, China
| | - Anliang Shao
- National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Liang Chen
- National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Yang Zhang
- Guangzhou ZhongDa Medical Equipment Co., Ltd., Guangzhou, 511458, China
| | - Zhanjun Li
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Science, Jilin University, Changchun, 130062, China
| | - Liangxue Lai
- Key Laboratory of Regenerative Biology, Chinese Academy of Science, and Guangdong Province Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, 510530, China.
| | - Shuxin Qu
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| | - Liming Xu
- National Institutes for Food and Drug Control, Beijing, 102629, China.
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| |
Collapse
|
3
|
Wen S, Zhou Y, Yim WY, Wang S, Xu L, Shi J, Qiao W, Dong N. Mechanisms and Drug Therapies of Bioprosthetic Heart Valve Calcification. Front Pharmacol 2022; 13:909801. [PMID: 35721165 PMCID: PMC9204043 DOI: 10.3389/fphar.2022.909801] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Valve replacement is the main therapy for valvular heart disease, in which a diseased valve is replaced by mechanical heart valve (MHV) or bioprosthetic heart valve (BHV). Since the 2000s, BHV surpassed MHV as the leading option of prosthetic valve substitute because of its excellent hemocompatible and hemodynamic properties. However, BHV is apt to structural valve degeneration (SVD), resulting in limited durability. Calcification is the most frequent presentation and the core pathophysiological process of SVD. Understanding the basic mechanisms of BHV calcification is an essential prerequisite to address the limited-durability issues. In this narrative review, we provide a comprehensive summary about the mechanisms of BHV calcification on 1) composition and site of calcifications; 2) material-associated mechanisms; 3) host-associated mechanisms, including immune response and foreign body reaction, oxidative stress, metabolic disorder, and thrombosis. Strategies that target these mechanisms may be explored for novel drug therapy to prevent or delay BHV calcification.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Weihua Qiao
- *Correspondence: Weihua Qiao, ; Nianguo Dong,
| | | |
Collapse
|
4
|
Senage T, Paul A, Le Tourneau T, Fellah-Hebia I, Vadori M, Bashir S, Galiñanes M, Bottio T, Gerosa G, Evangelista A, Badano LP, Nassi A, Costa C, Cesare G, Manji RA, Cueff de Monchy C, Piriou N, Capoulade R, Serfaty JM, Guimbretière G, Dantan E, Ruiz-Majoral A, Coste du Fou G, Leviatan Ben-Arye S, Govani L, Yehuda S, Bachar Abramovitch S, Amon R, Reuven EM, Atiya-Nasagi Y, Yu H, Iop L, Casós K, Kuguel SG, Blasco-Lucas A, Permanyer E, Sbraga F, Llatjós R, Moreno-Gonzalez G, Sánchez-Martínez M, Breimer ME, Holgersson J, Teneberg S, Pascual-Gilabert M, Nonell-Canals A, Takeuchi Y, Chen X, Mañez R, Roussel JC, Soulillou JP, Cozzi E, Padler-Karavani V. The role of antibody responses against glycans in bioprosthetic heart valve calcification and deterioration. Nat Med 2022; 28:283-294. [PMID: 35177855 PMCID: PMC8863575 DOI: 10.1038/s41591-022-01682-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 01/06/2022] [Indexed: 12/11/2022]
Abstract
Bioprosthetic heart valves (BHVs) are commonly used to replace severely diseased heart valves but their susceptibility to structural valve degeneration (SVD) limits their use in young patients. We hypothesized that antibodies against immunogenic glycans present on BHVs, particularly antibodies against the xenoantigens galactose-α1,3-galactose (αGal) and N-glycolylneuraminic acid (Neu5Gc), could mediate their deterioration through calcification. We established a large longitudinal prospective international cohort of patients (n = 1668, 34 ± 43 months of follow-up (0.1–182); 4,998 blood samples) to investigate the hemodynamics and immune responses associated with BHVs up to 15 years after aortic valve replacement. Early signs of SVD appeared in <5% of BHV recipients within 2 years. The levels of both anti-αGal and anti-Neu5Gc IgGs significantly increased one month after BHV implantation. The levels of these IgGs declined thereafter but anti-αGal IgG levels declined significantly faster in control patients compared to BHV recipients. Neu5Gc, anti-Neu5Gc IgG and complement deposition were found in calcified BHVs at much higher levels than in calcified native aortic valves. Moreover, in mice, anti-Neu5Gc antibodies were unable to promote calcium deposition on subcutaneously implanted BHV tissue engineered to lack αGal and Neu5Gc antigens. These results indicate that BHVs manufactured using donor tissues deficient in αGal and Neu5Gc could be less prone to immune-mediated deterioration and have improved durability. In a large cohort of patients who underwent aortic valve replacement, antibody responses to glycans present in bioprosthetic heart valves, notably galactose-α1,3-galactose and N-glycolylneuraminic acid, were implicated in valve calcification and deterioration.
Collapse
Affiliation(s)
- Thomas Senage
- Institut du Thorax, Institut National de la Santé et de la Recherche Médicale UMR1087, University Hospital, Nantes, France.,Institut National de la Santé et de la Recherche Médicale UMR 1246-SPHERE, Nantes University, Tours University, Nantes, France
| | - Anu Paul
- Department of Cell Research and Immunology, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Thierry Le Tourneau
- Institut du Thorax, Institut National de la Santé et de la Recherche Médicale UMR1087, University Hospital, Nantes, France
| | - Imen Fellah-Hebia
- Institut du Thorax, Institut National de la Santé et de la Recherche Médicale UMR1087, University Hospital, Nantes, France
| | - Marta Vadori
- Consortium for Research in Organ Transplantation, Ospedale Giustinianeo, Padova, Italy
| | - Salam Bashir
- Department of Cell Research and Immunology, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Manuel Galiñanes
- Department of Cardiac Surgery and Reparative Therapy of the Heart, Vall d'Hebron Research Institute, University Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Tomaso Bottio
- Cardiovascular Regenerative Medicine Group, Department of Cardiac, Thoracic and Vascular Surgery, University of Padova, Padova, Italy
| | - Gino Gerosa
- Department of Cardiac, Vascular and Thoracic Sciences and Public Health University of Padova, L.I.F.E.L.A.B. Program Veneto Region, Padova, Italy
| | - Arturo Evangelista
- Department of Cardiology, Vall d'Hebron Research Institut, Hospital Vall d'Hebron, Barcelona, Spain
| | - Luigi P Badano
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Department of Cardiology, Neural and Metabolic Sciences, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico, San Luca Hospital, Milan, Italy
| | - Alberto Nassi
- Transplantation Immunology Unit, Padova University Hospital, Padova, Italy
| | - Cristina Costa
- Infectious Diseases and Transplantation Division, Institut d'Investigació Biomèdica de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | - Rizwan A Manji
- Department of Surgery, Max Rady College of Medicine, University of Manitoba Cardiac Sciences Program, St Boniface Hospital, Winnipeg, Manitoba, Canada
| | - Caroline Cueff de Monchy
- Institut du Thorax, Institut National de la Santé et de la Recherche Médicale UMR1087, University Hospital, Nantes, France
| | - Nicolas Piriou
- Institut du Thorax, Institut National de la Santé et de la Recherche Médicale UMR1087, University Hospital, Nantes, France
| | - Romain Capoulade
- Institut du Thorax, Institut National de la Santé et de la Recherche Médicale UMR1087, University Hospital, Nantes, France
| | - Jean-Michel Serfaty
- Institut du Thorax, Institut National de la Santé et de la Recherche Médicale UMR1087, University Hospital, Nantes, France
| | - Guillaume Guimbretière
- Institut du Thorax, Institut National de la Santé et de la Recherche Médicale UMR1087, University Hospital, Nantes, France
| | - Etienne Dantan
- Institut National de la Santé et de la Recherche Médicale UMR 1246-SPHERE, Nantes University, Tours University, Nantes, France
| | - Alejandro Ruiz-Majoral
- Department of Cardiology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Guénola Coste du Fou
- Institut du Thorax, Institut National de la Santé et de la Recherche Médicale UMR1087, University Hospital, Nantes, France
| | - Shani Leviatan Ben-Arye
- Department of Cell Research and Immunology, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Liana Govani
- Department of Cell Research and Immunology, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Sharon Yehuda
- Department of Cell Research and Immunology, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shirley Bachar Abramovitch
- Department of Cell Research and Immunology, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ron Amon
- Department of Cell Research and Immunology, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Eliran Moshe Reuven
- Department of Cell Research and Immunology, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yafit Atiya-Nasagi
- Department of Cell Research and Immunology, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Israel Institute for Biological Research, Ness Ziona, Israel
| | - Hai Yu
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Laura Iop
- Cardiovascular Regenerative Medicine Group, Department of Cardiac, Thoracic and Vascular Surgery, University of Padova, Padova, Italy.,Department of Cardiac, Vascular and Thoracic Sciences and Public Health University of Padova, L.I.F.E.L.A.B. Program Veneto Region, Padova, Italy.,Department of Cardiac Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Kelly Casós
- Department of Cardiac Surgery and Reparative Therapy of the Heart, Vall d'Hebron Research Institute, University Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.,Infectious Diseases and Transplantation Division, Institut d'Investigació Biomèdica de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Cardiovascular Disease at the Vall d'Hebron Institut Research, University Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sebastián G Kuguel
- Infectious Diseases and Transplantation Division, Institut d'Investigació Biomèdica de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Arnau Blasco-Lucas
- Department of Cardiac Surgery and Reparative Therapy of the Heart, Vall d'Hebron Research Institute, University Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.,Cardiac Surgery Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Eduard Permanyer
- Department of Cardiac Surgery and Reparative Therapy of the Heart, Vall d'Hebron Research Institute, University Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Cardiac Surgery, Quironsalud Teknon Heart Institute, Barcelona, Spain
| | - Fabrizio Sbraga
- Cardiac Surgery Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Roger Llatjós
- Pathology Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Gabriel Moreno-Gonzalez
- Infectious Diseases and Transplantation Division, Institut d'Investigació Biomèdica de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain.,Intensive Care Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | - Michael E Breimer
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Jan Holgersson
- Institute of Biomedicine, Department of Laboratory Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Susann Teneberg
- Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | | | | | - Yasuhiro Takeuchi
- Division of Infection and Immunity, University College London, London, UK
| | - Xi Chen
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Rafael Mañez
- Infectious Diseases and Transplantation Division, Institut d'Investigació Biomèdica de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain. .,Intensive Care Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Jean-Christian Roussel
- Institut du Thorax, Institut National de la Santé et de la Recherche Médicale UMR1087, University Hospital, Nantes, France.
| | - Jean-Paul Soulillou
- Institut de Transplantation-Urologie-Néphrologie, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1064, Centre Hospitalier Universitaire de Nantes, Nantes, France.
| | - Emanuele Cozzi
- Transplantation Immunology Unit, Padova University Hospital, Padova, Italy.
| | - Vered Padler-Karavani
- Department of Cell Research and Immunology, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
5
|
Bonetti A, Contin M, Tonon F, Marchini M, Ortolani F. Calcium-Dependent Cytosolic Phospholipase A2α as Key Factor in Calcification of Subdermally Implanted Aortic Valve Leaflets. Int J Mol Sci 2022; 23:ijms23041988. [PMID: 35216105 PMCID: PMC8877272 DOI: 10.3390/ijms23041988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Calcium-dependent cytosolic phospholipase A2α (cPLA2α) had been previously found to be overexpressed by aortic valve interstitial cells (AVICs) subjected to in vitro calcific induction. Here, cPLA2α expression was immunohistochemically assayed in porcine aortic valve leaflets (iAVLs) that had undergone accelerated calcification subsequent to 2- to 28-day-long implantation in rat subcutis. A time-dependent increase in cPLA2α-positive AVICs paralleled mineralization progression depending on dramatic cell membrane degeneration with the release of hydroxyapatite-nucleating acidic lipid material, as revealed by immunogold particles decorating organelle membranes in 2d-iAVLs, as well as membrane-derived lipid byproducts in 7d- to 28d-iAVLs. Additional positivity was detected for (i) pro-inflammatory IL-6, mostly exhibited by rat peri-implant cells surrounding 14d- and 28d-iAVLs; (ii) calcium-binding osteopontin, with time-dependent increase and no ossification occurrence; (iii) anti-calcific fetuin-A, mostly restricted to blood plasma within vessels irrorating the connective envelopes of 28d-iAVLs; (iv) early apoptosis marker annexin-V, limited to sporadic AVICs in all iAVLs. No positivity was found for either apoptosis executioner cleaved caspase-3 or autophagy marker MAP1. In conclusion, cPLA2α appears to be a factor characterizing AVL calcification concurrently with a distinct still uncoded cell death form also in an animal model, as well as a putative target for the prevention and treatment of calcific valve diseases.
Collapse
|
6
|
Mu Y, Shao A, Shi L, Du B, Zhang Y, Luo J, Xu L, Qu S. Immunological Risk Assessment of Xenogeneic Dural Patch by Comparing with Raw Material via GTKO Mice. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7950834. [PMID: 35083333 PMCID: PMC8786519 DOI: 10.1155/2022/7950834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/12/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE In this study, α-Gal epitope-deficient (GGTA1 knockout (GTKO)) mice were used to assess the immunological risks of xenogeneic dural patch by comparing with raw material. METHODS The xenogeneic dural patch (T2) was prepared from bovine pericardium (T1, raw material) through decellularization and carboxymethyl chitosan (CMCS) coating. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were used to characterize the collagen fibers and surface microstructural changes in the T1 and T2 samples. The remnant α-Gal epitopes and DNA of implants were detected by standardized method. T1 and T2 were implanted subcutaneously into GTKO mice for 4 and 12 weeks, respectively, and the negative control group (Con) was only performed sham operation. The total serum antibody, anti-Gal antibody, and splenic lymphocyte subtypes were analyzed by ELISA or flow cytometry, and histological analysis of implant-tissue was performed by H&E and Masson stain. RESULTS TEM and Sirius red staining showed that the collagen fibers in the dural patch were closely arranged, and SEM showed that a loose three-dimensional structure was successfully constructed on the surface of the dural patch after CMCS coating. The remnant DNA in T2 was 24.64 ± 8.73 ng/mg (dry weight), and clearance of α-Gal epitope was up to 99.83% compared to T1. The significant increases in serum total IgM, anti-Gal IgG, and anti-Gal IgM at 4 weeks and the significant changes in anti-Gal IgG and spleen lymphocyte at 12 weeks were observed in the T1 group, but no significant change was observed in the T2 group, compared to the control group. Histological semiquantitative analysis showed severe cell and tissue responses at 4 weeks and a moderate response at 12 weeks in the T1 group, while a moderate response at 4 weeks and a slight response at 12 weeks in the T2 group. CONCLUSIONS The results demonstrated that the xenogeneic dural patch has a lower and acceptable immunological risk compared to the raw material and control, respectively. On the other hand, it was suggested that GTKO mice are useful experimental model for immunological risk assessment of animal tissue-derived biomaterials.
Collapse
Affiliation(s)
- Yufeng Mu
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
- Institute for Medical Device Control, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Anliang Shao
- Institute for Medical Device Control, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Li Shi
- Shaanxi Bioregenerative Medicine Co., Ltd., Xi'an 710100, China
| | - Bin Du
- Shaanxi Bioregenerative Medicine Co., Ltd., Xi'an 710100, China
| | - Yongjie Zhang
- Shaanxi Bioregenerative Medicine Co., Ltd., Xi'an 710100, China
| | - Jie Luo
- Shaanxi Bioregenerative Medicine Co., Ltd., Xi'an 710100, China
| | - Liming Xu
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
- Institute for Medical Device Control, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Shuxin Qu
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
7
|
Ground M, Waqanivavalagi S, Walker R, Milsom P, Cornish J. Models of immunogenicity in preclinical assessment of tissue engineered heart valves. Acta Biomater 2021; 133:102-113. [PMID: 34082103 DOI: 10.1016/j.actbio.2021.05.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022]
Abstract
Tissue engineered heart valves may one day offer an exciting alternative to traditional valve prostheses. Methods of construction vary, from decellularised animal tissue to synthetic hydrogels, but the goal is the same: the creation of a 'living valve' populated with autologous cells that may persist indefinitely upon implantation. Previous failed attempts in humans have highlighted the difficulty in predicting how a novel heart valve will perform in vivo. A significant hurdle in bringing these prostheses to market is understanding the immune reaction in the short and long term. With respect to innate immunity, the chronic remodelling of a tissue engineered implant by macrophages remains poorly understood. Also unclear are the mechanisms behind unknown antigens and their effect on the adaptive immune system. No silver bullet exists, rather researchers must draw upon a number of in vitro and in vivo models to fully elucidate the effect a host will exert on the graft. This review details the methods by which the immunogenicity of tissue engineered heart valves may be investigated and reveals areas that would benefit from more research. STATEMENT OF SIGNIFICANCE: Both academic and private institutions around the world are committed to the creation of a valve prosthesis that will perform safely upon implantation. To date, however, no truly non-immunogenic valves have emerged. This review highlights the importance of preclinical immunogenicity assessment, and summarizes the available techniques used in vitro and in vivo to elucidate the immune response. To the authors knowledge, this is the first review that details the immune testing regimen specific to a TEHV candidate.
Collapse
|
8
|
Dobrochaeva K, Khasbiullina N, Shilova N, Knirel Y, Obukhova P, Nokel A, Kunetskiy R, Tsygankova S, Bello-Gil D, Costa C, Mañez R, Bovin N. Specificity profile of αGal antibodies in αGalT KO mice as probed with comprehensive printed glycan array: Comparison with human anti-Galili antibodies. Xenotransplantation 2021; 28:e12672. [PMID: 33432698 DOI: 10.1111/xen.12672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/16/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The α1,3-galactosyltransferase gene-knockout (GalT KO) mice are able to produce natural anti-αGal antibodies apparently without any specific immunization. GalT KO mice are commonly used as a model immunological system for studying anti-αGal responses to Gal-positive xenografts in human. In this study, we compared the specificity of mouse and human αGal antibodies to realize the adequacy of the murine model. METHODS Using hapten-specific affinity chromatography antibodies against Galα1-3Galβ1-4GlcNAcβ epitope were isolated from both human and GalT KO mice blood sera. Specificity of isolated antibodies was determined using a printed glycan array (PGA) containing 400 mammalian glycans and 200 bacterial polysaccharides. RESULTS The quantity of isolated specific anti-Galα antibodies corresponds to a content of <0.2% of total Ig, which is an order of magnitude lower than that generally assumed for both human and murine peripheral blood immunoglobulin, with a high predominance of IgM over IgG (95% vs 5%). Analysis using a printed glycan array has demonstrated that (a) antibodies from both species bind not only the Galα1-3Galβ1-4GlcNAcβ epitope, but also unrelated glycans; (b) particularly, for human (but not mouse) antibodies the best binders appear to be bacterial polysaccharides; (c) the profile of mouse antibodies is broader, it is noteworthy that they recognize a variety of human blood group B epitopes and even glycans without the α-galactosyl residue. CONCLUSIONS We believe that the mouse model should be used cautiously in xenotransplantation experiments when the fine epitope specificity of antibodies is critical.
Collapse
Affiliation(s)
- Kira Dobrochaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nailya Khasbiullina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia.,National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Nadezhda Shilova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow, Russia.,Semiotik LLC, Moscow, Russia
| | - Yuriy Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Polina Obukhova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Alexey Nokel
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow, Russia.,Semiotik LLC, Moscow, Russia
| | - Roman Kunetskiy
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Svetlana Tsygankova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Daniel Bello-Gil
- Infectious Pathology and Transplantation Division, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | - Cristina Costa
- Infectious Pathology and Transplantation Division, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | - Rafael Mañez
- Infectious Pathology and Transplantation Division, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | - Nicolai Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,School of Engineering, Computer & Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
9
|
Schlachtenberger G, Doerr F, Brezina A, Menghesha H, Heldwein MB, Bennink G, Menger MD, Moussavian M, Hekmat K, Wahlers T. Perigraft reaction and incorporation of porcine and bovine pericardial patches. Interact Cardiovasc Thorac Surg 2020; 32:638-647. [PMID: 33313856 DOI: 10.1093/icvts/ivaa308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/21/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Bovine and porcine pericardial patches are frequently used in cardiothoracic and vascular surgery. There are no guidelines recommending the usage of these patches for particular surgical approaches. However, these 2 materials supposedly possess different properties. The clinical advantage of porcine compared with bovine patches remains controversial. In this experimental study, we analysed the incorporation and vascularization of bovine and porcine pericardial patches during the initial phase after implantation. METHODS Bovine and porcine pericardial patches were implanted into the dorsal skinfold chamber of C57BL/6 mice (n = 8 per group) to study vascularization and inflammation at the implantation site using repetitive intravital fluorescence microscopy over a 14-day period. At the end of the in vivo experiments, CD-31-positive cells were determined to evaluate the vascularization by immunohistochemistry. Furthermore, cell proliferation and apoptosis were analysed immunohistochemically. RESULTS Implanted bovine patches exhibited an enhanced vascularization, as indicated by a significantly higher number of CD-31-positive cells and micro-vessels (23.2 ± 4.3 vs 16.5 ± 5.8 mm-2; P = 0.001). Furthermore, bovine patches showed a slightly but not significantly higher functional capillary density. Both patches induced a moderate leukocytic inflammatory host tissue response, and neither bovine nor porcine patches significantly affected apoptosis and cell proliferation at the implantation site. CONCLUSIONS Bovine and porcine pericardial patches are similarly suitable for surgery. Bovine patches exhibited an improved vascularization during the first 14 days after implantation. This may result in a quicker and improved incorporation into the surrounding tissue compared with porcine pericardial patches.
Collapse
Affiliation(s)
| | - Fabian Doerr
- Department of Cardiothoracic Surgery, University Hospital Cologne, Cologne, Germany
| | - Annamaria Brezina
- Department of Anesthesiology and Intensive Care Medicine, Kerpenerstr 62, 50937 Cologne, Germany.,Institute for Clinical and Experimental Surgery, Saarland University Kirberger Strasse, 66421 Homburg/Saar, Germany
| | - Hruy Menghesha
- Department of Cardiothoracic Surgery, University Hospital Cologne, Cologne, Germany
| | - Matthias B Heldwein
- Department of Cardiothoracic Surgery, University Hospital Cologne, Cologne, Germany
| | - Gerardus Bennink
- Department of Cardiothoracic Surgery, University Hospital Cologne, Cologne, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University Kirberger Strasse, 66421 Homburg/Saar, Germany
| | - Mohammed Moussavian
- Department of Surgery, Centre Hospitalier Emile Mayrisch (CHEM), Esch-sur-Alzette, Luxembourg
| | - Khosro Hekmat
- Department of Cardiothoracic Surgery, University Hospital Cologne, Cologne, Germany
| | - Thorsten Wahlers
- Department of Cardiothoracic Surgery, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
10
|
Kim MS, Lee W, Kim KB, Lim HG, Kim YJ. A preclinical trial of perventricular pulmonary valve implantation: Pericardial versus aortic porcine valves mounted on self-expandable stent. Artif Organs 2020; 45:E89-E100. [PMID: 33090503 DOI: 10.1111/aor.13845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/03/2020] [Accepted: 10/08/2020] [Indexed: 11/29/2022]
Abstract
Perventricular pulmonary valve implantation (PPVI) of a xenograft valve can be a less invasive technique that avoids cardiopulmonary bypass in patients who require pulmonary valve replacement. We compared the hemodynamics, durability, and histologic changes between two different xenogenic valves (pericardial vs. aortic valve porcine xenografts) implanted into the pulmonary valve position using a PPVI technique and evaluated the safety and efficacy of PPVI as a preclinical study. In 18 sheep, pericardial (group porcine pericardial [PP], n = 9) or aortic valve (group porcine aortic valve [PAV], n = 9) xenogenic porcine valves manufactured as a stented valve were implanted using a PPVI technique. The porcine tissues were decellularized, alpha-galactosidase treated, fixed with glutaraldehyde after space-filler treatment, and detoxified to improve durability. Hemodynamic and immunohistochemical studies were performed after the implantation; radiologic and histologic studies were performed after a terminal procedure. All stented valves were positioned properly after the implantation, and echocardiography and cardiac catheterization demonstrated good hemodynamic state and function of the valves. All the anti-α-Gal IgM and IgG titers were below 0.3 optical density. Computed tomography of extracted valves demonstrated no significant differences in the degree of calcification between the two groups (P = .927). Microscopic findings revealed a minimal amount of calcification and no significant infiltration of macrophage or T-cell in both groups, regardless of the implantation duration. The PPVI is a feasible technique. Both stented valves made of PP and PAV showed no significant differences in hemodynamic profile, midterm durability, and degree of degenerative dystrophic calcification.
Collapse
Affiliation(s)
- Min-Seok Kim
- Department of Thoracic and Cardiovascular Surgery, Yonsei University Severance Hospital, Seoul, Korea
| | - Whal Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Ki-Bum Kim
- Department of Pediatrics, Seoul National University Hospital, Seoul, Korea
| | - Hong-Gook Lim
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul, Korea
| | - Yong Jin Kim
- Department of Thoracic and Cardiovascular Surgery, Sejong General Hospital, Bucheon, Korea
| |
Collapse
|
11
|
Abstract
Millions of patients with valvular heart disease have benefitted from heart valve replacement since the procedure was first introduced in the 1960s; however, there are still many patients who get early structural valve deterioration (SVD) of their bioprosthetic heart valves (BHV). BHV are porcine, bovine, or equine tissues that have been glutaraldehyde fixed to preserve the tissue and presumably make the tissue immunologically inert. These glutaraldehyde-fixed BHV with anti-calcification treatments last long periods of time in older adults but develop early SVD in younger patients. The consensus at present is that the early SVD in younger patients is due to more "wear and tear" of the valves and higher calcium turnover in younger patients. However, as younger patients likely have a more robust immune system than older adults, there is a new hypothesis that BHV xenografts may undergo xenograft rejection, and this may contribute to the early SVD seen in younger patients.At present, the technology to noninvasively study in vivo whether an implanted BHV in a human patient is undergoing rejection is not available. Thus, a small animal discordant xenotransplant model in young rodents (to match the young patient getting a pig/bovine/equine BHV) was developed to study whether the hypothesis that glutaraldehyde-fixed BHV undergo xenograft rejection had any merit. In this chapter, we describe our model and its merits and the results of our investigations. Our work provides clear evidence of xenograft rejection in glutaraldehyde-fixed tissue, and our small animal model offers an opportunity to study this process in detail.
Collapse
Affiliation(s)
- Rizwan A Manji
- Department of Surgery, University of Manitoba, Winnipeg, MB, Canada.
- Cardiac Sciences Program, I.H. Asper Clinical Research Institute, Winnipeg Regional Health Authority and St. Boniface Hospital, Winnipeg, MB, Canada.
| | - Jacqueline S Manji
- Cardiac Sciences Program, I.H. Asper Clinical Research Institute, Winnipeg Regional Health Authority and St. Boniface Hospital, Winnipeg, MB, Canada
| |
Collapse
|
12
|
Shao A, Ling Y, Xu L, Liu S, Fan C, Wang Z, Xu B, Wang C. Xenogeneic bone matrix immune risk assessment using GGTA1 knockout mice. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S359-S369. [PMID: 30207744 DOI: 10.1080/21691401.2018.1493489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Homeotransplantation of bones for replacement therapy have been demonstrated reliably in clinical data. However, human donor bones applicable for homeotransplantation are in short supply, which facilitates the search for suitable alternatives, such as xenografts grafts. The α-Gal antigen-related immune risk of xenografts directly affects the safety and effectiveness of the biomaterials and limits their applications in the clinic. The immune risk can be prevented by depletion or breaking anti-Gal antibody prior to transplant. Therefore, how to assess the immune risk of the bone substitutes and select the reliable animal research model become extremely important. In this study, we prepared lyophilized bone substitutes (T1) and Guanghao Biotech bone substitutes (T2, animal-derived biomaterials with α-Gal antigen decreased), aimed to assess the immune risk of xenografts bone substitutes on GGTA1 knockout mice. The α-Gal antigen contents of T1 and T2 were firstly detected by ELISA method in vitro. The bone substitutes were then implanted subcutaneously into GGTA1 knockout mice for 2, 4 and 12 weeks, respectively. The total serum antibody levels, anti-α-Gal antibody levels, inflammatory cytokine and splenic lymphocyte surface molecules were detected and histology analysis of skin and thymus were performed to systematically evaluate the immune response caused by the T1 and T2 bone substitutes in mice. In vitro results showed that the amount of α-Gal epitopes in T1 bone substitutes was significantly higher than T2 bone substitutes, and the clearance rate of α-Gal antigen in T2 bone substitutes achieved about 55.6%. Results of antibody level in vivo showed that the T1 bone substitutes group possessed significantly higher total IgG, IgM, IgA and anti-α-Gal IgG levels than T2 and control group, while T2 group showed no significant changes of these indexes compared with control. In terms of inflammatory cytokines, T1 bone substitutes showed evidently higher levels of IL-4, IL-12P70 and IL-10 than T2 and control, while T2 group was comparable to control. No changes in the levels of splenic lymphocyte surface molecules were found in the three groups (T1, T2 and control group) during the experimental periods. The pathological results demonstrated that the inflammatory response in T2 group was lighter than the T1 group, which was in accordance with the inflammatory cytokines levels. The above results indicated that the process of antigen removal effectively reduced the α-Gal antigens content in T2 bone substitutes, which caused little immune response in vivo and could be used as bone healing materials. This study also demonstrated that GGTA1 knockout mice can be used as a routine tool to assess the immune risk of animal-derived biomaterials.
Collapse
Affiliation(s)
- Anliang Shao
- a Department of Clinical Laboratory , Medical Laboratory Center, Chinese PLA General Hospital & Medical School of Chinese PLA , Beijing , China.,b Institute for Medical Device Control , National Institutes for Food and Drug Control , Beijing , China
| | - You Ling
- c National Engineering Laboratory for Regenerative Medical Implant Devices, Guanhao Biotech, Co., LTD , Guangzhou , China
| | - Liming Xu
- b Institute for Medical Device Control , National Institutes for Food and Drug Control , Beijing , China
| | - Susu Liu
- d Institute for Laboratory Animal Resources , National Institutes for Food and Drug Control , Beijing , China
| | - Changfa Fan
- d Institute for Laboratory Animal Resources , National Institutes for Food and Drug Control , Beijing , China
| | - Zhijie Wang
- c National Engineering Laboratory for Regenerative Medical Implant Devices, Guanhao Biotech, Co., LTD , Guangzhou , China
| | - Bin Xu
- c National Engineering Laboratory for Regenerative Medical Implant Devices, Guanhao Biotech, Co., LTD , Guangzhou , China
| | - Chengbin Wang
- a Department of Clinical Laboratory , Medical Laboratory Center, Chinese PLA General Hospital & Medical School of Chinese PLA , Beijing , China
| |
Collapse
|
13
|
Elder S, Chenault H, Gloth P, Webb K, Recinos R, Wright E, Moran D, Butler J, Borazjani A, Cooley A. Effects of antigen removal on a porcine osteochondral xenograft for articular cartilage repair. J Biomed Mater Res A 2018; 106:2251-2260. [PMID: 29577591 DOI: 10.1002/jbm.a.36411] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/28/2018] [Accepted: 03/15/2018] [Indexed: 11/06/2022]
Abstract
Given the limited availability of fresh osteochondral allografts and uncertainty regarding performance of decellularized allografts, this study was undertaken as part of an effort to develop an osteochondral xenograft for articular cartilage repair. The purpose was to evaluate a simple antigen removal procedure based mainly on treatment with SDS and nucleases. Histology demonstrated a preservation of collagenous structure and removal of most nuclei. Immunohistochemistry revealed the apparent retention of α-Gal within osteocyte lacunae unless the tissue underwent an additional α-galactosidase processing step. Cytoplasmic protein was completely removed as shown by Western blot. Quantitatively, the antigen removal protocol was found to extract approximately 90% of DNA from cartilage and bone, and it extracted over 80% of glycosaminoglycan from cartilage. Collagen content was not affected. Mechanical testing of cartilage and bone were performed separately, in addition to testing the cartilage-bone interface, and the main effect of antigen removal was an increase in cartilage hydraulic permeability. In vivo immunogenicity was assessed by subcutaneous implantation into DBA/1 J mice, and the response was typical of a foreign body rather than immune reaction. Thus, an osteochondral xenograft produced as described has the potential for further development into a treatment for osteochondral lesions in the human knee. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2251-2260, 2018.
Collapse
Affiliation(s)
- Steve Elder
- Department of Agricultural and Biological Engineering, James Worth Bagley College of Engineering, Mississippi State University, Starkville, Mississippi
| | - Hudson Chenault
- Department of Agricultural and Biological Engineering, James Worth Bagley College of Engineering, Mississippi State University, Starkville, Mississippi
| | - Paul Gloth
- Department of Agricultural and Biological Engineering, James Worth Bagley College of Engineering, Mississippi State University, Starkville, Mississippi
| | - Katie Webb
- Department of Agricultural and Biological Engineering, James Worth Bagley College of Engineering, Mississippi State University, Starkville, Mississippi
| | - Ruth Recinos
- Department of Agricultural and Biological Engineering, James Worth Bagley College of Engineering, Mississippi State University, Starkville, Mississippi
| | - Emily Wright
- Department of Agricultural and Biological Engineering, James Worth Bagley College of Engineering, Mississippi State University, Starkville, Mississippi
| | - Dalton Moran
- Department of Agricultural and Biological Engineering, James Worth Bagley College of Engineering, Mississippi State University, Starkville, Mississippi
| | - James Butler
- Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi
| | - Abdolsamad Borazjani
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi
| | - Avery Cooley
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi
| |
Collapse
|
14
|
Naso F, Stefanelli U, Buratto E, Lazzari G, Perota A, Galli C, Gandaglia A. Alpha-Gal Inactivated Heart Valve Bioprostheses Exhibit an Anti-Calcification Propensity Similar to Knockout Tissues. Tissue Eng Part A 2017; 23:1181-1195. [DOI: 10.1089/ten.tea.2016.0474] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Filippo Naso
- Biocompatibility Innovation, Medical Device Biocompatibility Laboratory, Padova, Italy
| | - Ugo Stefanelli
- Biocompatibility Innovation, Medical Device Biocompatibility Laboratory, Padova, Italy
| | - Edward Buratto
- Cardiac Surgery Unit, Royal Children's Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | | | - Andrea Perota
- Avantea, Laboratory of Reproductive Technology, Cremona, Italy
| | - Cesare Galli
- Avantea, Laboratory of Reproductive Technology, Cremona, Italy
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
- Fondazione Avantea, Cremona, Italy
| | - Alessandro Gandaglia
- Biocompatibility Innovation, Medical Device Biocompatibility Laboratory, Padova, Italy
| |
Collapse
|
15
|
Hofmann M, Schmiady MO, Burkhardt BE, Dave HH, Hübler M, Kretschmar O, Bode PK. Congenital aortic valve repair using CorMatrix ® : A histologic evaluation. Xenotransplantation 2017; 24. [PMID: 28940406 DOI: 10.1111/xen.12341] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/28/2017] [Accepted: 08/14/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND The reconstruction of heart valves provides substantial benefits, particularly in the pediatric population. We present our experience using decellularized extracellular matrix (dECM, CorMatrix® ) for aortic valve procedures. METHODS We retrospectively reviewed the case histories of 6 patients (aged from 2 months - 14 years) who underwent surgery for severe aortic valve stenosis (n = 4) or regurgitation (n = 2). Aortic valve repair was performed on all patients using dECM as a leaflet replacement or leaflet extension. Follow-ups were performed using echocardiography. Reoperation was necessary in 4 cases, and the dECM was explanted and examined histologically and immunohistochemically. RESULTS The early post-operative period was uneventful, and the scaffold fulfilled the mechanical requirements. Significant valve insufficiency developed in 5 patients during the post-operative period (119-441 days postoperatively). In all specimens, only a migration of inflammatory cells was identified, which induced structural and functional changes caused by the chronic inflammatory response. CONCLUSIONS Our results suggest a mixed immunological response of remodeling and inflammation following the implantation. The expected process of seeding/migration and remodeling of the bioscaffold into the typical 3-layered architecture were not observed in our explanted specimens.
Collapse
Affiliation(s)
- Michael Hofmann
- Division of Congenital Cardiovascular Surgery, University Children's Hospital Zurich, Zurich, Switzerland
| | - Martin O Schmiady
- Division of Congenital Cardiovascular Surgery, University Children's Hospital Zurich, Zurich, Switzerland
| | - Barbara E Burkhardt
- Division of Pediatric Cardiology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Hitendu H Dave
- Division of Congenital Cardiovascular Surgery, University Children's Hospital Zurich, Zurich, Switzerland
| | - Michael Hübler
- Division of Congenital Cardiovascular Surgery, University Children's Hospital Zurich, Zurich, Switzerland
| | - Oliver Kretschmar
- Division of Pediatric Cardiology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Peter K Bode
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Lee C, Lim HG, Lee CH, Kim YJ. Effects of glutaraldehyde concentration and fixation time on material characteristics and calcification of bovine pericardium: implications for the optimal method of fixation of autologous pericardium used for cardiovascular surgery. Interact Cardiovasc Thorac Surg 2017; 24:402-406. [PMID: 28011740 DOI: 10.1093/icvts/ivw356] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 09/20/2016] [Indexed: 12/16/2022] Open
Abstract
Objectives Autologous pericardium, which is widely used in the field of cardiovascular surgery, is usually fixed with glutaraldehyde (GA) to improve handling and provide biomechanical stability. However, an optimal method of GA fixation of autologous pericardium is not known. The objective of this study was to evaluate the effects of GA concentration and fixation time on material characteristics and calcification of bovine pericardium. Methods Bovine pericardial tissues were fixed with different concentrations of GA (0.3, 0.4, 0.5 and 0.6%) for different exposure times (10 and 20 min). Material characteristics of the fixed tissues were assessed by mechanical test, thermal stability test and pronase test. The tissues were subcutaneously implanted into 3-week-old rats for 2 months, and the calcium contents of the explanted tissues were measured. Differences between the groups were evaluated by two-way analysis of variance. Results Differently treated tissues showed no significant differences in tensile strength. The mean elongation at break of the pericardial tissues fixed with 0.5 and 0.6% was significantly higher compared with 0.3 and 0.4% when fixed for 20 min. The mean elongation at break of the pericardial tissues fixed for 20 min was significantly higher compared with 10 min when fixed with 0.5 and 0.6%. Thermal stability test revealed significantly higher mean shrinkage temperature of the pericardial tissues fixed with 0.6% compared with lower concentrations irrespective of fixation time. The mean shrinkage temperature of the pericardial tissues fixed for 20 min was significantly higher compared with 10 min irrespective of GA concentration. Pronase test revealed significantly lower mean percent remaining weight of the pericardial tissues fixed with 0.3% compared with higher concentrations irrespective of fixation time. The mean percent remaining weight of the pericardial tissues fixed for 20 min was significantly higher compared with 10 min irrespective of GA concentration. The mean calcium content of the pericardial tissues fixed with 0.6% was significantly lower than that of the pericardial tissues fixed with 0.4% irrespective of fixation time. Conclusions Fixation of bovine pericardium with 0.5 and 0.6% GA for 20 min produced superior results with regard to material characteristics (mechanical properties, degree of fixation and resistance to enzymatic degradation) and postimplantation calcification. These results may have implications for optimal fixation of autologous pericardium used for cardiovascular surgery.
Collapse
Affiliation(s)
- Cheul Lee
- Department of Thoracic and Cardiovascular Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hong-Gook Lim
- Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul National University Hospital Clinical Research Institute, Xenotransplantation Research Center, Seoul, Republic of Korea
| | - Chang-Ha Lee
- Department of Thoracic and Cardiovascular Surgery, Sejong General Hospital, Bucheon, Republic of Korea
| | - Yong Jin Kim
- Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul National University Hospital Clinical Research Institute, Xenotransplantation Research Center, Seoul, Republic of Korea
| |
Collapse
|
17
|
Platz J, Bonenfant NR, Uhl FE, Coffey AL, McKnight T, Parsons C, Sokocevic D, Borg ZD, Lam YW, Deng B, Fields JG, DeSarno M, Loi R, Hoffman AM, Bianchi J, Dacken B, Petersen T, Wagner DE, Weiss DJ. Comparative Decellularization and Recellularization of Wild-Type and Alpha 1,3 Galactosyltransferase Knockout Pig Lungs: A Model for Ex Vivo Xenogeneic Lung Bioengineering and Transplantation. Tissue Eng Part C Methods 2016; 22:725-39. [PMID: 27310581 DOI: 10.1089/ten.tec.2016.0109] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND A novel potential approach for lung transplantation could be to utilize xenogeneic decellularized pig lung scaffolds that are recellularized with human lung cells. However, pig tissues express several immunogenic proteins, notably galactosylated cell surface glycoproteins resulting from alpha 1,3 galactosyltransferase (α-gal) activity, that could conceivably prevent effective use. Use of lungs from α-gal knock out (α-gal KO) pigs presents a potential alternative and thus comparative de- and recellularization of wild-type and α-gal KO pig lungs was assessed. METHODS Decellularized lungs were compared by histologic, immunohistochemical, and mass spectrometric techniques. Recellularization was assessed following compartmental inoculation of human lung bronchial epithelial cells, human lung fibroblasts, human bone marrow-derived mesenchymal stromal cells (all via airway inoculation), and human pulmonary vascular endothelial cells (CBF) (vascular inoculation). RESULTS No obvious differences in histologic structure was observed but an approximate 25% difference in retention of residual proteins was determined between decellularized wild-type and α-gal KO pig lungs, including retention of α-galactosylated epitopes in acellular wild-type pig lungs. However, robust initial recellularization and subsequent growth and proliferation was observed for all cell types with no obvious differences between cells seeded into wild-type versus α-gal KO lungs. CONCLUSION These proof of concept studies demonstrate that decellularized wild-type and α-gal KO pig lungs can be comparably decellularized and comparably support initial growth of human lung cells, despite some differences in retained proteins. α-Gal KO pig lungs are a suitable platform for further studies of xenogeneic lung regeneration.
Collapse
Affiliation(s)
- Joseph Platz
- 1 Department of Medicine, University of Vermont College of Medicine , Burlington, Vermont
| | - Nicholas R Bonenfant
- 1 Department of Medicine, University of Vermont College of Medicine , Burlington, Vermont
| | - Franziska E Uhl
- 1 Department of Medicine, University of Vermont College of Medicine , Burlington, Vermont
| | - Amy L Coffey
- 1 Department of Medicine, University of Vermont College of Medicine , Burlington, Vermont
| | - Tristan McKnight
- 1 Department of Medicine, University of Vermont College of Medicine , Burlington, Vermont
| | - Charles Parsons
- 1 Department of Medicine, University of Vermont College of Medicine , Burlington, Vermont
| | - Dino Sokocevic
- 1 Department of Medicine, University of Vermont College of Medicine , Burlington, Vermont
| | - Zachary D Borg
- 1 Department of Medicine, University of Vermont College of Medicine , Burlington, Vermont
| | - Ying-Wai Lam
- 2 Department of Biology and VGN Proteomics Facility, University of Vermont College of Arts and Sciences , Burlington, Vermont
| | - Bin Deng
- 2 Department of Biology and VGN Proteomics Facility, University of Vermont College of Arts and Sciences , Burlington, Vermont
| | - Julia G Fields
- 2 Department of Biology and VGN Proteomics Facility, University of Vermont College of Arts and Sciences , Burlington, Vermont
| | - Michael DeSarno
- 3 Biostatistics Unit, University of Vermont College of Medicine , Burlington, Vermont
| | - Roberto Loi
- 4 Department of Biomedical Sciences, University of Cagliari , Cagliari, Italy
| | - Andrew M Hoffman
- 5 Department of Clinical Sciences, Tufts University , Cummings School of Veterinary Medicine, North Grafton, Massachusetts
| | | | | | - Thomas Petersen
- 8 United Therapeutics Corp., Research Triangle Park , Durham, North Carolina
| | - Darcy E Wagner
- 1 Department of Medicine, University of Vermont College of Medicine , Burlington, Vermont.,9 Comprehensive Pneumonology Center, Helmholtz Center Munich, Ludwig Maximilians University Munich , Munich, Germany
| | - Daniel J Weiss
- 1 Department of Medicine, University of Vermont College of Medicine , Burlington, Vermont
| |
Collapse
|
18
|
Wong ML, Wong JL, Vapniarsky N, Griffiths LG. In vivo xenogeneic scaffold fate is determined by residual antigenicity and extracellular matrix preservation. Biomaterials 2016; 92:1-12. [PMID: 27031928 DOI: 10.1016/j.biomaterials.2016.03.024] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 01/08/2023]
Abstract
The immunological potential of animal-derived tissues and organs is the critical hurdle to increasing their clinical implementation. Glutaraldehyde-fixation cross-links proteins in xenogeneic tissues (e.g., bovine pericardium) to delay immune rejection, but also compromises the regenerative potential of the resultant biomaterial. Unfixed xenogeneic biomaterials in which xenoantigenicity has been ameliorated and native extracellular matrix (ECM) architecture has been maintained have the potential to overcome limitations of current clinically utilized glutaraldehyde-fixed biomaterials. The objective of this work was to determine how residual antigenicity and ECM architecture preservation modulate recipient immune and regenerative responses towards unfixed bovine pericardium (BP) ECM scaffolds. Disruption of ECM architecture during scaffold generation, with either SDS-decellularization or glutaraldehyde-fixation, stimulated recipient foreign body response and resultant fibrotic encapsulation following leporine subpannicular implantation. Conversely, BP scaffolds subjected to stepwise removal of hydrophilic and lipophilic antigens using amidosulfobetaine-14 (ASB-14) maintained native ECM architecture and thereby avoided fibrotic encapsulation. Removal of hydrophilic and lipophilic antigens significantly decreased local and systemic graft-specific, adaptive immune responses and subsequent calcification of BP scaffolds compared to scaffolds undergoing hydrophile removal only. Critically, removal of antigenic components and preservation of ECM architecture with ASB-14 promoted full-thickness recipient non-immune cellular repopulation of the BP scaffold. Further, unlike clinically utilized fixed BP, ASB-14-treated scaffolds fostered rapid intimal and medial vessel wall regeneration in a porcine carotid patch angioplasty model. This work highlights the importance of residual antigenicity and ECM architecture preservation in modulating recipient immune and regenerative responses towards xenogeneic biomaterial generation.
Collapse
Affiliation(s)
- Maelene L Wong
- Department of Veterinary Medicine and Epidemiology, University of California, Davis, One Shields Ave., Davis, CA 95616, USA; Department of Biomedical Engineering, University of California, Davis, One Shields Ave., Davis, CA 95616, USA
| | - Janelle L Wong
- Department of Veterinary Medicine and Epidemiology, University of California, Davis, One Shields Ave., Davis, CA 95616, USA
| | - Natalia Vapniarsky
- Department of Biomedical Engineering, University of California, Davis, One Shields Ave., Davis, CA 95616, USA
| | - Leigh G Griffiths
- Department of Veterinary Medicine and Epidemiology, University of California, Davis, One Shields Ave., Davis, CA 95616, USA.
| |
Collapse
|