1
|
Angelice GP, Roque PH, Valente G, Galvão K, Villar LM, Mello VM, Mello FCA, Lago BV. Evaluation of Interfering RNA Efficacy in Treating Hepatitis B: Is It Promising? Viruses 2024; 16:1710. [PMID: 39599825 PMCID: PMC11598949 DOI: 10.3390/v16111710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Despite an existing safe and effective vaccine for hepatitis B virus (HBV), it is still a major public health concern. Nowadays, several drugs are used to treat chronic hepatitis B; however, full healing remains controversial. The viral covalently closed circular DNA (cccDNA) formed by HBV forms a major challenge in its treatment, as does the ability of HBV to integrate itself into the host genome, which enables infection reactivation. Interfering RNA (RNAi) is a gene-silencing post-transcriptional mechanism which forms as a promising alternative to treat chronic hepatitis B. The aim of the present review is to assess the evolution of hepatitis B treatment approaches based on using RNA interference. METHODS Data published between 2016 and 2023 in scientific databases (PubMed, PMC, LILACS, and Bireme) were assessed. RESULTS In total, 76,949 articles were initially identified and quality-checked, and 226 eligible reports were analyzed in depth. The main genomic targets, delivery systems, and major HBV therapy innovations are discussed in this review. This review reinforces the therapeutic potential of RNAi and identifies the need for conducting further studies to fill the remaining gaps between bench and clinical practice.
Collapse
|
2
|
Park ES, Dezhbord M, Lee AR, Park BB, Kim KH. Dysregulation of Liver Regeneration by Hepatitis B Virus Infection: Impact on Development of Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14153566. [PMID: 35892823 PMCID: PMC9329784 DOI: 10.3390/cancers14153566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
The liver is unique in its ability to regenerate in response to damage. The complex process of liver regeneration consists of multiple interactive pathways. About 2 billion people worldwide have been infected with hepatitis B virus (HBV), and HBV causes 686,000 deaths each year due to its complications. Long-term infection with HBV, which causes chronic inflammation, leads to serious liver-related diseases, including cirrhosis and hepatocellular carcinoma. HBV infection has been reported to interfere with the critical mechanisms required for liver regeneration. In this review, the studies on liver tissue characteristics and liver regeneration mechanisms are summarized. Moreover, the inhibitory mechanisms of HBV infection in liver regeneration are investigated. Finally, the association between interrupted liver regeneration and hepatocarcinogenesis, which are both triggered by HBV infection, is outlined. Understanding the fundamental and complex liver regeneration process is expected to provide significant therapeutic advantages for HBV-associated hepatocellular carcinoma.
Collapse
Affiliation(s)
- Eun-Sook Park
- Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Seoul 05029, Korea; (E.-S.P.); (B.B.P.)
| | - Mehrangiz Dezhbord
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea; (M.D.); (A.R.L.)
| | - Ah Ram Lee
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea; (M.D.); (A.R.L.)
| | - Bo Bae Park
- Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Seoul 05029, Korea; (E.-S.P.); (B.B.P.)
| | - Kyun-Hwan Kim
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea; (M.D.); (A.R.L.)
- Correspondence: ; Tel.: +82-31-299-6126
| |
Collapse
|
3
|
Qu Y, Sun Y, Yang Z, Ding C. Calcium Ions Signaling: Targets for Attack and Utilization by Viruses. Front Microbiol 2022; 13:889374. [PMID: 35859744 PMCID: PMC9289559 DOI: 10.3389/fmicb.2022.889374] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/15/2022] [Indexed: 12/25/2022] Open
Abstract
Calcium, as a second intracellular messenger, participate in various physiological and biochemical processes, including cell growth and proliferation, energy metabolism, information transfer, cell death, and immune response. Ca2+ channels or pumps in plasma and organelle membranes and Ca2+-related proteins maintain Ca2+ homeostasis by regulating Ca2+ inflow, outflow and buffering to avoid any adverse effects caused by Ca2+ overload or depletion. Thus, Ca2+ signaling also provides a target for virus invasion, replication, proliferation and release. After hijacking the host cell, viruses exploit Ca2+ signaling to regulate apoptosis and resist host immunity to establish persistent infection. In this review, we discuss cellular Ca2+ signaling and channels, interaction of calcium-associated proteins with viruses, and host cell fate, as well as the role of Ca2+ in cell death and antiviral response during viral infection.
Collapse
Affiliation(s)
- Yang Qu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Yingjie Sun
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Zengqi Yang,
| | - Chan Ding
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- *Correspondence: Chan Ding,
| |
Collapse
|
4
|
Abstract
Hepatitis B virus (HBV) is a hepatotropic virus and an important human pathogen. There are an estimated 296 million people in the world that are chronically infected by this virus, and many of them will develop severe liver diseases including hepatitis, cirrhosis and hepatocellular carcinoma (HCC). HBV is a small DNA virus that replicates via the reverse transcription pathway. In this review, we summarize the molecular pathways that govern the replication of HBV and its interactions with host cells. We also discuss viral and non-viral factors that are associated with HBV-induced carcinogenesis and pathogenesis, as well as the role of host immune responses in HBV persistence and liver pathogenesis.
Collapse
Affiliation(s)
- Yu-Chen Chuang
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Kuen-Nan Tsai
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Jing-Hsiung James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| |
Collapse
|
5
|
Panda S, Behera S, Alam MF, Syed GH. Endoplasmic reticulum & mitochondrial calcium homeostasis: The interplay with viruses. Mitochondrion 2021; 58:227-242. [PMID: 33775873 DOI: 10.1016/j.mito.2021.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 03/08/2021] [Accepted: 03/22/2021] [Indexed: 02/08/2023]
Abstract
Calcium ions (Ca2+) act as secondary messengers in a plethora of cellular processes and play crucial role in cellular organelle function and homeostasis. The average resting concentration of Ca2+ is nearly 100 nM and in certain cells it can reach up to 1 µM. The high range of Ca2+ concentration across the plasma membrane and intracellular Ca2+ stores demands a well-coordinated maintenance of free Ca2+ via influx, efflux, buffering and storage. Endoplasmic Reticulum (ER) and Mitochondria depend on Ca2+ for their function and also serve as major players in intracellular Ca2+ homeostasis. The ER-mitochondria interplay helps in orchestrating cellular calcium homeostasis to avoid any detrimental effect resulting from Ca2+ overload or depletion. Since Ca2+ plays a central role in many biological processes it is an essential component of the virus-host interactions. The large gradient across membranes enable the viruses to easily modulate this buffered environment to meet their needs. Viruses exploit Ca2+ signaling to establish productive infection and evade the host immune defense. In this review we will detail the interplay between the viruses and cellular & ER-mitochondrial calcium signaling and the significance of these events on viral life cycle and disease pathogenesis.
Collapse
Affiliation(s)
- Swagatika Panda
- Institute of Life Sciences, Bhubaneswar, Virus-Host Interaction Lab, Institute of Life Sciences, Bhubaneswar, India
| | - Suchismita Behera
- Institute of Life Sciences, Bhubaneswar, Clinical Proteomics Laboratory, Institute of Life Sciences, Bhubaneswar, India
| | - Mohd Faraz Alam
- Institute of Life Sciences, Bhubaneswar, Virus-Host Interaction Lab, Institute of Life Sciences, Bhubaneswar, India
| | - Gulam Hussain Syed
- Institute of Life Sciences, Bhubaneswar, Virus-Host Interaction Lab, Institute of Life Sciences, Bhubaneswar, India.
| |
Collapse
|
6
|
Zhang Y, Yan Q, Gong L, Xu H, Liu B, Fang X, Yu D, Li L, Wei T, Wang Y, Wong CN, Lyu Z, Tang Y, Sham PC, Guan XY. C-terminal truncated HBx initiates hepatocarcinogenesis by downregulating TXNIP and reprogramming glucose metabolism. Oncogene 2020; 40:1147-1161. [PMID: 33323975 PMCID: PMC7878188 DOI: 10.1038/s41388-020-01593-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/16/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
Chronic hepatitis B virus (HBV) infection is strongly associated with the initiation and development of hepatocellular carcinoma (HCC). However, the genetic alterations and pathogenesis mechanisms remain significantly unexplored, especially for HBV-induced metabolic reprogramming. Analysis of integration breakpoints in HBV-positive HCC samples revealed the preferential clustering pattern within the 3′-end of X gene in the HBV genome, leading to the production of C-terminal truncated X protein (Ct-HBx). In this study, we not only characterized the oncogenic role of two Ct-HBx (HBx-120 and HBx-134) via in vitro and in vivo functional assays but also deciphered their underlying molecular mechanisms. Gene expression profiling by transcriptome sequencing identified potential targets of Ct-HBx and novel malignant hallmarks such as glycolysis, cell cycle, and m-TORC1 signaling in Ct-HBx-expressing cells. TXNIP, a well-established regulator of glucose metabolism, was shown to be downregulated by Ct-HBx and play a pivotal role in Ct-HBx-mediated HCC progression. Suppression of TXNIP is frequently observed in HCC patients with Ct-HBx expression and significantly (P = 0.015) correlated to a poorer prognosis. Re-introduction of TXNIP attenuated the metabolic reprogramming induced by the Ct-HBx and inhibited the tumor growth in the mice model. Further study suggested that Ct-HBx could downregulate TXNIP via a transcriptional repressor nuclear factor of activated T cells 2 (NFACT2). Collectively, our findings indicate that TXNIP plays a critical role in Ct-HBx-mediated hepatocarcinogenesis, serving as a novel therapeutic strategy in HCC treatment.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
| | - Qian Yan
- Research Center of Medical Science, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510030, China.,Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Lanqi Gong
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
| | - Hang Xu
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Beilei Liu
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
| | - Xiaona Fang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
| | - Dandan Yu
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, Hong Kong.,Department of Biology, The Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lei Li
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ting Wei
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Ying Wang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ching Ngar Wong
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
| | - Zhaojie Lyu
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ying Tang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
| | - Pak Chung Sham
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, Hong Kong. .,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, Hong Kong. .,Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China. .,State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
7
|
Ling LR, Zheng DH, Zhang ZY, Xie WH, Huang YH, Chen ZX, Wang XZ, Li D. Effect of HBx on inflammation and mitochondrial oxidative stress in mouse hepatocytes. Oncol Lett 2020; 19:2861-2869. [PMID: 32218840 PMCID: PMC7068664 DOI: 10.3892/ol.2020.11404] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus × protein (HBx) serves an important role in the pathogenesis of the hepatitis B virus infection. Previous studies have reported that the interaction between HBx and hepatocyte mitochondria is an important factor leading to liver cell injury and apoptosis, ultimately inducing the formation of liver cancer. In the present study, a mouse model expressing HBx was constructed using hydrodynamic in vivo transfection based on the interaction between HBx and cytochrome c oxidase (COX) subunit III. The specific mechanism of HBx-induced oxidative stress in mouse hepatocytes and the subsequent effect on mitochondrial function and inflammatory injury was assessed. The results demonstrated that HBx reduced the activity of COX and the expression of superoxide dismutase and upregulated the expression of malondialdehyde, NF-κB and phospho-AKT, thus increasing oxidative stress. In addition, HBx induced an increase in interleukin (IL)-6, IL-1β and IL-18 expression levels, which created an inflammatory microenvironment in the liver, further promoting hepatocyte inflammatory injury. Therefore, it was proposed that HBx may affect hepatocyte mitochondrial respiration by reducing the activity of cytochrome c oxidase, leading to mitochondrial dysfunction and inducing hepatocyte inflammation and injury.
Collapse
Affiliation(s)
- Li-Rong Ling
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Dan-Hua Zheng
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Zhi-Yang Zhang
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Wen-Hui Xie
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Yue-Hong Huang
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Zhi-Xin Chen
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Xiao-Zhong Wang
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Dan Li
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
8
|
Rana MA, Ijaz B, Daud M, Tariq S, Nadeem T, Husnain T. Interplay of Wnt β-catenin pathway and miRNAs in HBV pathogenesis leading to HCC. Clin Res Hepatol Gastroenterol 2019; 43:373-386. [PMID: 30377095 DOI: 10.1016/j.clinre.2018.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 09/05/2018] [Accepted: 09/24/2018] [Indexed: 02/04/2023]
Abstract
The prevalence of Hepatocellular carcinoma (HCC) has been identified world-wide. Plethora of factors including chronic infection of HBV/HCV has been characterized for the development of HCC. Although the onset and progression of HCC has been linked with awry of various signaling pathways but precise mechanism, still lies under the multitude layers of curiosity. HBV is spreading with insane speed throughout the world and has been found a main culprit in HCC development after regulating the several cellular pathways including Wnt/β-catenin, Raf/MAPK, Akt and affecting cell multiplication to genomic instability. The role of Wnt/FZD/β-catenin signaling pathway is centralized in liver functions and its anomalous activation leads to HCC development. β-catenin mainly plays a pivotal role in canonical pathway of the system. Altered mainly overexpression of β-catenin along its nuclear localization tunes the aberrations in liver functions and set disease progression. In the development of HCC, modulation of Wnt/FZD/β-catenin signaling pathway by HBV has been established. As HBV infects the cell it affects the miRNAs, the master regulators of cell. Previous studies showed the connection between HBV and cellular miRNAs. In the present review, we unveiled how HBV is deciphering the cellular miRNAs like miR-26a, miR-15a, miR-16-1, miR-148a, miR-132, miR-122, miR-34a, miR-21, miR-29a, miR-222 and miR-199a/b-3p to modulate the Wnt/FZD/β-catenin signaling pathway and develop HCC. These HBV mediated miRNAs may prove future therapeutic options to treat HBV-Wnt/FZD/β-catenin associated HCC.
Collapse
Affiliation(s)
- Muhammad Adeel Rana
- Department of microbiology, Quaid-i-Azam University, Islamabad, Pakistan; Centre of Excellence in Molecular Biology, University of the Punjab, Lahore Pakistan
| | - Bushra Ijaz
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore Pakistan.
| | - Muhammad Daud
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore Pakistan
| | - Sommyya Tariq
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore Pakistan
| | - Tariq Nadeem
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore Pakistan
| | - Tayyab Husnain
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore Pakistan
| |
Collapse
|
9
|
Ghosh S, Kaushik A, Khurana S, Varshney A, Singh AK, Dahiya P, Thakur JK, Sarin SK, Gupta D, Malhotra P, Mukherjee SK, Bhatnagar RK. An RNAi-based high-throughput screening assay to identify small molecule inhibitors of hepatitis B virus replication. J Biol Chem 2017; 292:12577-12588. [PMID: 28584057 DOI: 10.1074/jbc.m117.775155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 06/04/2017] [Indexed: 01/28/2023] Open
Abstract
Persistent or chronic infection with the hepatitis B virus (HBV) represents one of the most common viral diseases in humans. The hepatitis B virus deploys the hepatitis B virus X protein (HBx) as a suppressor of host defenses consisting of RNAi-based silencing of viral genes. Because of its critical role in countering host defenses, HBx represents an attractive target for antiviral drugs. Here, we developed and optimized a loss-of-function screening procedure, which identified a potential pharmacophore that abrogated HBx RNAi suppression activity. In a survey of 14,400 compounds in the Maybridge Screening Collection, we prioritized candidate compounds via high-throughput screening based on reversal of green fluorescent protein (GFP)-reported, RNAi-mediated silencing in a HepG2/GFP-shRNA RNAi sensor line. The screening yielded a pharmacologically active compound, N-(2,4-difluorophenyl)-N'-[3-(1H-imidazol-1-yl) propyl] thiourea (IR415), which blocked HBx-mediated RNAi suppression indicated by the GFP reporter assay. We also found that IR415 reversed the inhibitory effect of HBx protein on activity of the Dicer endoribonuclease. We further confirmed the results of the primary screen in IR415-treated, HBV-infected HepG2 cells, which exhibited a marked depletion of HBV core protein synthesis and down-regulation of pre-genomic HBV RNA. Using a molecular interaction analysis system, we confirmed that IR415 selectively targets HBx in a concentration-dependent manner. The screening assay presented here allows rapid and improved detection of small-molecule inhibitors of HBx and related viral proteins. The assay may therefore potentiate the development of next-generation RNAi pathway-based therapeutics and promises to accelerate our search for novel and effective drugs in antiviral research.
Collapse
Affiliation(s)
- Subhanita Ghosh
- Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110067 New Delhi, India
| | - Abhinav Kaushik
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110067 New Delhi, India
| | - Sachin Khurana
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110067 New Delhi, India
| | - Aditi Varshney
- Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, 110070 New Delhi, India
| | - Avishek Kumar Singh
- Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, 110070 New Delhi, India
| | - Pradeep Dahiya
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 110067 New Delhi, India
| | - Jitendra K Thakur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 110067 New Delhi, India
| | - Shiv Kumar Sarin
- Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, 110070 New Delhi, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110067 New Delhi, India
| | - Pawan Malhotra
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110067 New Delhi, India,.
| | - Sunil K Mukherjee
- Division of Plant Pathology, Indian Agriculture Research Institute, 110012 New Delhi, India.
| | - Raj K Bhatnagar
- Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110067 New Delhi, India.
| |
Collapse
|
10
|
Chen S, Dong Z, Yang P, Wang X, Jin G, Yu H, Chen L, Li L, Tang L, Bai S, Yan H, Shen F, Cong W, Wen W, Wang H. Hepatitis B virus X protein stimulates high mobility group box 1 secretion and enhances hepatocellular carcinoma metastasis. Cancer Lett 2017; 394:22-32. [PMID: 28216372 DOI: 10.1016/j.canlet.2017.02.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 01/17/2017] [Accepted: 02/10/2017] [Indexed: 12/20/2022]
Abstract
Hepatitis B virus X protein (HBx) plays an important role in the progression of hepatocellular carcinoma. Here we reported that overexpression of HBx in hepatocellular carcinoma (HCC) cells could induce the secretion of high-mobility group box 1 (HMGB1) to promote invasion and metastasis of HCC in an autocrine/paracrine manner. HBx triggered an increase of cytoplasmic calcium and activated CAMKK/CAMKIV pathway, leading to subsequent translocation and release of HMGB1. HMGB1 neutralizing antibody, as well as calcium chelator or inhibitors of CAMKK/CAMKIV, could remarkably reduce invasion and metastasis of HCC cells in vitro and in a murine HCC metastasis model in vivo. Furthermore, the level of HMGB1 in patient serum and tumor tissues was positively correlated with HBV DNA load. We demonstrate an inverse relationship between HMGB1 in tumor cytoplasm and overall prognosis of HCC patients. CONCLUSION HBx promotes the progression of HCC through translocation and secretion of HMGB1 from tumor cells via calcium dependent cascades. These data indicates that HMGB1 could serve as a novel prognostic biomarker and potential therapeutic target for HBV-related HCC.
Collapse
Affiliation(s)
- Shuzhen Chen
- National Center for Liver Cancer, Second Military Medical University, 225 Changhai Road, Shanghai 200438, China; International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Zihui Dong
- National Center for Liver Cancer, Second Military Medical University, 225 Changhai Road, Shanghai 200438, China; International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Pinghua Yang
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xianming Wang
- National Center for Liver Cancer, Second Military Medical University, 225 Changhai Road, Shanghai 200438, China
| | - Guangzhi Jin
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Han Yu
- National Center for Liver Cancer, Second Military Medical University, 225 Changhai Road, Shanghai 200438, China; International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Lei Chen
- National Center for Liver Cancer, Second Military Medical University, 225 Changhai Road, Shanghai 200438, China; International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Liang Li
- National Center for Liver Cancer, Second Military Medical University, 225 Changhai Road, Shanghai 200438, China; International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Liang Tang
- National Center for Liver Cancer, Second Military Medical University, 225 Changhai Road, Shanghai 200438, China; International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Shilei Bai
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Hexin Yan
- National Center for Liver Cancer, Second Military Medical University, 225 Changhai Road, Shanghai 200438, China; International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Feng Shen
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Wenming Cong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Wen Wen
- National Center for Liver Cancer, Second Military Medical University, 225 Changhai Road, Shanghai 200438, China; International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China.
| | - Hongyang Wang
- National Center for Liver Cancer, Second Military Medical University, 225 Changhai Road, Shanghai 200438, China; International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China; Ministry of Education (MOE) Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Second Military Medical University, Shanghai, China.
| |
Collapse
|
11
|
Park SH, Lee SM, Kim YJ, Kim S. ChARM: Discovery of combinatorial chromatin modification patterns in hepatitis B virus X-transformed mouse liver cancer using association rule mining. BMC Bioinformatics 2016; 17:452. [PMID: 28105934 PMCID: PMC5249029 DOI: 10.1186/s12859-016-1307-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Various chromatin modifications, identified in large-scale epigenomic analyses, are associated with distinct phenotypes of different cells and disease phases. To improve our understanding of these variations, many computational methods have been developed to discover novel sites and cell-specific chromatin modifications. Despite the availability of existing methods, there is still room for further improvement when they are applied to resolve the histone code hypothesis. Hence, we aim to investigate the development of a computational method to provide new insights into de novo combinatorial pattern discovery of chromatin modifications to characterize epigenetic variations in distinct phenotypes of different cells. Results We report a new computational approach, ChARM (Combinatorial Chromatin Modification Patterns using Association Rule Mining), that can be employed for the discovery of de novo combinatorial patterns of differential chromatin modifications. We used ChARM to analyse chromatin modification data from the livers of normal (non-cancerous) mice and hepatitis B virus X (HBx)-transgenic mice with hepatocellular carcinoma, and discovered 2,409 association rules representing combinatorial chromatin modification patterns. Among these, the combination of three histone modifications, a loss of H3K4Me3 and gains of H3K27Me3 and H3K36Me3, was the most striking pattern associated with the cancer. This pattern was enriched in functional elements of the mouse genome such as promoters, coding exons and 5′UTR with high CpG content, and CpG islands. It also showed strong correlations with polymerase activity at promoters and DNA methylation levels at gene bodies. We found that 30 % of the genes associated with the pattern were differentially expressed in the HBx compared to the normal, and 78.9 % of these genes were down-regulated. The significant canonical pathways (Wnt/ß-catenin, cAMP, Ras, and Notch signalling) that were enriched in the pattern could account for the pathogenesis of HBx. Conclusions ChARM, an unsupervised method for discovering combinatorial chromatin modification patterns, can identify histone modifications that occur globally. ChARM provides a scalable framework that can easily be applied to find various levels of combination patterns, which should reflect a range of globally common to locally rare chromatin modifications. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1307-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sung Hee Park
- Department of Bioinformatics and Life Science, Soongsil University, Seoul, 156-743, Republic of Korea
| | - Sun-Min Lee
- Department of Biochemistry, College of Life Science and Technology, Yonsei University, Seoul, 120-749, Republic of Korea
| | - Young-Joon Kim
- Department of Biochemistry, College of Life Science and Technology, Yonsei University, Seoul, 120-749, Republic of Korea. .,Department of Integrated Omics for Biomedical Science, World Class University Program, Yonsei University, Seoul, 120-749, Republic of Korea.
| | - Sangsoo Kim
- Department of Bioinformatics and Life Science, Soongsil University, Seoul, 156-743, Republic of Korea.
| |
Collapse
|
12
|
Fan XP, Ji XF, Li XY, Gao S, Fan YC, Wang K. Methylation of the Glutathione-S-Transferase P1 Gene Promoter Is Associated with Oxidative Stress in Patients with Chronic Hepatitis B. TOHOKU J EXP MED 2016; 238:57-64. [PMID: 26725685 DOI: 10.1620/tjem.238.57] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Glutathione-S-transferase P1 (GSTP1) and glutathione-S-transferase M3 (GSTM3) catalyze the glutathione-related clearance of xenobiotics. The methylation of these gene promoters was associated with oxidative stress that induced liver damage. This study aims to explore the relationship among GSTP1 and GSTM3 methylation, DNA methyltransferases (DNMTs) expression, and oxidative stress in patients with chronic hepatitis B (CHB). We retrospectively enrolled 153 patients with CHB and 40 healthy controls (HCs). The GSTP1 and GSTM3 methylation status, DNMTs mRNA levels in peripheral mononuclear cells (PBMCs) and TNF-α and malondialdehyde (MDA) levels in plasma were detected. GSTP1 methylation was significantly higher in patients with CHB than HCs (P = 0.047). Patients with HBeAg-positive CHB showed significantly higher GSTP1 methylation than those with HBeAg-negative CHB (P = 0.017) and HCs (P = 0.007). No significant difference was observed between GSTP1 methylation in HBeAg-negative CHB and HCs (P = 0.191). DNMT1 and DNMT3a mRNA levels were significantly higher in participants with GSTP1 methylation than those without. In patients with CHB, the degree of GSTP1 promoter methylation was significantly correlated with DNMT1 mRNA, DNMT3a mRNA, TNF-α, MDA, HBeAg, ALT, AST and TBIL. In contrast, no significant difference was found between GSTM3 methylation in patients with CHB and HCs (P = 0.079). Meanwhile, no significant difference could be observed between GSTM3 promoter methylation in patients with HBeAg-positive CHB and HBeAg-negative CHB (P = 0.146). Therefore, this study demonstrated that GSTP1 hypermethylation was associated with DNMT1, DNMT3a overexpression and oxidative stress in patients with HBeAg-positive CHB.
Collapse
Affiliation(s)
- Xiao-Peng Fan
- Department of Hepatology, Qilu Hospital of Shandong University
| | | | | | | | | | | |
Collapse
|
13
|
Lamontagne RJ, Bagga S, Bouchard MJ. Hepatitis B virus molecular biology and pathogenesis. HEPATOMA RESEARCH 2016; 2:163-186. [PMID: 28042609 PMCID: PMC5198785 DOI: 10.20517/2394-5079.2016.05] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As obligate intracellular parasites, viruses need a host cell to provide a milieu favorable to viral replication. Consequently, viruses often adopt mechanisms to subvert host cellular signaling processes. While beneficial for the viral replication cycle, virus-induced deregulation of host cellular signaling processes can be detrimental to host cell physiology and can lead to virus-associated pathogenesis, including, for oncogenic viruses, cell transformation and cancer progression. Included among these oncogenic viruses is the hepatitis B virus (HBV). Despite the availability of an HBV vaccine, 350-500 million people worldwide are chronically infected with HBV, and a significant number of these chronically infected individuals will develop hepatocellular carcinoma (HCC). Epidemiological studies indicate that chronic infection with HBV is the leading risk factor for the development of HCC. Globally, HCC is the second highest cause of cancer-associated deaths, underscoring the need for understanding mechanisms that regulate HBV replication and the development of HBV-associated HCC. HBV is the prototype member of the Hepadnaviridae family; members of this family of viruses have a narrow host range and predominately infect hepatocytes in their respective hosts. The extremely small and compact hepadnaviral genome, the unique arrangement of open reading frames, and a replication strategy utilizing reverse transcription of an RNA intermediate to generate the DNA genome are distinguishing features of the Hepadnaviridae. In this review, we provide a comprehensive description of HBV biology, summarize the model systems used for studying HBV infections, and highlight potential mechanisms that link a chronic HBV-infection to the development of HCC. For example, the HBV X protein (HBx), a key regulatory HBV protein that is important for HBV replication, is thought to play a cofactor role in the development of HBV-induced HCC, and we highlight the functions of HBx that may contribute to the development of HBV-associated HCC.
Collapse
Affiliation(s)
- R. Jason Lamontagne
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- The Wistar Institute, Philadelphia, PA 19104, USA
| | - Sumedha Bagga
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Michael J. Bouchard
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
14
|
Slagle BL, Bouchard MJ. Hepatitis B Virus X and Regulation of Viral Gene Expression. Cold Spring Harb Perspect Med 2016; 6:a021402. [PMID: 26747833 DOI: 10.1101/cshperspect.a021402] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The efficient replication of hepatitis B virus (HBV) requires the HBV regulatory hepatitis B virus X (HBx) protein. The exact contributions of HBx are not fully understood, in part because of the limitations of the assays used for its study. When HBV replication is driven from a plasmid DNA, the contribution of HBx is modest. However, there is an absolute requirement for HBx in assays that recapitulate the infectious virus life cycle. There is much evidence that HBx can contribute directly to HBV replication by acting on viral promoters embedded within protein coding sequences. In addition, HBx may also contribute indirectly by modulating cellular pathways to benefit virus replication. Understanding the mechanism(s) of HBx action during virus replication may provide insight into novel ways to disrupt chronic HBV replication.
Collapse
Affiliation(s)
- Betty L Slagle
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030
| | - Michael J Bouchard
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| |
Collapse
|
15
|
Lamontagne J, Steel LF, Bouchard MJ. Hepatitis B virus and microRNAs: Complex interactions affecting hepatitis B virus replication and hepatitis B virus-associated diseases. World J Gastroenterol 2015; 21:7375-7399. [PMID: 26139985 PMCID: PMC4481434 DOI: 10.3748/wjg.v21.i24.7375] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/25/2015] [Accepted: 05/21/2015] [Indexed: 02/06/2023] Open
Abstract
Chronic infection with the hepatitis B virus (HBV) is the leading risk factor for the development of hepatocellular carcinoma (HCC). With nearly 750000 deaths yearly, hepatocellular carcinoma is the second highest cause of cancer-related death in the world. Unfortunately, the molecular mechanisms that contribute to the development of HBV-associated HCC remain incompletely understood. Recently, microRNAs (miRNAs), a family of small non-coding RNAs that play a role primarily in post-transcriptional gene regulation, have been recognized as important regulators of cellular homeostasis, and altered regulation of miRNA expression has been suggested to play a significant role in virus-associated diseases and the development of many cancers. With this in mind, many groups have begun to investigate the relationship between miRNAs and HBV replication and HBV-associated disease. Multiple findings suggest that some miRNAs, such as miR-122, and miR-125 and miR-199 family members, are playing a role in HBV replication and HBV-associated disease, including the development of HBV-associated HCC. In this review, we discuss the current state of our understanding of the relationship between HBV and miRNAs, including how HBV affects cellular miRNAs, how these miRNAs impact HBV replication, and the relationship between HBV-mediated miRNA regulation and HCC development. We also address the impact of challenges in studying HBV, such as the lack of an effective model system for infectivity and a reliance on transformed cell lines, on our understanding of the relationship between HBV and miRNAs, and propose potential applications of miRNA-related techniques that could enhance our understanding of the role miRNAs play in HBV replication and HBV-associated disease, ultimately leading to new therapeutic options and improved patient outcomes.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/virology
- Cell Transformation, Viral
- Gene Expression Regulation, Neoplastic
- Genetic Therapy
- Hepatitis B virus/genetics
- Hepatitis B virus/growth & development
- Hepatitis B virus/metabolism
- Hepatitis B, Chronic/complications
- Hepatitis B, Chronic/therapy
- Hepatitis B, Chronic/virology
- Host-Pathogen Interactions
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Liver Neoplasms/virology
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Virus Replication
Collapse
|
16
|
Wang D, Cai H, Yu WB, Yu L. Identification of hepatitis B virus X gene variants between hepatocellular carcinoma tissues and pericarcinoma liver tissues in Eastern China. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:5988-5996. [PMID: 25337243 PMCID: PMC4203214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/24/2014] [Indexed: 06/04/2023]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) is one of the most malignant tumors worldwide, especially in Eastern China where HBV infection confirmed as the most important pathological element. HBV X gene, extremely easy to mutate and integrate into hepatocytes, plays a significant role in HBV infection and HCC development. We deduced that mutations of integrated HBx gene make transformation more malignant. The aim of the study was to investigate whether there were different mutation patterns between the HCC tissues and the pericarcinoma liver tissues (PCLT) from patients with HCC in Eastern China. METHODS HBx genes extracted from 287 HCC tissue samples and 195 PCLT tissue samples were analyzed by sequence alignment and stratified analysis with the matched medical records. RESULTS Mutations occurred complicated and changeable in both HCC and PCLT. COOH-terminal truncation is more frequently found in HCC than PCLT (P < 0.05). There is no single site mutation of nucleic acid or amino acid makes distribution discrepancy between HCC and PCLT. Hydrophobic/hydrophilic character of amino acid of site 43, 47, 127, 131, 132 make distribution discrepancy between HCC and PCLT in men when stratified for gender (P < 0.05). Hydrophobic/hydrophilic character of amino acid of site 40 makes distribution discrepancy between HCC and PCLT in both male and female (P < 0.05). Hydrophobic/hydrophilic character of amino acid of site 47 and 127 make significant discrepancy among clinical stage I, II, III (P < 0.05). CONCLUSIONS During the infection and replication of HBV, HBx mutates to adjust itself to the hepatocyte and increase the carcinogenesis. COOH-terminal truncated HBX may play a stimulative role in HBV-related HCC carcinogenesis as well as hydrophobic/hydrophilic character changes in some specific amino acid sites.
Collapse
Affiliation(s)
- Dan Wang
- The State Key Laboratory of Genetics Engineering, Fudan University Shanghai, 200433, P.R. China
| | - Hao Cai
- The State Key Laboratory of Genetics Engineering, Fudan University Shanghai, 200433, P.R. China
| | - Wen-Bo Yu
- The State Key Laboratory of Genetics Engineering, Fudan University Shanghai, 200433, P.R. China
| | - Long Yu
- The State Key Laboratory of Genetics Engineering, Fudan University Shanghai, 200433, P.R. China
| |
Collapse
|
17
|
Hsieh YH, Su IJ, Yen CJ, Tsai TF, Tsai HW, Tsai HN, Huang YJ, Chen YY, Ai YL, Kao LY, Hsieh WC, Wu HC, Huang W. Histone deacetylase inhibitor suberoylanilide hydroxamic acid suppresses the pro-oncogenic effects induced by hepatitis B virus pre-S2 mutant oncoprotein and represents a potential chemopreventive agent in high-risk chronic HBV patients. Carcinogenesis 2012; 34:475-85. [PMID: 23172669 DOI: 10.1093/carcin/bgs365] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection is the major cause of hepatocellular carcinoma (HCC). The pre-S(2) mutant large HBV surface antigen (LHBS) in type II ground glass hepatocytes (GGHs) has been recognized as an emerging viral oncoprotein; it directly interacts with the c-Jun activation domain-binding protein 1 (JAB1) and subsequently causes hyperphosphorylation of the tumor-suppressor retinoblastoma and, consequently, leads to disturbed cell cycle progression. The interaction of the pre-S(2) mutant LHBS with JAB1 could provide a potential target for chemoprevention. In this study, we found that the preneoplastic type II GGHs showed a significant decrease of the cyclin-dependent kinase inhibitor p27(Kip1), which serves as a marker for pre-S(2) mutant-JAB1 complex formation. The histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) elevated expression of the tumor-suppressor thioredoxin-binding protein 2 (TBP2), which subsequently enhanced the JAB1-TBP2 interaction and abolished the pre-S(2) mutant LHBS-induced degradation of p27(Kip1), which, in turn, recovered the normal cell cycle checkpoint. The pre-S(2) mutant LHBS-induced pro-oncogenic effects: increased cell proliferation, nuclear/cytoplasmic ratio and proliferating cell nuclear antigen expression, were all greatly ameliorated after SAHA treatments, which suggested SAHA as a promising chemopreventive agent for the pre-S(2) mutant oncoprotein-induced HCC. In conclusion, this study provides the mechanism of histone deacetylase (HDAC) inhibitor in preventing the pre-S(2) mutant-induced oncogenic phenotype. The HDAC inhibitor SAHA is therefore a potential chemopreventive agent for high-risk chronic HBV patients who may develop HCC.
Collapse
Affiliation(s)
- Yi-Hsuan Hsieh
- The Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hepatitis B virus X protein targets the Bcl-2 protein CED-9 to induce intracellular Ca2+ increase and cell death in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2012; 109:18465-70. [PMID: 23091037 DOI: 10.1073/pnas.1204652109] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
HBx is a multifunctional hepatitis B virus (HBV) protein that is crucial for HBV infection and pathogenesis and a contributing cause of hepatocyte carcinogenesis. However, the host targets and mechanisms of action of HBx are poorly characterized. We show here that expression of HBx in Caenorhabditis elegans induces both necrotic and apoptotic cell death, mimicking an early event of liver infection by HBV. Genetic and biochemical analyses indicate that HBx interacts directly with the B-cell lymphoma 2 (Bcl-2) homolog CED-9 (cell death abnormal) through a Bcl-2 homology 3 (BH3)-like motif to trigger both cytosolic Ca(2+) increase and cell death. Importantly, Bcl-2 can substitute for CED-9 in mediating HBx-induced cell killing in C. elegans, suggesting that CED-9 and Bcl-2 are conserved cellular targets of HBx. A genetic suppressor screen of HBx-induced cell death has produced many mutations, including mutations in key regulators from both apoptosis and necrosis pathways, indicating that this screen can identify new apoptosis and necrosis genes. Our results suggest that C. elegans could serve as an animal model for identifying crucial host factors and signaling pathways of HBx and aid in development of strategies to treat HBV-induced liver disorders.
Collapse
|
19
|
Hepatitis B virus X protein targets the Bcl-2 protein CED-9 to induce intracellular Ca2+ increase and cell death in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2012; 109:18471-6. [PMID: 23091037 DOI: 10.1073/pnas.1204668109] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
HBx is a multifunctional hepatitis B virus (HBV) protein that is crucial for HBV infection and pathogenesis and a contributing cause of hepatocyte carcinogenesis. However, the host targets and mechanisms of action of HBx are poorly characterized. We show here that expression of HBx in Caenorhabditis elegans induces both necrotic and apoptotic cell death, mimicking an early event of liver infection by HBV. Genetic and biochemical analyses indicate that HBx interacts directly with the B-cell lymphoma 2 (Bcl-2) homolog CED-9 (cell death abnormal) through a Bcl-2 homology 3 (BH3)-like motif to trigger both cytosolic Ca(2+) increase and cell death. Importantly, Bcl-2 can substitute for CED-9 in mediating HBx-induced cell killing in C. elegans, suggesting that CED-9 and Bcl-2 are conserved cellular targets of HBx. A genetic suppressor screen of HBx-induced cell death has produced many mutations, including mutations in key regulators from both apoptosis and necrosis pathways, indicating that this screen can identify new apoptosis and necrosis genes. Our results suggest that C. elegans could serve as an animal model for identifying crucial host factors and signaling pathways of HBx and aid in development of strategies to treat HBV-induced liver disorders.
Collapse
|
20
|
HBx induces HepG-2 cells autophagy through PI3K/Akt-mTOR pathway. Mol Cell Biochem 2012; 372:161-8. [PMID: 23001846 DOI: 10.1007/s11010-012-1457-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 09/07/2012] [Indexed: 12/18/2022]
Abstract
Chronic hepatitis B virus infection is the dominant global cause of hepatocellular carcinoma (HCC), especially hepatitis B virus-X (HBx) plays a major role in this process. HBx protein promotes cell cycle progression, inactivates negative growth regulators, and binds to and inhibits the expression of p53 tumor suppressor gene and other tumor suppressor genes and senescence-related factors. However, the relationship between HBx and autophagy during the HCC development is poorly known. Previous studies found that autophagy functions as a survival mechanism in liver cancer cells. We suggest that autophagy plays a possible role in the pathogenesis of HBx-induced HCC. The present study showed that HBx transfection brought about an increase in the formation of autophagosomes and autolysosomes. Microtubule-associated protein light chain 3, Beclin 1, and lysosome-associated membrane protein 2a were up-regulated after HBx transfection. HBx-induced increase in the autophagic level was increased by mTOR inhibitor rapamycin and was blocked by treatment with the PI3K-Akt inhibitor LY294002. The same results can also be found in HepG2.2.15 cells. These results suggest that HBx activates the autophagic lysosome pathway in HepG-2 cells through the PI3K-Akt-mTOR pathway.
Collapse
|
21
|
Abstract
Chronic hepatitis B virus (HBV) infection has been identified as a major risk factor in hepatocellular carcinoma (HCC), which is one of the most common cancers worldwide. The pathogenesis of HBV-mediated hepatocarcinogenesis is, however, incompletely understood. Evidence suggests that the HBV X protein (HBx) plays a crucial role in HCC development. HBx is a multifunctional regulator that modulates transcription, signal transduction, cell cycle progression, apoptosis, protein degradation pathways, and genetic stability through interaction with host factors. This review describes the current state of knowledge of the molecular pathogenesis of HBV-induced HCC, with a focus on the role of HBx in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Sue-Ann Ng
- University of New South Wales, Sydney, Australia.
| | | |
Collapse
|
22
|
Martin-Vilchez S, Lara-Pezzi E, Trapero-Marugán M, Moreno-Otero R, Sanz-Cameno P. The molecular and pathophysiological implications of hepatitis B X antigen in chronic hepatitis B virus infection. Rev Med Virol 2011; 21:315-29. [PMID: 21755567 DOI: 10.1002/rmv.699] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 05/23/2011] [Accepted: 05/26/2011] [Indexed: 12/16/2022]
Abstract
Hepatitis B virus is considered one of the most significant environmental carcinogens in humans. Because the mechanisms of HBV replication and the development of hepatocellular carcinoma (HCC) are partially known, HBV-associated pathogenesis remains a challenge to increase its understanding. Evidence suggests that the regulatory protein hepatitis B virus X (HBx) mediates the establishment and maintenance of the chronic carrier state. HBx is a multifunctional and potentially oncogenic protein that is conserved among mammalian hepadnaviruses; it is produced very early after infection and throughout the chronic phase. HBx exerts its effects by interacting with cellular proteins and activating various signaling pathways. HBx stimulates the transcription of genes that regulate cell growth, apoptosis, and DNA repair. It also interacts with proteasome subunits and affects mitochondrial stability. Moreover, HBx participates in processes that are associated with the progression of chronic liver disease, including angiogenesis and fibrosis. This review discusses the function of HBx in the life cycle of HBV and its contribution to the pathogenesis of HCC.
Collapse
Affiliation(s)
- Samuel Martin-Vilchez
- CIBERehd, ISCIII, Madrid, Spain; Servicio Digestivo, Hospital Universitario "La Princesa" and Instituto de Investigación Biomédica "La Princesa", Madrid, Spain
| | | | | | | | | |
Collapse
|
23
|
Kim KH. [Pro-apoptotic function of hepatitis B virus X protein]. THE KOREAN JOURNAL OF HEPATOLOGY 2010; 16:112-22. [PMID: 20606495 DOI: 10.3350/kjhep.2010.16.2.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Infection of hepatitis B virus (HBV) is a main cause of liver diseases including hepatitis, cirrhosis and hepatocellular carcinoma (HCC). Among the HBV-encoded proteins, the HBV X protein (HBx) has been suspected to be strongly involved in HBV-associated liver pathogenesis. HBx, a virally encoded multifunctional regulator, has been shown to induce apoptosis, anti-apoptosis, proliferation, and transformation of cells depending on the cell lines, model systems used, assay protocols, and research groups. Among the several activities of HBx, the pro-apoptotic function of HBx will be discussed in this review. Given that the disruption of apoptosis pathway by HBx contributes to the liver pathogenesis, a better understanding of the molecular interference in the cellular pro-apoptotic networks by HBx will provide useful clues for the intervention in HBV-mediated liver diseases.
Collapse
Affiliation(s)
- Kyun-Hwan Kim
- Department of Pharmacology, School of Medicine and Center for Cancer Research and Diagnostic Medicine, IBST, Konkuk University, Seoul, Korea.
| |
Collapse
|
24
|
Zhou Y, Frey TK, Yang JJ. Viral calciomics: interplays between Ca2+ and virus. Cell Calcium 2009; 46:1-17. [PMID: 19535138 PMCID: PMC3449087 DOI: 10.1016/j.ceca.2009.05.005] [Citation(s) in RCA: 219] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 05/15/2009] [Accepted: 05/18/2009] [Indexed: 12/23/2022]
Abstract
Ca2+ is one of the most universal and versatile signaling molecules and is involved in almost every aspect of cellular processes. Viruses are adept at utilizing the universal Ca2+ signal to create a tailored cellular environment that meets their own demands. This review summarizes most of the known mechanisms by which viruses perturb Ca2+ homeostasis and utilize Ca2+ and cellular Ca2+-binding proteins to their benefit in their replication cycles. Ca2+ plays important roles in virion structure formation, virus entry, viral gene expression, posttranslational processing of viral proteins and virion maturation and release. As part of the review, we introduce an algorithm to identify linear “EF-hand” Ca2+-binding motifs which resulted in the prediction of a total of 93 previously unrecognized Ca2+-binding motifs in virus proteins. Many of these proteins are nonstructural proteins, a class of proteins among which Ca2+ interactions had not been formerly appreciated. The presence of linear Ca2+-binding motifs in viral proteins enlarges the spectrum of Ca2+–virus interplay and expands the total scenario of viral calciomics.
Collapse
Affiliation(s)
- Yubin Zhou
- Department of Chemistry, Georgia State University, 50 Decatur St., Atlanta, GA 30303 USA
| | | | | |
Collapse
|
25
|
|
26
|
Yang L, He J, Chen L, Wang G. Hepatitis B virus X protein upregulates expression of SMYD3 and C-MYC in HepG2 cells. Med Oncol 2008; 26:445-51. [PMID: 19082926 DOI: 10.1007/s12032-008-9144-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 11/21/2008] [Indexed: 01/11/2023]
Abstract
The carcinogenic role of Hepatitis B X (HBX) in hepatocellular carcinoma (HCC) remains largely unknown. Histone H3 lysine 4 methyltransferase SMYD3 was found to be over-expressed and have a pro-carcinogenic effect in HCC. The role of HBX in regulating SMYD3 activity and the corresponding C-MYC gene in HCC carcinogenesis was investigated. SMYD3 and C-MYC expression in HBV-negative HepG2 and HBV-positive HepG2.2.15 were detected by real time PCR and Western blot. After transfection of HBX into HepG2, SMYD3 and C-MYC protein expression was detected and the apoptosis and proliferation of hepatoma cells were assayed. After SMYD3 expression in HepG2 with HBX transfection downregulated by siRNA, the corresponding C-MYC expression, cellular apoptosis, and proliferation were assayed by FACS. SMYD3 mRNA and protein and C-MYC protein were significantly higher in HepG2.2.15 than in HepG2. HBX transfection resulted in enhanced SMYD3 and C-MYC expressions, decreased cell apoptosis, and increased cell proliferation in HepG2 cells. Knocking down of SMYD3 in HepG2 with HBX transfection inhibited C-MYC expression and promoted apoptosis. These results suggest that HBX upregulates SMYD3 expression in HepG2, which may promote hepatoma development and progress. C-MYC may act as a down-stream gene in HBX-SMYD3-related hepatocarcinogenesis.
Collapse
Affiliation(s)
- Lian Yang
- Hepatobiliary Center, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Jiefang Dadao 1277, Wuhan 430022, People's Republic of China
| | | | | | | |
Collapse
|
27
|
Wong CH, Chan SKP, Chan HLY, Tsui SKW, Feitelson M. The Molecular Diagnosis of Hepatitis B Virus-Associated Hepatocellular Carcinoma. Crit Rev Clin Lab Sci 2008; 43:69-101. [PMID: 16531275 DOI: 10.1080/10408360500410407] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatitis B virus (HBV) infection is the major cause of hepatocellular carcinoma (HCC) worldwide. The pathogenesis of HBV-associated HCC has been studied extensively, and molecular changes during malignant transformation have been identified. It has been proposed that the insertion of HBV DNA into the human genome results in chromosomal instability and inactivation of tumor suppressor genes. Transactivation of oncogenes, inactivation of tumor suppressor genes, and alteration of the cell cycle by HBV proteins are also involved in the progression of hepatocellular carcinogenesis. Traditional clinical examinations of HCC, such as biopsy, computer tomography, ultrasonic imaging, and detection of such biomarkers as a-fetoprotein, are currently the "gold standard" in diagnosis. These tests diagnose HCC only in the late stages of disease. This limitation has greatly reduced the chance of survival of HCC patients. To resolve this problem, new biomarkers that can diagnose HCC in earlier stages are necessary. Based on recent molecular studies of the effects of HBV on cellular transformation, differentially expressed biomarkers of HBV infection have been elucidated. With the analyses of the HBV replication profile, the viral load (HBV DNA levels) of patients, and the viral protein expression, the severity of hepatitis in the preneoplastic stages can be assessed. In the future, with the molecular profiles identified by genomic and proteomic approaches, stage-specific biomarkers should be identified to monitor the progression and prognosis of HCC.
Collapse
Affiliation(s)
- Chi-Hang Wong
- Center for Emerging Infectious Diseases, The Chinese University, Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
28
|
Martín-Vílchez S, Sanz-Cameno P, Rodríguez-Muñoz Y, Majano PL, Molina-Jiménez F, López-Cabrera M, Moreno-Otero R, Lara-Pezzi E. The hepatitis B virus X protein induces paracrine activation of human hepatic stellate cells. Hepatology 2008; 47:1872-83. [PMID: 18449922 DOI: 10.1002/hep.22265] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
UNLABELLED Chronic hepatitis B virus (HBV) infection is a major cause of liver fibrosis, eventually leading to cirrhosis and hepatocellular carcinoma. Although the involvement of the X protein of HBV (HBx) in viral replication and tumor development has been extensively studied, little is known about its possible role in the development of fibrosis. In this work we show that expression of HBx in hepatocytes results in paracrine activation and proliferation of hepatic stellate cells (HSCs), the main producers of extracellular matrix proteins in the fibrotic liver. Both human primary HSCs and rat HSCs exposed to conditioned medium from HBx-expressing hepatocytes showed increased expression of collagen I, connective tissue growth factor, alpha smooth muscle actin, matrix metalloproteinase-2, and transforming growth factor-beta (TGF-beta), together with an enhanced proliferation rate. We found that HBx induced TGF-beta secretion in hepatocytes and that the activation of HSCs by conditioned medium from HBx-expressing hepatocytes was prevented by a neutralizing anti-TGF-beta antibody, indicating the involvement of this profibrotic factor in the process. CONCLUSION Our results propose a direct role for HBx in the development of liver fibrosis by the paracrine activation of stellate cells and reinforce the indication of antiviral treatment in patients with advanced HBV-related chronic liver disease and persistent liver replication.
Collapse
Affiliation(s)
- Samuel Martín-Vílchez
- Gastroenterology and Hepatology Service, Hospital Universitario La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Raghavendra PB, Sreenivasan Y, Ramesh GT, Manna SK. Cardiac glycoside induces cell death via FasL by activating calcineurin and NF-AT, but apoptosis initially proceeds through activation of caspases. Apoptosis 2007; 12:307-18. [PMID: 17203245 PMCID: PMC2740376 DOI: 10.1007/s10495-006-0626-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Decrease in caspase activity is a common phenomenon in drug resistance. For effective therapeutic intervention, detection of such agents, which affects other pathway independent of caspases to promote cell death, might be important. Oleandrin, a polyphenolic glycoside induced cell death through activation of caspases in a variety of human tumour cells. In this report we provide evidence that besides caspases activation, oleandrin interacts with plasma membrane, changes fluidity of the membrane, disrupts Na(+)/K(+)-ATPase pump, enhances intracellular free Ca(2+) and thereby activates calcineurin. Calcineurin, in turns, activates nuclear transcription factor NF-AT and its dependent genes such as FasL, which induces cell death as a late response of oleandrin. Cell death at early stages is mediated by caspases where inhibitors partially protected oleandrin-mediated cell death in vector-transfected cells, but almost completely in Bcl-xL-overexpressed cells. Overall, our data suggest that oleandrin might be important therapeutic molecule in case of tumors where cell death pathway occurs due to deregulation of caspase-mediated pathway.
Collapse
Affiliation(s)
- Pongali B. Raghavendra
- Laboratory of Immunology, Centre for DNA Fingerprinting & Diagnostics, Nacharam, Hyderabad 500076, India,
| | - Yashin Sreenivasan
- Laboratory of Immunology, Centre for DNA Fingerprinting & Diagnostics, Nacharam, Hyderabad 500076, India,
| | - Govindarajan T. Ramesh
- G. T. Ramesh, Department of Biology, Texas Southern University, Houston, Texas 77004, USA
| | - Sunil K. Manna
- Laboratory of Immunology, Centre for DNA Fingerprinting & Diagnostics, Nacharam, Hyderabad 500076, India,
| |
Collapse
|
30
|
Chami M, Oulès B, Paterlini-Bréchot P. Cytobiological consequences of calcium-signaling alterations induced by human viral proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1344-62. [PMID: 17059849 DOI: 10.1016/j.bbamcr.2006.09.025] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 09/13/2006] [Accepted: 09/15/2006] [Indexed: 01/25/2023]
Abstract
Since calcium-signaling regulates specific and fundamental cellular processes, it represents the ideal target of viral proteins, in order for the virus to control cellular functions and favour its persistence, multiplication and spread. A detailed analysis of reports focused on the impact of viral proteins on calcium-signaling has shown that virus-related elevations of cytosolic calcium levels allow increased viral protein expression (HIV-1, HSV-1/2), viral replication (HBx, enterovirus 2B, HTLV-1 p12(I), HHV-8, EBV), viral maturation (rotavirus), viral release (enterovirus 2B) and cell immortalization (EBV). Interestingly, virus-induced decreased cytosolic calcium levels have been found to be associated with inhibition of immune cells functions (HIV-1 Tat, HHV-8 K15, EBV LMP2A). Finally, several viral proteins are able to modulate intracellular calcium-signaling to control cell viability (HIV-1 Tat, HTLV-1 p13(II), HCV core, HBx, enterovirus 2B, HHV-8 K7). These data point out calcium-signaling as a key cellular target for viral infection and should stimulate further studies exploring new calcium-related therapeutic strategies.
Collapse
|
31
|
Bouchard MJ, Wang L, Schneider RJ. Activation of focal adhesion kinase by hepatitis B virus HBx protein: multiple functions in viral replication. J Virol 2006; 80:4406-14. [PMID: 16611900 PMCID: PMC1472019 DOI: 10.1128/jvi.80.9.4406-4414.2006] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The hepatitis B virus (HBV) X protein (HBx) is a multifunctional regulator of cellular signal transduction and transcription pathways and has a critical role in HBV replication. Much of the cytoplasmic signal transduction activity associated with HBx expression and its stimulation of viral replication is attributable to HBx-induced activation of calcium signaling pathways involving Pyk2 and Src tyrosine kinases. To further characterize upstream signal transduction pathways that are required for HBx activity, including activation of Src and mitogen-activated protein kinase (MAPK) cascades, we determined whether focal adhesion kinase (FAK), a known regulator of Src family kinases and the other member of the Pyk2/FAK kinase family, is activated by HBx. We report that HBx activates FAK and that FAK activation is important for multiple HBx functions. Dominant inhibiting forms of FAK blocked HBx activation of Src kinases and downstream signal transduction, HBx stimulation of NF-kappaB and AP-1-dependent transcription, and HBV DNA replication. We also demonstrate that HBx-induced activation of FAK is dependent on cellular calcium signaling, which is modulated by HBx. Moreover, prolonged expression of HBx increases both FAK activity and its level of expression. FAK activation may play a role in cellular transformation and cancer progression. HBx stimulation of FAK activity and abundance may also be relevant as a potential cofactor in HBV-associated hepatocellular carcinoma.
Collapse
Affiliation(s)
- Michael J Bouchard
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA
| | | | | |
Collapse
|
32
|
Canellada A, Cano E, Sánchez-Ruiloba L, Zafra F, Redondo JM. Calcium-dependent expression of TNF-α in neural cells is mediated by the calcineurin/NFAT pathway. Mol Cell Neurosci 2006; 31:692-701. [PMID: 16458016 DOI: 10.1016/j.mcn.2005.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 12/16/2005] [Accepted: 12/20/2005] [Indexed: 11/27/2022] Open
Abstract
We report induction of TNF-alpha via the calcium/calcineurin/NFAT pathway in PC12 neural cells. In PC12, expression of TNF-alpha mRNA, protein and TNF-alpha gene promoter activity was induced by co-stimulation with phorbol ester and either calcium ionophore A23187 or the L-type Voltage Gated Calcium Channel agonist Bay K 8644. Pre-treatment with calcineurin inhibitors CsA or FK506 inhibited the dominant calcium-dependent component of this induction, limiting it to the level achieved with phorbol ester alone. Promoter activation by Bay was abolished by nifedipine, a specific inhibitor of L-type Voltage Gated Calcium Channels. Exogenous NFAT protein transactivated the TNF-alpha promoter, and the peptide VIVIT-a specific inhibitor of calcineurin/NFAT binding-blocked calcium-inducible transactivation of the TNF-alpha promoter. Given proposed functions of TNF-alpha in spatial learning, memory and the pathogenesis of neurodegenerative diseases, the data presented suggest an important role for calcineurin/NFAT signaling in these key neurological processes.
Collapse
Affiliation(s)
- Andrea Canellada
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CBM-CSIC), Universidad Autónoma de Madrid (UAM), Facultad de Ciencias, Madrid 28049, Spain
| | | | | | | | | |
Collapse
|
33
|
Zhang S, Lin R, Zhou Z, Wen S, Lin L, Chen S, Shan Y, Cong Y, Wang S. Macrophage migration inhibitory factor interacts with HBx and inhibits its apoptotic activity. Biochem Biophys Res Commun 2006; 342:671-9. [PMID: 16488392 DOI: 10.1016/j.bbrc.2006.01.180] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Accepted: 01/28/2006] [Indexed: 11/18/2022]
Abstract
HBx, a transcriptional transactivating protein of hepatitis B virus (HBV), is required for viral infection and has been implicated in virus-mediated liver oncogenesis. However, the precise molecular mechanism remains largely elusive. We used the yeast two-hybrid system to identify that HBx interacts with MIF directly. Macrophage migration inhibitory factor (MIF) is implicated in the regulation of inflammation, cell growth, and even tumor formation. The interaction between HBx and MIF was verified with co-immunoprecipitation, GST pull-down, and cellular colocalization. The expression of MIF was up-regulated in HBV particle producing cell 2.2.15 compared with HepG2 cell. Both HBx and MIF cause HepG2 cell G(0)/G(1) phase arrest, proliferation inhibition, and apoptosis. However, MIF can counteract the apoptotic effect of HBx. These results may provide evidence to explain the link between HBV infection and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Shimeng Zhang
- Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Beijing 100850, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kim SY, Kim JK, Kim HJ, Ahn JK. Hepatitis B virus X protein sensitizes UV-induced apoptosis by transcriptional transactivation of Fas ligand gene expression. IUBMB Life 2005; 57:651-8. [PMID: 16203685 DOI: 10.1080/15216540500239697] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hepatitis B virus X protein (HBx) is a promiscuous transcriptional transactivator of many viral and cellular promoters. HBx plays an important role in hepatitis B virus pathogenesis related with liver diseases including hepatocellular carcinoma (HCC). HBx is also involved in the signal transduction and the apoptosis of HBV-infected cells. However, the exact mechanism of apoptosis by HBx is still controversial. To demonstrate the mechanism of apoptosis by HBx, we induced the apoptosis of HBx-expressing liver cells, HepG2-X, by UV irradiation. We found that HepG2-X was much more sensitive to the UV-induced apoptosis than normal liver cells by analyzing the DNA fragmentation and the cell viability. Very interestingly, when the Fas-associated death domain (FADD)-dominant negative mutant protein was present in HepG2-X, the sensitized apoptotic response of HepG2-X to UV was completely abolished suggesting that there is a close relationship between HBx and Fas pathway in apoptosis. Therefore we examined the transactivation of Fas receptor (Fas) promoter and Fas ligand (FasL) promoter by HBx. We found that HBx strongly transcriptionally transactivated FasL promoter, but not Fas promoter. In addition, it also turned out that the mRNA levels of FasL are higher than those of Fas in HepG2-X. Taken together, HBx sensitizes the apoptosis of UV-irradiated liver cells by transcriptional transactivation of FasL gene.
Collapse
Affiliation(s)
- Sang Yong Kim
- Department of Microbiology, School of Bioscience and Biotechnology, Chungnam National University, Daejeon, Korea
| | | | | | | |
Collapse
|
35
|
Gao P, Cheng LF, Xie CL. Inhibitory effect of Yugan capsule on hepatitis B virus in vitro. Shijie Huaren Xiaohua Zazhi 2005; 13:2693-2696. [DOI: 10.11569/wcjd.v13.i22.2693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the anti-hepatitis B virus effect of Yugan capsule in vitro.
METHODS: The experimental rabbits (n = 6) were randomly divided into 3 groups (2 for each), and then were treated with the normal serum, Yiganning granule and Yugan capsule, respectively. The blood samples were collected from the hearts and diluted into various concentrations. The effects of the serums on the 2.2.15 cell line were observed. Enzyme linked immunosorbent assay was used to detect the the contents of HBsAg and HBeAg, and polymerase chain reaction and hybridization were used to determine the contents of HBV DNA.
RESULTS: Five days after treatment, Yugan capsule of 1∶1 group had significant anti-HBV effect in comparison with Yiganning granule (HBsAg: 53.93±1.34 vs 41.03±0.85, P < 0.05; HBeAg: 55.25±1.42 vs 36.26±0.97, P < 0.01; HBV DNA: 56.81±2.37 vs 43.71±0.98, P < 0.01), while Yugan capsule of 1∶2, 1∶4, and 1∶8 group was not markedly different, and that of 1∶16 group had less anti-HBV effect. Ten days after treatment, Yugan capsule of different concentrations inhibited the proliferation of HBV significantly in comparison with cell control and normal serum group, while in comparison with Yiganning granule, Yugan capsule of 1∶1 group notably inhibited the replication of HBV DNA (67.23±2.79 vs 48.02±1.03, P < 0.05). Also Yugan capsule of 1∶2 and 1∶4 group was superior to Yiganning granule in inhibiting the secretion of HBeAg and replication of HBV DNA, but that of 1∶8 and 1∶16 group was inferior to Yiganning.
CONCLUSION: Yugan capsule serum can inhibit the secretion of HBsAg, HBeAg, and replication of HBV DNA in 2.2.15 cells cultured in vitro in a concentration-depended manner.
Collapse
|
36
|
Pang R, Tse E, Poon RTP. Molecular pathways in hepatocellular carcinoma. Cancer Lett 2005; 240:157-69. [PMID: 16239065 DOI: 10.1016/j.canlet.2005.08.031] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 08/31/2005] [Indexed: 01/18/2023]
Abstract
Research over the past decade has unraveled important molecular pathways involved in hepatocellular carcinoma (HCC), and several chromosomal and genetic aberrations have been identified to be responsible for initiation of the carcinogenic process. HBx protein and HCV core protein appear to play a pivotal role in hepatocarcinogenesis related to hepatitis B virus and hepatitis C virus, respectively. These viral oncoproteins allow cells to bypass some of the multi-steps in hepatocarcinogenesis, accounting for the etiological role of the two viruses in HCC. Understanding of the molecular pathways of HCC facilitates the development of novel molecular strategies for chemoprevention and therapy of HCC.
Collapse
Affiliation(s)
- Roberta Pang
- Department of Medicine, Centre for Cancer Research, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | |
Collapse
|
37
|
Buendia MA, Paterlini‐Bréchot P, Tiollais P, Bréchot C. Hepatocellular Carcinoma: Molecular Aspects in Hepatitis B. VIRAL HEPATITIS 2005:269-294. [DOI: 10.1002/9780470987131.ch17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
38
|
Cano E, Canellada A, Minami T, Iglesias T, Redondo JM. Depolarization of neural cells induces transcription of the Down syndrome critical region 1 isoform 4 via a calcineurin/nuclear factor of activated T cells-dependent pathway. J Biol Chem 2005; 280:29435-43. [PMID: 15975916 DOI: 10.1074/jbc.m506205200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In this study we showed that the transcriptional regulation of Down syndrome critical region isoform 4 (DSCR1.4) is mediated by the calcineurin/nuclear factor of activated T cells (NFAT) pathway in neural cells. Stimuli that elicit an increase in the intracellular concentrations of calcium, such as membrane depolarization, induced de novo transcription of DSCR1.4, with mRNA expression peaking after 4 h and then declining. Action via the physiologically relevant L-type calcium channel was confirmed by blockade with nifedipine and verapamil. This calcium-dependent transcription of DSCR1.4 was inhibited by the calcineurin inhibitors cyclosporin A and FK506. Deletional analysis showed that the calcium- and calcineurin-dependent activation is mediated by the promoter region between nucleotides -350 and -166, a region that contains putative NFAT-binding motifs. Exogenous NFATc2 potently augmented the DSCR1.4 promoter transcriptional activity, and the involvement of endogenous NFAT signaling pathway in DSCR1.4 transcription was confirmed by the suppression of depolarization-inducible promoter activity with the NFAT inhibitor peptide VIVIT. Exogenous overexpression of DSCR1 protein (calcipressin 1) resulted in the inhibition of the transcription of DSCR1.4 and NFAT-dependent signaling. These findings suggest that calcineurin-dependent induction of DSCR1.4 product may represent an important auto-regulatory mechanism for the homeostatic control of NFAT signaling in neural cells.
Collapse
Affiliation(s)
- Eva Cano
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | | | | | | |
Collapse
|
39
|
Duque J, Fresno M, Iñiguez MA. Expression and Function of the Nuclear Factor of Activated T Cells in Colon Carcinoma Cells. J Biol Chem 2005; 280:8686-93. [PMID: 15632146 DOI: 10.1074/jbc.m413076200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increasing evidence shows a crucial role of the Ca2+/ calcineurin-mediated activation of the nuclear factor of activated T cells (NFAT) in the regulation of a variety of processes in nonimmune cells. Here we provide evidence that NFATc1 and NFATc2 are expressed in human colon carcinoma cell lines. These proteins are translocated from the cytoplasm to the nucleus upon treatment with a combination of phorbol 12-myristate 13-acetate plus the calcium ionophore A23187. Subsequent to translocation to the nucleus, NFATc1 and NFATc2 were able to bind to a NFAT response element in the DNA, regulating transcriptional activation of genes containing a NFAT-responsive element such as cyclooxygenase-2 (COX-2). COX-2 expression and prostaglandin E2 (PGE2) production were induced upon pharmacological stimuli leading to NFAT activation and blunted by inhibition of calcineurin phosphatase with cyclosporin A or tacrolimus (FK506). Expression of NFAT wild type protein or the active catalytic subunit of calcineurin transactivates COX-2 promoter activity, whereas a dominant negative mutant of NFAT inhibited COX-2 induction in colon carcinoma cell lines. Furthermore, mutation or deletion of NFAT binding sites in the human COX-2 promoter greatly diminished its induction by phorbol 12-myristate 13-acetate/calcium ionophore A23187. These findings demonstrate the presence and activation of NFAT in human colon carcinoma cells, with important implications in the regulation of genes involved in the transformed phenotype as COX-2.
Collapse
Affiliation(s)
- Javier Duque
- Centro de Biología Molecular Severo Ochoa, Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | |
Collapse
|
40
|
Rodríguez A, Martínez-Martínez S, López-Maderuelo MD, Ortega-Pérez I, Redondo JM. The Linker Region Joining the Catalytic and the Regulatory Domains of CnA Is Essential for Binding to NFAT. J Biol Chem 2005; 280:9980-4. [PMID: 15671033 DOI: 10.1074/jbc.c400401200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcineurin (CN) is an important regulator of developmental processes and in adults controls the immune response through its regulation of nuclear factor of activated T cells (NFAT). The physical interaction between CN and NFATs is an essential step in the activation of NFAT-dependent genes by calcium signals. Using deletional and substitutional analyses, we have identified a 13-amino acid region within CN that is essential for the interaction with NFAT and with two other CN-binding proteins, AKAP79 and Cabin-1. The interaction of CN with these proteins is selectively disrupted by substitution of specific amino acid residues within this region, indicating that NFAT and other CN-interacting proteins bind differentially to CN. This selectivity suggests that the region identified in CN could be a potential molecular target for immunosuppressive and other therapeutic interventions in diseases involving the CN/NFAT pathway.
Collapse
Affiliation(s)
- Antonio Rodríguez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Ronda de Poniente 5, Tres Cantos, Madrid 28760, Spain
| | | | | | | | | |
Collapse
|
41
|
|
42
|
Affiliation(s)
- Michael J Bouchard
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
43
|
Granja AG, Nogal ML, Hurtado C, Vila V, Carrascosa AL, Salas ML, Fresno M, Revilla Y. The viral protein A238L inhibits cyclooxygenase-2 expression through a nuclear factor of activated T cell-dependent transactivation pathway. J Biol Chem 2004; 279:53736-46. [PMID: 15471864 DOI: 10.1074/jbc.m406620200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cyclooxygenase-2 is transiently induced upon cell activation or viral infections, resulting in inflammation and modulation of the immune response. Here we report that A238L, an African swine fever virus protein, efficiently inhibits cyclooxygenase-2 gene expression in Jurkat T cells and in virus-infected Vero cells. Transfection of Jurkat cells stably expressing A238L with cyclooxygenase-2 promoter-luciferase constructs containing 5'-terminal deletions or mutations in distal or proximal nuclear factor of activated T cell (NFAT) response elements revealed that these sequences are involved in the inhibition induced by A238L. Overexpression of a constitutively active version of the calcium-dependent phosphatase calcineurin or NFAT reversed the inhibition mediated by A238L on cyclooxygenase-2 promoter activation, whereas overexpression of p65 NFkappaB had no effect. A238L does not modify the nuclear localization of NFAT after phorbol 12-myristate 13-acetate/calcium ionophore stimulation. Moreover, we show that the mechanism by which the viral protein down-regulates cyclooxygenase-2 activity does not involve inhibition of the binding between NFAT and its specific DNA sequences into the cyclooxygenase-2 promoter. Strikingly, A238L dramatically inhibited the transactivation mediated by a GAL4-NFAT fusion protein containing the N-terminal transactivation domain of NFAT1. Taken together, these data indicate that A238L down-regulates cyclooxygenase-2 transcription through the NFAT response elements, being NFAT-dependent transactivation implicated in this down-regulation.
Collapse
Affiliation(s)
- Aitor G Granja
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Majano PL, Medina J, Zubía I, Sunyer L, Lara-Pezzi E, Maldonado-Rodríguez A, López-Cabrera M, Moreno-Otero R. N-Acetyl-cysteine modulates inducible nitric oxide synthase gene expression in human hepatocytes. J Hepatol 2004; 40:632-7. [PMID: 15030979 DOI: 10.1016/j.jhep.2003.12.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Revised: 10/20/2003] [Accepted: 12/05/2003] [Indexed: 12/22/2022]
Abstract
BACKGROUND/AIMS A major role has been described for inducible nitric oxide (NO) synthase in several chronic inflammatory liver diseases. N-Acetyl-cysteine (NAC) is a sulfhydryl donor molecule with antioxidant and antiinflammatory effects. It attenuates NO generation following lipopolysaccharide injection in rats. Our goal was to study the effect of NAC on NO synthase induction in hepatocytes in response to proinflammatory cytokines. METHODS The effect of NAC on NO synthase induction was studied in the human hepatocyte cell lines HepG2 and 2.2.15 treated with a mixture of proinflammatory cytokines. Interactions between NAC and cytokines on nuclear factor-kappaB (NF-kappaB) activation and NO synthase promoter transactivation were investigated. RESULTS NAC dose-dependently modulated the induction of NO synthase mRNA expression, the release of nitrites and the formation of NF-kappaB binding complexes in cytokine-treated hepatocytes. NAC also reduced the transactivation of the NO synthase promoter. CONCLUSIONS Our data show that exposure of hepatocytes to NAC modulated NO synthase expression and NF-kappaB activity, the key responses of the hepatocyte to inflammatory mediators. These data constitute preliminary evidence that NAC might have hepatoprotective actions of potential relevance in chronic inflammatory liver diseases, mediated partially through the modulation of NO production.
Collapse
Affiliation(s)
- Pedro Lorenzo Majano
- Unidad de Hepatología (planta 3), Hospital Universitario de la Princesa, Universidad Autónoma, Diego de León 62, E-28006 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Lee YI, Hwang JM, Im JH, Lee YI, Kim NS, Kim DG, Yu DY, Moon HB, Park SK. Human hepatitis B virus-X protein alters mitochondrial function and physiology in human liver cells. J Biol Chem 2004; 279:15460-71. [PMID: 14724286 DOI: 10.1074/jbc.m309280200] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The hepatitis B virus-X protein (HBx) regulates fundamental aspects of mitochondrial physiology. We show that HBx down-regulates mitochondrial enzymes involved in electron transport in oxidative phosphorylation (complexes I, III, IV, and V) and sensitizes the mitochondrial membrane potential in a hepatoma cell line. HBx also increases the level of mitochondrial reactive oxygen species and lipid peroxide production. HBx does not activate apoptotic signaling, although it sensitizes hepatoma cells to apoptotic signaling, which is dependent on reactive oxygen species. Increased intrahepatic lipid peroxidation in HBx transgenic mice demonstrated that oxidative injury occurs as a direct result of HBx expression. Therefore, we conclude that mitochondrial dysfunction is a crucial pathophysiological factor in HBx-expressing hepatoma cells and provides an experimental rationale in the investigation of mitochondrial function in rapidly renewed tissues, as in hepatocellular carcinomas.
Collapse
Affiliation(s)
- Young Ik Lee
- Liver Cell Signal Transduction Laboratory, Laboratory, Bioscience Research Division, Korea Research Institute of Bioscience and Biotechnology, Yusong, Taejon, 305-600, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ohata K, Ichikawa T, Nakao K, Shigeno M, Nishimura D, Ishikawa H, Hamasaki K, Eguchi K. Interferon alpha inhibits the nuclear factor kappa B activation triggered by X gene product of hepatitis B virus in human hepatoma cells. FEBS Lett 2003; 553:304-8. [PMID: 14572641 DOI: 10.1016/s0014-5793(03)01034-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
X gene product of hepatitis B virus (HBV) (HBx) regulates many transcription factors including nuclear factor kappa B (NF-kappaB) and plays a key role in hepatocarcinogenesis. In this study, we demonstrated that the expression of full HBV genome and HBx gene similarly stimulated the transcriptional activity of NF-kappaB in HuH-7 human hepatoma cells, and that interferon (IFN)-alpha as well as dominant negative mutant of IkappaB kinase-alpha effectively inhibited the HBx-mediated NF-kappaB activation, but IFN-gamma did not. These results suggest that IFN-alpha may have a function to block the NF-kappaB activating pathway triggered by HBx in HBV hepatocytes.
Collapse
Affiliation(s)
- Kazuyuki Ohata
- The First Department of Internal Medicine, Nagasaki University, 1-7-1 Sakamoto, 852-8501 Nagasaki, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Chami M, Ferrari D, Nicotera P, Paterlini-Bréchot P, Rizzuto R. Caspase-dependent alterations of Ca2+ signaling in the induction of apoptosis by hepatitis B virus X protein. J Biol Chem 2003; 278:31745-55. [PMID: 12799372 DOI: 10.1074/jbc.m304202200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The hepatitis B virus X protein (HBx) is a multifunctional protein, acting on different targets (e.g. transcription factors, cytoplasmic kinases, and mitochondrial proteins) and exerting cellular effects as diverse as stimulation of cell proliferation and apoptosis. In its biological effects, the modulation of cellular Ca2+ signals has been proposed to be involved, but the direct assessment of Ca2+ homeostasis in HBx-transfected cells has not been carried out yet. In this work, we have employed for this purpose aequorin-based recombinant probes specifically targeted to intracellular organelles and microdomains. Using these probes, we observed that overexpression of HBx enhanced agonist-evoked cytosolic Ca2+ signals in HepG2 and HeLa cells, without affecting either the steady state of endoplasmic reticulum Ca2+ concentration or the kinetics of Ca2+ release. Rather, caspase-3-dependent cleavage of the plasma membrane Ca2+ ATPase could be demonstrated, and larger rises were detected in the cytoplasmic rim beneath the plasma membrane. In mitochondria, major morphological (fragmentation and swelling) and functional (reduced Ca2+ uptake) alterations were detected in HBx-expressing cells. As to the cellular consequences, we observed that HBx-induced apoptosis was markedly reduced when the alterations in Ca2+ signaling (e.g. by loading a Ca2+ chelator or preventing PMCA cleavage) or the downstream effects (e.g. by inhibiting mitochondrial permeability transition) were prevented. Overall, these results indicate that HBx perturbs intracellular Ca2+ homeostasis, acting on the extrusion mechanisms, and that this effect plays an important role in the control of HBx-related apoptosis.
Collapse
Affiliation(s)
- Mounia Chami
- Department of Experimental and Diagnostic Medicine, Section of General Pathology and Interdiscipliny Center for the Study of Inflammation, Via Borsari 46, I-44100 Ferrara, Italy
| | | | | | | | | |
Collapse
|
48
|
Liu Y, Cheng J, Wang L, Wang JJ, Lu YY, Li K. Cloning and identification of human gene 1 transactivated by hepatitis B virus X antigen. Shijie Huaren Xiaohua Zazhi 2003; 11:1107-1113. [DOI: 10.11569/wcjd.v11.i8.1107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To study the transactivation effects of HBxAg, and clone the target genes of HBxAg transactivating effects, in order to help understand the mechanism of pathogenesis of HBxAg.
METHODS Polymerase chain reaction (PCR) was employed to amplify the coding sequence of HBxAg. The hepatoblastoma cell HepG2 was transfected by pcDNA3.1(-) and pcDNA3.1(-)-X, respectively. Total mRNA was purified from the HepG2 cells transfected and suppression subtractive hybridization(SSH) method was used to analyze the differentially expressed DNA sequence between the two groups. The sequences were searched for homologous DNA sequence from GenBank. The new DNA sequence was confirmed and the full-length coding sequence was identified according to the Kozak rule and the existence of polyadenyl signal sequences. Reverse transcription PCR (RT-PCR)was used to amplify the new gene by using mRNA from HepG2 cell as the template. The coding sequence for the new gene was deduced according to the nucleotide sequence.
RESULTS PCR technique was employed to amplify the coding sequence for HBxAg by using pCP10 plasmid containing whole HBV genome as the template. The recombinant plasmid expressing HBxAg was confirmed by restriction enzyme digestion and sequencing. HepG2 cells were transfected with pcDNA3.1(-) and pcDNA3.1(-)-X by lipofectamine, respectively. Total mRNA was purified from transfected HepG2 cell, and suppression subtractive hybridization method was used for the screening and identification of differentially expressed genes by these two cell groups. After sequencing, each DNA sequence was compared with the genes deposited in the GenBank and the new gene with no homology with known genes in this database was identified. Electric polymerase chain reaction was conducted for the cloning of the full-length DNA of the new gene and in conjunction with Kozak rule and the existence of polyadenyl signal sequence. RT-PCR technique was used to amplify the new gene, named as XTP1, from the mRNA of HepG2 cells. The sequence for the XTP1 gene was deposited into GenBank, and the accession number is AF488828.
CONCLUSION A new gene named XTP1 which is transac-tivated by hepatitis B virus X protein has been successfully cloned by molecular biological methods. These results pave the way for the study of the molecular mechanism of HBxAg transactivating effects and the development of new therapy for chronic hepatitis B.
Collapse
Affiliation(s)
- Yan Liu
- Gene Therapy Research Center, Institute of Infectious Diseases, The 302 Hospital of PLA, Beijing 100039, China
| | - Jun Cheng
- Gene Therapy Research Center, Institute of Infectious Diseases, The 302 Hospital of PLA, Beijing 100039, China
| | - Lin Wang
- Gene Therapy Research Center, Institute of Infectious Diseases, The 302 Hospital of PLA, Beijing 100039, China
| | - Jian-Jun Wang
- Gene Therapy Research Center, Institute of Infectious Diseases, The 302 Hospital of PLA, Beijing 100039, China
| | - Yin-Ying Lu
- Gene Therapy Research Center, Institute of Infectious Diseases, The 302 Hospital of PLA, Beijing 100039, China
| | - Ke Li
- Gene Therapy Research Center, Institute of Infectious Diseases, The 302 Hospital of PLA, Beijing 100039, China
| |
Collapse
|
49
|
Yi YS, Park SG, Byeon SM, Kwon YG, Jung G. Hepatitis B virus X protein induces TNF-alpha expression via down-regulation of selenoprotein P in human hepatoma cell line, HepG2. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1638:249-56. [PMID: 12878326 DOI: 10.1016/s0925-4439(03)00090-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Human hepatitis B virus X protein (HBx) is associated with the induction of oxidative stress, which is considered significant in the development of liver damage. In this study, we investigated the molecular mechanisms by which HBx induced lipid peroxidation and tumor necrosis factor-alpha (TNF-alpha) expression through regulation of selenoprotein P (SeP) expression in the human hepatoma cell line, HepG2. Forced expression of HBx significantly down-regulated the expression of SeP mRNA and protein in both the cell lysates and the culture medium. Lipid peroxidation increased 2.5-fold when expression of the SeP protein was blocked with a SeP antisense vector. Also, HBx transfection increased lipid peroxidation by 3.0-fold, whereas the hepatitis B virus core protein (HBc) had no significant effects. The induction of lipid peroxidation due to the block in SeP protein expression or treatment with ferric chloride (FeCl(3)) up-regulated the expression levels of TNF-alpha mRNA and protein. The pattern of HBx-induced lipid peroxidation and TNF-alpha up-regulation was reversed by SeP introduction. These results suggest that HBx induces lipid peroxidation via down-regulation of SeP expression, resulting in increased expression of TNF-alpha in the human hepatoma cell line, HepG2.
Collapse
Affiliation(s)
- Young-Su Yi
- School of Biological Sciences, Seoul National University, 151-742, Seoul, South Korea
| | | | | | | | | |
Collapse
|
50
|
Lara-Pezzi E, Gómez-Gaviro MV, Gálvez BG, Mira E, Iñiguez MA, Fresno M, Martínez-A C, Arroyo AG, López-Cabrera M. The hepatitis B virus X protein promotes tumor cell invasion by inducing membrane-type matrix metalloproteinase-1 and cyclooxygenase-2 expression. J Clin Invest 2003. [PMID: 12488433 DOI: 10.1172/jci200215887] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma is strongly associated with chronic infection by the hepatitis B virus (HBV) and has poor prognosis due to intrahepatic metastasis. HBx is often the only HBV protein detected in hepatic tumor cells; however, its contribution to tumor invasion and metastasis has not been established so far. In this work, we show that HBx enhances tumor cell invasion, both in vivo and in vitro. The increased invasive capacity induced by HBx is mediated by an upregulation of membrane-type 1 matrix metalloproteinase (MT1-MMP) expression, which in turn activates matrix metalloproteinase-2. Induction of both MT1-MMP expression and cell invasion by HBx is dependent on cyclooxygenase-2 (COX-2) activity. In addition, HBx upregulates the expression of COX-2, which is mediated by the transcriptional activation of the COX-2 gene promoter in a nuclear factor of activated T cell-dependent (NF-AT-dependent) manner. These results demonstrate the ability of HBx to promote tumor cell invasion by a mechanism involving the upregulation of MT1-MMP and COX-2 and provide new insights into the mechanism of action of this viral protein and its involvement in tumor metastasis and recurrence of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Enrique Lara-Pezzi
- Unidad de Biología Molecular, Hospital Universitario de la Princesa, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|