1
|
Thomason PA, Corbyn R, Lilla S, Sumpton D, Gilbey T, Insall RH. Biogenesis of lysosome-related organelles complex-2 is an evolutionarily ancient proto-coatomer complex. Curr Biol 2024; 34:3564-3581.e6. [PMID: 39059394 DOI: 10.1016/j.cub.2024.06.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 03/06/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Hermansky-Pudlak syndrome (HPS) is an inherited disorder of intracellular vesicle trafficking affecting the function of lysosome-related organelles (LROs). At least 11 genes underlie the disease, encoding four protein complexes, of which biogenesis of lysosome-related organelles complex-2 (BLOC-2) is the last whose molecular action is unknown. We find that the unicellular eukaryote Dictyostelium unexpectedly contains a complete BLOC-2, comprising orthologs of the mammalian subunits HPS3, -5, and -6, and a fourth subunit, an ortholog of the Drosophila LRO-biogenesis gene, Claret. Lysosomes from Dictyostelium BLOC-2 mutants fail to mature, similar to LROs from HPS patients, but for all endolysosomes rather than a specialized subset. They also strongly resemble lysosomes from WASH mutants. Dictyostelium BLOC-2 localizes to the same compartments as WASH, and in BLOC-2 mutants, WASH is inefficiently recruited, accounting for their impaired lysosomal maturation. BLOC-2 is recruited to endolysosomes via its HPS3 subunit. Structural modeling suggests that all four subunits are proto-coatomer proteins, with important implications for BLOC-2's molecular function. The discovery of Dictyostelium BLOC-2 permits identification of orthologs throughout eukaryotes. BLOC-2 and lysosome-related organelles, therefore, pre-date the evolution of Metazoa and have broader and more conserved functions than previously thought.
Collapse
Affiliation(s)
- Peter A Thomason
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK.
| | - Ryan Corbyn
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Sergio Lilla
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - David Sumpton
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Thomas Gilbey
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Robert H Insall
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK; Division of Cell & Developmental Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
2
|
Yamaguchi F, Sakane H, Akasaki K. Comparative study of the steady-state subcellular distribution of lysosome-associated membrane glycoprotein-2 (LAMP-2) isoforms with GYXXΦ-type tyrosine-based motifs that interact differently with four adaptor protein (AP) complexes. J Biochem 2024; 175:275-287. [PMID: 37983719 DOI: 10.1093/jb/mvad096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/23/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
Lysosome-associated membrane protein-1 and -2 (LAMP-1 and LAMP-2, respectively) are type I transmembrane proteins. LAMP-2 comprises three splice isoforms (LAMP-2A, -B and-C) with different cytoplasmic tails (CTs). These three CTs possess different tyrosine-based motifs (GYXXΦ, where Φ is a bulky hydrophobic amino acid) at their C-termini. Interactions between tyrosine-based motifs and μ-subunits of four tetrameric adaptor protein (AP) complexes are necessary for their vesicular transport to lysosomes. Little is known about how the interaction strengths of these tyrosine motifs with μ-subunits affect the localization of isoforms to lysosomes. The interactions were first investigated using a yeast two-hybrid system to address this question. LAMP-2A-CT interacted with all four μ-subunits (μ1, μ2, μ3A and μ4 of AP-1, AP-2, AP-3 and AP-4, respectively). The interaction with μ3A was more robust than that with other μ-subunits. LAMP-2B-CT interacted exclusively and moderately with μ3A. LAMP-2C-CT did not detectably interact with any of the four μ-subunits. Immunofluorescence microscopy showed that all isoforms were localized in late endosomes and lysosomes. LAMP-2C was present in the plasma membrane and early endosomes; however, LAMP-2A and -2B were barely detectable in these organelles. In cell fractionation, LAMP-2A was the most abundant in the dense lysosomes, whereas LAMP-2C was significantly present in the low-density fraction containing the plasma membrane and early endosomes, in addition to the dense lysosomes. LAMP-2B considerably existed in the low-density late endosomal fraction. These data strongly suggest that the LAMP-2 isoforms are distributed differently in endocytic organelles depending on their interaction strengths with AP-3.
Collapse
Affiliation(s)
- Fumiaki Yamaguchi
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima 729-0292, Japan
| | - Hiroshi Sakane
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima 729-0292, Japan
| | - Kenji Akasaki
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima 729-0292, Japan
| |
Collapse
|
3
|
Karageorgos S, Platt AS, Bassiri H. Genetics of Primary Hemophagocytic Lymphohistiocytosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:75-101. [PMID: 39117809 DOI: 10.1007/978-3-031-59815-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) constitutes a rare, potentially life-threatening hyperinflammatory immune dysregulation syndrome that can present with a variety of clinical signs and symptoms, including fever, hepatosplenomegaly, and abnormal laboratory and immunological findings such as cytopenias, hyperferritinemia, hypofibrinogenemia, hypertriglyceridemia, elevated blood levels of soluble CD25 (interleukin (IL)-2 receptor α-chain), or diminished natural killer (NK)-cell cytotoxicity (reviewed in detail in Chapter 11 of this book). While HLH can be triggered by an inciting event (e.g., infections), certain monogenic causes have been associated with a significantly elevated risk of development of HLH, or recurrence of HLH in patients who have recovered from their disease episode. These monogenic predisposition syndromes are variably referred to as "familial" (FHL) or "primary" HLH (henceforth referred to as "pHLH") and are the focus of this chapter. Conversely, secondary HLH (sHLH) often occurs in the absence of monogenic etiologies that are commonly associated with pHLH and can be triggered by infections, malignancies, or rheumatological diseases; these triggers and the genetics associated with sHLH are discussed in more detail in other chapters in this book.
Collapse
Affiliation(s)
- Spyridon Karageorgos
- First Department of Pediatrics, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna S Platt
- Roberts Individualized Medical Genetics Center and Immune Dysregulation Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hamid Bassiri
- Immune Dysregulation Program and Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Štepihar D, Florke Gee RR, Hoyos Sanchez MC, Fon Tacer K. Cell-specific secretory granule sorting mechanisms: the role of MAGEL2 and retromer in hypothalamic regulated secretion. Front Cell Dev Biol 2023; 11:1243038. [PMID: 37799273 PMCID: PMC10548473 DOI: 10.3389/fcell.2023.1243038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
Intracellular protein trafficking and sorting are extremely arduous in endocrine and neuroendocrine cells, which synthesize and secrete on-demand substantial quantities of proteins. To ensure that neuroendocrine secretion operates correctly, each step in the secretion pathways is tightly regulated and coordinated both spatially and temporally. At the trans-Golgi network (TGN), intrinsic structural features of proteins and several sorting mechanisms and distinct signals direct newly synthesized proteins into proper membrane vesicles that enter either constitutive or regulated secretion pathways. Furthermore, this anterograde transport is counterbalanced by retrograde transport, which not only maintains membrane homeostasis but also recycles various proteins that function in the sorting of secretory cargo, formation of transport intermediates, or retrieval of resident proteins of secretory organelles. The retromer complex recycles proteins from the endocytic pathway back to the plasma membrane or TGN and was recently identified as a critical player in regulated secretion in the hypothalamus. Furthermore, melanoma antigen protein L2 (MAGEL2) was discovered to act as a tissue-specific regulator of the retromer-dependent endosomal protein recycling pathway and, by doing so, ensures proper secretory granule formation and maturation. MAGEL2 is a mammalian-specific and maternally imprinted gene implicated in Prader-Willi and Schaaf-Yang neurodevelopmental syndromes. In this review, we will briefly discuss the current understanding of the regulated secretion pathway, encompassing anterograde and retrograde traffic. Although our understanding of the retrograde trafficking and sorting in regulated secretion is not yet complete, we will review recent insights into the molecular role of MAGEL2 in hypothalamic neuroendocrine secretion and how its dysregulation contributes to the symptoms of Prader-Willi and Schaaf-Yang patients. Given that the activation of many secreted proteins occurs after they enter secretory granules, modulation of the sorting efficiency in a tissue-specific manner may represent an evolutionary adaptation to environmental cues.
Collapse
Affiliation(s)
- Denis Štepihar
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Rebecca R. Florke Gee
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| | - Maria Camila Hoyos Sanchez
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| | - Klementina Fon Tacer
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| |
Collapse
|
5
|
Ishida M, Otero MG, Freeman C, Sánchez-Lara PA, Guardia CM, Pierson TM, Bonifacino JS. A neurodevelopmental disorder associated with an activating de novo missense variant in ARF1. Hum Mol Genet 2023; 32:1162-1174. [PMID: 36345169 PMCID: PMC10026249 DOI: 10.1093/hmg/ddac279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
ADP-ribosylation factor 1 (ARF1) is a small GTPase that regulates membrane traffic at the Golgi apparatus and endosomes through recruitment of several coat proteins and lipid-modifying enzymes. Here, we report a pediatric patient with an ARF1-related disorder because of a monoallelic de novo missense variant (c.296 G > A; p.R99H) in the ARF1 gene, associated with developmental delay, hypotonia, intellectual disability and motor stereotypies. Neuroimaging revealed a hypoplastic corpus callosum and subcortical white matter abnormalities. Notably, this patient did not exhibit periventricular heterotopias previously observed in other patients with ARF1 variants (including p.R99H). Functional analysis of the R99H-ARF1 variant protein revealed that it was expressed at normal levels and properly localized to the Golgi apparatus; however, the expression of this variant caused swelling of the Golgi apparatus, increased the recruitment of coat proteins such as coat protein complex I, adaptor protein complex 1 and GGA3 and altered the morphology of recycling endosomes. In addition, we observed that the expression of R99H-ARF1 prevented dispersal of the Golgi apparatus by the ARF1-inhibitor brefeldin A. Finally, protein interaction analyses showed that R99H-ARF1 bound more tightly to the ARF1-effector GGA3 relative to wild-type ARF1. These properties were similar to those of the well-characterized constitutively active Q71L-ARF1 mutant, indicating that the pathogenetic mechanism of the R99H-ARF1 variant involves constitutive activation with resultant Golgi and endosomal alterations. The absence of periventricular nodular heterotopias in this R99H-ARF1 subject also indicates that this finding may not be a consistent phenotypic expression of all ARF1-related disorders.
Collapse
Affiliation(s)
- Morié Ishida
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - María G Otero
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Christina Freeman
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Pedro A Sánchez-Lara
- Division of Medical Genetics, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Carlos M Guardia
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27703, USA
| | - Tyler Mark Pierson
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Division of Pediatric Neurology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Center for the Undiagnosed Patient, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Juan S Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Dilber C, Yücel G, Şahin Y. Novel homozygous AP3B2 mutations in four individuals with developmental and epileptic encephalopathy: A rare clinical entity. Clin Neurol Neurosurg 2022; 223:107509. [PMID: 36356440 DOI: 10.1016/j.clineuro.2022.107509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/18/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Developmental and epileptic encephalopathies (DEEs) are heterogeneous severe neurodevelopmental disorders characterized by recurrent clinical seizures that begin in the neonatal period and early childhood and regression or delay in cognitive, sensory and motor skills in the context of accompanying epileptiform abnormalities. Adaptor-related protein complex 3 beta-2 subunit (AP3B2) gene variants are thought to cause disruption of neuron-specific neurotransmitter release. METHODS In this case report, whole exome sequencing (WES) was performed on two of the four pediatric patients who came from two unrelated families and were affected by DEE. As a result of WES, previously unreported variants, that is, p.Ala149Serfs* 34 and p.Pro993Argfs* 5, were detected in the AP3B2 gene. These variants were studied using Sanger sequencing in the siblings affected by DEE of the said pediatric patients and in their healthy parents. RESULTS Autosomal recessive variants of the AP3B2 are associated with the development of DEE. To date, only 14 cases of AP3B2 mutations have been reported in the literature. Consequentially, DEE phenotype involving severe global developmental delay emerged, which is characterized by early-onset infantile epileptic encephalopathy, severe hypotonia, postnatal microcephaly, poor eye contact, speech retardation, abnormal involuntary movements, stereotypical hand movements, progressive intellectual disability, and behavioral and neuropsychiatric findings. CONCLUSION Given the limited number of patients reported in the literature, detailed studies of the specific clinical and molecular features of AP3B2 gene variants, will shed light on the genotype-phenotype correlation.
Collapse
Affiliation(s)
- Cengiz Dilber
- Department of Pediatric Neurology, Sütçü İmam Universty Faculty of Medicine, Kahramanmaraş, Turkey.
| | - Gül Yücel
- Department of Pediatric Neurology, Konya City Hospital, Konya, Turkey.
| | - Yavuz Şahin
- Department of Medical Genetics, Genoks Genetic Diseases Diagnosis Center, Gaziantep, Turkey.
| |
Collapse
|
7
|
Bonifacino JS. Getting where you want to go. Mol Biol Cell 2022; 33:ae4. [PMID: 36399622 PMCID: PMC9727807 DOI: 10.1091/mbc.e22-08-0362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In 1956, referring to the emerging application of electron microscopy to the study of eukaryotic cells, Keith R. Porter wrote, "For those of us who are fortunate to be part of this new development, these are days of great interest and opportunity." Those early days left us a rich legacy of knowledge on the internal organization of eukaryotic cells that provides a framework for current research on cell structure and function. In this vein, my long-time quest has been to understand how proteins and organelles travel through the cytoplasm to reach their respective destinations within the cell. This research has led us to elucidate various mechanisms of protein sorting and organelle transport and how defects in these mechanisms cause human disease.
Collapse
Affiliation(s)
- Juan S. Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892,*Address correspondence to: Juan S. Bonifacino ()
| |
Collapse
|
8
|
Mattera R, De Pace R, Bonifacino JS. The adaptor protein chaperone AAGAB stabilizes AP-4 complex subunits. Mol Biol Cell 2022; 33:ar109. [PMID: 35976721 DOI: 10.1091/mbc.e22-05-0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Adaptor protein 4 (AP-4) is a heterotetrameric complex composed of ε, β4, μ4 and σ4 subunits that mediates export of a subset of transmembrane cargos, including autophagy protein 9A (ATG9A), from the trans-Golgi network (TGN). AP-4 has received particular attention in recent years because mutations in any of its subunits cause a complicated form of hereditary spastic paraplegia (HSP or SPG) referred to as "AP-4-deficiency syndrome." The identification of proteins that interact with AP-4 has shed light on the mechanisms of AP-4-dependent cargo sorting and distribution within the cell. However, the mechanisms by which the AP-4 complex itself is assembled have remained unknown. Herein, we report that the alpha- and gamma-adaptin-binding protein (AAGAB, also known as p34) binds to and stabilizes the AP-4 ε-and σ4 subunits, thus promoting complex assembly. The importance of this binding is underscored by the observation that AAGAB-knockout cells exhibit reduced levels of AP-4 subunits and accumulation of ATG9A at the TGN like those in cells, mice, or patients with mutations in AP-4-subunit genes. These findings demonstrate that AP-4 assembly is not spontaneous but AAGAB-assisted, thus contributing to the understanding of an adaptor protein complex that is critically involved in development of the central nervous system.
Collapse
Affiliation(s)
- Rafael Mattera
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Raffaella De Pace
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Juan S Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
9
|
Dalle S, Schouten M, Meeus G, Slagmolen L, Koppo K. Molecular networks underlying cannabinoid signaling in skeletal muscle plasticity. J Cell Physiol 2022; 237:3517-3540. [PMID: 35862111 DOI: 10.1002/jcp.30837] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 11/07/2022]
Abstract
The cannabinoid system is ubiquitously present and is classically considered to engage in neural and immunity processes. Yet, the role of the cannabinoid system in the whole body and tissue metabolism via central and peripheral mechanisms is increasingly recognized. The present review provides insights in (i) how cannabinoid signaling is regulated via receptor-independent and -dependent mechanisms and (ii) how these signaling cascades (might) affect skeletal muscle plasticity and physiology. Receptor-independent mechanisms include endocannabinoid metabolism to eicosanoids and the regulation of ion channels. Alternatively, endocannabinoids can act as ligands for different classic (cannabinoid receptor 1 [CB1 ], CB2 ) and/or alternative (e.g., TRPV1, GPR55) cannabinoid receptors with a unique affinity, specificity, and intracellular signaling cascade (often tissue-specific). Antagonism of CB1 might hold clues to improve oxidative (mitochondrial) metabolism, insulin sensitivity, satellite cell growth, and muscle anabolism, whereas CB2 agonism might be a promising way to stimulate muscle metabolism and muscle cell growth. Besides, CB2 ameliorates muscle regeneration via macrophage polarization toward an anti-inflammatory phenotype, induction of MyoD and myogenin expression and antifibrotic mechanisms. Also TRPV1 and GPR55 contribute to the regulation of muscle growth and metabolism. Future studies should reveal how the cannabinoid system can be targeted to improve muscle quantity and/or quality in conditions such as ageing, disease, disuse, and metabolic dysregulation, taking into account challenges that are inherent to modulation of the cannabinoid system, such as central and peripheral side effects.
Collapse
Affiliation(s)
- Sebastiaan Dalle
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Moniek Schouten
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Gitte Meeus
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Lotte Slagmolen
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Katrien Koppo
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Li W, Hao CJ, Hao ZH, Ma J, Wang QC, Yuan YF, Gong JJ, Chen YY, Yu JY, Wei AH. New insights into the pathogenesis of Hermansky-Pudlak syndrome. Pigment Cell Melanoma Res 2022; 35:290-302. [PMID: 35129281 DOI: 10.1111/pcmr.13030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 12/14/2022]
Abstract
Hermansky-Pudlak syndrome (HPS) is characterized by defects of multiple tissue-specific lysosome-related organelles (LROs), typically manifesting with oculocutaneous albinism or ocular albinism, bleeding tendency, and in some cases with pulmonary fibrosis, inflammatory bowel disease or immunodeficiency, neuropsychological disorders. Eleven HPS subtypes in humans and at least 15 subtypes in mice have been molecularly identified. Current understanding of the underlying mechanisms of HPS is focusing on the defective biogenesis of LROs. Compelling evidences have shown that HPS protein-associated complexes (HPACs) function in cargo transport, cargo recycling, and cargo removal to maintain LRO homeostasis. Further investigation on the molecular and cellular mechanism of LRO biogenesis and secretion will be helpful for better understanding of its pathogenesis and for the precise intervention of HPS.
Collapse
Affiliation(s)
- Wei Li
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Center of Rare Diseases, National Center for Children's Health, Beijing, China.,MOE Key Laboratory of Major Diseases in Children, Capital Medical University, Beijing, China
| | - Chan-Juan Hao
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Center of Rare Diseases, National Center for Children's Health, Beijing, China.,MOE Key Laboratory of Major Diseases in Children, Capital Medical University, Beijing, China
| | - Zhen-Hua Hao
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Center of Rare Diseases, National Center for Children's Health, Beijing, China.,MOE Key Laboratory of Major Diseases in Children, Capital Medical University, Beijing, China
| | - Jing Ma
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Center of Rare Diseases, National Center for Children's Health, Beijing, China.,MOE Key Laboratory of Major Diseases in Children, Capital Medical University, Beijing, China
| | - Qiao-Chu Wang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Center of Rare Diseases, National Center for Children's Health, Beijing, China.,MOE Key Laboratory of Major Diseases in Children, Capital Medical University, Beijing, China
| | - Ye-Feng Yuan
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Center of Rare Diseases, National Center for Children's Health, Beijing, China.,MOE Key Laboratory of Major Diseases in Children, Capital Medical University, Beijing, China
| | - Juan-Juan Gong
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Center of Rare Diseases, National Center for Children's Health, Beijing, China.,MOE Key Laboratory of Major Diseases in Children, Capital Medical University, Beijing, China
| | - Yuan-Ying Chen
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Center of Rare Diseases, National Center for Children's Health, Beijing, China.,MOE Key Laboratory of Major Diseases in Children, Capital Medical University, Beijing, China
| | - Jia-Ying Yu
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Center of Rare Diseases, National Center for Children's Health, Beijing, China.,MOE Key Laboratory of Major Diseases in Children, Capital Medical University, Beijing, China
| | - Ai-Hua Wei
- Department of Dermatology, Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Shin J, Nile A, Oh JW. Role of adaptin protein complexes in intracellular trafficking and their impact on diseases. Bioengineered 2021; 12:8259-8278. [PMID: 34565296 PMCID: PMC8806629 DOI: 10.1080/21655979.2021.1982846] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023] Open
Abstract
Adaptin proteins (APs) play a crucial role in intracellular cell trafficking. The 'classical' role of APs is carried out by AP1‒3, which bind to clathrin, cargo, and accessory proteins. Accordingly, AP1-3 are crucial for both vesicle formation and sorting. All APs consist of four subunits that are indispensable for their functions. In fact, based on studies using cells, model organism knockdown/knock-out, and human variants, each subunit plays crucial roles and contributes to the specificity of each AP. These studies also revealed that the sorting and intracellular trafficking function of AP can exert varying effects on pathology by controlling features such as cell development, signal transduction related to the apoptosis and proliferation pathways in cancer cells, organelle integrity, receptor presentation, and viral infection. Although the roles and functions of AP1‒3 are relatively well studied, the functions of the less abundant and more recently identified APs, AP4 and AP5, are still to be investigated. Further studies on these APs may enable a better understanding and targeting of specific diseases.APs known or suggested locations and functions.
Collapse
Affiliation(s)
- Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology and Animal Resources Research Center, Konkuk University, Seoul, Republic of Korea
| | - Arti Nile
- Department of Stem Cell and Regenerative Biotechnology and Animal Resources Research Center, Konkuk University, Seoul, Republic of Korea
| | - Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology and Animal Resources Research Center, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Motelow JE, Povysil G, Dhindsa RS, Stanley KE, Allen AS, Feng YCA, Howrigan DP, Abbott LE, Tashman K, Cerrato F, Cusick C, Singh T, Heyne H, Byrnes AE, Churchhouse C, Watts N, Solomonson M, Lal D, Gupta N, Neale BM, Cavalleri GL, Cossette P, Cotsapas C, De Jonghe P, Dixon-Salazar T, Guerrini R, Hakonarson H, Heinzen EL, Helbig I, Kwan P, Marson AG, Petrovski S, Kamalakaran S, Sisodiya SM, Stewart R, Weckhuysen S, Depondt C, Dlugos DJ, Scheffer IE, Striano P, Freyer C, Krause R, May P, McKenna K, Regan BM, Bennett CA, Leu C, Leech SL, O’Brien TJ, Todaro M, Stamberger H, Andrade DM, Ali QZ, Sadoway TR, Krestel H, Schaller A, Papacostas SS, Kousiappa I, Tanteles GA, Christou Y, Štěrbová K, Vlčková M, Sedláčková L, Laššuthová P, Klein KM, Rosenow F, Reif PS, Knake S, Neubauer BA, Zimprich F, Feucht M, Reinthaler EM, Kunz WS, Zsurka G, Surges R, Baumgartner T, von Wrede R, Pendziwiat M, Muhle H, Rademacher A, van Baalen A, von Spiczak S, Stephani U, Afawi Z, Korczyn AD, Kanaan M, Canavati C, Kurlemann G, Müller-Schlüter K, Kluger G, Häusler M, Blatt I, Lemke JR, Krey I, Weber YG, Wolking S, Becker F, Lauxmann S, Boßelmann C, Kegele J, Hengsbach C, Rau S, Steinhoff BJ, Schulze-Bonhage A, Borggräfe I, Schankin CJ, Schubert-Bast S, Schreiber H, Mayer T, Korinthenberg R, Brockmann K, Wolff M, Dennig D, Madeleyn R, Kälviäinen R, Saarela A, Timonen O, Linnankivi T, Lehesjoki AE, Rheims S, Lesca G, Ryvlin P, Maillard L, Valton L, Derambure P, Bartolomei F, Hirsch E, Michel V, Chassoux F, Rees MI, Chung SK, Pickrell WO, Powell R, Baker MD, Fonferko-Shadrach B, Lawthom C, Anderson J, Schneider N, Balestrini S, Zagaglia S, Braatz V, Johnson MR, Auce P, Sills GJ, Baum LW, Sham PC, Cherny SS, Lui CH, Delanty N, Doherty CP, Shukralla A, El-Naggar H, Widdess-Walsh P, Barišić N, Canafoglia L, Franceschetti S, Castellotti B, Granata T, Ragona F, Zara F, Iacomino M, Riva A, Madia F, Vari MS, Salpietro V, Scala M, Mancardi MM, Nobili L, Amadori E, Giacomini T, Bisulli F, Pippucci T, Licchetta L, Minardi R, Tinuper P, Muccioli L, Mostacci B, Gambardella A, Labate A, Annesi G, Manna L, Gagliardi M, Parrini E, Mei D, Vetro A, Bianchini C, Montomoli M, Doccini V, Barba C, Hirose S, Ishii A, Suzuki T, Inoue Y, Yamakawa K, Beydoun A, Nasreddine W, Khoueiry Zgheib N, Tumiene B, Utkus A, Sadleir LG, King C, Caglayan SH, Arslan M, Yapıcı Z, Topaloglu P, Kara B, Yis U, Turkdogan D, Gundogdu-Eken A, Bebek N, Uğur-İşeri S, Baykan B, Salman B, Haryanyan G, Yücesan E, Kesim Y, Özkara Y, Tsai MH, Ho CJ, Lin CH, Lin KL, Chou IJ, Poduri A, Shiedley BR, Shain C, Noebels JL, Goldman A, Busch RM, Jehi L, Najm IM, Ferguson L, Khoury J, Glauser TA, Clark PO, Buono RJ, Ferraro TN, Sperling MR, Lo W, Privitera M, French JA, Schachter S, Kuzniecky RI, Devinsky O, Hegde M, Greenberg DA, Ellis CA, Goldberg E, Helbig KL, Cosico M, Vaidiswaran P, Fitch E, Berkovic SF, Lerche H, Lowenstein DH, Goldstein DB. Sub-genic intolerance, ClinVar, and the epilepsies: A whole-exome sequencing study of 29,165 individuals. Am J Hum Genet 2021; 108:965-982. [PMID: 33932343 PMCID: PMC8206159 DOI: 10.1016/j.ajhg.2021.04.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/08/2021] [Indexed: 12/23/2022] Open
Abstract
Both mild and severe epilepsies are influenced by variants in the same genes, yet an explanation for the resulting phenotypic variation is unknown. As part of the ongoing Epi25 Collaboration, we performed a whole-exome sequencing analysis of 13,487 epilepsy-affected individuals and 15,678 control individuals. While prior Epi25 studies focused on gene-based collapsing analyses, we asked how the pattern of variation within genes differs by epilepsy type. Specifically, we compared the genetic architectures of severe developmental and epileptic encephalopathies (DEEs) and two generally less severe epilepsies, genetic generalized epilepsy and non-acquired focal epilepsy (NAFE). Our gene-based rare variant collapsing analysis used geographic ancestry-based clustering that included broader ancestries than previously possible and revealed novel associations. Using the missense intolerance ratio (MTR), we found that variants in DEE-affected individuals are in significantly more intolerant genic sub-regions than those in NAFE-affected individuals. Only previously reported pathogenic variants absent in available genomic datasets showed a significant burden in epilepsy-affected individuals compared with control individuals, and the ultra-rare pathogenic variants associated with DEE were located in more intolerant genic sub-regions than variants associated with non-DEE epilepsies. MTR filtering improved the yield of ultra-rare pathogenic variants in affected individuals compared with control individuals. Finally, analysis of variants in genes without a disease association revealed a significant burden of loss-of-function variants in the genes most intolerant to such variation, indicating additional epilepsy-risk genes yet to be discovered. Taken together, our study suggests that genic and sub-genic intolerance are critical characteristics for interpreting the effects of variation in genes that influence epilepsy.
Collapse
|
13
|
Arora D, Damme DV. Motif-based endomembrane trafficking. PLANT PHYSIOLOGY 2021; 186:221-238. [PMID: 33605419 PMCID: PMC8154067 DOI: 10.1093/plphys/kiab077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/17/2021] [Indexed: 05/08/2023]
Abstract
Endomembrane trafficking, which allows proteins and lipids to flow between the different endomembrane compartments, largely occurs by vesicle-mediated transport. Transmembrane proteins intended for transport are concentrated into a vesicle or carrier by undulation of a donor membrane. This is followed by vesicle scission, uncoating, and finally, fusion at the target membrane. Three major trafficking pathways operate inside eukaryotic cells: anterograde, retrograde, and endocytic. Each pathway involves a unique set of machinery and coat proteins that pack the transmembrane proteins, along with their associated lipids, into specific carriers. Adaptor and coatomer complexes are major facilitators that function in anterograde transport and in endocytosis. These complexes recognize the transmembrane cargoes destined for transport and recruit the coat proteins that help form the carriers. These complexes use either linear motifs or posttranslational modifications to recognize the cargoes, which are then packaged and delivered along the trafficking pathways. In this review, we focus on the different trafficking complexes that share a common evolutionary branch in Arabidopsis (Arabidopsis thaliana), and we discuss up-to-date knowledge about the cargo recognition motifs they use.
Collapse
Affiliation(s)
- Deepanksha Arora
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent 9052, Belgium
| | - Daniёl Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent 9052, Belgium
- Author for communication:
| |
Collapse
|
14
|
Ben-Shmuel A, Sabag B, Biber G, Barda-Saad M. The Role of the Cytoskeleton in Regulating the Natural Killer Cell Immune Response in Health and Disease: From Signaling Dynamics to Function. Front Cell Dev Biol 2021; 9:609532. [PMID: 33598461 PMCID: PMC7882700 DOI: 10.3389/fcell.2021.609532] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/11/2021] [Indexed: 01/13/2023] Open
Abstract
Natural killer (NK) cells are innate lymphoid cells, which play key roles in elimination of virally infected and malignant cells. The balance between activating and inhibitory signals derived from NK surface receptors govern the NK cell immune response. The cytoskeleton facilitates most NK cell effector functions, such as motility, infiltration, conjugation with target cells, immunological synapse assembly, and cytotoxicity. Though many studies have characterized signaling pathways that promote actin reorganization in immune cells, it is not completely clear how particular cytoskeletal architectures at the immunological synapse promote effector functions, and how cytoskeletal dynamics impact downstream signaling pathways and activation. Moreover, pioneering studies employing advanced imaging techniques have only begun to uncover the architectural complexity dictating the NK cell activation threshold; it is becoming clear that a distinct organization of the cytoskeleton and signaling receptors at the NK immunological synapse plays a decisive role in activation and tolerance. Here, we review the roles of the actin cytoskeleton in NK cells. We focus on how actin dynamics impact cytolytic granule secretion, NK cell motility, and NK cell infiltration through tissues into inflammatory sites. We will also describe the additional cytoskeletal components, non-muscle Myosin II and microtubules that play pivotal roles in NK cell activity. Furthermore, special emphasis will be placed on the role of the cytoskeleton in assembly of immunological synapses, and how mutations or downregulation of cytoskeletal accessory proteins impact NK cell function in health and disease.
Collapse
Affiliation(s)
- Aviad Ben-Shmuel
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Batel Sabag
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Guy Biber
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Mira Barda-Saad
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
15
|
Welkos S, Blanco I, Okaro U, Chua J, DeShazer D. A DUF4148 family protein produced inside RAW264.7 cells is a critical Burkholderia pseudomallei virulence factor. Virulence 2020; 11:1041-1058. [PMID: 32835600 PMCID: PMC7549894 DOI: 10.1080/21505594.2020.1806675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 11/12/2022] Open
Abstract
Burkholderia pseudomallei: is the etiological agent of the disease melioidosis and is a Tier 1 select agent. It survives and replicates inside phagocytic cells by escaping from the endocytic vacuole, replicating in the cytosol, spreading to other cells via actin polymerization and promoting the fusion of infected and uninfected host cells to form multinucleated giant cells. In this study, we utilized a proteomics approach to identify bacterial proteins produced inside RAW264.7 murine macrophages and host proteins produced in response to B. pseudomallei infection. Cells infected with B. pseudomallei strain K96243 were lysed and the lysate proteins digested and analyzed using nanoflow reversed-phase liquid chromatography and tandem mass spectrometry. Approximately 160 bacterial proteins were identified in the infected macrophages, including BimA, TssA, TssB, Hcp1 and TssM. Several previously uncharacterized B. pseudomallei proteins were also identified, including BPSS1996 and BPSL2748. Mutations were constructed in the genes encoding these novel proteins and their relative virulence was assessed in BALB/c mice. The 50% lethal dose for the BPSS1996 mutant was approximately 55-fold higher than that of the wild type, suggesting that BPSS1996 is required for full virulence. Sera from B. pseudomallei-infected animals reacted with BPSS1996 and it was found to localize to the bacterial surface using indirect immunofluorescence. Finally, we identified 274 host proteins that were exclusively present or absent in infected RAW264.7 cells, including chemokines and cytokines involved in controlling the initial stages of infection.
Collapse
Affiliation(s)
- Susan Welkos
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Irma Blanco
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Udoka Okaro
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Jennifer Chua
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - David DeShazer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| |
Collapse
|
16
|
Ashour E, Gouda W, Mageed L, Afify M, Hamimy W, Shaker YM. Evaluation of genetic susceptibility of six type II diabetes Genome-Wide association tudies loci for obesity. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
17
|
Schoppe J, Mari M, Yavavli E, Auffarth K, Cabrera M, Walter S, Fröhlich F, Ungermann C. AP-3 vesicle uncoating occurs after HOPS-dependent vacuole tethering. EMBO J 2020; 39:e105117. [PMID: 32840906 PMCID: PMC7560216 DOI: 10.15252/embj.2020105117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 11/09/2022] Open
Abstract
Heterotetrameric adapter (AP) complexes cooperate with the small GTPase Arf1 or lipids in cargo selection, vesicle formation, and budding at endomembranes in eukaryotic cells. While most AP complexes also require clathrin as the outer vesicle shell, formation of AP-3-coated vesicles involved in Golgi-to-vacuole transport in yeast has been postulated to depend on Vps41, a subunit of the vacuolar HOPS tethering complex. HOPS has also been identified as the tether of AP-3 vesicles on vacuoles. To unravel this conundrum of a dual Vps41 function, we anchored Vps41 stably to the mitochondrial outer membrane. By monitoring AP-3 recruitment, we now show that Vps41 can tether AP-3 vesicles to mitochondria, yet AP-3 vesicles can form in the absence of Vps41 or clathrin. By proximity labeling and mass spectrometry, we identify the Arf1 GTPase-activating protein (GAP) Age2 at the AP-3 coat and show that tethering, but not fusion at the vacuole can occur without complete uncoating. We conclude that AP-3 vesicles retain their coat after budding and that their complete uncoating occurs only after tethering at the vacuole.
Collapse
Affiliation(s)
- Jannis Schoppe
- Department of Biology/Chemistry, Biochemistry Section, University of Osnabrück, Osnabrück, Germany
| | - Muriel Mari
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Erdal Yavavli
- Department of Biology/Chemistry, Biochemistry Section, University of Osnabrück, Osnabrück, Germany
| | - Kathrin Auffarth
- Department of Biology/Chemistry, Biochemistry Section, University of Osnabrück, Osnabrück, Germany
| | - Margarita Cabrera
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Farba, Barcelona, Spain
| | - Stefan Walter
- Center of Cellular Nanoanalytic Osnabrück (CellNanOs), University of Osnabrück, Osnabrück, Germany
| | - Florian Fröhlich
- Center of Cellular Nanoanalytic Osnabrück (CellNanOs), University of Osnabrück, Osnabrück, Germany.,Department of Biology/Chemistry, Molecular Membrane Biology Section, University of Osnabrück, Osnabrück, Germany
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry Section, University of Osnabrück, Osnabrück, Germany.,Center of Cellular Nanoanalytic Osnabrück (CellNanOs), University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
18
|
Alizadeh Z, Nabilou S, Mazinani M, Tajik S, Ali Hamidieh A, Houshmand M, Fazlollahi MR, Pourpak Z. Partial albinism and immunodeficiency in patients with Hermansky-Pudlak Type II: Introducing 2 novel mutations. Scand J Immunol 2020; 93:e12966. [PMID: 32869296 DOI: 10.1111/sji.12966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/27/2020] [Accepted: 08/24/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Zahra Alizadeh
- Immunology, Asthma & Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Susan Nabilou
- Immunology, Asthma & Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Mazinani
- Immunology, Asthma & Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Tajik
- Immunology, Asthma & Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Stem Cell Transplant Department, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Houshmand
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mohammad Reza Fazlollahi
- Immunology, Asthma & Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Pourpak
- Immunology, Asthma & Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Bowman SL, Bi-Karchin J, Le L, Marks MS. The road to lysosome-related organelles: Insights from Hermansky-Pudlak syndrome and other rare diseases. Traffic 2020; 20:404-435. [PMID: 30945407 DOI: 10.1111/tra.12646] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/11/2022]
Abstract
Lysosome-related organelles (LROs) comprise a diverse group of cell type-specific, membrane-bound subcellular organelles that derive at least in part from the endolysosomal system but that have unique contents, morphologies and functions to support specific physiological roles. They include: melanosomes that provide pigment to our eyes and skin; alpha and dense granules in platelets, and lytic granules in cytotoxic T cells and natural killer cells, which release effectors to regulate hemostasis and immunity; and distinct classes of lamellar bodies in lung epithelial cells and keratinocytes that support lung plasticity and skin lubrication. The formation, maturation and/or secretion of subsets of LROs are dysfunctional or entirely absent in a number of hereditary syndromic disorders, including in particular the Hermansky-Pudlak syndromes. This review provides a comprehensive overview of LROs in humans and model organisms and presents our current understanding of how the products of genes that are defective in heritable diseases impact their formation, motility and ultimate secretion.
Collapse
Affiliation(s)
- Shanna L Bowman
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jing Bi-Karchin
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Linh Le
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael S Marks
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
20
|
AP3M harbors actin filament binding activity that is crucial for vacuole morphology and stomatal closure in Arabidopsis. Proc Natl Acad Sci U S A 2019; 116:18132-18141. [PMID: 31431522 DOI: 10.1073/pnas.1901431116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Stomatal movement is essential for plant growth. This process is precisely regulated by various cellular activities in guard cells. F-actin dynamics and vacuole morphology are both involved in stomatal movement. The sorting of cargoes by clathrin adaptor protein (AP) complexes from the Golgi to the vacuole is critical for establishing a normal vacuole morphology. In this study, we demonstrate that the medium subunit of the AP3 complex (AP3M) binds to and severs actin filaments in vitro and that it participates in the sorting of cargoes (such as the sucrose exporter SUC4) to the tonoplast, and thereby regulates stomatal closure in Arabidopsis thaliana Defects in AP3 or SUC4 led to more rapid water loss and delayed stomatal closure, as well as hypersensitivity to drought stress. In ap3m mutants, the F-actin status was altered compared to the wild type, and the sorted cargoes failed to localize to the tonoplast. AP3M contains a previously unidentified F-actin binding domain that is conserved in AP3M homologs in both plants and animals. Mutations in the F-actin binding domain of AP3M abolished its F-actin binding activity in vitro, leading to an aberrant vacuole morphology and reduced levels of SUC4 on the tonoplast in guard cells. Our findings indicate that the F-actin binding activity of AP3M is required for the precise localization of AP3-dependent cargoes to the tonoplast and for the regulation of vacuole morphology in guard cells during stomatal closure.
Collapse
|
21
|
Abstract
Protein coats are supramolecular complexes that assemble on the cytosolic face of membranes to promote cargo sorting and transport carrier formation in the endomembrane system of eukaryotic cells. Several types of protein coats have been described, including COPI, COPII, AP-1, AP-2, AP-3, AP-4, AP-5, and retromer, which operate at different stages of the endomembrane system. Defects in these coats impair specific transport pathways, compromising the function and viability of the cells. In humans, mutations in subunits of these coats cause various congenital diseases that are collectively referred to as coatopathies. In this article, we review the fundamental properties of protein coats and the diseases that result from mutation of their constituent subunits.
Collapse
Affiliation(s)
- Esteban C Dell'Angelica
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - Juan S Bonifacino
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
22
|
Kook S, Qi A, Wang P, Meng S, Gulleman P, Young LR, Guttentag SH. Gene-edited MLE-15 Cells as a Model for the Hermansky-Pudlak Syndromes. Am J Respir Cell Mol Biol 2019; 58:566-574. [PMID: 29190429 DOI: 10.1165/rcmb.2017-0324ma] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Defining the mechanisms of cellular pathogenesis in rare lung diseases such as Hermansky-Pudlak syndrome (HPS) is often complicated by loss of the differentiated phenotype of cultured primary alveolar type 2 (AT2) cells, as well as by a lack of durable cell lines that are faithful to both AT2-cell and rare disease phenotypes. We used CRISPR/Cas9 gene editing to generate a series of HPS-specific mutations in the MLE-15 cell line. The resulting MLE-15/HPS cell lines exhibit preservation of AT2 cellular functions, including formation of lamellar body-like organelles, complete processing of surfactant protein B, and known features of HPS specific to each trafficking complex, including loss of protein targeting to lamellar bodies. MLE-15/HPS1 and MLE-15/HPS2 (with a mutation in Ap3β1) express increased macrophage chemotactic protein-1, a well-described mediator of alveolitis in patients with HPS and in mouse models. We show that MLE-15/HPS9 and pallid AT2 cells (with a mutation in Bloc1s6) also express increased macrophage chemotactic protein-1, suggesting that mice and humans with BLOC-1 mutations may also be susceptible to alveolitis. In addition to providing a flexible platform to examine the role of HPS-specific mutations in trafficking AT2 cells, MLE-15/HPS cell lines provide a durable resource for high-throughput screening and studies of cellular pathophysiology that are likely to accelerate progress toward developing novel therapies for this rare lung disease.
Collapse
Affiliation(s)
| | - Aidong Qi
- 2 Division of Pediatric Pulmonary Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | | | - Peter Gulleman
- 2 Division of Pediatric Pulmonary Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Lisa R Young
- 2 Division of Pediatric Pulmonary Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | |
Collapse
|
23
|
Cargo Sorting at the trans-Golgi Network for Shunting into Specific Transport Routes: Role of Arf Small G Proteins and Adaptor Complexes. Cells 2019; 8:cells8060531. [PMID: 31163688 PMCID: PMC6627992 DOI: 10.3390/cells8060531] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 01/27/2023] Open
Abstract
The trans-Golgi network (TGN) is responsible for selectively recruiting newly synthesized cargo into transport carriers for delivery to their appropriate destination. In addition, the TGN is responsible for receiving and recycling cargo from endosomes. The membrane organization of the TGN facilitates the sorting of cargoes into distinct populations of transport vesicles. There have been significant advances in defining the molecular mechanism involved in the recognition of membrane cargoes for recruitment into different populations of transport carriers. This machinery includes cargo adaptors of the adaptor protein (AP) complex family, and monomeric Golgi-localized γ ear-containing Arf-binding protein (GGA) family, small G proteins, coat proteins, as well as accessory factors to promote budding and fission of transport vesicles. Here, we review this literature with a particular focus on the transport pathway(s) mediated by the individual cargo adaptors and the cargo motifs recognized by these adaptors. Defects in these cargo adaptors lead to a wide variety of diseases.
Collapse
|
24
|
Abstract
The entry of pathogens into nonphagocytic host cells has received much attention in the past three decades, revealing a vast array of strategies employed by bacteria and viruses. A method of internalization that has been extensively studied in the context of viral infections is the use of the clathrin-mediated pathway. More recently, a role for clathrin in the entry of some intracellular bacterial pathogens was discovered. Classically, clathrin-mediated endocytosis was thought to accommodate internalization only of particles smaller than 150 nm; however, this was challenged upon the discovery that Listeria monocytogenes requires clathrin to enter eukaryotic cells. Now, with discoveries that clathrin is required during other stages of some bacterial infections, another paradigm shift is occurring. There is a more diverse impact of clathrin during infection than previously thought. Much of the recent data describing clathrin utilization in processes such as bacterial attachment, cell-to-cell spread and intracellular growth may be due to newly discovered divergent roles of clathrin in the cell. Not only does clathrin act to facilitate endocytosis from the plasma membrane, but it also participates in budding from endosomes and the Golgi apparatus and in mitosis. Here, the manipulation of clathrin processes by bacterial pathogens, including its traditional role during invasion and alternative ways in which clathrin supports bacterial infection, is discussed. Researching clathrin in the context of bacterial infections will reveal new insights that inform our understanding of host-pathogen interactions and allow researchers to fully appreciate the diverse roles of clathrin in the eukaryotic cell.
Collapse
Affiliation(s)
- Eleanor A Latomanski
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Hayley J Newton
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
25
|
Segeletz S, Danglot L, Galli T, Hoflack B. ARAP1 Bridges Actin Dynamics and AP-3-Dependent Membrane Traffic in Bone-Digesting Osteoclasts. iScience 2018; 6:199-211. [PMID: 30240610 PMCID: PMC6137390 DOI: 10.1016/j.isci.2018.07.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/06/2018] [Accepted: 07/20/2018] [Indexed: 12/23/2022] Open
Abstract
Bone-resorbing osteoclasts play a central role in bone remodeling and its pathology. To digest bone, osteoclasts re-organize both F-actin, to assemble podosomes/sealing zones, and membrane traffic, to form bone-facing ruffled borders enriched in lysosomal membrane proteins. It remains elusive how these processes are coordinated. Here, we show that ARAP1 (ArfGAP with RhoGAP domain, ankyrin repeat and PH domain-containing protein 1) fulfills this function. At podosomes/sealing zones, ARAP1 is part of a protein complex where its RhoGAP domain regulates actin dynamics. At endosomes, ARAP1 interacts with AP-3 adaptor complexes where its Arf-GAP domain regulates the Arf1-dependent AP-3 binding to membranes and, consequently lysosomal membrane protein transport to ruffled borders. Accordingly, ARAP1 or AP-3 depletion in osteoclasts alters their capacity to digest bone in vitro. and AP-3δ-deficient mocha mice, a model of the Hermansky-Pudlak storage pool syndrome, develop osteoporosis. Thus, ARAP1 bridges F-actin and membrane dynamics in osteoclasts for proper bone homeostasis. ARAP1 is a bridging factor controlling actin and membrane dynamics in osteoclasts ARAP1 controls podosome dynamics and AP-3 coat recruitment to membranes AP-3 controls targeting of lysosomal membrane proteins to the ruffled border AP-3-deficient mocha mice develop osteoporosis
Collapse
Affiliation(s)
- Sandra Segeletz
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47-51, Dresden 01307, Germany
| | - Lydia Danglot
- Centre de Psychiatrie et Neurosciences, UMR-S894 INSERM, Université Paris Descartes, 102-108 rue de la Santé, Paris 75014, France
| | - Thierry Galli
- Centre de Psychiatrie et Neurosciences, UMR-S894 INSERM, Université Paris Descartes, 102-108 rue de la Santé, Paris 75014, France
| | - Bernard Hoflack
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47-51, Dresden 01307, Germany.
| |
Collapse
|
26
|
Müdsam C, Wollschläger P, Sauer N, Schneider S. Sorting of Arabidopsis NRAMP3 and NRAMP4 depends on adaptor protein complex AP4 and a dileucine-based motif. Traffic 2018; 19:503-521. [PMID: 29573093 DOI: 10.1111/tra.12567] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 01/01/2023]
Abstract
Adaptor protein complexes mediate cargo selection and vesicle trafficking to different cellular membranes in all eukaryotic cells. Information on the role of AP4 in plants is still limited. Here, we present the analyses of Arabidopsis thaliana mutants lacking different subunits of AP4. These mutants show abnormalities in their development and in protein sorting. We found that growth of roots and etiolated hypocotyls, as well as male fertility and trichome morphology are disturbed in ap4. Analyses of GFP-fusions transiently expressed in mesophyll protoplasts demonstrated that the tonoplast (TP) proteins MOT2, NRAMP3 and NRAMP4, but not INT1, are partially sorted to the plasma membrane (PM) in the absence of a functional AP4 complex. Moreover, alanine mutagenesis revealed that in wild-type plants, sorting of NRAMP3 and NRAMP4 to the TP requires an N-terminal dileucine-based motif. The NRAMP3 or NRAMP4 N-terminal domain containing the dileucine motif was sufficient to redirect the PM localized INT4 protein to the TP and to confer AP4-dependency on sorting of INT1. Our data show that correct sorting of NRAMP3 and NRAMP4 depends on both, an N-terminal dileucine-based motif as well as AP4.
Collapse
Affiliation(s)
- Christina Müdsam
- Molecular Plant Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Paul Wollschläger
- Molecular Plant Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Norbert Sauer
- Molecular Plant Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sabine Schneider
- Molecular Plant Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
27
|
Mattera R, Park SY, De Pace R, Guardia CM, Bonifacino JS. AP-4 mediates export of ATG9A from the trans-Golgi network to promote autophagosome formation. Proc Natl Acad Sci U S A 2017; 114:E10697-E10706. [PMID: 29180427 PMCID: PMC5740629 DOI: 10.1073/pnas.1717327114] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
AP-4 is a member of the heterotetrameric adaptor protein (AP) complex family involved in protein sorting in the endomembrane system of eukaryotic cells. Interest in AP-4 has recently risen with the discovery that mutations in any of its four subunits cause a form of hereditary spastic paraplegia (HSP) with intellectual disability. The critical sorting events mediated by AP-4 and the pathogenesis of AP-4 deficiency, however, remain poorly understood. Here we report the identification of ATG9A, the only multispanning membrane component of the core autophagy machinery, as a specific AP-4 cargo. AP-4 promotes signal-mediated export of ATG9A from the trans-Golgi network to the peripheral cytoplasm, contributing to lipidation of the autophagy protein LC3B and maturation of preautophagosomal structures. These findings implicate AP-4 as a regulator of autophagy and altered autophagy as a possible defect in AP-4-deficient HSP.
Collapse
Affiliation(s)
- Rafael Mattera
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Sang Yoon Park
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Raffaella De Pace
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Carlos M Guardia
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Juan S Bonifacino
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
28
|
Ward C, Maselko M, Lupfer C, Prescott M, Pastey MK. Interaction of the Human Respiratory Syncytial Virus matrix protein with cellular adaptor protein complex 3 plays a critical role in trafficking. PLoS One 2017; 12:e0184629. [PMID: 29028839 PMCID: PMC5640227 DOI: 10.1371/journal.pone.0184629] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/28/2017] [Indexed: 01/03/2023] Open
Abstract
Human Respiratory Syncytial Virus (HRSV) is a leading cause of bronchopneumonia in infants and the elderly. To date, knowledge of viral and host protein interactions within HRSV is limited and are critical areas of research. Here, we show that HRSV Matrix (M) protein interacts with the cellular adaptor protein complex 3 specifically via its medium subunit (AP-3Mu3A). This novel protein-protein interaction was first detected via yeast-two hybrid screen and was further confirmed in a mammalian system by immunofluorescence colocalization and co-immunoprecipitation. This novel interaction is further substantiated by the presence of a known tyrosine-based adaptor protein MU subunit sorting signal sequence, YXXФ: where Ф is a bulky hydrophobic residue, which is conserved across the related RSV M proteins. Analysis of point-mutated HRSV M derivatives indicated that AP-3Mu3A- mediated trafficking is contingent on the presence of the tyrosine residue within the YXXL sorting sequence at amino acids 197–200 of the M protein. AP-3Mu3A is up regulated at 24 hours post-infection in infected cells versus mock-infected HEp2 cells. Together, our data suggests that the AP-3 complex plays a critical role in the trafficking of HRSV proteins specifically matrix in epithelial cells. The results of this study add new insights and targets that may lead to the development of potential antivirals and attenuating mutations suitable for candidate vaccines in the future.
Collapse
Affiliation(s)
- Casey Ward
- Department of Veterinary Biomedical Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Maciej Maselko
- Department of Veterinary Biomedical Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Christopher Lupfer
- Department of Veterinary Biomedical Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Meagan Prescott
- Department of Veterinary Biomedical Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Manoj K. Pastey
- Department of Veterinary Biomedical Sciences, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| |
Collapse
|
29
|
Adaptor protein-3: A key player in RBL-2H3 mast cell mediator release. PLoS One 2017; 12:e0173462. [PMID: 28273137 PMCID: PMC5342237 DOI: 10.1371/journal.pone.0173462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 02/22/2017] [Indexed: 11/30/2022] Open
Abstract
Mast cell (MC) secretory granules are Lysosome-Related Organelles (LROs) whose biogenesis is associated with the post-Golgi secretory and endocytic pathways in which the sorting of proteins destined for a specific organelle relies on the recognition of sorting signals by adaptor proteins that direct their incorporation into transport vesicles. The adaptor protein 3 (AP-3) complex mediates protein trafficking between the trans-Golgi network (TGN) and late endosomes, lysosomes, and LROs. AP-3 has a recognized role in LROs biogenesis and regulated secretion in several cell types, including many immune cells such as neutrophils, natural killer cells, and cytotoxic T lymphocytes. However, the relevance of AP-3 for these processes in MCs has not been previously investigated. AP-3 was found to be expressed and distributed in a punctate fashion in rat peritoneal mast cells ex vivo. The rat MC line RBL-2H3 was used as a model system to investigate the role of AP-3 in mast cell secretory granule biogenesis and mediator release. By immunofluorescence and immunoelectron microscopy, AP-3 was localized both to the TGN and early endosomes indicating that AP-3 dependent sorting of proteins to MC secretory granules originates in these organelles. ShRNA mediated depletion of the AP-3 δ subunit was shown to destabilize the AP-3 complex in RBL-2H3 MCs. AP-3 knockdown significantly affected MC regulated secretion of β-hexosaminidase without affecting total cellular enzyme levels. Morphometric evaluation of MC secretory granules by electron microscopy revealed that the area of MC secretory granules in AP-3 knockdown MCs was significantly increased, indicating that AP-3 is involved in MC secretory granule biogenesis. Furthermore, AP-3 knockdown had a selective impact on the secretion of newly formed and newly synthesized mediators. These results show for the first time that AP-3 plays a critical role in secretory granule biogenesis and mediator release in MCs.
Collapse
|
30
|
Gosadi IM. Assessment of the environmental and genetic factors influencing prevalence of metabolic syndrome in Saudi Arabia. Saudi Med J 2017; 37:12-20. [PMID: 26739969 PMCID: PMC4724673 DOI: 10.15537/smj.2016.1.12675] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Metabolic syndrome (MS) is a combination of factors that increases the risk of cardiovascular atherosclerotic diseases including diabetes, obesity, dyslipidemia, and high blood pressure. Cardiovascular diseases are one of the leading causes of death in the adult Saudi population where the increase in cardiovascular-related mortality is augmented by the rise in the prevalence of MS. Metabolic syndrome is a multi-factorial disorder influenced by interactions between genetic and environmental components. This review aims to provide a comprehensive assessment of studied environmental and genetic factors explaining the prevalence of MS in the Kingdom of Saudi Arabia. Additionally, this review aims to illustrate factors related to the population genetics of Saudi Arabia, which might explain a proportion of the prevalence of MS.
Collapse
Affiliation(s)
- Ibrahim M Gosadi
- Prince Sattam Chair for Epidemiology and Public Health Research, Department of Family and Community Medicine, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia. E-mail.
| |
Collapse
|
31
|
Assoum M, Philippe C, Isidor B, Perrin L, Makrythanasis P, Sondheimer N, Paris C, Douglas J, Lesca G, Antonarakis S, Hamamy H, Jouan T, Duffourd Y, Auvin S, Saunier A, Begtrup A, Nowak C, Chatron N, Ville D, Mireskandari K, Milani P, Jonveaux P, Lemeur G, Milh M, Amamoto M, Kato M, Nakashima M, Miyake N, Matsumoto N, Masri A, Thauvin-Robinet C, Rivière JB, Faivre L, Thevenon J. Autosomal-Recessive Mutations in AP3B2, Adaptor-Related Protein Complex 3 Beta 2 Subunit, Cause an Early-Onset Epileptic Encephalopathy with Optic Atrophy. Am J Hum Genet 2016; 99:1368-1376. [PMID: 27889060 DOI: 10.1016/j.ajhg.2016.10.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/14/2016] [Accepted: 10/14/2016] [Indexed: 11/30/2022] Open
Abstract
Early-onset epileptic encephalopathy (EOEE) represents a heterogeneous group of severe disorders characterized by seizures, interictal epileptiform activity with a disorganized electroencephalography background, developmental regression or retardation, and onset before 1 year of age. Among a cohort of 57 individuals with epileptic encephalopathy, we ascertained two unrelated affected individuals with EOEE associated with developmental impairment and autosomal-recessive variants in AP3B2 by means of whole-exome sequencing. The targeted sequencing of AP3B2 in 86 unrelated individuals with EOEE led to the identification of an additional family. We gathered five additional families with eight affected individuals through the Matchmaker Exchange initiative by matching autosomal-recessive mutations in AP3B2. Reverse phenotyping of 12 affected individuals from eight families revealed a homogeneous EOEE phenotype characterized by severe developmental delay, poor visual contact with optic atrophy, and postnatal microcephaly. No spasticity, albinism, or hematological symptoms were reported. AP3B2 encodes the neuron-specific subunit of the AP-3 complex. Autosomal-recessive variations of AP3B1, the ubiquitous isoform, cause Hermansky-Pudlak syndrome type 2. The only isoform for the δ subunit of the AP-3 complex is encoded by AP3D1. Autosomal-recessive mutations in AP3D1 cause a severe disorder cumulating the symptoms of the AP3B1 and AP3B2 defects.
Collapse
Affiliation(s)
- Mirna Assoum
- Equipe d'Accueil 4271, Génétique des Anomalies du Développement, Université de Bourgogne, 21079 Dijon, France
| | - Christophe Philippe
- Laboratoire de Génétique Médicale, INSERM U954 (Nutrition-Genetics-Environmental Risk Exposure), Centre Hospitalier Universaire Hôpitaux de Brabois, 54511 Vandoeuvre les Nancy, France
| | - Bertrand Isidor
- Service de Génétique Médicale, Centre Hospitalier Universaire de Nantes, 44093 Nantes, France; INSERM UMR_S957, 44093 Nantes, France
| | - Laurence Perrin
- Département de Génétique, Centre Hospitalier Universaire Paris - Hôpital Robert Debré, Assistance Publique - Hôpitaux de Paris, 75019 Paris, France
| | - Periklis Makrythanasis
- Department of Genetic Medicine and Development, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland; Service of Genetic Medicine, University Hospitals of Geneva, 1211 Geneva 4, Switzerland
| | - Neal Sondheimer
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - Caroline Paris
- Centre Hospitalier Régional Universitaire, Hôpital Jean Minjoz, 25030 Besançon, France
| | - Jessica Douglas
- Boston Children's Hospital, Feingold Center, Boston, MA 02115, USA
| | - Gaetan Lesca
- Department of Medical Genetics, Groupement Hospitalier Est, Hospices Civils de Lyon, 69677 Bron, France; Université de Lyon, 69100 Villeurbanne, France; Centre Nationnal de la Recherche Scientifique UMR 5292, INSERM U1028, Centre de Recherche en Neurosciences de Lyon, bâtiment l'Institut Multidisciplinaire de Biochimie des Lipides, 69621 Villeurbanne, France
| | - Stylianos Antonarakis
- Department of Genetic Medicine and Development, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland; Service of Genetic Medicine, University Hospitals of Geneva, 1211 Geneva 4, Switzerland; Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva 4, Switzerland
| | - Hanan Hamamy
- Department of Genetic Medicine and Development, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Thibaud Jouan
- Equipe d'Accueil 4271, Génétique des Anomalies du Développement, Université de Bourgogne, 21079 Dijon, France
| | - Yannis Duffourd
- Equipe d'Accueil 4271, Génétique des Anomalies du Développement, Université de Bourgogne, 21079 Dijon, France; Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, Centre Hospitalier Universitaire Dijon, 21079 Dijon, France
| | - Stéphane Auvin
- INSERM 1141, Service de Neurologie Pédiatrique, Hôpital Robert Debré, 75019 Paris, France
| | - Aline Saunier
- Laboratoire de Génétique Médicale, INSERM U954 (Nutrition-Genetics-Environmental Risk Exposure), Centre Hospitalier Universaire Hôpitaux de Brabois, 54511 Vandoeuvre les Nancy, France
| | - Amber Begtrup
- GeneDx, 207 Perry Parkway, Gaithersburg, MD 20877, USA
| | - Catherine Nowak
- Boston Children's Hospital, Feingold Center, Boston, MA 02115, USA
| | - Nicolas Chatron
- Department of Medical Genetics, Groupement Hospitalier Est, Hospices Civils de Lyon, 69677 Bron, France; Université de Lyon, 69100 Villeurbanne, France; Centre Nationnal de la Recherche Scientifique UMR 5292, INSERM U1028, Centre de Recherche en Neurosciences de Lyon, bâtiment l'Institut Multidisciplinaire de Biochimie des Lipides, 69621 Villeurbanne, France
| | - Dorothée Ville
- Department of Pediatric Neurology, Groupement Hospitalier Est, Hospices Civils de Lyon, 69677 Bron, France
| | - Kamiar Mireskandari
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - Paolo Milani
- Service de Physiologie Clinique et Explorations Fonctionnelles, Hôpital Lariboisière, Assistance Publique - Hôpitaux de Paris, 75475 Paris, France
| | - Philippe Jonveaux
- Laboratoire de Génétique Médicale, INSERM U954 (Nutrition-Genetics-Environmental Risk Exposure), Centre Hospitalier Universaire Hôpitaux de Brabois, 54511 Vandoeuvre les Nancy, France
| | - Guylène Lemeur
- Service d'Ophtalmologie, Centre Hospitalo-Universitaire de Nantes, 44093 Nantes, France
| | - Mathieu Milh
- Service de Neurologie Pédiatrique, Hôpital de la Timone, Assistance Publique des Hôpitaux de Marseille, 13005 Marseille, France; INSERM UMR_S910, Aix-Marseille Université, 13005 Marseille, France
| | - Masano Amamoto
- Pediatrics Emergency Center, Kitakyushu Municipal Yahata Hospitals, Kitakyushu 803-8501, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo 142-8555, Japan
| | - Mitsuko Nakashima
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Amira Masri
- Department of Paediatrics, Faculty of Medicine, Jordan University, Amman 11942, Jordan
| | - Christel Thauvin-Robinet
- Equipe d'Accueil 4271, Génétique des Anomalies du Développement, Université de Bourgogne, 21079 Dijon, France; INSERM 1141, Service de Neurologie Pédiatrique, Hôpital Robert Debré, 75019 Paris, France; Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Centre Hospitalier Universitaire Dijon, 21079 Dijon, France
| | - Jean-Baptiste Rivière
- Equipe d'Accueil 4271, Génétique des Anomalies du Développement, Université de Bourgogne, 21079 Dijon, France; INSERM 1141, Service de Neurologie Pédiatrique, Hôpital Robert Debré, 75019 Paris, France
| | - Laurence Faivre
- Equipe d'Accueil 4271, Génétique des Anomalies du Développement, Université de Bourgogne, 21079 Dijon, France; INSERM 1141, Service de Neurologie Pédiatrique, Hôpital Robert Debré, 75019 Paris, France; Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Centre Hospitalier Universitaire Dijon, 21079 Dijon, France
| | - Julien Thevenon
- Equipe d'Accueil 4271, Génétique des Anomalies du Développement, Université de Bourgogne, 21079 Dijon, France; INSERM 1141, Service de Neurologie Pédiatrique, Hôpital Robert Debré, 75019 Paris, France; Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Centre Hospitalier Universitaire Dijon, 21079 Dijon, France.
| |
Collapse
|
32
|
Nemetschke L, Knust E. Drosophila Crumbs prevents ectopic Notch activation in developing wings by inhibiting ligand-independent endocytosis. Development 2016; 143:4543-4553. [DOI: 10.1242/dev.141762] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/21/2016] [Indexed: 12/13/2022]
Abstract
Many signalling components are apically restricted in epithelial cells, and receptor localisation and abundance is key for morphogenesis and tissue homeostasis. Hence, controlling apicobasal epithelial polarity is crucial for proper signalling. Notch is a ubiquitously expressed, apically localised receptor, which performs a plethora of functions; therefore, its activity has to be tightly regulated. Here, we show that Drosophila Crumbs, an evolutionarily conserved polarity determinant, prevents Notch endocytosis in developing wings through direct interaction between the two proteins. Notch endocytosis in the absence of Crumbs results in the activation of the ligand-independent, Deltex-dependent Notch signalling pathway, and does not require the ligands Delta and Serrate or γ-secretase activity. This function of Crumbs is not due to general defects in apicobasal polarity, as localisation of other apical proteins is unaffected. Our data reveal a mechanism to explain how Crumbs directly controls localisation and trafficking of the potent Notch receptor, and adds yet another aspect of Crumbs regulation in Notch pathway activity. Furthermore, our data highlight a close link between the apical determinant Crumbs, receptor trafficking and tissue homeostasis.
Collapse
Affiliation(s)
- Linda Nemetschke
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Elisabeth Knust
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| |
Collapse
|
33
|
Steinmetz CC, Tatavarty V, Sugino K, Shima Y, Joseph A, Lin H, Rutlin M, Lambo M, Hempel CM, Okaty BW, Paradis S, Nelson SB, Turrigiano GG. Upregulation of μ3A Drives Homeostatic Plasticity by Rerouting AMPAR into the Recycling Endosomal Pathway. Cell Rep 2016; 16:2711-2722. [PMID: 27568566 DOI: 10.1016/j.celrep.2016.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 07/15/2016] [Accepted: 08/01/2016] [Indexed: 01/06/2023] Open
Abstract
Synaptic scaling is a form of homeostatic plasticity driven by transcription-dependent changes in AMPA-type glutamate receptor (AMPAR) trafficking. To uncover the pathways involved, we performed a cell-type-specific screen for transcripts persistently altered during scaling, which identified the μ subunit (μ3A) of the adaptor protein complex AP-3A. Synaptic scaling increased μ3A (but not other AP-3 subunits) in pyramidal neurons and redistributed dendritic μ3A and AMPAR to recycling endosomes (REs). Knockdown of μ3A prevented synaptic scaling and this redistribution, while overexpression (OE) of full-length μ3A or a truncated μ3A that cannot interact with the AP-3A complex was sufficient to drive AMPAR to REs. Finally, OE of μ3A acted synergistically with GRIP1 to recruit AMPAR to the dendritic membrane. These data suggest that excess μ3A acts independently of the AP-3A complex to reroute AMPAR to RE, generating a reservoir of receptors essential for the regulated recruitment to the synaptic membrane during scaling up.
Collapse
Affiliation(s)
- Celine C Steinmetz
- Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - Vedakumar Tatavarty
- Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - Ken Sugino
- Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - Yasuyuki Shima
- Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - Anne Joseph
- Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - Heather Lin
- Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - Michael Rutlin
- Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - Mary Lambo
- Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA
| | - Chris M Hempel
- Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - Benjamin W Okaty
- Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - Suzanne Paradis
- Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - Sacha B Nelson
- Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA.
| | - Gina G Turrigiano
- Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
34
|
Chen F, Duggal P, Klein BEK, Lee KE, Truitt B, Klein R, Iyengar SK, Klein AP. Variation in PTCHD2, CRISP3, NAP1L4, FSCB, and AP3B2 associated with spherical equivalent. Mol Vis 2016; 22:783-96. [PMID: 27440996 DOI: pmid/27440996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 07/12/2016] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Ocular refraction is measured in spherical equivalent as the power of the external lens required to focus images on the retina. Myopia (nearsightedness) and hyperopia (farsightedness) are the most common refractive errors, and the leading causes of visual impairment and blindness in the world. The goal of this study is to identify rare and low-frequency variants that influence spherical equivalent. METHODS We conducted variant-level and gene-level quantitative trait association analyses for mean spherical equivalent, using data from 1,560 individuals in the Beaver Dam Eye Study. Genotyping was conducted using the Illumina exome array. We analyzed 34,976 single nucleotide variants and 11,571 autosomal genes across the genome, using single-variant tests as well as gene-based tests. RESULTS Spherical equivalent was significantly associated with five genes in gene-based analysis: PTCHD2 at 1p36.22 (p = 3.6 × 10(-7)), CRISP3 at 6p12.3 (p = 4.3 × 10(-6)), NAP1L4 at 11p15.5 (p = 3.6 × 10(-6)), FSCB at 14q21.2 (p = 1.5 × 10(-7)), and AP3B2 at 15q25.2 (p = 1.6 × 10(-7)). The variant-based tests identified evidence suggestive of association with two novel variants in linkage disequilibrium (pairwise r(2) = 0.80) in the TCTE1 gene region at 6p21.1 (rs2297336, minor allele frequency (MAF) = 14.1%, β = -0.62 p = 3.7 × 10(-6); rs324146, MAF = 16.9%, β = -0.55, p = 1.4 × 10(-5)). In addition to these novel findings, we successfully replicated a previously reported association with rs634990 near GJD2 at 15q14 (MAF = 47%, β = -0.29, p=1.8 × 10(-3)). We also found evidence of association with spherical equivalent on 2q37.1 in PRSS56 at rs1550094 (MAF = 31%, β = -0.33, p = 1.7 × 10(-3)), a region previously associated with myopia. CONCLUSIONS We identified several novel candidate genes that may play a role in the control of spherical equivalent. However, further studies are needed to replicate these findings. In addition, our results contribute to the increasing evidence that variation in the GJD2 and PRSS56 genes influence the development of refractive errors. Identifying that variation in these genes is associated with spherical equivalent may provide further insight into the etiology of myopia and consequent vision loss.
Collapse
Affiliation(s)
- Fei Chen
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Priya Duggal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Barbara E K Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Kristine E Lee
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Barbara Truitt
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH
| | - Ronald Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Sudha K Iyengar
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH
| | - Alison P Klein
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD; Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
35
|
Mutations in AP3D1 associated with immunodeficiency and seizures define a new type of Hermansky-Pudlak syndrome. Blood 2016; 127:997-1006. [PMID: 26744459 DOI: 10.1182/blood-2015-09-671636] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/26/2015] [Indexed: 01/07/2023] Open
Abstract
Genetic disorders affecting biogenesis and transport of lysosome-related organelles are heterogeneous diseases frequently associated with albinism. We studied a patient with albinism, neutropenia, immunodeficiency, neurodevelopmental delay, generalized seizures, and impaired hearing but with no mutation in genes so far associated with albinism and immunodeficiency. Whole exome sequencing identified a homozygous mutation in AP3D1 that leads to destabilization of the adaptor protein 3 (AP3) complex. AP3 complex formation and the degranulation defect in patient T cells were restored by retroviral reconstitution. A previously described hypopigmented mouse mutant with an Ap3d1 null mutation (mocha strain) shares the neurologic phenotype with our patient and shows a platelet storage pool deficiency characteristic of Hermansky-Pudlak syndrome (HPS) that was not studied in our patient because of a lack of bleeding. HPS2 caused by mutations in AP3B1A leads to a highly overlapping phenotype without the neurologic symptoms. The AP3 complex exists in a ubiquitous and a neuronal form. AP3D1 codes for the AP3δ subunit of the complex, which is essential for both forms. In contrast, the AP3β3A subunit, affected in HPS2 patients, is substituted by AP3β3B in the neuron-specific heterotetramer. AP3δ deficiency thus causes a severe neurologic disorder with immunodeficiency and albinism that we propose to classify as HPS10.
Collapse
|
36
|
Gunkel M, Erfle H, Starkuviene V. High-Content Analysis of the Golgi Complex by Correlative Screening Microscopy. Methods Mol Biol 2016; 1496:111-21. [PMID: 27632005 DOI: 10.1007/978-1-4939-6463-5_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Golgi complex plays a central role in a number of diverse cellular processes, and numerous regulators that control these functions and/or morphology of the Golgi complex are known by now. Many of them were identified by large-scale experiments, such as RNAi-based screening. However, high-throughput experiments frequently provide only initial information that a particular protein might play a role in regulating structure and function of the Golgi complex. Multiple follow-up experiments are necessary to functionally characterize the selected hits. In order to speed up the discovery, we have established a system for correlative screening microscopy that combines rapid data collection and high-resolution imaging in one experiment. We describe here a combination of wide-field microscopy and dual-color direct stochastical optical reconstruction microscopy (dSTORM). We apply the technique to simultaneously capture and differentiate alterations of the cis- and trans-Golgi network when depleting several proteins in a singular and combinatorial manner.
Collapse
Affiliation(s)
- Manuel Gunkel
- BioQuant, University of Heidelberg, 69120, Heidelberg, Germany
| | - Holger Erfle
- BioQuant, University of Heidelberg, 69120, Heidelberg, Germany.
| | - Vytaute Starkuviene
- BioQuant, University of Heidelberg, 69120, Heidelberg, Germany
- Department of Biochemistry and Molecular Biology, Faculty of Natural Sciences, Joint Life Sciences Center, University of Vilnius, Vilnius, Lithuania
| |
Collapse
|
37
|
Robinson MS. Forty Years of Clathrin-coated Vesicles. Traffic 2015; 16:1210-38. [PMID: 26403691 DOI: 10.1111/tra.12335] [Citation(s) in RCA: 242] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 12/11/2022]
Abstract
The purification of coated vesicles and the discovery of clathrin by Barbara Pearse in 1975 was a landmark in cell biology. Over the past 40 years, work from many labs has uncovered the molecular details of clathrin and its associated proteins, including how they assemble into a coated vesicle and how they select cargo. Unexpected connections have been found with signalling, development, neuronal transmission, infection, immunity and genetic disorders. But there are still a number of unanswered questions, including how clathrin-mediated trafficking is regulated and how the machinery evolved.
Collapse
Affiliation(s)
- Margaret S Robinson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
38
|
Shabana, Ullah Shahid S, Wah Li K, Acharya J, Cooper JA, Hasnain S, Humphries SE. Effect of six type II diabetes susceptibility loci and an FTO variant on obesity in Pakistani subjects. Eur J Hum Genet 2015; 24:903-10. [PMID: 26395551 DOI: 10.1038/ejhg.2015.212] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 08/19/2015] [Accepted: 08/25/2015] [Indexed: 01/17/2023] Open
Abstract
The aim of the current study was to analyze the effect of six type II diabetes GWAS loci rs3923113 (GRB14), rs16861329 (ST6GAL1), rs1802295 (VPS26A), rs7178572 (HMG20A), rs2028299 (AP3S2) and rs4812829 (HNF4A), and an FTO polymorphism (rs9939609) on obesity. The probable mechanism of action of these SNPs was analyzed by studying their association with various biochemical and anthropometric parameters. A total of 475 subjects (obese=250, controls=225) were genotyped by TaqMan assay and their lipid profile was determined. Allele/genotype frequencies and an unweighted/weighted gene score were calculated. The effect of the gene score on anthropometric and biochemical parameters was analyzed. The minor allele frequencies of all variants were comparable to that reported in the original studies and were associated with obesity in these Pakistani subjects. Subjects with 9 risk alleles differ from those with <3 and overall there is no significant effect (P-value for trend 0.26). None of the SNPs were associated with any of the serum lipid traits. We are the first to report the association of these T2D SNPs with obesity. In the Pakistani population the reported effect of six SNPs for obesity is similar to that reported for T2D and having a combination of risk alleles on obesity can be considerable. The mechanism of this effect is unclear, but appears not to be mediated by changing serum lipid chemistry.
Collapse
Affiliation(s)
- Shabana
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Saleem Ullah Shahid
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Ka Wah Li
- Centre for Cardiovascular Genetics, British Heart Foundation Laboratories, The Rayne Building, Institute of Cardiovascular Sciences, University College London, London, UK
| | - Jayshree Acharya
- Centre for Cardiovascular Genetics, British Heart Foundation Laboratories, The Rayne Building, Institute of Cardiovascular Sciences, University College London, London, UK
| | - Jackie A Cooper
- Centre for Cardiovascular Genetics, British Heart Foundation Laboratories, The Rayne Building, Institute of Cardiovascular Sciences, University College London, London, UK
| | - Shahida Hasnain
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan.,The Women University, Multan, Pakistan
| | - Stephen E Humphries
- Centre for Cardiovascular Genetics, British Heart Foundation Laboratories, The Rayne Building, Institute of Cardiovascular Sciences, University College London, London, UK
| |
Collapse
|
39
|
Pei X, Fan F, Lin L, Chen Y, Sun W, Zhang S, Tian C. Involvement of the adaptor protein 3 complex in lignocellulase secretion in Neurospora crassa revealed by comparative genomic screening. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:124. [PMID: 26300971 PMCID: PMC4545925 DOI: 10.1186/s13068-015-0302-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/30/2015] [Indexed: 06/02/2023]
Abstract
BACKGROUND Lignocellulase hypersecretion has been achieved in industrial fungal workhorses such as Trichoderma reesei, but the underlying mechanism associated with this process is not well understood. Although previous comparative genomic studies have revealed that the mutagenic T. reesei strain RUT-C30 harbors hundreds of mutations compared with its parental strain QM6a, how these mutations actually contribute to the hypersecretion phenotype remains to be elucidated. RESULTS In this study, we systematically screened gene knockout (KO) mutants in the cellulolytic fungus Neurospora crassa, which contains orthologs of potentially defective T. reesei RUT-C30 mutated genes. Of the 86 deletion mutants screened in N. crassa, 12 exhibited lignocellulase production more than 25% higher than in the wild-type (WT) strain and 4 showed nearly 25% lower secretion. We observed that the deletion of Ncap3m (NCU03998), which encodes the μ subunit of the adaptor protein 3 (AP-3) complex in N. crassa, led to the most significant increase in lignocellulase secretion under both Avicel and xylan culture conditions. Moreover, strains lacking the β subunit of the AP-3 complex, encoded by Ncap3b (NCU06569), had a similar phenotype to ΔNcap3m, suggesting that the AP-3 complex is involved in lignocellulase secretion in N. crassa. We also found that the transcriptional abundance of major lignocellulase genes in ΔNcap3m was maintained at a relatively higher level during the late stage of fermentation compared with the WT, which might add to the hypersecretion phenotype. Finally, we found that importation of the T. reesei ap3m ortholog Trap3m into ΔNcap3m can genetically restore secretion of lignocellulases to normal levels, which suggests that the effect of the AP-3 complex on lignocellulase secretion is conserved in cellulolytic ascomycetes. CONCLUSIONS Using the model cellulolytic fungus N. crassa, we explored potential hypersecretion-related mutations in T. reesei strain RUT-C30. Through systematic genetic screening of 86 corresponding orthologous KO mutants in N. crassa, we identified several genes, particularly those encoding the AP-3 complex that contribute to lignocellulase secretion. These findings will be useful for strain improvement in future lignocellulase and biomass-based chemical production.
Collapse
Affiliation(s)
- Xue Pei
- />College of Plant Sciences, Jilin University, Changchun, 130062 China
- />Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Feiyu Fan
- />Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Liangcai Lin
- />Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Yong Chen
- />Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Wenliang Sun
- />Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Shihong Zhang
- />College of Plant Sciences, Jilin University, Changchun, 130062 China
| | - Chaoguang Tian
- />Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| |
Collapse
|
40
|
Yap CC, Winckler B. Adapting for endocytosis: roles for endocytic sorting adaptors in directing neural development. Front Cell Neurosci 2015; 9:119. [PMID: 25904845 PMCID: PMC4389405 DOI: 10.3389/fncel.2015.00119] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 03/16/2015] [Indexed: 01/01/2023] Open
Abstract
Proper cortical development depends on the orchestrated actions of a multitude of guidance receptors and adhesion molecules and their downstream signaling. The levels of these receptors on the surface and their precise locations can greatly affect guidance outcomes. Trafficking of receptors to a particular surface locale and removal by endocytosis thus feed crucially into the final guidance outcomes. In addition, endocytosis of receptors can affect downstream signaling (both quantitatively and qualitatively) and regulated endocytosis of guidance receptors is thus an important component of ensuring proper neural development. We will discuss the cell biology of regulated endocytosis and the impact on neural development. We focus our discussion on endocytic accessory proteins (EAPs) (such as numb and disabled) and how they regulate endocytosis and subsequent post-endocytic trafficking of their cognate receptors (such as Notch, TrkB, β-APP, VLDLR, and ApoER2).
Collapse
Affiliation(s)
- Chan Choo Yap
- Department of Neuroscience, University of Virginia Charlottesville, VA, USA
| | - Bettina Winckler
- Department of Neuroscience, University of Virginia Charlottesville, VA, USA
| |
Collapse
|
41
|
Boassa D, Nguyen P, Hu J, Ellisman MH, Sosinsky GE. Pannexin2 oligomers localize in the membranes of endosomal vesicles in mammalian cells while Pannexin1 channels traffic to the plasma membrane. Front Cell Neurosci 2015; 8:468. [PMID: 25698922 PMCID: PMC4313697 DOI: 10.3389/fncel.2014.00468] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 12/27/2014] [Indexed: 12/13/2022] Open
Abstract
Pannexin2 (Panx2) is the largest of three members of the pannexin proteins. Pannexins are topologically related to connexins and innexins, but serve different functional roles than forming gap junctions. We previously showed that pannexins form oligomeric channels but unlike connexins and innexins, they form only single membrane channels. High levels of Panx2 mRNA and protein in the Central Nervous System (CNS) have been documented. Whereas Pannexin1 (Panx1) is fairly ubiquitous and Pannexin3 (Panx3) is found in skin and connective tissue, both are fully glycosylated, traffic to the plasma membrane and have functions correlated with extracellular ATP release. Here, we describe trafficking and subcellular localizations of exogenous Panx2 and Panx1 protein expression in MDCK, HeLa, and HEK 293T cells as well as endogenous Panx1 and Panx2 patterns in the CNS. Panx2 was found in intracellular localizations, was partially N-glycosylated, and localizations were non-overlapping with Panx1. Confocal images of hippocampal sections immunolabeled for the astrocytic protein GFAP, Panx1 and Panx2 demonstrated that the two isoforms, Panx1 and Panx2, localized at different subcellular compartments in both astrocytes and neurons. Using recombinant fusions of Panx2 with appended genetic tags developed for correlated light and electron microscopy and then expressed in different cell lines, we determined that Panx2 is localized in the membrane of intracellular vesicles and not in the endoplasmic reticulum as initially indicated by calnexin colocalization experiments. Dual immunofluorescence imaging with protein markers for specific vesicle compartments showed that Panx2 vesicles are early endosomal in origin. In electron tomographic volumes, cross-sections of these vesicles displayed fine structural details and close proximity to actin filaments. Thus, pannexins expressed at different subcellular compartments likely exert distinct functional roles, particularly in the nervous system.
Collapse
Affiliation(s)
- Daniela Boassa
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA, USA
| | - Phuong Nguyen
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA, USA
| | - Junru Hu
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA, USA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA, USA ; Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Gina E Sosinsky
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA, USA ; Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
42
|
Cone AC, Cavin G, Ambrosi C, Hakozaki H, Wu-Zhang AX, Kunkel MT, Newton AC, Sosinsky GE. Protein kinase Cδ-mediated phosphorylation of Connexin43 gap junction channels causes movement within gap junctions followed by vesicle internalization and protein degradation. J Biol Chem 2014; 289:8781-98. [PMID: 24500718 PMCID: PMC3979370 DOI: 10.1074/jbc.m113.533265] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/29/2014] [Indexed: 01/14/2023] Open
Abstract
Phosphorylation of gap junction proteins, connexins, plays a role in global signaling events involving kinases. Connexin43 (Cx43), a ubiquitous and important connexin, has several phosphorylation sites for specific kinases. We appended an imaging reporter tag for the activity of the δ isoform of protein kinase C (PKCδ) to the carboxyl terminus of Cx43. The FRET signal of this reporter is inversely related to the phosphorylation of serine 368 of Cx43. By activating PKC with the phorbol ester phorbol 12,13-dibutyrate (PDBu) or a natural stimulant, UTP, time lapse live cell imaging movies indicated phosphorylated Ser-368 Cx43 separated into discrete domains within gap junctions and was internalized in small vesicles, after which it was degraded by lysosomes and proteasomes. Mutation of Ser-368 to an Ala eliminated the response to PDBu and changes in phosphorylation of the reporter. A phosphatase inhibitor, calyculin A, does not change this pattern, indicating PKC phosphorylation causes degradation of Cx43 without dephosphorylation, which is in accordance with current hypotheses that cells control their intercellular communication by a fast and constant turnover of connexins, using phosphorylation as part of this mechanism.
Collapse
Affiliation(s)
- Angela C. Cone
- From the National Center for Microscopy and Imaging Research
| | - Gabriel Cavin
- From the National Center for Microscopy and Imaging Research
| | - Cinzia Ambrosi
- From the National Center for Microscopy and Imaging Research
| | | | | | | | | | - Gina E. Sosinsky
- From the National Center for Microscopy and Imaging Research
- the Department of Neurosciences, University of California, San Diego, California 92093
| |
Collapse
|
43
|
Kansup J, Tsugama D, Liu S, Takano T. The Arabidopsis adaptor protein AP-3μ interacts with the G-protein β subunit AGB1 and is involved in abscisic acid regulation of germination and post-germination development. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5611-21. [PMID: 24098050 PMCID: PMC3871816 DOI: 10.1093/jxb/ert327] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Heterotrimeric G-proteins (G-proteins) have been implicated in ubiquitous signalling mechanisms in eukaryotes. In plants, G-proteins modulate hormonal and stress responses and regulate diverse developmental processes. However, the molecular mechanisms of their functions are largely unknown. A yeast two-hybrid screen was performed to identify interacting partners of the Arabidopsis G-protein β subunit AGB1. One of the identified AGB1-interacting proteins is the Arabidopsis adaptor protein AP-3µ. The interaction between AGB1 and AP-3µ was confirmed by an in vitro pull-down assay and bimolecular fluorescence complementation assay. Two ap-3µ T-DNA insertional mutants were found to be hyposensitive to abscisic acid (ABA) during germination and post-germination growth, whereas agb1 mutants were hypersensitive to ABA. During seed germination, agb1/ap-3µ double mutants were more sensitive to ABA than the wild type but less sensitive than agb1 mutants. However, in post-germination growth, the double mutants were as sensitive to ABA as agb1 mutants. These data suggest that AP-3µ positively regulates the ABA responses independently of AGB1 in seed germination, while AP-3µ does require AGB1 to regulate ABA responses during post-germination growth.
Collapse
Affiliation(s)
- Jeeraporn Kansup
- Asian Natural Environmental Science Center, The University of Tokyo, Nishitokyo, Tokyo 188-0002, Japan
| | - Daisuke Tsugama
- Asian Natural Environmental Science Center, The University of Tokyo, Nishitokyo, Tokyo 188-0002, Japan
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113–8657, Japan
- * Present address: Biology Department, 208 Mueller Laboratory, Pennsylvania State University, University Park, PA 16802, USA
| | - Shenkui Liu
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin 150040, China
| | - Tetsuo Takano
- Asian Natural Environmental Science Center, The University of Tokyo, Nishitokyo, Tokyo 188-0002, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
Zlatic SA, Grossniklaus EJ, Ryder PV, Salazar G, Mattheyses AL, Peden AA, Faundez V. Chemical-genetic disruption of clathrin function spares adaptor complex 3-dependent endosome vesicle biogenesis. Mol Biol Cell 2013; 24:2378-88. [PMID: 23761069 PMCID: PMC3727930 DOI: 10.1091/mbc.e12-12-0860] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Clathrin–AP-3 association is dispensable for AP-3 vesicle budding from endosomes, which suggests that AP-3–clathrin interactions differ from those by which AP-1 and AP-2 adaptors productively engage clathrin in vesicle biogenesis. A role for clathrin in AP-3–dependent vesicle biogenesis has been inferred from biochemical interactions and colocalization between this adaptor and clathrin. The functionality of these molecular associations, however, is controversial. We comprehensively explore the role of clathrin in AP-3–dependent vesicle budding, using rapid chemical-genetic perturbation of clathrin function with a clathrin light chain–FKBP chimera oligomerizable by the drug AP20187. We find that AP-3 interacts and colocalizes with endogenous and recombinant FKBP chimeric clathrin polypeptides in PC12-cell endosomes. AP-3 displays, however, a divergent behavior from AP-1, AP-2, and clathrin chains. AP-3 cofractionates with clathrin-coated vesicle fractions isolated from PC12 cells even after clathrin function is acutely inhibited by AP20187. We predicted that AP20187 would inhibit AP-3 vesicle formation from endosomes after a brefeldin A block. AP-3 vesicle formation continued, however, after brefeldin A wash-out despite impairment of clathrin function by AP20187. These findings indicate that AP-3–clathrin association is dispensable for endosomal AP-3 vesicle budding and suggest that endosomal AP-3–clathrin interactions differ from those by which AP-1 and AP-2 adaptors productively engage clathrin in vesicle biogenesis.
Collapse
|
45
|
Parvaneh N, Filipovich AH, Borkhardt A. Primary immunodeficiencies predisposed to Epstein-Barr virus-driven haematological diseases. Br J Haematol 2013; 162:573-86. [PMID: 23758097 DOI: 10.1111/bjh.12422] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epstein-Barr virus (EBV), a ubiquitous human herpesvirus, maintains lifelong subclinical persistent infections in humans. In the circulation, EBV primarily infects the B cells, and protective immunity is mediated by EBV-specific cytotoxic T cells (CTLs) and natural killer (NK) cells. However, EBV has been linked to several devastating diseases, such as haemophagocytic lymphohistiocytosis (HLH) and lymphoproliferative diseases in the immunocompromised host. Some types of primary immunodeficiencies (PIDs) are characterized by the development of EBV-associated complications as their predominant clinical feature. The study of such genetic diseases presents an ideal opportunity for a better understanding of the biology of the immune responses against EBV. Here, we summarize the range of PIDs that are predisposed to EBV-associated haematological diseases, describing their clinical picture and pathogenetic mechanisms.
Collapse
Affiliation(s)
- Nima Parvaneh
- Paediatric Infectious Diseases Research Centre, Children's Medical Centre, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | |
Collapse
|
46
|
Rosnoblet C, Legrand D, Demaegd D, Hacine-Gherbi H, de Bettignies G, Bammens R, Borrego C, Duvet S, Morsomme P, Matthijs G, Foulquier F. Impact of disease-causing mutations on TMEM165 subcellular localization, a recently identified protein involved in CDG-II. Hum Mol Genet 2013; 22:2914-28. [PMID: 23575229 DOI: 10.1093/hmg/ddt146] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
TMEM165 has recently been identified as a novel protein involved in CDG-II. TMEM165 has no biological function described so far. Different mutations were recently found in patients with Golgi glycosylation defects and harboring a peculiar skeletal phenotype. In this study, we examined the effect of naturally occurring mutations on the intracellular localization of TMEM165 and their abilities to complement the TMEM165-deficient yeast, gdt1▵. Wild-type TMEM165 was present within Golgi compartment, plasma membrane and late endosomes/lysosomes, whereas mutated TMEM165 were found differentially localized according to the mutations. We demonstrated that, in the yeast functional assay with TMEM165 ortholog Gdt1, the homozygous point mutation correlating with a mild phenotype restores the yeast functional assay, whereas the truncated mutation, associated with severe disease, failed to restore Gdt1 function. These studies highly suggest that these clinically relevant point mutations do not affect the protein function but critically changes the subcellular protein localization. Moreover, the data point to a critical role of the YNRL motif in TMEM165 subcellular localization.
Collapse
Affiliation(s)
- Claire Rosnoblet
- CNRS-UMR 8576, Structural and Functional Glycobiology Unit, IFR 147, University of Lille 1, 59655 Villeneuve d’Ascq, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lacruz RS, Brookes SJ, Wen X, Jimenez JM, Vikman S, Hu P, White SN, Lyngstadaas SP, Okamoto CT, Smith CE, Paine ML. Adaptor protein complex 2-mediated, clathrin-dependent endocytosis, and related gene activities, are a prominent feature during maturation stage amelogenesis. J Bone Miner Res 2013; 28:672-87. [PMID: 23044750 PMCID: PMC3562759 DOI: 10.1002/jbmr.1779] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/14/2012] [Accepted: 09/18/2012] [Indexed: 12/14/2022]
Abstract
Molecular events defining enamel matrix removal during amelogenesis are poorly understood. Early reports have suggested that adaptor proteins (AP) participate in ameloblast-mediated endocytosis. Enamel formation involves the secretory and maturation stages, with an increase in resorptive function during the latter. Here, using real-time PCR, we show that the expression of clathrin and adaptor protein subunits are upregulated in maturation stage rodent enamel organ cells. AP complex 2 (AP-2) is the most upregulated of the four distinct adaptor protein complexes. Immunolocalization confirms the presence of AP-2 and clathrin in ameloblasts, with strongest reactivity at the apical pole. These data suggest that the resorptive functions of enamel cells involve AP-2 mediated, clathrin-dependent endocytosis, thus implying the likelihood of specific membrane-bound receptor(s) of enamel matrix protein debris. The mRNA expression of other endocytosis-related gene products is also upregulated during maturation including: lysosomal-associated membrane protein 1 (Lamp1); cluster of differentiation 63 and 68 (Cd63 and Cd68); ATPase, H(+) transporting, lysosomal V0 subunit D2 (Atp6v0d2); ATPase, H(+) transporting, lysosomal V1 subunit B2 (Atp6v1b2); chloride channel, voltage-sensitive 7 (Clcn7); and cathepsin K (Ctsk). Immunohistologic data confirms the expression of a number of these proteins in maturation stage ameloblasts. The enamel of Cd63-null mice was also examined. Despite increased mRNA and protein expression in the enamel organ during maturation, the enamel of Cd63-null mice appeared normal. This may suggest inherent functional redundancies between Cd63 and related gene products, such as Lamp1 and Cd68. Ameloblast-like LS8 cells treated with the enamel matrix protein complex Emdogain showed upregulation of AP-2 and clathrin subunits, further supporting the existence of a membrane-bound receptor-regulated pathway for the endocytosis of enamel matrix proteins. These data together define an endocytotic pathway likely used by ameloblasts to remove the enamel matrix during enamel maturation.
Collapse
Affiliation(s)
- Rodrigo S Lacruz
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90605, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Mardones GA, Burgos PV, Lin Y, Kloer DP, Magadán JG, Hurley JH, Bonifacino JS. Structural basis for the recognition of tyrosine-based sorting signals by the μ3A subunit of the AP-3 adaptor complex. J Biol Chem 2013; 288:9563-71. [PMID: 23404500 DOI: 10.1074/jbc.m113.450775] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tyrosine-based signals fitting the YXXØ motif mediate sorting of transmembrane proteins to endosomes, lysosomes, the basolateral plasma membrane of polarized epithelial cells, and the somatodendritic domain of neurons through interactions with the homologous μ1, μ2, μ3, and μ4 subunits of the corresponding AP-1, AP-2, AP-3, and AP-4 complexes. Previous x-ray crystallographic analyses identified distinct binding sites for YXXØ signals on μ2 and μ4, which were located on opposite faces of the proteins. To elucidate the mode of recognition of YXXØ signals by other members of the μ family, we solved the crystal structure at 1.85 Å resolution of the C-terminal domain of the μ3 subunit of AP-3 (isoform A) in complex with a peptide encoding a YXXØ signal (SDYQRL) from the trans-Golgi network protein TGN38. The μ3A C-terminal domain consists of an immunoglobulin-like β-sandwich organized into two subdomains, A and B. The YXXØ signal binds in an extended conformation to a site on μ3A subdomain A, at a location similar to the YXXØ-binding site on μ2 but not μ4. The binding sites on μ3A and μ2 exhibit similarities and differences that account for the ability of both proteins to bind distinct sets of YXXØ signals. Biochemical analyses confirm the identification of the μ3A site and show that this protein binds YXXØ signals with 14-19 μm affinity. The surface electrostatic potential of μ3A is less basic than that of μ2, in part explaining the association of AP-3 with intracellular membranes having less acidic phosphoinositides.
Collapse
Affiliation(s)
- Gonzalo A Mardones
- Instituto de Fisiología, Facultad de Medicina, and Centro de Investigación Sur-Austral en Enfermedades del Sistema Nervioso, Universidad Austral de Chile, Valdivia 5110566, Chile
| | | | | | | | | | | | | |
Collapse
|
49
|
Bonnemaison ML, Eipper BA, Mains RE. Role of adaptor proteins in secretory granule biogenesis and maturation. Front Endocrinol (Lausanne) 2013; 4:101. [PMID: 23966980 PMCID: PMC3743005 DOI: 10.3389/fendo.2013.00101] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 07/31/2013] [Indexed: 12/29/2022] Open
Abstract
In the regulated secretory pathway, secretory granules (SGs) store peptide hormones that are released on demand. SGs are formed at the trans-Golgi network and must undergo a maturation process to become responsive to secretagogues. The production of mature SGs requires concentrating newly synthesized soluble content proteins in granules whose membranes contain the appropriate integral membrane proteins. The mechanisms underlying the sorting of soluble and integral membrane proteins destined for SGs from other proteins are not yet well understood. For soluble proteins, luminal pH and divalent metals can affect aggregation and interaction with surrounding membranes. The trafficking of granule membrane proteins can be controlled by both luminal and cytosolic factors. Cytosolic adaptor proteins (APs), which recognize the cytosolic domains of proteins that span the SG membrane, have been shown to play essential roles in the assembly of functional SGs. Adaptor protein 1A (AP-1A) is known to interact with specific motifs in its cargo proteins and with the clathrin heavy chain, contributing to the formation of a clathrin coat. AP-1A is present in patches on immature SG membranes, where it removes cargo and facilitates SG maturation. AP-1A recruitment to membranes can be modulated by Phosphofurin Acidic Cluster Sorting protein 1 (PACS-1), a cytosolic protein which interacts with both AP-1A and cargo that has been phosphorylated by casein kinase II. A cargo/PACS-1/AP-1A complex is necessary to drive the appropriate transport of several cargo proteins within the regulated secretory pathway. The Golgi-localized, γ-ear containing, ADP-ribosylation factor binding (GGA) family of APs serve a similar role. We review the functions of AP-1A, PACS-1, and GGAs in facilitating the retrieval of proteins from immature SGs and review examples of cargo proteins whose trafficking within the regulated secretory pathway is governed by APs.
Collapse
Affiliation(s)
- Mathilde L. Bonnemaison
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Betty A. Eipper
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT, USA
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Richard E. Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
- *Correspondence: Richard E. Mains, Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3401, USA e-mail:
| |
Collapse
|
50
|
Bultema JJ, Di Pietro SM. Cell type-specific Rab32 and Rab38 cooperate with the ubiquitous lysosome biogenesis machinery to synthesize specialized lysosome-related organelles. Small GTPases 2012; 4:16-21. [PMID: 23247405 PMCID: PMC3620096 DOI: 10.4161/sgtp.22349] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Lysosome-related organelles (LROs) exist in specialized cells to serve specific functions and typically co-exist with conventional lysosomes. The biogenesis of LROs is known to utilize much of the common protein machinery used in the transport of integral membrane proteins to lysosomes. Consequently, an outstanding question in the field has been how specific cargoes are trafficked to LROs instead of lysosomes, particularly in cells that simultaneously produce both organelles. One LRO, the melanosome, is responsible for the production of the pigment melanin and has long been used as a model system to study the formation of specialized LROs. Importantly, melanocytes, where melanosomes are synthesized, are a cell type that also produces lysosomes and must therefore segregate traffic to each organelle. Two small GTPases, Rab32 and Rab38, are key proteins in the biogenesis of melanosomes and were recently shown to redirect the ubiquitous machinery—BLOC-2, AP-1 and AP-3—to traffic specialized cargoes to melanosomes in melanocytes. In addition, the study revealed Rab32 and Rab38 have both redundant and unique roles in the trafficking of melanin-producing enzymes and overall melanosome biogenesis. Here we review these findings, integrate them with previous knowledge on melanosome biogenesis and discuss their implications for biogenesis of other LROs.
Collapse
Affiliation(s)
- Jarred J Bultema
- Department of Biochemistry and Molecular Biology; Colorado State University; Fort Collins, CO USA
| | | |
Collapse
|