1
|
Qi Z, Wang S, Xuan A, Gu X, Deng J, Huang C, Zhang L, Yin X. MiR-142a-3p: A novel ACh receptor transcriptional regulator in association with peripheral nerve injury. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 30:325-336. [PMID: 36381585 PMCID: PMC9633872 DOI: 10.1016/j.omtn.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 10/12/2022] [Indexed: 12/15/2022]
Abstract
Long-term denervation leads to the disintegration of nicotinic acetylcholine receptor (nAChR) located at the endplate structure, which translates to deficits in functional activation despite nerve repair. Because of a lack of effective measures to protect AChR expression, we explored the effect of alterations in muscular miR-142a-3p on nAChR. In this study, we constructed a model of miR-142a-3p knockdown by transfecting a miR-142a-3p inhibitor short hairpin RNA (shRNA) into C2C12 myotubes, and we injected this miR-142a-3p inhibitor shRNA into the tibialis anterior (TA) muscle in uninjured mice and in denervated mice by transecting the sciatic nerve. Our results showed that miR-142a-3p knockdown led to an increased number and area of AChR clusters in myotubes in vitro and larger neuromuscular endplates in adult mice. Furthermore, miR-142a-3p knockdown delayed the disintegration of motor endplates after denervation. Last, upon miR-142a-3p knockdown in uninjured and denervated mice, we observed an increase in the mRNA levels of five AChR subunits as well as mRNAs of genes implicated in AChR transcription and AChR clustering. Together, these results suggest that miR-142a-3p may be a potential target for therapeutic intervention to prevent motor endplate degradation following peripheral nerve injury.
Collapse
Affiliation(s)
- Zhidan Qi
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing, China
| | - Shen Wang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing, China
| | - Ang Xuan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyi Gu
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing, China
| | - Jin Deng
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing, China
| | - Chen Huang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing, China
| | - Lei Zhang
- Electron Microscopy Analysis Laboratory, Medical and Health Analysis Center, Peking University, Beijing, China,Department of Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaofeng Yin
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing, China,Pizhou People’s Hospital, Jiangsu, China,Corresponding author Xiaofeng Yin, Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing, China.
| |
Collapse
|
2
|
Liu C, Dai SK, Sun Z, Wang Z, Liu PP, Du HZ, Yu S, Liu CM, Teng ZQ. GA-binding protein GABPβ1 is required for the proliferation of neural stem/progenitor cells. Stem Cell Res 2019; 39:101501. [PMID: 31344652 DOI: 10.1016/j.scr.2019.101501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/08/2019] [Accepted: 07/12/2019] [Indexed: 01/02/2023] Open
Abstract
GA binding protein (GABP) is a ubiquitously expressed transcription factor that regulates the development of multiple cell types, including osteoblast, hematopoietic stem cells, B cells and T cells. However, so little is known about its biological function in the development of central nervous system. In this report, we show that GABP is highly expressed in neural stem/progenitor cells (NSPCs) and down-regulated in neurons, and that GABPβ1 is required for the proper proliferation of NSPCs. Knockdown of GABPα resulted in an elevated expression level of GABPβ1, and GABPβ1 down-regulation significantly decreased the proliferation of NSPCs, whereas GABPβ2 knockdown did not result in any changes in the proliferation of NSPCs. We observed that there was nearly a 21-fold increase of the GABPβ1S mRNA level in GABPβ1L KO NSPCs compared to WT cells, and knocking down of GABPβ1S in GABPβ1L KO NSPCs could further reduce their proliferation potential. We also found that knockdown of GABPβ1 promoted neuronal and astrocytic differentiation of NSPCs. Finally, we identified dozens of downstream target genes of GABPβ1, which are closely associated with the cell proliferation and differentiation. Collectively, our results suggest that both GABPβ1L and GABPβ1S play an essential role in regulating the proper proliferation and differentiation of NSPCs.
Collapse
Affiliation(s)
- Cong Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Shang-Kun Dai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen Sun
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhuo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Pei-Pei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong-Zhen Du
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuyang Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Zhao-Qian Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Cescon M, Gregorio I, Eiber N, Borgia D, Fusto A, Sabatelli P, Scorzeto M, Megighian A, Pegoraro E, Hashemolhosseini S, Bonaldo P. Collagen VI is required for the structural and functional integrity of the neuromuscular junction. Acta Neuropathol 2018; 136:483-499. [PMID: 29752552 DOI: 10.1007/s00401-018-1860-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 12/20/2022]
Abstract
The synaptic cleft of the neuromuscular junction (NMJ) consists of a highly specialized extracellular matrix (ECM) involved in synapse maturation, in the juxtaposition of pre- to post-synaptic areas, and in ensuring proper synaptic transmission. Key components of synaptic ECM, such as collagen IV, perlecan and biglycan, are binding partners of one of the most abundant ECM protein of skeletal muscle, collagen VI (ColVI), previously never linked to NMJ. Here, we demonstrate that ColVI is itself a component of this specialized ECM and that it is required for the structural and functional integrity of NMJs. In vivo, ColVI deficiency causes fragmentation of acetylcholine receptor (AChR) clusters, with abnormal expression of NMJ-enriched proteins and re-expression of fetal AChRγ subunit, both in Col6a1 null mice and in patients affected by Ullrich congenital muscular dystrophy (UCMD), the most severe form of ColVI-related myopathies. Ex vivo muscle preparations from ColVI null mice revealed altered neuromuscular transmission, with electrophysiological defects and decreased safety factor (i.e., the excess current generated in response to a nerve impulse over that required to reach the action potential threshold). Moreover, in vitro studies in differentiated C2C12 myotubes showed the ability of ColVI to induce AChR clustering and synaptic gene expression. These findings reveal a novel role for ColVI at the NMJ and point to the involvement of NMJ defects in the etiopathology of ColVI-related myopathies.
Collapse
|
4
|
Molecular mechanisms underlying maturation and maintenance of the vertebrate neuromuscular junction. Trends Neurosci 2012; 35:441-53. [PMID: 22633140 DOI: 10.1016/j.tins.2012.04.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/09/2012] [Accepted: 04/15/2012] [Indexed: 01/22/2023]
Abstract
The vertebrate neuromuscular junction (NMJ), a peripheral synapse formed between motoneuron and skeletal muscle, is characterized by a protracted postnatal period of maturation and life-long maintenance. In neuromuscular disorders such as congenital myasthenic syndromes (CMSs), disruptions of NMJ maturation and/or maintenance are frequently observed. In particular, defective neuromuscular transmission associated with structural and molecular abnormalities at the pre- and postsynaptic membranes, as well as at the synaptic cleft, has been reported in these patients. Here, we review recent advances in the understanding of molecular and cellular events that mediate NMJ maturation and maintenance. The underlying regulatory mechanisms, including key molecular regulators at the presynaptic nerve terminal, synaptic cleft, and postsynaptic muscle membrane, are discussed.
Collapse
|
5
|
The use of mouse models for understanding the biology of down syndrome and aging. Curr Gerontol Geriatr Res 2012; 2012:717315. [PMID: 22461792 PMCID: PMC3296169 DOI: 10.1155/2012/717315] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 12/06/2011] [Indexed: 12/16/2022] Open
Abstract
Down syndrome is a complex condition caused by trisomy of human chromosome 21. The biology of aging may be different in individuals with Down syndrome; this is not well understood in any organism. Because of its complexity, many aspects of Down syndrome must be studied either in humans or in animal models. Studies in humans are essential but are limited for ethical and practical reasons. Fortunately, genetically altered mice can serve as extremely useful models of Down syndrome, and progress in their production and analysis has been remarkable. Here, we describe various mouse models that have been used to study Down syndrome. We focus on segmental trisomies of mouse chromosome regions syntenic to human chromosome 21, mice in which individual genes have been introduced, or mice in which genes have been silenced by targeted mutagenesis. We selected a limited number of genes for which considerable evidence links them to aspects of Down syndrome, and about which much is known regarding their function. We focused on genes important for brain and cognitive function, and for the altered cancer spectrum seen in individuals with Down syndrome. We conclude with observations on the usefulness of mouse models and speculation on future directions.
Collapse
|
6
|
Bronisz A, Godlewski J, Wallace JA, Merchant AS, Nowicki MO, Mathsyaraja H, Srinivasan R, Trimboli AJ, Martin CK, Li F, Yu L, Fernandez SA, Pécot T, Rosol TJ, Cory S, Hallett M, Park M, Piper MG, Marsh CB, Yee LD, Jimenez RE, Nuovo G, Lawler SE, Chiocca EA, Leone G, Ostrowski MC. Reprogramming of the tumour microenvironment by stromal PTEN-regulated miR-320. Nat Cell Biol 2011; 14:159-67. [PMID: 22179046 PMCID: PMC3271169 DOI: 10.1038/ncb2396] [Citation(s) in RCA: 256] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 11/07/2011] [Indexed: 02/07/2023]
Abstract
Phosphatase and tensin homolog deleted on chromosome ten (Pten) in stromal fibroblasts suppresses epithelial mammary tumors, but the underlying molecular mechanisms remain unknown. Using proteomic and expression profiling, we show that Pten loss from mammary stromal fibroblasts activates an oncogenic secretome that orchestrates the transcriptional reprogramming of other cell types in the microenvironment. Downregulation of miR-320 and upregulation of one of its direct targets, ETS2, are critical events in Pten-deleted stromal fibroblasts responsible for inducing this oncogenic secretome, which in turn promotes tumor angiogenesis and tumor cell invasion. Expression of the Pten-miR-320-Ets2 regulated secretome distinguished human normal breast stroma from tumor stroma and robustly correlated with recurrence in breast cancer patients. This work reveals miR-320 as a critical component of the Pten tumor suppressor axis that acts in stromal fibroblasts to reprogram the tumor microenvironment and curtail tumor progression.
Collapse
Affiliation(s)
- A Bronisz
- Tumor Microenvironment Program, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Jedlicka P, Sui X, Sussel L, Gutierrez-Hartmann A. Ets transcription factors control epithelial maturation and transit and crypt-villus morphogenesis in the mammalian intestine. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1280-90. [PMID: 19264912 DOI: 10.2353/ajpath.2009.080409] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Members of the Ets transcription factor family are widely expressed in both the developing and mature mammalian intestine, but their biological functions remain primarily uncharacterized. We used a dominant repressor transgene approach to probe the function of epithelial Ets factors in the homeostasis of the crypt-villus unit, the functional unit of the small intestine. We show that targeted expression in small intestinal epithelium of a fusion protein composed of the Engrailed repressor domain and the Erm DNA-binding domain (En/Erm) results in marked disruption of normal crypt-villus homeostasis, including a cell-autonomous disturbance of epithelial maturation, increased epithelial transit, severe villus dysmorphogenesis, and crypt dysmorphogenesis. The epithelial maturation disturbance is independent of the regulation of TGFbetaRII levels, in contrast to Ets-mediated epithelial differentiation during development; rather, regulation of Cdx2 expression may play a role. The villus dysmorphogenesis is independent of alterations in the crypt-villus boundary and inappropriate beta-catenin activation, and thus appears to represent a new mechanism controlling villus architectural organization. An Analysis of animals mosaic for En/Erm expression suggests that crypt nonautonomous mechanisms underlie the crypt dysmorphogenesis phenotype. Our studies thus uncover novel Ets-regulated pathways of intestinal homeostasis in vivo. Interestingly, the overall En/Erm phenotype of disturbed crypt-villus homeostasis is consistent with recently identified Ets function(s) in the restriction of intestinal epithelial tumorigenesis.
Collapse
Affiliation(s)
- Paul Jedlicka
- Department of Pathology, University of Colorado Denver, Anschutz Medical Center, PO Box 6511, MS 8104, Aurora CO 80045, USA.
| | | | | | | |
Collapse
|
8
|
Jedlicka P, Gutierrez-Hartmann A. Ets transcription factors in intestinal morphogenesis, homeostasis and disease. Histol Histopathol 2008; 23:1417-24. [PMID: 18785124 DOI: 10.14670/hh-23.1417] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ets transcription factors comprise a large family of sequence-specific regulators of gene expression with important and diverse roles in development and disease. Most Ets family members are expressed in the developing and/or mature intestine, frequently in a compartment-specific and temporally dynamic manner. However, with the exception of the highly expressed Elf3, involved in embryonic epithelial differentiation, little is known about Ets functions in intestinal development and homeostasis. Ets factors show altered expression in colon cancer, where they regulate pathways relevant to tumor progression. Ets factors also likely act as important modifiers of non-neoplastic intestinal disease by regulating pathways relevant to tissue injury and repair. Despite a large body of published work on Ets biology, much remains to be learned about the precise functions of this large and diverse gene family in intestinal morphogenesis, homeostasis, and both neoplastic and non-neoplastic pathology.
Collapse
Affiliation(s)
- Paul Jedlicka
- Department of Pathology, University of Colorado Denver, Aurora CO 80045, USA.
| | | |
Collapse
|
9
|
Affiliation(s)
- Andrew G Engel
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
10
|
Reliability of neuromuscular transmission and how it is maintained. HANDBOOK OF CLINICAL NEUROLOGY 2008; 91:27-101. [PMID: 18631840 DOI: 10.1016/s0072-9752(07)01502-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Rachidi M, Lopes C. Mental retardation in Down syndrome: From gene dosage imbalance to molecular and cellular mechanisms. Neurosci Res 2007; 59:349-69. [PMID: 17897742 DOI: 10.1016/j.neures.2007.08.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 08/02/2007] [Accepted: 08/10/2007] [Indexed: 11/25/2022]
Abstract
Down syndrome (DS), the most frequent genetic disorder leading to mental retardation (MR), is caused by three copies of human chromosome 21 (HC21). Trisomic and transgenic mouse models for DS allow genetic dissection of DS neurological and cognitive disorders in view to identify genes responsible for these phenotypes. The effects of the gene dosage imbalance on DS phenotypes are explained by two hypotheses: the "gene dosage effect" hypothesis claims that a DS critical region, containing a subset of dosage-sensitive genes, determines DS phenotypes, and the "amplified developmental instability" hypothesis holds that HC21 trisomy determines general alteration in developmental homeostasis. Transcriptome and expression studies showed different up- or down-expression levels of genes located on HC21 and the other disomic chromosomes. HC21 genes, characterized by their overexpression in brain regions affected in DS patients and by their contribution to neurological and cognitive defects when overexpressed in mouse models, are proposed herein as good candidates for MR. In this article, we propose a new molecular and cellular mechanism explaining MR pathogenesis in DS. In this model, gene dosage imbalance effects on transcriptional variations are described considering the nature of gene products and their functional relationships. These transcriptional variations may affect different aspects of neuronal differentiation and metabolism and finally, determine the brain neuropathologies and mental retardation in DS.
Collapse
|
12
|
Hippenmeyer S, Huber RM, Ladle DR, Murphy K, Arber S. ETS Transcription Factor Erm Controls Subsynaptic Gene Expression in Skeletal Muscles. Neuron 2007; 55:726-40. [PMID: 17785180 DOI: 10.1016/j.neuron.2007.07.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 06/22/2007] [Accepted: 07/24/2007] [Indexed: 11/23/2022]
Abstract
Accumulation of specific proteins at synaptic structures is essential for synapse assembly and function, but mechanisms regulating local protein enrichment remain poorly understood. At the neuromuscular junction (NMJ), subsynaptic nuclei underlie motor axon terminals within extrafusal muscle fibers and are transcriptionally distinct from neighboring nuclei. In this study, we show that expression of the ETS transcription factor Erm is highly concentrated at subsynaptic nuclei, and its mutation in mice leads to severe downregulation of many genes with normally enriched subsynaptic expression. Erm mutant mice display an expansion of the muscle central domain in which acetylcholine receptor (AChR) clusters accumulate, show gradual fragmentation of AChR clusters, and exhibit symptoms of muscle weakness mimicking congenital myasthenic syndrome (CMS). Together, our findings define Erm as an upstream regulator of a transcriptional program selective to subsynaptic nuclei at the NMJ and underscore the importance of transcriptional control of local synaptic protein accumulation.
Collapse
Affiliation(s)
- Simon Hippenmeyer
- Biozentrum, Department of Cell Biology, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
13
|
Kang H, Tian L, Son YJ, Zuo Y, Procaccino D, Love F, Hayworth C, Trachtenberg J, Mikesh M, Sutton L, Ponomareva O, Mignone J, Enikolopov G, Rimer M, Thompson W. Regulation of the intermediate filament protein nestin at rodent neuromuscular junctions by innervation and activity. J Neurosci 2007; 27:5948-57. [PMID: 17537965 PMCID: PMC6672248 DOI: 10.1523/jneurosci.0621-07.2007] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The intermediate filament nestin is localized postsynaptically at rodent neuromuscular junctions. The protein forms a filamentous network beneath and between the synaptic gutters, surrounds myofiber nuclei, and is associated with Z-discs adjacent to the junction. In situ hybridization shows that nestin mRNA is synthesized selectively by synaptic myonuclei. Although weak immunoreactivity is present in myelinating Schwann cells that wrap the preterminal axon, nestin is not detected in the terminal Schwann cells (tSCs) that cover the nerve terminal branches. However, after denervation of muscle, nestin is upregulated in tSCs and in SCs within the nerve distal to the lesion site. In contrast, immunoreactivity is strongly downregulated in the muscle fiber. Transgenic mice in which the nestin neural enhancer drives expression of a green fluorescent protein (GFP) reporter show that the regulation in SCs is transcriptional. However, the postsynaptic expression occurs through enhancer elements distinct from those responsible for regulation in SCs. Application of botulinum toxin shows that the upregulation in tSCs and the loss of immunoreactivity in muscle fibers occurs with blockade of transmitter release. Extrinsic stimulation of denervated muscle maintains the postsynaptic expression of nestin but does not affect the upregulation in SCs. Thus, a nestin-containing cytoskeleton is promoted in the postsynaptic muscle fiber by nerve-evoked muscle activity but suppressed in tSCs by transmitter release. Nestin antibodies and GFP driven by nestin promoter elements serve as excellent markers for the reactive state of SCs. Vital imaging of GFP shows that SCs grow a dynamic set of processes after denervation.
Collapse
Affiliation(s)
- Hyuno Kang
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Le Tian
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Young-Jin Son
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Yi Zuo
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Diane Procaccino
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Flora Love
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Christopher Hayworth
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Joshua Trachtenberg
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Michelle Mikesh
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Lee Sutton
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Olga Ponomareva
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - John Mignone
- Cold Spring Harbor Laboratories, Cold Spring Harbor, New York 11724
| | | | - Mendell Rimer
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Wesley Thompson
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| |
Collapse
|
14
|
Jaworski A, Smith CL, Burden SJ. GA-binding protein is dispensable for neuromuscular synapse formation and synapse-specific gene expression. Mol Cell Biol 2007; 27:5040-6. [PMID: 17485447 PMCID: PMC1951497 DOI: 10.1128/mcb.02228-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The mRNAs encoding postsynaptic components at the neuromuscular junction are concentrated in the synaptic region of muscle fibers. Accumulation of these RNAs in the synaptic region is mediated, at least in part, by selective transcription of the corresponding genes in synaptic myofiber nuclei. The transcriptional mechanisms that are responsible for synapse-specific gene expression are largely unknown, but an Ets site in the promoter regions of acetylcholine receptor (AChR) subunit genes and other "synaptic" genes is required for synapse-specific transcription. The Ets domain transcription factor GA-binding protein (GABP) has been implicated to mediate synapse-specific gene expression. Inactivation of GABPalpha, the DNA-binding subunit of GABP, leads to early embryonic lethality, preventing analysis of synapse formation in gabpalpha mutant mice. To study the role of GABP at neuromuscular synapses, we conditionally inactivated gabpalpha in skeletal muscle and studied synaptic differentiation and muscle gene expression. Although expression of rb, a target of GABP, is elevated in muscle tissue deficient in GABPalpha, clustering of synaptic AChRs at synapses and synapse-specific gene expression are normal in these mice. These data indicate that GABP is dispensable for synapse-specific transcription and maintenance of normal AChR expression at synapses.
Collapse
Affiliation(s)
- Alexander Jaworski
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomoledular Medicine, NYU School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
15
|
O'Leary DA, Noakes PG, Lavidis NA, Kola I, Hertzog PJ, Ristevski S. Targeting of the ETS factor GABPalpha disrupts neuromuscular junction synaptic function. Mol Cell Biol 2007; 27:3470-80. [PMID: 17325042 PMCID: PMC1899955 DOI: 10.1128/mcb.00659-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The GA-binding protein (GABP) transcription factor has been shown in vitro to regulate the expression of the neuromuscular proteins utrophin, acetylcholine esterase, and acetylcholine receptor subunits delta and epsilon through the N-box promoter motif (5'-CCGGAA-3'), but its in vivo function remains unknown. A single point mutation within the N-box of the gene encoding the acetylcholine receptor epsilon subunit has been identified in several patients suffering from postsynaptic congenital myasthenic syndrome, implicating the GA-binding protein in neuromuscular function and disease. Since conventional gene targeting results in an embryonic-lethal phenotype, we used conditional targeting to investigate the role of GABPalpha in neuromuscular junction and skeletal muscle development. The diaphragm and soleus muscles from mutant mice display alterations in morphology and distribution of acetylcholine receptor clusters at the neuromuscular junction and neurotransmission properties consistent with reduced receptor function. Furthermore, we confirmed decreased expression of the acetylcholine receptor epsilon subunit and increased expression of the gamma subunit in skeletal muscle tissues. Therefore, the GABP transcription factor aids in the structural formation and function of neuromuscular junctions by regulating the expression of postsynaptic genes.
Collapse
Affiliation(s)
- Debra A O'Leary
- Monash Institute of Medical Research, Monash University, Clayton, Victoria 3168, Australia
| | | | | | | | | | | |
Collapse
|
16
|
Ravel-Chapuis A, Vandromme M, Thomas JL, Schaeffer L. Postsynaptic chromatin is under neural control at the neuromuscular junction. EMBO J 2007; 26:1117-28. [PMID: 17304221 PMCID: PMC1852850 DOI: 10.1038/sj.emboj.7601572] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 01/04/2007] [Indexed: 12/25/2022] Open
Abstract
In adult skeletal muscle, the nicotinic acetylcholine receptor (AChR) specifically accumulates at the neuromuscular junction, to allow neurotransmission. This clustering is paralleled by a compartmentalization of AChR genes expression to subsynaptic nuclei, which acquire a unique gene expression program and a specific morphology in response to neural cues. Our results demonstrate that neural agrin-dependent reprogramming of myonuclei involves chromatin remodelling, histone hyperacetylation and histone hyperphosphorylation. Activation of AChR genes in subsynaptic nuclei is mediated by the transcription factor GABP. Here we demonstrate that upon activation, GABP recruits the histone acetyl transferase (HAT) p300 on the AChR epsilon subunit promoter, whereas it rather recruits the histone deacetylase HDAC1 when the promoter is not activated. Moreover, the HAT activity of p300 is required in vivo for AChR expression. GABP therefore couples chromatin hyperacetylation and AChR activation by neural factors in subsynaptic nuclei.
Collapse
Affiliation(s)
- Aymeric Ravel-Chapuis
- Equipe Différenciation Neuromusculaire; IFR128; UMR5161; ENS Lyon; CNRS; INRA; Université de Lyon; Lyon Cedex, France
| | - Marie Vandromme
- Equipe Différenciation Neuromusculaire; IFR128; UMR5161; ENS Lyon; CNRS; INRA; Université de Lyon; Lyon Cedex, France
| | - Jean-Luc Thomas
- Equipe Différenciation Neuromusculaire; IFR128; UMR5161; ENS Lyon; CNRS; INRA; Université de Lyon; Lyon Cedex, France
| | - Laurent Schaeffer
- Equipe Différenciation Neuromusculaire; IFR128; UMR5161; ENS Lyon; CNRS; INRA; Université de Lyon; Lyon Cedex, France
- Equipe Différenciation Neuromusculaire; IFR128; UMR5161; ENS Lyon; CNRS; INRA; Université de Lyon; 46 allée d'Italie, 69364 Lyon Cedex 07, France. Tel.: +33 4 72 72 85 73; Fax: +33 4 72 72 80 80; E-mail:
| |
Collapse
|
17
|
Cohen TV, Randall WR. The regulation of acetylcholinesterase by cis-elements within intron I in cultured contracting myotubes. J Neurochem 2006; 98:723-34. [PMID: 16787423 DOI: 10.1111/j.1471-4159.2006.03897.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The onset of spontaneous contraction in rat primary muscle cultures coincides with an increase in acetylcholinesterase (AChE) activity. In order to establish whether contractile activity modulates the rate of AChE transcript synthesis, and what elements of the gene are determinant, we examined the promoter and intron I in contracting muscle cultures. Ache genomic fragments attached to a luciferase reporter were transfected into muscle cultures that were either electrically stimulated or paralyzed with tetrodotoxin to enhance or inhibit contractions, respectively. Cultures transfected with intron I-containing constructs showed a 2-fold increase in luciferase activity following electrical stimulation, compared to tetrodotoxin treatment, suggesting that this region contains elements responding to contractile activity. Deleting a 780 bp distal region within intron I, containing an N-box element at +890 bp, or introducing a 2-bp mutation within its core sequence, eliminated the contraction-induced response. In contrast, mutating an N-box element at +822 bp had no effect on the response. Furthermore, co-transfecting a dominant negative GA-binding protein (GABP), a transcription factor known to selectively bind N-box elements, reduced the stimulation-mediated increase. Our results suggest that the N-box within intron I at +890 bp is a regulatory element important in the transcriptional response of Ache to contractile activity in muscle.
Collapse
Affiliation(s)
- Tatiana V Cohen
- Department of Pharmacology and Experimental Therapeutics, School of Medicine University of Maryland, Baltimore, MD 21201-1559, USA
| | | |
Collapse
|
18
|
Ponomareva ON, Ma H, Dakour R, Raabe TD, Lai C, Rimer M. Stimulation of acetylcholine receptor transcription by neuregulin-2 requires an N-box response element and is regulated by alternative splicing. Neuroscience 2005; 134:495-503. [PMID: 15961242 DOI: 10.1016/j.neuroscience.2005.04.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Accepted: 04/18/2005] [Indexed: 11/23/2022]
Abstract
The neuregulin (Nrg) family of growth/differentiation factors is encoded by at least four genes in the mammalian genome: nrg-1, nrg-2, nrg-3 and nrg-4. Nrg-1 and Nrg-2 share the highest homology within the family, and the primary RNA transcripts from their encoding genes are subjected to extensive alternative splicing. Although little is known about the biological function of Nrg-2-4, their structural similarity with Nrg-1 suggests that they could account for some of the activities presently attributed to Nrg-1. Thus, at the neuromuscular junction Nrg-1 has been a favored candidate for the signal that activates selective acetylcholine receptor (AChR) transcription in synaptic myonuclei. However, we have recently shown that like Nrg-1, Nrg-2 can also activate AChR transcription in cultured myotubes and accumulates at the synaptic site. Synapse-specific and Nrg-1-induced AChR transcription require an enhancer sequence, the N-box, which is also mutated in some patients with congenital myasthenia gravis. Here, we show that Nrg-2-induced AChR transcription requires an N-box motif and is regulated by alternative splicing. We also show that unique Nrg-2 isoforms are differentially distributed between spinal cord and skeletal muscle, the tissues that harbor the cellular components of the neuromuscular synapse.
Collapse
Affiliation(s)
- O N Ponomareva
- Section of Neurobiology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | | | |
Collapse
|
19
|
Ponomareva ON, Ma H, Vock VM, Ellerton EL, Moody SE, Dakour R, Chodosh LA, Rimer M. Defective neuromuscular synaptogenesis in mice expressing constitutively active ErbB2 in skeletal muscle fibers. Mol Cell Neurosci 2005; 31:334-45. [PMID: 16278083 DOI: 10.1016/j.mcn.2005.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 10/04/2005] [Accepted: 10/11/2005] [Indexed: 10/25/2022] Open
Abstract
We overexpressed a constitutively active form of the neuregulin receptor ErbB2 (CAErbB2) in skeletal muscle fibers in vivo and in vitro by tetracycline-inducible expression. Surprisingly, CAErbB2 expression during embryonic development was lethal and impaired synaptogenesis yielding a phenotype with loss of synaptic contacts, extensive axonal sprouting, and diffuse distribution of acetylcholine receptor (AChR) transcripts, reminiscent of agrin-deficient mice. CAErbB2 expression in cultured myotubes inhibited the formation and maintenance of agrin-induced AChR clusters, suggesting a muscle- and not a nerve-origin for the defect in CAErbB2-expressing mice. Levels of tyrosine phosphorylated MuSK, the signaling component of the agrin receptor, were similar, while tyrosine phosphorylation of AChRbeta subunits was dramatically reduced in CAErbB2-expressing embryos relative to controls. Thus, a gain-of-function manipulation of ErbB2 signaling pathways renders an agrin-deficient-like phenotype that uncouples MuSK and AChR tyrosine phosphorylation.
Collapse
Affiliation(s)
- Olga N Ponomareva
- Section of Neurobiology and Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712-0248, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Angus LM, Chakkalakal JV, Méjat A, Eibl JK, Bélanger G, Megeney LA, Chin ER, Schaeffer L, Michel RN, Jasmin BJ. Calcineurin-NFAT signaling, together with GABP and peroxisome PGC-1α, drives utrophin gene expression at the neuromuscular junction. Am J Physiol Cell Physiol 2005; 289:C908-17. [PMID: 15930144 DOI: 10.1152/ajpcell.00196.2005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We examined whether calcineurin-NFAT (nuclear factors of activated T cells) signaling plays a role in specifically directing the expression of utrophin in the synaptic compartment of muscle fibers. Immunofluorescence experiments revealed the accumulation of components of the calcineurin-NFAT signaling cascade within the postsynaptic membrane domain of the neuromuscular junction. RT-PCR analysis using synaptic vs. extrasynaptic regions of muscle fibers confirmed these findings by showing an accumulation of calcineurin transcripts within the synaptic compartment. We also examined the effect of calcineurin on utrophin gene expression. Pharmacological inhibition of calcineurin in mice with either cyclosporin A or FK506 resulted in a marked decrease in utrophin A expression at synaptic sites, whereas constitutive activation of calcineurin had the opposite effect. Mutation of the previously identified NFAT binding site in the utrophin A promoter region, followed by direct gene transfer studies in mouse muscle, led to an inhibition in the synaptic expression of a lacZ reporter gene construct. Transfection assays performed with cultured myogenic cells indicated that calcineurin acted additively with GA binding protein (GABP) to transactivate utrophin A gene expression. Because both GABP- and calcineurin-mediated pathways are targeted by peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), we examined whether this coactivator contributes to utrophin gene expression. In vitro and in vivo transfection experiments showed that PGC-1α alone induces transcription from the utrophin A promoter. Interestingly, this induction is largely potentiated by coexpression of PGC-1α with GABP. Together, these studies indicate that the synaptic expression of utrophin is also driven by calcineurin-NFAT signaling and occurs in conjunction with signaling events that involve GABP and PGC-1α.
Collapse
Affiliation(s)
- Lindsay M Angus
- Department of Cellular and Molecular Medicine, and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Losen M, Stassen MHW, Martínez-Martínez P, Machiels BM, Duimel H, Frederik P, Veldman H, Wokke JHJ, Spaans F, Vincent A, De Baets MH. Increased expression of rapsyn in muscles prevents acetylcholine receptor loss in experimental autoimmune myasthenia gravis. ACTA ACUST UNITED AC 2005; 128:2327-37. [PMID: 16150851 DOI: 10.1093/brain/awh612] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Myasthenia gravis is usually caused by autoantibodies to the acetylcholine receptor (AChR). The AChR is clustered and anchored in the postsynaptic membrane of the neuromuscular junction (NMJ) by a cytoplasmic protein called rapsyn. We previously showed that resistance to experimental autoimmune myasthenia gravis (EAMG) in aged rats correlates with increased rapsyn concentration at the NMJ. It is possible, therefore, that endogenous rapsyn expression may be an important determinant of AChR loss and neuromuscular transmission failure in the human disease, and that upregulation of rapsyn expression could be used therapeutically. To examine first a potential therapeutic application of rapsyn upregulation, we induced acute EAMG in young rats by passive transfer of AChR antibody, mAb 35, and used in vivo electroporation to over-express rapsyn unilaterally in one tibialis anterior. We looked at the compound muscle action potentials (CMAPs) in the tibialis anterior, at rapsyn and AChR expression by quantitative radioimmunoassay and immunofluorescence, and at the morphology of the NMJs, comparing the electroporated and untreated muscles, as well as the control and EAMG rats. In control rats, transfected muscle fibres had extrasynaptic rapsyn aggregates, as well as slightly increased rapsyn and AChR concentrations at the NMJ. In EAMG rats, despite deposits of the membrane attack complex, the rapsyn-overexpressing muscles showed no decrement in the CMAPs, no loss of AChR, and the majority had normal postsynaptic folds, whereas endplates of untreated muscles showed typical AChR loss and morphological damage. These data suggest not only that increasing rapsyn expression could be a potential treatment for selected muscles of myasthenia gravis patients, but also lend support to the hypothesis that individual differences in innate rapsyn expression could be a factor in determining disease severity.
Collapse
MESH Headings
- Action Potentials/physiology
- Acute Disease
- Animals
- Electromyography/methods
- Female
- Fluorescent Antibody Technique/methods
- Immunohistochemistry/methods
- Microscopy, Confocal/methods
- Microscopy, Electron/methods
- Muscle Proteins/analysis
- Muscle Proteins/genetics
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Myasthenia Gravis, Autoimmune, Experimental/genetics
- Myasthenia Gravis, Autoimmune, Experimental/pathology
- Myasthenia Gravis, Autoimmune, Experimental/physiopathology
- Neuromuscular Junction/genetics
- Neuromuscular Junction/pathology
- Neuromuscular Junction/physiopathology
- Radioimmunoassay/methods
- Rats
- Rats, Inbred Lew
- Receptors, Cholinergic/genetics
- Synaptic Transmission/genetics
- Synaptic Transmission/physiology
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Mario Losen
- Department of Neurology, Research Institute Brain and Behaviour, University of Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Stocksley MA, Awad SS, Young C, Lightowlers RN, Brenner HR, Slater CR. Accumulation of Nav1 mRNAs at differentiating postsynaptic sites in rat soleus muscles. Mol Cell Neurosci 2005; 28:694-702. [PMID: 15797716 DOI: 10.1016/j.mcn.2004.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Revised: 11/17/2004] [Accepted: 11/30/2004] [Indexed: 11/21/2022] Open
Abstract
Acetylcholine receptors (AChRs) and voltage-gated sodium channels (Na(V)1s) accumulate at different times in the development of the murine neuromuscular junction (NMJ). We used in situ hybridization to study the relationship of Na(V)1 mRNA accumulation to this difference. mRNAs encoding both muscle Na(V)1 isoforms, Na(v)1.4 and Na(v)1.5, were first concentrated at NMJs at birth, when the proteins start to accumulate. Within 4 weeks, Na(v)1.4 mRNA increased 5-fold at the NMJ while Na(v)1.5 mRNA became undetectable. Na(V)1 mRNA accumulation occurred even if the nerve was cut at birth. Like AChR mRNA, Na(V)1 mRNA accumulated at denervated synaptic sites on regenerating muscles and in response to ectopically expressed neural agrin. Clustering of Na(V)1 at the NMJ follows that of its mRNA while AChR clustering precedes its mRNA clustering by several days. This suggests that factors other than local mRNA upregulation determine the timing of clustering of these two important postsynaptic ion channels.
Collapse
Affiliation(s)
- Mark A Stocksley
- School of Neurology, Neurobiology and Psychiatry, The Medical School, University of Newcastle upon Tyne, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK
| | | | | | | | | | | |
Collapse
|
23
|
Kim CH, Xiong WC, Mei L. Inhibition of MuSK expression by CREB interacting with a CRE-like element and MyoD. Mol Cell Biol 2005; 25:5329-38. [PMID: 15964791 PMCID: PMC1156998 DOI: 10.1128/mcb.25.13.5329-5338.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The type I receptor-like protein tyrosine kinase MuSK is essential for the neuromuscular junction formation. MuSK expression is tightly regulated during development, but the underlying mechanisms were unclear. Here we identified a novel mechanism by which MuSK expression may be regulated. A cyclic AMP response element (CRE)-like element in the 5'-flanking region of the MuSK gene binds to CREB1 (CRE-binding protein 1). Mutation of this element increases the MuSK promoter activity, suggesting a role for CREB1 in attenuation of MuSK expression. Interestingly, CREB mutants unable to bind to DNA also inhibit MuSK promoter activity, suggesting a CRE-independent inhibitory mechanism. In agreement, CREB1 could inhibit a mutant MuSK transgene reporter whose CRE site was mutated. We provide evidence that CREB interacts directly with MyoD, a myogenic factor essential for MuSK expression in muscle cells. Suppression of CREB expression by small interfering RNA increases MuSK promoter activity. These results demonstrate an important role for CREB1 in the regulation of MuSK expression.
Collapse
Affiliation(s)
- Chang-Hoon Kim
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, CB2803, 1120 15th Street, Augusta, Georgia 30912, USA
| | | | | |
Collapse
|
24
|
Strochlic L, Cartaud A, Mejat A, Grailhe R, Schaeffer L, Changeux JP, Cartaud J. 14-3-3 gamma associates with muscle specific kinase and regulates synaptic gene transcription at vertebrate neuromuscular synapse. Proc Natl Acad Sci U S A 2004; 101:18189-94. [PMID: 15604144 PMCID: PMC539788 DOI: 10.1073/pnas.0406905102] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The muscle-specific receptor tyrosine kinase (MuSK) is part of a receptor complex, activated by neural agrin, that orchestrates the differentiation of the neuromuscular junction (NMJ). To gain insight into the function of the MuSK complex, we have developed a proteomic approach to identify new MuSK partners. MS analysis of MuSK crosslink products from postsynaptic membranes of the Torpedo electrocytes identified the adaptor protein 14-3-3 gamma. The 14-3-3 gamma protein was found localized at the adult rat NMJ. Cotransfection experiments in COS-7 cells showed that MuSK codistributed with the 14-3-3 gamma protein at the plasma membrane. Furthermore, 14-3-3 gamma was copurified by affinity chromatography with MuSK from transfected COS-7 cells and myotubes. The 14-3-3 gamma protein did not colocalize with agrin-elicited acetylcholine receptor (AChR) aggregates in cultured myotubes, suggesting that it is not involved in AChR clustering. Expression of 14-3-3 gamma specifically repressed the transcription of several synaptic reporter genes in cultured myotubes. This repression was potentiated by MuSK expression. Moreover, the expression of 14-3-3 gamma in muscle fibers in vivo caused both the repression of synaptic genes transcription and morphological perturbations of the NMJ. Our data extend the notion that, apart from its well documented role in AChR clustering, the MuSK complex might also be involved in the regulation of synaptic gene expression at the NMJ.
Collapse
Affiliation(s)
- Laure Strochlic
- Biologie Cellulaire des Membranes, Institut Jacques Monod, Unité Mixte de Recherche 7592, Centre National de la Recherche Scientifique, Universités Paris 6 et 7, 75251 Paris, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Rodova M, Kelly KF, VanSaun M, Daniel JM, Werle MJ. Regulation of the rapsyn promoter by kaiso and delta-catenin. Mol Cell Biol 2004; 24:7188-96. [PMID: 15282317 PMCID: PMC479716 DOI: 10.1128/mcb.24.16.7188-7196.2004] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rapsyn is a synapse-specific protein that is required for clustering acetylcholine receptors at the neuromuscular junction. Analysis of the rapsyn promoter revealed a consensus site for the transcription factor Kaiso within a region that is mutated in a subset of patients with congenital myasthenic syndrome. Kaiso is a POZ-zinc finger family transcription factor which recognizes the specific core consensus sequence CTGCNA (where N is any nucleotide). Previously, the only known binding partner for Kaiso was the cell adhesion cofactor, p120 catenin. Here we show that delta-catenin, a brain-specific member of the p120 catenin subfamily, forms a complex with Kaiso. Antibodies against Kaiso and delta-catenin recognize proteins in the nuclei of C2C12 myocytes and at the postsynaptic domain of the mouse neuromuscular junction. Endogenous Kaiso in C2C12 cells coprecipitates with the rapsyn promoter in vivo as shown by chromatin immunoprecipitation assay. Minimal promoter assays demonstrated that the rapsyn promoter can be activated by Kaiso and delta-catenin; this activation is apparently muscle specific. These results provide the first experimental evidence that rapsyn is a direct sequence-specific target of Kaiso and delta-catenin. We propose a new model of synapse-specific transcription that involves the interaction of Kaiso, delta-catenin, and myogenic transcription factors at the neuromuscular junction.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/physiology
- Animals
- Antibiotics, Antineoplastic/pharmacology
- Armadillo Domain Proteins
- Base Sequence
- Catenins
- Cell Adhesion Molecules
- Cell Line
- Chickens
- Cytoskeletal Proteins/metabolism
- Fatty Acids, Unsaturated/pharmacology
- Gene Expression Regulation
- Genes, Reporter
- Humans
- Macromolecular Substances
- Mice
- Molecular Sequence Data
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Skeletal/chemistry
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Myasthenic Syndromes, Congenital/genetics
- Myasthenic Syndromes, Congenital/metabolism
- Neuromuscular Junction/physiology
- Phosphoproteins
- Promoter Regions, Genetic
- Sequence Alignment
- Transcription Factors/metabolism
- Delta Catenin
Collapse
Affiliation(s)
- Marianna Rodova
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, 66160-7421, USA
| | | | | | | | | |
Collapse
|
26
|
Sunesen M, Huchet-Dymanus M, Christensen MO, Changeux JP. Phosphorylation-elicited quaternary changes of GA binding protein in transcriptional activation. Mol Cell Biol 2003; 23:8008-18. [PMID: 14585962 PMCID: PMC262348 DOI: 10.1128/mcb.23.22.8008-8018.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Enrichment of nicotinic acetylcholine receptors (nAChR) on the tip of the subjunctional folds of the postsynaptic membrane is a central event in the development of the vertebrate neuromuscular junction. This is attained, in part, through a selective transcription in the subsynaptic nuclei, and it has recently been shown that the GA binding protein (GABP) plays an important role in this compartmentalized expression. The neural factor heregulin (HRG) activates nAChR transcription in cultured cells by stimulating a signaling cascade of protein kinases. Hence, it is speculated that GABP becomes activated by phosphorylation, but the mechanism has remained elusive. To fully understand the consequences of GABP phosphorylation, we examined the effect of heregulin-elicited GABP phosphorylation on cellular localization, DNA binding, transcription, and mobility. We demonstrate that HRG-elicited phosphorylation dramatically changes the transcriptional activity and mobility of GABP. While phosphorylation of GABPbeta seems to be dispensable for these changes, phosphorylation of GABPalpha is crucial. Using fluorescence resonance energy transfer, we furthermore showed that phosphorylation of threonine 280 in GABPalpha triggers reorganizations of the quaternary structure of GABP. Taken together, these results support a model in which phosphorylation-elicited structural changes of GABP enable engagement in certain interactions leading to transcriptional activation.
Collapse
Affiliation(s)
- Morten Sunesen
- Laboratoire Récepteurs et Cognition, CNRS URA 2182, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
27
|
Abstract
MuSK is a receptor tyrosine kinase essential for neuromuscular junction formation. Expression of the MuSK gene is tightly regulated during development and at the neuromuscular junction. However, little is known about molecular mechanisms regulating its gene expression. Here we report a characterization of the promoter of the mouse MuSK gene. The transcription of MuSK starts at multiple sites with a major site 51 nt upstream of the translation start site. We have identified an E-box-like cis-element that is both required and sufficient for differentiation-dependent transcription. Interestingly, the promoter activity of the MuSK gene did not respond to neuregulin, a factor believed to mediate the synapse-specific transcription of acetylcholine receptor subunit genes. Rather, MuSK expression is increased in muscle cells stimulated with Wnt or at conditions when the Wnt signaling was activated. These results suggest a novel mechanism for the MuSK synapse-specific expression.
Collapse
Affiliation(s)
- Chang-Hoon Kim
- Department of Neurobiology, University of Alabama at Birmingham, Civitan International Research Center, 35294, USA
| | | | | |
Collapse
|
28
|
Lacazette E, Le Calvez S, Gajendran N, Brenner HR. A novel pathway for MuSK to induce key genes in neuromuscular synapse formation. J Cell Biol 2003; 161:727-36. [PMID: 12756238 PMCID: PMC2199368 DOI: 10.1083/jcb.200210156] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
At the developing neuromuscular junction the Agrin receptor MuSK is the central organizer of subsynaptic differentiation induced by Agrin from the nerve. The expression of musk itself is also regulated by the nerve, but the mechanisms involved are not known. Here, we analyzed the activation of a musk promoter reporter construct in muscle fibers in vivo and in cultured myotubes, using transfection of multiple combinations of expression vectors for potential signaling components. We show that neuronal Agrin by activating MuSK regulates the expression of musk via two pathways: the Agrin-induced assembly of muscle-derived neuregulin (NRG)-1/ErbB, the pathway thought to regulate acetylcholine receptor (AChR) expression at the synapse, and via a direct shunt involving Agrin-induced activation of Rac. Both pathways converge onto the same regulatory element in the musk promoter that is also thought to confer synapse-specific expression to AChR subunit genes. In this way, a positive feedback signaling loop is established that maintains musk expression at the synapse when impulse transmission becomes functional. The same pathways are used to regulate synaptic expression of AChR epsilon. We propose that the novel pathway stabilizes the synapse early in development, whereas the NRG/ErbB pathway supports maintenance of the mature synapse.
Collapse
Affiliation(s)
- Eric Lacazette
- Department of Physiology, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|