1
|
Kawata S, Seki S, Nishiura A, Kitaoka Y, Iwamori K, Fukada SI, Kogo M, Tanaka S. Preservation of masseter muscle until the end stage in the SOD1G93A mouse model for ALS. Sci Rep 2024; 14:24279. [PMID: 39414899 PMCID: PMC11484890 DOI: 10.1038/s41598-024-74669-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) progressively impairs motor neurons, leading to muscle weakness and loss of voluntary muscle control. This study compared the effects of SOD1 mutation on masticatory and limb muscles from disease onset to death in ALS model mice. Notably, limb muscles begin to atrophy soon after ALS-like phenotype appear, whereas masticatory muscles maintain their volume and function in later stages. Our analysis showed that, unlike limb muscles, masticatory muscles retain their normal structure and cell makeup throughout most of the disease course. We found an increase in the number of muscle satellite cells (SCs), which are essential for muscle repair, in masticatory muscles. In addition, we observed no reduction in the number of muscle nuclei and no muscle fibre-type switching in masticatory muscles. This indicates that masticatory muscles have a higher resistance to ALS-related damage than limb muscles, likely because of differences in cell composition and repair mechanisms. Understanding why masticatory muscles are less affected by ALS could lead to the development of new treatments. This study highlights the importance of studying different muscle groups in ALS to clarify disease aetiology and mechanisms.
Collapse
Affiliation(s)
- Sou Kawata
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Soju Seki
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Akira Nishiura
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Kitaoka
- University California, Los Angeles, School of Dentistry, Section of Biosystems and Function, Laboratory of Neuropharmacology, 714 Tiverton Los Angeles, CA 90095, United States
| | - Kanako Iwamori
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - So-Ichiro Fukada
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mikihiko Kogo
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Susumu Tanaka
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
2
|
Harzer W, Augstein A, Olbert C, Juenger D, Keil C, Weiland B. Satellite cell capacity for functional adaptation of masseter muscle in Class II and Class III patients after orthognathic surgery-a pilot study. Eur J Orthod 2021; 43:234-240. [PMID: 32452521 DOI: 10.1093/ejo/cjaa029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AIM The aim of the prospective pilot study was to analyze the biomarkers CD34, Pax7, Myf5, and MyoD for stimulation of satellite cells (SCs), which are responsible for functional adaptation. SUBJECTS AND METHODS Forty-five Caucasian patients were consecutively recruited from the Maxillo-Facial-Surgery at TU Dresden. Eleven orthognathic Class III patients, 24 Class II patients, and 10 controls with Class I were involved in the study. Tissue samples from masseter muscle were taken from the patients pre-surgically (T1) and 7 months later (T2). Samples from controls were taken during the extraction of third molars in the mandible. Polymerase chain reaction (PCR) for relative quantification of gene expression was calculated with the delta delta cycle threshold (ΔΔCT) method. RESULTS The results show significant differences for the marker of SC stimulation between the controls, the patient groups, males, and females. The gene expression of CD34 was post-surgically upregulated for Class III (0.35-0.77, standard deviation [SD] = 0.39, P < 0.05) in comparison with controls. For Pax7, there was a significant difference shown between the retrognathic and the prognathic group because of downregulation in Class II patients (1.64-0.76, SD = 0.55, P < 0.05). In Class III patients, there was a significant upregulation for Myf5 (0.56-1.05, SD = 0.52, P < 0.05) after surgery too. CONCLUSIONS The significant decline of Pax7 in Class II patients indicates a deficiency of stimulated SC post-surgically. The expression of CD34 and Myf5 in Class II stayed unchanged. In contrast, there was an upregulation for all Class III patients, mainly in females, shown post-surgically. This may be one reason for weak functional adaptation and relapse in Class II patients.
Collapse
Affiliation(s)
- Winfried Harzer
- Department of Orthodontics, Technical University of Dresden, Germany
| | - Antje Augstein
- Center for Heart Diseases, Technical University of Dresden, Germany
| | - Christin Olbert
- Department of Orthodontics, Technical University of Dresden, Germany
| | - Diana Juenger
- Department of Oral and Maxillofacial Surgery, Technical University of Dresden, Germany
| | - Christiane Keil
- Department of Orthodontics, Technical University of Dresden, Germany
| | - Bernhard Weiland
- Department of Oral and Maxillofacial Surgery, Technical University of Dresden, Germany
| |
Collapse
|
3
|
Temporomandibular Disorders Slow Down the Regeneration Process of Masticatory Muscles: Transcriptomic Analysis. ACTA ACUST UNITED AC 2021; 57:medicina57040354. [PMID: 33916982 PMCID: PMC8067552 DOI: 10.3390/medicina57040354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 11/17/2022]
Abstract
Background and Objectives: Musculoskeletal injuries represent a pathological condition due to limited joint motility and morphological and functional alterations of the muscles. Temporomandibular disorders (TMDs) are pathological conditions due to alterations in the musculoskeletal system. TMDs mainly cause temporomandibular joint and masticatory muscle dysfunctions following trauma, along with various pathologies and inflammatory processes. TMD affects approximately 15% of the population and causes malocclusion problems and common symptoms such as myofascial pain and migraine. The aim of this work was to provide a transcriptomic profile of masticatory muscles obtained from TMD migraine patients compared to control. Materials and Methods: We used Next Generation Sequencing (NGS) technology to evaluate transcriptomes in masseter and temporalis muscle samples. Results: The transcriptomic analysis showed a prevalent downregulation of the genes involved in the myogenesis process. Conclusions: In conclusion, our findings suggest that the muscle regeneration process in TMD migraine patients may be slowed, therefore therapeutic interventions are needed to restore temporomandibular joint function and promote healing processes.
Collapse
|
4
|
Masita Silviana N, Andarini S, Lyrawati D, Hidayat M. Masticatory Functional Load Increases the mRNA Expression Levels of ACTN2 and ACTN3 and the Protein Expression of α-Actinin-2 in Rat Masseter Muscle. Turk J Pharm Sci 2021; 18:28-33. [PMID: 33632512 DOI: 10.4274/tjps.galenos.2019.53323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Objectives α-actinins play structural and regulatory roles in cytoskeletal organization. They form a lattice structure that secures actin in thin filaments, which generate and transmit muscle contractile forces. The morphological and biochemical characteristics of rat masseter muscles are known to change reactions to masticatory functional loads, but their effect on α-actinins remains unknown. This study aimed to determine the response of α-actinins to masticatory functional loads. Materials and Methods Twenty-four male Wistar rats aged 3 weeks were divided randomly into 3 groups of liquid diet (LD), soft diet, and hard diet (HD). The rats were then sacrificed at the end of 8 weeks. The middle part of superficial masseter muscles was examined to investigate the masticatory effect of functional load on the mRNA expression levels of ACTN2 and ACTN3 and the protein expression levels of α-actinin-2 and α-actinin-3. Results The mRNA expression levels of ACTN2 and ACTN3 and the protein expression levels of α-actinin-2 of the HD group were significantly higher than those of the LD group, which served as the control group. Conclusion Masticatory functional load organizes the mRNA expression levels of ACTN2 and ACTN3 and the protein expression levels of α-actinin-2 in rat masseter muscles through stimuli during muscle physiological adaptation.
Collapse
Affiliation(s)
- Nur Masita Silviana
- Universitas Brawijaya Faculty of Dentistry, Department of Orthodontics, Malang, Indonesia
| | - Sri Andarini
- Universitas Brawijaya Faculty of Medicine, Department of Public Health, Malang, Indonesia
| | - Diana Lyrawati
- Universitas Brawijaya Faculty of Medicine, Department of Pharmacy, Malang, Indonesia
| | - Mohammad Hidayat
- Syaiful Anwar General Hospital Faculty of Medicine, Universitas Brawijaya, Department of Orthopaedics, Malang, Indonesia
| |
Collapse
|
5
|
Harzer W, Augstein A, Juenger D, Keil C, Weiland B. Notch expression profile and satellite cell stimulation in masseter muscle before and after orthognathic surgery. J Craniomaxillofac Surg 2020; 49:93-97. [PMID: 33357968 DOI: 10.1016/j.jcms.2020.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/19/2020] [Accepted: 12/08/2020] [Indexed: 10/22/2022] Open
Abstract
The aim of this prospective study was to compare the expression of the Notch receptor family with the biomarker for stimulation of satellite cells (SC), which are responsible for functional adaptation. Tissue samples from the masseter muscle were taken presurgically and 7 months later. Samples from controls came from the extraction of third molars. The expression of Notch 1 to 4 and the satellite cell markers CD34, Pax7, and MyoD1 were investigated. PCR was used for relative quantification of gene expression, which was calculated with the ΔΔCT method. The study involved 38 white patients - 10 prognathic, 18 retrognathic, and 10 orthognathic controls. The median value for Notch 1 was significantly reduced presurgically for prognathic (0.46, SD 0.45) and retrognathic (0.57, SD 0.35) patients compared with the controls. Postsurgically, Notch 2 was significantly upregulated in the prognathic group (0.55, SD 0.28/1.37, SD 0.85). Similarly, there was upregulation of Notch 3 in the prognathic group (0.33, SD 0.42/0.59, SD 1.37) and downregulation in retrognathic patients (0.59, SD 0.79/0.52, SD 0.97). Upregulations for the satellite cell markers CD34 and Pax7 were also found in prognathic patients. The significant upregulation of Notch 1-3 and CD34 in prognathics, but unchanged MyoD expression, signals high stimulation for SC and maintenance of the regeneration cell pool. A lower expression of Notch and SC in retrognathic patients could be responsible for weak functional adaptation.
Collapse
Affiliation(s)
- Winfried Harzer
- Department of Orthodontics, Technical University of Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| | - Antje Augstein
- Center for Heart Diseases, Fetscherstr. 76, 01307, Dresden, Germany
| | - Diana Juenger
- Department of Oral and Maxillofacial Surgery, Technical University of Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Christiane Keil
- Department of Orthodontics, Technical University of Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Bernhard Weiland
- Department of Oral and Maxillofacial Surgery, Technical University of Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| |
Collapse
|
6
|
Yu JF, Chang TT, Zhang ZJ. The Reliability of MyotonPRO in Assessing Masseter Muscle Stiffness and the Effect of Muscle Contraction. Med Sci Monit 2020; 26:e926578. [PMID: 33137025 PMCID: PMC7646197 DOI: 10.12659/msm.926578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/27/2020] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Temporomandibular disorders (TMD) are accompanied by masticatory muscle-related pain, making it meaningful to assess the stiffness of the masticatory muscles. The present study investigated the intra- and inter-operator reliabilities of MyotonPRO for assessing the elasticity of masseter muscles, to determine minimal detectable changes, and to quantify changes in stiffness from conditions of relaxation to maximal contraction. MATERIAL AND METHODS Twenty healthy subjects (10 men and 10 women) were recruited. The stiffness of their masseter muscles was quantified with MyotonPRO in both relaxed and maximal contraction conditions. Two experienced operators (A and B) measured stiffness on the same day, and operator A repeated this procedure 5 days later. RESULTS Intra-rater reliability was good (ICC=0.78) and inter-operator reliability was excellent (ICC=0.95) for assessing masseter muscle stiffness with MyotonPRO. The mean stiffness of the masseter muscle on the dominant side was 369.5 N/m under relaxed conditions and 618.3 N/m at maximum bite force, an increase of 67.4%. Stiffness on the dominant and non-dominant sides did not differ significantly under both conditions (P>0.05). CONCLUSIONS MyotonPRO is a reliable method for quantifying the stiffness of the masseter muscle and monitoring its changes under different contraction conditions.
Collapse
Affiliation(s)
- Jia-feng Yu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Tian-tian Chang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, P.R. China
| | - Zhi-jie Zhang
- Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, Henan, P.R. China
| |
Collapse
|
7
|
Changes in masseter muscle fibers by liquid diet rearing in rabbits and recovery by chewing of solid diet. Arch Oral Biol 2019; 108:104548. [PMID: 31491685 DOI: 10.1016/j.archoralbio.2019.104548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To investigate the effects of liquid diet on the development of masseter muscle fibers and whether the changes in the masseter muscle can be recovered by chewing of solid diet. DESIGN Masseter muscles from 40 rabbits (solid- and liquid-diet groups, n = 30; unweaned group, n = 5; recovery group, n = 5) were histochemically examined at 4, 12, 18, and 33 weeks after birth. Six fiber types (I, IC, IIC, IIA, IIAB, and IIB) were distinguished via mATPase staining. Muscle fiber diameter and fiber type composition were measured and compared between groups. RESULTS In the liquid diet group, the diameter of types IIAB (solid group: 81.7 μm, liquid group: 60.9 μm) and IIB (solid group: 89.3 μm, liquid group: 68.8 μm) and the fiber type composition of type I (solid group: 18.4%, liquid group: 9.6%) decreased significantly at 33 weeks of age. In the recovery group, the fiber type composition of type I fibers recovered to 16.5%, while no recovery of type IIAB (56.6 μm) and IIB (64.6 μm) fiber diameter was observed. CONCLUSIONS Liquid diet caused atrophy of muscle fibers and an increase in the proportion of fast-twitch fibers. Although the diameter and ratio of slow-twitch fibers were recovered by chewing of solid diet, recovery was not observed for fast-twitch fibers. Our findings are relevant for dental medicine as it explored the possibility of masticatory muscle function recovery by hard food.
Collapse
|