1
|
Mortusewicz O, Haslam J, Gad H, Helleday T. Uracil-induced replication stress drives mutations, genome instability, anti-cancer treatment efficacy, and resistance. Mol Cell 2025; 85:1897-1906. [PMID: 40378828 DOI: 10.1016/j.molcel.2025.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/27/2025] [Accepted: 04/11/2025] [Indexed: 05/19/2025]
Abstract
Uracil incorporation into DNA, as a result of nucleotide pool imbalances or cytosine deamination (e.g., through APOBEC3A/3B), can result in replication stress and is the most common source of mutations in cancer and aging. Despite the critical role of uracil in genome instability, cancer development, and cancer therapy, only now is there emerging data on its impact on fundamental processes such as DNA replication and genome stability. Removal of uracil from DNA by base excision repair (BER) can generate a DNA single-strand break (SSB), which can trigger homologous recombination (HR) repair or replication fork collapse and cell death. Unprocessed uracil can also induce replication stress directly and independently of BER by slowing down replication forks, leading to single-stranded DNA (ssDNA) gaps. In this perspective, we review how genomic uracil induces replication stress, the therapeutic implications of targeting uracil-induced vulnerabilities, and potential strategies to exploit these mechanisms in cancer treatment.
Collapse
Affiliation(s)
- Oliver Mortusewicz
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna 171 65, Sweden
| | - James Haslam
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna 171 65, Sweden
| | - Helge Gad
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna 171 65, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna 171 65, Sweden.
| |
Collapse
|
2
|
Musiani D, Yücel H, Vallette M, Angrisani A, El Botty R, Ouine B, Schintu N, Adams C, Chevalier M, Heloise D, El Marjou A, Nemazanyy I, Regairaz M, Marangoni E, Fachinetti D, Ceccaldi R. Uracil processing by SMUG1 in the absence of UNG triggers homologous recombination and selectively kills BRCA1/2-deficient tumors. Mol Cell 2025; 85:1072-1084.e10. [PMID: 40010343 DOI: 10.1016/j.molcel.2025.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 01/10/2025] [Accepted: 01/30/2025] [Indexed: 02/28/2025]
Abstract
Resistance to poly (ADP-ribose) polymerase (PARP) inhibitors (PARPis) is the major obstacle to their effectiveness in the treatment of homologous recombination (HR)-deficient (HRD) tumors. Hence, developing alternative treatments for HRD tumors is critical. Here, we show that targeting the uracil excision pathway kills HRD tumors, including those with PARPi resistance. We found that the interplay between the two major uracil DNA glycosylases UNG and SMUG1 is regulated by nuclear nicotinamide adenine dinucleotide (NAD+), which maintains UNG at replication forks (RFs) and restrains SMUG1 chromatin binding. In the absence of UNG, SMUG1 retention on chromatin leads to persistent abasic sites, which incision by APE1 results in PARP1 hyperactivation, stalled RFs, and RAD51 foci. In HRD cells (i.e., BRCA1/2-deficient), this leads to under-replicated DNA that, when propagated throughout mitosis, results in chromosome fragmentation and cell death. Our findings open up unique possibilities for targeted therapies for HRD tumors based on UNG inhibition and uracil accumulation in the genome.
Collapse
Affiliation(s)
- Daniele Musiani
- INSERM U830, PSL Research University, Institut Curie, Paris, France
| | - Hatice Yücel
- INSERM U830, PSL Research University, Institut Curie, Paris, France
| | - Marie Vallette
- INSERM U830, PSL Research University, Institut Curie, Paris, France
| | - Annapaola Angrisani
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144 and UMR3664, 26 rue d'Ulm, 75005 Paris, France
| | - Rania El Botty
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL Research University, Paris, France
| | - Bérengère Ouine
- Recombinant Protein Facility CNRS UMR144, Institut Curie, PSL Research University, Paris, France
| | - Niccolo Schintu
- INSERM U830, PSL Research University, Institut Curie, Paris, France
| | - Caroline Adams
- INSERM U830, PSL Research University, Institut Curie, Paris, France
| | - Manon Chevalier
- INSERM U830, PSL Research University, Institut Curie, Paris, France
| | - Derrien Heloise
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL Research University, Paris, France
| | - Ahmed El Marjou
- Recombinant Protein Facility CNRS UMR144, Institut Curie, PSL Research University, Paris, France
| | - Ivan Nemazanyy
- Platform for Metabolic Analyses, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR 3633, Paris, France
| | - Marie Regairaz
- INSERM U830, PSL Research University, Institut Curie, Paris, France; Laboratoire de Biologie et Pharmacologie Appliquée, ENS-Paris-Saclay, CNRS UMR 8113, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Elisabetta Marangoni
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL Research University, Paris, France
| | - Daniele Fachinetti
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144 and UMR3664, 26 rue d'Ulm, 75005 Paris, France
| | - Raphael Ceccaldi
- INSERM U830, PSL Research University, Institut Curie, Paris, France.
| |
Collapse
|
3
|
Gao Y, McPherson L, Adimoolam S, Suresh S, Wilson DL, Das I, Park ER, Ng CSC, Jun YW, Ford JM, Kool ET. Small-molecule activator of SMUG1 enhances repair of pyrimidine lesions in DNA. DNA Repair (Amst) 2025; 146:103809. [PMID: 39879855 PMCID: PMC11846699 DOI: 10.1016/j.dnarep.2025.103809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/18/2024] [Accepted: 01/08/2025] [Indexed: 01/31/2025]
Abstract
A potentially promising approach to targeted cancer prevention in genetically at-risk populations is the pharmacological upregulation of DNA repair pathways. SMUG1 is a base excision repair enzyme that ameliorates adverse genotoxic and mutagenic effects of hydrolytic and oxidative damage to pyrimidines. Here we describe the discovery and initial cellular activity of a small-molecule activator of SMUG1. Screening of a kinase inhibitor library and iterative rounds of structure-activity relationship studies produced compound 40 (SU0547), which activates SMUG1 by as much as 350 ± 60 % in vitro at 100 nM, with an AC50 of 4.3 ± 1.1 µM. To investigate the effect of compound 40 on endogenous SMUG1, we performed in vitro cell-based experiments with 5-hydroxymethyl-2'-deoxyuridine (5-hmdU), a pyrimidine oxidation product that is selectively removed by SMUG1. In several human cell lines, compound 40 at 3-5 µM significantly reduces the cytotoxicity of 5-hmdU and decreases levels of double-strand breaks induced by the damaged nucleoside. We conclude that the SMUG1 activator compound 40 is a useful tool to study the mechanisms of 5-hmdU toxicity and the potentially beneficial effects of suppressing damage to pyrimidines in cellular DNA.
Collapse
Affiliation(s)
- Yixuan Gao
- Department of Chemistry and Stanford University, Stanford, CA 94305, United States
| | - Lisa McPherson
- Department of Medicine, Stanford University, Stanford, CA 94305, United States
| | - Shanthi Adimoolam
- Department of Medicine, Stanford University, Stanford, CA 94305, United States
| | - Samyuktha Suresh
- Department of Medicine, Stanford University, Stanford, CA 94305, United States
| | - David L Wilson
- Department of Chemistry and Stanford University, Stanford, CA 94305, United States
| | - Ishani Das
- Department of Medicine, Stanford University, Stanford, CA 94305, United States
| | - Elizabeth R Park
- Department of Chemistry and Stanford University, Stanford, CA 94305, United States
| | - Christine S C Ng
- Department of Chemistry and Stanford University, Stanford, CA 94305, United States
| | - Yong Woong Jun
- Department of Chemistry and Stanford University, Stanford, CA 94305, United States
| | - James M Ford
- Department of Medicine, Stanford University, Stanford, CA 94305, United States
| | - Eric T Kool
- Department of Chemistry and Stanford University, Stanford, CA 94305, United States.
| |
Collapse
|
4
|
Ligasová A, Frydrych I, Piskláková B, Friedecký D, Koberna K. The kinetics of uracil-N-glycosylase distribution inside replication foci. Sci Rep 2025; 15:3026. [PMID: 39849039 PMCID: PMC11757751 DOI: 10.1038/s41598-024-84408-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
Mismatched nucleobase uracil is commonly repaired through the base excision repair initiated by DNA uracil glycosylases. The data presented in this study strongly indicate that the nuclear uracil-N-glycosylase activity and nuclear protein content in human cell lines is highest in the S phase of the cell cycle and that its distribution kinetics partially reflect the DNA replication activity in replication foci. In this respect, the data demonstrate structural changes of the replication focus related to the uracil-N-glycosylase distribution several dozens of minutes before end of its replication. The analysis also showed that very popular synchronisation protocols based on the double thymidine block can result in changes in the UNG2 content and uracil excision rate. In response, we propose a new method for the description of the changes of the content and the activity of different cell components during cell cycle without the necessity to use synchronisation protocols.
Collapse
Affiliation(s)
- Anna Ligasová
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic.
| | - Ivo Frydrych
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| | - Barbora Piskláková
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
- Laboratory of Inherited Metabolic Disorders, Department of Clinical Chemistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
| | - David Friedecký
- Laboratory of Inherited Metabolic Disorders, Department of Clinical Chemistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Karel Koberna
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic.
| |
Collapse
|
5
|
Iveland TS, Hagen L, de Sousa MML, Liabakk NB, Aas PA, Sharma A, Kavli B, Slupphaug G. Cytotoxic mechanisms of pemetrexed and HDAC inhibition in non-small cell lung cancer cells involving ribonucleotides in DNA. Sci Rep 2025; 15:2082. [PMID: 39814799 PMCID: PMC11736037 DOI: 10.1038/s41598-025-86007-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
The cytotoxic mechanisms of thymidylate synthase inhibitors, such as the multitarget antifolate pemetrexed, are not yet fully understood. Emerging evidence indicates that combining pemetrexed with histone deacetylase inhibitors (HDACi) may enhance therapeutic efficacy in non-small cell lung cancer (NSCLC). To explore this further, A549 NSCLC cells were treated with various combinations of pemetrexed and the HDACi MS275 (Entinostat), and subsequently assessed for cell viability, cell cycle changes, and genotoxic markers. Proteomic alterations were analyzed using label-free shotgun and targeted LC-MS/MS. MS275 enhanced the sensitivity of A549 cells to pemetrexed, but only when administered following prior treatment with pemetrexed. Both HeLa (p53 negative) and A549 (p53 positive) showed robust activation of γH2AX upon treatment with this combination. Importantly, CRISPR/Cas9 knockout of the uracil-DNA glycosylase UNG did not affect γH2AX activation or sensitivity to pemetrexed. Proteomic analysis revealed that MS275 altered the expression of known pemetrexed targets, as well as several proteins involved in pyrimidine metabolism and DNA repair, which could potentiate pemetrexed cytotoxicity. Contrary to the conventional model of antifolate toxicity, which implicates futile cycles of uracil incorporation and excision in DNA, we propose that ribonucleotide incorporation in nuclear and mitochondrial DNA significantly contributes to the cytotoxicity of antifolates like pemetrexed, and likely also of fluorinated pyrimidine analogs. HDAC inhibition apparently exacerbates cytotoxicity of these agents by inhibiting error-free repair of misincorporated ribonucleotides in DNA. The potential of HDACis to modulate pyrimidine metabolism and DNA damage responses offers novel strategies for improving NSCLC outcomes.
Collapse
Affiliation(s)
- Tobias Solli Iveland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
- The Cancer Clinic, St. Olavs Hospital, Trondheim, Norway
| | - Lars Hagen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
- The Proteomics and Metabolomics Core Facility, PROMEC, at NTNU and the Central Norway Regional Health Authority, Trondheim, Norway
| | - Mirta Mittelstedt Leal de Sousa
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs Hospital, N-7491, Trondheim, Norway
- Centre for Embryology and Healthy Development, University of Oslo, 0373, Oslo, Norway
| | - Nina Beate Liabakk
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs Hospital, N-7491, Trondheim, Norway
| | - Per Arne Aas
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs Hospital, N-7491, Trondheim, Norway
| | - Animesh Sharma
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
- The Proteomics and Metabolomics Core Facility, PROMEC, at NTNU and the Central Norway Regional Health Authority, Trondheim, Norway
| | - Bodil Kavli
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, N-7491, Trondheim, Norway.
- Clinic of Laboratory Medicine, St. Olavs Hospital, N-7491, Trondheim, Norway.
| | - Geir Slupphaug
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, N-7491, Trondheim, Norway.
- The Proteomics and Metabolomics Core Facility, PROMEC, at NTNU and the Central Norway Regional Health Authority, Trondheim, Norway.
- Clinic of Laboratory Medicine, St. Olavs Hospital, N-7491, Trondheim, Norway.
| |
Collapse
|
6
|
Azzouz D, Palaniyar N. How Do ROS Induce NETosis? Oxidative DNA Damage, DNA Repair, and Chromatin Decondensation. Biomolecules 2024; 14:1307. [PMID: 39456240 PMCID: PMC11505619 DOI: 10.3390/biom14101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 10/28/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are intricate, DNA-based, web-like structures adorned with cytotoxic proteins. They play a crucial role in antimicrobial defense but are also implicated in autoimmune diseases and tissue injury. The process of NET formation, known as NETosis, is a regulated cell death mechanism that involves the release of these structures and is unique to neutrophils. NETosis is heavily dependent on the production of reactive oxygen species (ROS), which can be generated either through NADPH oxidase (NOX) or mitochondrial pathways, leading to NOX-dependent or NOX-independent NETosis, respectively. Recent research has revealed an intricate interplay between ROS production, DNA repair, and NET formation in different contexts. UV radiation can trigger a combined process of NETosis and apoptosis, known as apoNETosis, driven by mitochondrial ROS and DNA repair. Similarly, in calcium ionophore-induced NETosis, both ROS and DNA repair are key components, but only play a partial role. In the case of bacterial infections, the early stages of DNA repair are pivotal. Interestingly, in serum-free conditions, spontaneous NETosis occurs through NOX-derived ROS, with early-stage DNA repair inhibition halting the process, while late-stage inhibition increases it. The intricate balance between DNA repair processes and ROS production appears to be a critical factor in regulating NET formation, with different pathways being activated depending on the nature of the stimulus. These findings not only deepen our understanding of the mechanisms behind NETosis but also suggest potential therapeutic targets for conditions where NETs contribute to disease pathology.
Collapse
Affiliation(s)
- Dhia Azzouz
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Nades Palaniyar
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
7
|
Schou KB, Mandacaru S, Tahir M, Tom N, Nilsson AS, Andersen JS, Tiberti M, Papaleo E, Bartek J. Exploring the structural landscape of DNA maintenance proteins. Nat Commun 2024; 15:7748. [PMID: 39237506 PMCID: PMC11377751 DOI: 10.1038/s41467-024-49983-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/25/2024] [Indexed: 09/07/2024] Open
Abstract
Evolutionary annotation of genome maintenance (GM) proteins has conventionally been established by remote relationships within protein sequence databases. However, often no significant relationship can be established. Highly sensitive approaches to attain remote homologies based on iterative profile-to-profile methods have been developed. Still, these methods have not been systematically applied in the evolutionary annotation of GM proteins. Here, by applying profile-to-profile models, we systematically survey the repertoire of GM proteins from bacteria to man. We identify multiple GM protein candidates and annotate domains in numerous established GM proteins, among other PARP, OB-fold, Macro, TUDOR, SAP, BRCT, KU, MYB (SANT), and nuclease domains. We experimentally validate OB-fold and MIS18 (Yippee) domains in SPIDR and FAM72 protein families, respectively. Our results indicate that, surprisingly, despite the immense interest and long-term research efforts, the repertoire of genome stability caretakers is still not fully appreciated.
Collapse
Affiliation(s)
- Kenneth Bødkter Schou
- Genome Integrity, Danish Cancer Institute, Danish Cancer Society, Strandboulevarden 49, 2100, Copenhagen, Denmark.
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Laboratory, Karolinska Institute, Solna, 171 77, Sweden.
| | - Samuel Mandacaru
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Muhammad Tahir
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Nikola Tom
- Lipidomics Core Facility, Danish Cancer Institute (DCI), DK-2100, Copenhagen, Denmark
| | - Ann-Sofie Nilsson
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Laboratory, Karolinska Institute, Solna, 171 77, Sweden
| | - Jens S Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Matteo Tiberti
- Cancer Structural Biology, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Elena Papaleo
- Cancer Structural Biology, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Jiri Bartek
- Genome Integrity, Danish Cancer Institute, Danish Cancer Society, Strandboulevarden 49, 2100, Copenhagen, Denmark.
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Laboratory, Karolinska Institute, Solna, 171 77, Sweden.
| |
Collapse
|
8
|
Tire B, Talibova G, Ozturk S. The crosstalk between telomeres and DNA repair mechanisms: an overview to mammalian somatic cells, germ cells, and preimplantation embryos. J Assist Reprod Genet 2024; 41:277-291. [PMID: 38165506 PMCID: PMC10894803 DOI: 10.1007/s10815-023-03008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024] Open
Abstract
Telomeres are located at the ends of linear chromosomes and play a critical role in maintaining genomic stability by preventing premature activation of DNA repair mechanisms. Because of exposure to various genotoxic agents, telomeres can undergo shortening and genetic changes. In mammalian cells, the basic DNA repair mechanisms, including base excision repair, nucleotide excision repair, double-strand break repair, and mismatch repair, function in repairing potential damages in telomeres. If these damages are not repaired correctly in time, the unfavorable results such as apoptosis, cell cycle arrest, and cancerous transition may occur. During lifespan, mammalian somatic cells, male and female germ cells, and preimplantation embryos experience a number of telomeric damages. Herein, we comprehensively reviewed the crosstalk between telomeres and the DNA repair mechanisms in the somatic cells, germ cells, and embryos. Infertility development resulting from possible defects in this crosstalk is also discussed in the light of existing studies.
Collapse
Affiliation(s)
- Betul Tire
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Gunel Talibova
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
9
|
Fousek-Schuller VJ, Borgstahl GEO. The Intriguing Mystery of RPA Phosphorylation in DNA Double-Strand Break Repair. Genes (Basel) 2024; 15:167. [PMID: 38397158 PMCID: PMC10888239 DOI: 10.3390/genes15020167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Human Replication Protein A (RPA) was historically discovered as one of the six components needed to reconstitute simian virus 40 DNA replication from purified components. RPA is now known to be involved in all DNA metabolism pathways that involve single-stranded DNA (ssDNA). Heterotrimeric RPA comprises several domains connected by flexible linkers and is heavily regulated by post-translational modifications (PTMs). The structure of RPA has been challenging to obtain. Various structural methods have been applied, but a complete understanding of RPA's flexible structure, its function, and how it is regulated by PTMs has yet to be obtained. This review will summarize recent literature concerning how RPA is phosphorylated in the cell cycle, the structural analysis of RPA, DNA and protein interactions involving RPA, and how PTMs regulate RPA activity and complex formation in double-strand break repair. There are many holes in our understanding of this research area. We will conclude with perspectives for future research on how RPA PTMs control double-strand break repair in the cell cycle.
Collapse
Affiliation(s)
| | - Gloria E. O. Borgstahl
- Eppley Institute for Research in Cancer & Allied Diseases, UNMC, Omaha, NE 68198-6805, USA
| |
Collapse
|
10
|
Hayran AB, Liabakk NB, Aas PA, Kusnierczyk A, Vågbø CB, Sarno A, Iveland TS, Chawla K, Zahn A, Di Noia JM, Slupphaug G, Kavli B. RPA guides UNG to uracil in ssDNA to facilitate antibody class switching and repair of mutagenic uracil at the replication fork. Nucleic Acids Res 2024; 52:784-800. [PMID: 38000394 PMCID: PMC10810282 DOI: 10.1093/nar/gkad1115] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) interacts with replication protein A (RPA), the major ssDNA-binding protein, to promote deamination of cytosine to uracil in transcribed immunoglobulin (Ig) genes. Uracil-DNA glycosylase (UNG) acts in concert with AID during Ig diversification. In addition, UNG preserves genome integrity by base-excision repair (BER) in the overall genome. How UNG is regulated to support both mutagenic processing and error-free repair remains unknown. UNG is expressed as two isoforms, UNG1 and UNG2, which both contain an RPA-binding helix that facilitates uracil excision from RPA-coated ssDNA. However, the impact of this interaction in antibody diversification and genome maintenance has not been investigated. Here, we generated B-cell clones with targeted mutations in the UNG RPA-binding motif, and analysed class switch recombination (CSR), mutation frequency (5' Ig Sμ), and genomic uracil in clones representing seven Ung genotypes. We show that the UNG:RPA interaction plays a crucial role in both CSR and repair of AID-induced uracil at the Ig loci. By contrast, the interaction had no significant impact on total genomic uracil levels. Thus, RPA coordinates UNG during CSR and pre-replicative repair of mutagenic uracil in ssDNA but is not essential in post-replicative and canonical BER of uracil in dsDNA.
Collapse
Affiliation(s)
- Abdul B Hayran
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Nina B Liabakk
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Per A Aas
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Anna Kusnierczyk
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
- PROMEC - Proteomics and Modomics Experimental Core Facility at NTNU and the Central Norway Regional Health Authority, NO-7491 Trondheim, Norway
| | - Cathrine B Vågbø
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
- PROMEC - Proteomics and Modomics Experimental Core Facility at NTNU and the Central Norway Regional Health Authority, NO-7491 Trondheim, Norway
| | - Antonio Sarno
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Tobias S Iveland
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
- Cancer Clinic, St. Olav's Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| | - Konika Chawla
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
- BioCore - Bioinformatics Core Facility at NTNU and the Central Norway Regional Health Authority, NO-7491 Trondheim, Norway
| | - Astrid Zahn
- Institut de Recherches Cliniques de Montréal, 110 Av des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Javier M Di Noia
- Institut de Recherches Cliniques de Montréal, 110 Av des Pins Ouest, Montréal, QC H2W 1R7, Canada
- Département of Médicine, Université de Montréal H3C 3J7 Montréal, Québec, Canada
| | - Geir Slupphaug
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
- PROMEC - Proteomics and Modomics Experimental Core Facility at NTNU and the Central Norway Regional Health Authority, NO-7491 Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| | - Bodil Kavli
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| |
Collapse
|
11
|
Serrano‐Benitez A, Wells SE, Drummond‐Clarke L, Russo LC, Thomas JC, Leal GA, Farrow M, Edgerton JM, Balasubramanian S, Yang M, Frezza C, Gautam A, Brazina J, Burdova K, Hoch NC, Jackson SP, Caldecott KW. Unrepaired base excision repair intermediates in template DNA strands trigger replication fork collapse and PARP inhibitor sensitivity. EMBO J 2023; 42:e113190. [PMID: 37492888 PMCID: PMC10505916 DOI: 10.15252/embj.2022113190] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/17/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023] Open
Abstract
DNA single-strand breaks (SSBs) disrupt DNA replication and induce chromosome breakage. However, whether SSBs induce chromosome breakage when present behind replication forks or ahead of replication forks is unclear. To address this question, we exploited an exquisite sensitivity of SSB repair-defective human cells lacking PARP activity or XRCC1 to the thymidine analogue 5-chloro-2'-deoxyuridine (CldU). We show that incubation with CldU in these cells results in chromosome breakage, sister chromatid exchange, and cytotoxicity by a mechanism that depends on the S phase activity of uracil DNA glycosylase (UNG). Importantly, we show that CldU incorporation in one cell cycle is cytotoxic only during the following cell cycle, when it is present in template DNA. In agreement with this, while UNG induces SSBs both in nascent strands behind replication forks and in template strands ahead of replication forks, only the latter trigger fork collapse and chromosome breakage. Finally, we show that BRCA-defective cells are hypersensitive to CldU, either alone and/or in combination with PARP inhibitor, suggesting that CldU may have clinical utility.
Collapse
Affiliation(s)
- Almudena Serrano‐Benitez
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
- The Wellcome and Cancer Research UK Gurdon Institute and Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - Sophie E Wells
- Genome Damage and Stability Centre, School of Life SciencesUniversity of SussexFalmerUK
| | - Lylah Drummond‐Clarke
- Genome Damage and Stability Centre, School of Life SciencesUniversity of SussexFalmerUK
| | - Lilian C Russo
- Departament of Biochemistry, Chemistry InstituteUniversity of São PauloSão PauloBrazil
| | - John Christopher Thomas
- The Wellcome and Cancer Research UK Gurdon Institute and Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - Giovanna A Leal
- Departament of Biochemistry, Chemistry InstituteUniversity of São PauloSão PauloBrazil
| | - Mark Farrow
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeUK
| | | | - Shankar Balasubramanian
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeUK
| | - Ming Yang
- CECAD Research Center, Faculty of MedicineUniversity Hospital CologneCologneGermany
| | - Christian Frezza
- CECAD Research Center, Faculty of MedicineUniversity Hospital CologneCologneGermany
| | - Amit Gautam
- Genome Damage and Stability Centre, School of Life SciencesUniversity of SussexFalmerUK
| | - Jan Brazina
- Genome Damage and Stability Centre, School of Life SciencesUniversity of SussexFalmerUK
| | - Kamila Burdova
- Genome Damage and Stability Centre, School of Life SciencesUniversity of SussexFalmerUK
| | - Nicolas C Hoch
- Departament of Biochemistry, Chemistry InstituteUniversity of São PauloSão PauloBrazil
| | - Stephen P Jackson
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
- The Wellcome and Cancer Research UK Gurdon Institute and Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - Keith W Caldecott
- Genome Damage and Stability Centre, School of Life SciencesUniversity of SussexFalmerUK
| |
Collapse
|
12
|
Shao Z, Yang J, Gao Y, Zhang Y, Zhao X, Shao Q, Zhang W, Cao C, Liu H, Gan J. Structural and functional studies of PCNA from African swine fever virus. J Virol 2023; 97:e0074823. [PMID: 37534905 PMCID: PMC10506467 DOI: 10.1128/jvi.00748-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/16/2023] [Indexed: 08/04/2023] Open
Abstract
Proliferating cell nuclear antigen (PCNA) belongs to the DNA sliding clamp family. Via interacting with various partner proteins, PCNA plays critical roles in DNA replication, DNA repair, chromatin assembly, epigenetic inheritance, chromatin remodeling, and many other fundamental biological processes. Although PCNA and PCNA-interacting partner networks are conserved across species, PCNA of a given species is rarely functional in heterologous systems, emphasizing the importance of more representative PCNA studies. Here, we report two crystal structures of PCNA from African swine fever virus (ASFV), which is the only member of the Asfarviridae family. Compared to the eukaryotic and archaeal PCNAs and the sliding clamp structural homologs from other viruses, AsfvPCNA possesses unique sequences and/or conformations at several regions, such as the J-loop, interdomain-connecting loop (IDCL), P-loop, and C-tail, which are involved in partner recognition or modification of sliding clamps. In addition to double-stranded DNA binding, we also demonstrate that AsfvPCNA can modestly enhance the ligation activity of the AsfvLIG protein. The unique structural features of AsfvPCNA can serve as a potential target for the development of ASFV-specific inhibitors and help combat the deadly virus. IMPORTANCE Two high-resolution crystal structures of African swine fever virus proliferating cell nuclear antigen (AsfvPCNA) are presented here. Structural comparison revealed that AsfvPCNA is unique at several regions, such as the J-loop, the interdomain-connecting loop linker, and the P-loop, which may play important roles in ASFV-specific partner selection of AsfvPCNA. Unlike eukaryotic and archaeal PCNAs, AsfvPCNA possesses high double-stranded DNA-binding affinity. Besides DNA binding, AsfvPCNA can also modestly enhance the ligation activity of the AsfvLIG protein, which is essential for the replication and repair of ASFV genome. The unique structural features make AsfvPCNA a potential target for drug development, which will help combat the deadly virus.
Collapse
Affiliation(s)
- Zhiwei Shao
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jie Yang
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanqing Gao
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yixi Zhang
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Xin Zhao
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Qiyuan Shao
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Weizhen Zhang
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Chulei Cao
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Hehua Liu
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jianhua Gan
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Packard JE, Williams MR, Fromuth DP, Dembowski JA. Proliferating cell nuclear antigen inhibitors block distinct stages of herpes simplex virus infection. PLoS Pathog 2023; 19:e1011539. [PMID: 37486931 PMCID: PMC10399828 DOI: 10.1371/journal.ppat.1011539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/03/2023] [Accepted: 07/05/2023] [Indexed: 07/26/2023] Open
Abstract
Proliferating cell nuclear antigen (PCNA) forms a homotrimer that encircles replicating DNA and is bound by DNA polymerases to add processivity to cellular DNA synthesis. In addition, PCNA acts as a scaffold to recruit DNA repair and chromatin remodeling proteins to replicating DNA via its interdomain connecting loop (IDCL). Despite encoding a DNA polymerase processivity factor UL42, it was previously found that PCNA associates with herpes simplex virus type 1 (HSV-1) replication forks and is necessary for productive HSV-1 infection. To define the role that PCNA plays during viral DNA replication or a replication-coupled process, we investigated the effects that two mechanistically distinct PCNA inhibitors, PCNA-I1 and T2AA, have on the HSV-1 infectious cycle. PCNA-I1 binds at the interface between PCNA monomers, stabilizes the homotrimer, and may interfere with protein-protein interactions. T2AA inhibits select protein-protein interactions within the PCNA IDCL. Here we demonstrate that PCNA-I1 treatment results in reduced HSV-1 DNA replication, late gene expression, and virus production, while T2AA treatment results in reduced late viral gene expression and infectious virus production. To pinpoint the mechanisms by which PCNA inhibitors affect viral processes and protein recruitment to replicated viral DNA, we performed accelerated native isolation of proteins on nascent DNA (aniPOND). Results indicate that T2AA inhibits recruitment of the viral uracil glycosylase UL2 and transcription regulatory factors to viral DNA, likely leading to a defect in viral base excision repair and the observed defect in late viral gene expression and infectious virus production. In addition, PCNA-I1 treatment results in decreased association of the viral DNA polymerase UL30 and known PCNA-interacting proteins with viral DNA, consistent with the observed block in viral DNA replication and subsequent processes. Together, we conclude that inhibitors of cellular PCNA block recruitment of key viral and cellular factors to viral DNA to inhibit viral DNA synthesis and coupled processes.
Collapse
Affiliation(s)
- Jessica E. Packard
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Maya R. Williams
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Daniel P. Fromuth
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Jill A. Dembowski
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
14
|
Greenwood SN, Kulkarni RS, Mikhail M, Weiser BP. Replication Protein A Enhances Kinetics of Uracil DNA Glycosylase on ssDNA and Across DNA Junctions: Explored with a DNA Repair Complex Produced with SpyCatcher/SpyTag Ligation. Chembiochem 2023; 24:e202200765. [PMID: 36883884 PMCID: PMC10267839 DOI: 10.1002/cbic.202200765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/09/2023]
Abstract
DNA repair proteins participate in extensive protein-protein interactions that promote the formation of DNA repair complexes. To understand how complex formation affects protein function during base excision repair, we used SpyCatcher/SpyTag ligation to produce a covalent complex between human uracil DNA glycosylase (UNG2) and replication protein A (RPA). Our covalent "RPA-Spy-UNG2" complex could identify and excise uracil bases in duplex areas next to ssDNA-dsDNA junctions slightly faster than the wild-type proteins, but this was highly dependent on DNA structure, as the turnover of the RPA-Spy-UNG2 complex slowed at DNA junctions where RPA tightly engaged long ssDNA sections. Conversely, the enzymes preferred uracil sites in ssDNA where RPA strongly enhanced uracil excision by UNG2 regardless of ssDNA length. Finally, RPA was found to promote UNG2 excision of two uracil sites positioned across a ssDNA-dsDNA junction, and dissociation of UNG2 from RPA enhanced this process. Our approach of ligating together RPA and UNG2 to reveal how complex formation affects enzyme function could be applied to examine other assemblies of DNA repair proteins.
Collapse
Affiliation(s)
- Sharon N Greenwood
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Rashmi S Kulkarni
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Michel Mikhail
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
- Department of Internal Medicine, Newark Beth Israel Medical Center, Newark, NJ 07112, USA
| | - Brian P Weiser
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| |
Collapse
|
15
|
Stewart JA, Damania B. Human DNA tumor viruses evade uracil-mediated antiviral immunity. PLoS Pathog 2023; 19:e1011252. [PMID: 36996040 PMCID: PMC10062561 DOI: 10.1371/journal.ppat.1011252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Affiliation(s)
- Jessica A. Stewart
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
16
|
Kulkarni RS, Greenwood SN, Weiser BP. Assay design for analysis of human uracil DNA glycosylase. Methods Enzymol 2022; 679:343-362. [PMID: 36682870 DOI: 10.1016/bs.mie.2022.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Human uracil DNA glycosylase (UNG2) is an enzyme whose primary function is to remove uracil bases from genomic DNA. UNG2 activity is critical when uracil bases are elevated in DNA during class switch recombination and somatic hypermutation, and additionally, UNG2 affects the efficacy of thymidylate synthase inhibitors that increase genomic uracil levels. Here, we summarize the enzymatic properties of UNG2 and its mitochondrial analog UNG1. To facilitate studies on the activity of these highly conserved proteins, we discuss three fluorescence-based enzyme assays that have informed much of our understanding on UNG2 function. The assays use synthetic DNA oligonucleotide substrates with uracil bases incorporated in the DNA, and the substrates can be single-stranded, double-stranded, or form other structures such as DNA hairpins or junctions. The fluorescence signal reporting uracil base excision by UNG2 is detected in different ways: (1) Excision of uracil from end-labeled oligonucleotides is measured by visualizing UNG2 reaction products with denaturing PAGE; (2) Uracil excision from dsDNA substrates is detected in solution by base pairing uracil with 2-aminopurine, whose intrinsic fluorescence is enhanced upon uracil excision; or (3) UNG2 excision of uracil from a hairpin molecular beacon substrate changes the structure of the substrate and turns on fluorescence by relieving a fluorescence quench. In addition to their utility in characterizing UNG2 properties, these assays are being adapted to discover inhibitors of the enzyme and to determine how protein-protein interactions affect UNG2 function.
Collapse
Affiliation(s)
- Rashmi S Kulkarni
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States
| | - Sharon N Greenwood
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States
| | - Brian P Weiser
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States.
| |
Collapse
|
17
|
Piersimoni L, Abd El Malek M, Bhatia T, Bender J, Brankatschk C, Calvo Sánchez J, Dayhoff GW, Di Ianni A, Figueroa Parra JO, Garcia-Martinez D, Hesselbarth J, Köppen J, Lauth LM, Lippik L, Machner L, Sachan S, Schmidt L, Selle R, Skalidis I, Sorokin O, Ubbiali D, Voigt B, Wedler A, Wei AAJ, Zorn P, Dunker AK, Köhn M, Sinz A, Uversky VN. Lighting up Nobel Prize-winning studies with protein intrinsic disorder. Cell Mol Life Sci 2022; 79:449. [PMID: 35882686 PMCID: PMC11072364 DOI: 10.1007/s00018-022-04468-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/18/2022] [Accepted: 07/04/2022] [Indexed: 11/03/2022]
Abstract
Intrinsically disordered proteins and regions (IDPs and IDRs) and their importance in biology are becoming increasingly recognized in biology, biochemistry, molecular biology and chemistry textbooks, as well as in current protein science and structural biology curricula. We argue that the sequence → dynamic conformational ensemble → function principle is of equal importance as the classical sequence → structure → function paradigm. To highlight this point, we describe the IDPs and/or IDRs behind the discoveries associated with 17 Nobel Prizes, 11 in Physiology or Medicine and 6 in Chemistry. The Nobel Laureates themselves did not always mention that the proteins underlying the phenomena investigated in their award-winning studies are in fact IDPs or contain IDRs. In several cases, IDP- or IDR-based molecular functions have been elucidated, while in other instances, it is recognized that the respective protein(s) contain IDRs, but the specific IDR-based molecular functions have yet to be determined. To highlight the importance of IDPs and IDRs as general principle in biology, we present here illustrative examples of IDPs/IDRs in Nobel Prize-winning mechanisms and processes.
Collapse
Affiliation(s)
- Lolita Piersimoni
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Marina Abd El Malek
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Twinkle Bhatia
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Julian Bender
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Christin Brankatschk
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Jaime Calvo Sánchez
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Guy W Dayhoff
- Department of Chemistry, College of Art and Sciences, University of South Florida, Tampa, FL, 33620, USA
| | - Alessio Di Ianni
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | | | - Dailen Garcia-Martinez
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Julia Hesselbarth
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Janett Köppen
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Luca M Lauth
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Laurin Lippik
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Lisa Machner
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Shubhra Sachan
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Lisa Schmidt
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Robin Selle
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Ioannis Skalidis
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Oleksandr Sorokin
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Daniele Ubbiali
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Bruno Voigt
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Alice Wedler
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Alan An Jung Wei
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Peter Zorn
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Alan Keith Dunker
- Department of Biochemistry and Molecular Biology, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Marcel Köhn
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| | - Andrea Sinz
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
18
|
Torgasheva NA, Diatlova EA, Grin IR, Endutkin AV, Mechetin GV, Vokhtantsev IP, Yudkina AV, Zharkov DO. Noncatalytic Domains in DNA Glycosylases. Int J Mol Sci 2022; 23:ijms23137286. [PMID: 35806289 PMCID: PMC9266487 DOI: 10.3390/ijms23137286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Many proteins consist of two or more structural domains: separate parts that have a defined structure and function. For example, in enzymes, the catalytic activity is often localized in a core fragment, while other domains or disordered parts of the same protein participate in a number of regulatory processes. This situation is often observed in many DNA glycosylases, the proteins that remove damaged nucleobases thus initiating base excision DNA repair. This review covers the present knowledge about the functions and evolution of such noncatalytic parts in DNA glycosylases, mostly concerned with the human enzymes but also considering some unique members of this group coming from plants and prokaryotes.
Collapse
Affiliation(s)
- Natalia A. Torgasheva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
| | - Evgeniia A. Diatlova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Street, 630090 Novosibirsk, Russia
| | - Inga R. Grin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
| | - Anton V. Endutkin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
| | - Grigory V. Mechetin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
| | - Ivan P. Vokhtantsev
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Street, 630090 Novosibirsk, Russia
| | - Anna V. Yudkina
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
| | - Dmitry O. Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Street, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
19
|
Histone variants H3.3 and H2A.Z/H3.3 facilitate excision of uracil from nucleosome core particles. DNA Repair (Amst) 2022; 116:103355. [PMID: 35717761 PMCID: PMC9262417 DOI: 10.1016/j.dnarep.2022.103355] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 11/20/2022]
Abstract
At the most fundamental level of chromatin organization, DNA is packaged as nucleosome core particles (NCPs) where DNA is wound around a core of histone proteins. This ubiquitous sequestration of DNA within NCPs presents a significant barrier to many biological processes, including DNA repair. We previously demonstrated that histone variants from the H2A family facilitate excision of uracil (U) lesions by DNA base excision repair (BER) glycosylases. Here, we consider how the histone variant H3.3 and double-variant H2A.Z/H3.3 modulate the BER enzymes uracil DNA glycosylase (UDG) and single-strand selective monofunctional uracil DNA glycosylase (SMUG1). Using an NCP model system with U:G base pairs at a wide variety of geometric positions we generate the global repair profile for both glycosylases. Enhanced excision of U by UDG and SMUG1 is observed with the H3.3 variant. We demonstrate that these H3.3-containing NCPs form two species: (1) octasomes, which contain the full complement of eight histone proteins and (2) hexasomes which are sub-nucleosomal particles that contain six histones. Both the octasome and hexasome species facilitate excision activity of UDG and SMUG1, with the largest impacts observed at sterically-occluded lesion sites and in terminal regions of DNA of the hexasome that do not closely interact with histones. For the double-variant H2A.Z/H3.3 NCPs, which exist as octasomes, the global repair profile reveals that UDG but not SMUG1 has increased U excision activity. The enhanced glycosylase activity reveals potential functions for these histone variants to facilitate BER in packaged DNA and contributes to our understanding of DNA repair in chromatin and its significance regarding mutagenesis and genomic integrity.
Collapse
|
20
|
Feng Y, Martin A. Mutagenic repair during antibody diversification: emerging insights. Trends Immunol 2022; 43:604-607. [PMID: 35701290 DOI: 10.1016/j.it.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
Abstract
Deoxyuracils (dUs) produced by activation-induced cytidine deaminase (AID) during antibody diversification are processed by base excision repair (BER) and mismatch repair (MMR) pathways that paradoxically expand this lesion within jawed vertebrate immunoglobulin (Ig) genes. We highlight new findings describing mechanisms that allow B cells to carry out mutagenic DNA repair, an essential process for antibody maturation with implications in cancer pathogenesis.
Collapse
Affiliation(s)
- Yuqing Feng
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Alberto Martin
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
21
|
A New Class of Uracil-DNA Glycosylase Inhibitors Active against Human and Vaccinia Virus Enzyme. Molecules 2021; 26:molecules26216668. [PMID: 34771075 PMCID: PMC8587785 DOI: 10.3390/molecules26216668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/24/2021] [Accepted: 10/30/2021] [Indexed: 11/17/2022] Open
Abstract
Uracil-DNA glycosylases are enzymes that excise uracil bases appearing in DNA as a result of cytosine deamination or accidental dUMP incorporation from the dUTP pool. The activity of Family 1 uracil-DNA glycosylase (UNG) activity limits the efficiency of antimetabolite drugs and is essential for virulence in some bacterial and viral infections. Thus, UNG is regarded as a promising target for antitumor, antiviral, antibacterial, and antiprotozoal drugs. Most UNG inhibitors presently developed are based on the uracil base linked to various substituents, yet new pharmacophores are wanted to target a wide range of UNGs. We have conducted virtual screening of a 1,027,767-ligand library and biochemically screened the best hits for the inhibitory activity against human and vaccinia virus UNG enzymes. Although even the best inhibitors had IC50 ≥ 100 μM, they were highly enriched in a common fragment, tetrahydro-2,4,6-trioxopyrimidinylidene (PyO3). In silico, PyO3 preferably docked into the enzyme's active site, and in kinetic experiments, the inhibition was better consistent with the competitive mechanism. The toxicity of two best inhibitors for human cells was independent of the presence of methotrexate, which is consistent with the hypothesis that dUMP in genomic DNA is less toxic for the cell than strand breaks arising from the massive removal of uracil. We conclude that PyO3 may be a novel pharmacophore with the potential for development into UNG-targeting agents.
Collapse
|
22
|
Dieckman L. Something’s gotta give: How PCNA alters its structure in response to mutations and the implications on cellular processes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 163:46-59. [DOI: 10.1016/j.pbiomolbio.2020.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/19/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022]
|
23
|
Apurinic/Apyrimidinic Endonuclease 2 (APE2): An ancillary enzyme for contextual base excision repair mechanisms to preserve genome stability. Biochimie 2021; 190:70-90. [PMID: 34302888 DOI: 10.1016/j.biochi.2021.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/29/2021] [Accepted: 07/19/2021] [Indexed: 01/03/2023]
Abstract
The genome of living organisms frequently undergoes various types of modifications which are recognized and repaired by the relevant repair mechanisms. These repair pathways are increasingly being deciphered to understand the mechanisms. Base excision repair (BER) is indispensable to maintain genome stability. One of the enigmatic repair proteins of BER, Apurinic/Apyrimidinic Endonuclease 2 (APE2), like APE1, is truly multifunctional and demonstrates the independent and non-redundant function in maintaining the genome integrity. APE2 is involved in ATR-Chk1 mediated DNA damage response. It also resolves topoisomerase1 mediated cleavage complex intermediate which is formed while repairing misincorporated ribonucleotides in the absence of functional RNase H2 mediated excision repair pathway. BER participates in the demethylation pathway and the role of Arabidopsis thaliana APE2 is demonstrated in this process. Moreover, APE2 is synthetically lethal to BRCA1, BRCA2, and RNase H2, and its homolog, APE1 fails to complement the function. Hence, the role of APE2 is not just an alternate to the repair mechanisms but has implications in diverse functional pathways related to the maintenance of genome integrity. This review analyses genomic features of APE2 and delineates its enzyme function as error-prone as well as efficient and accurate repair protein based on the studies on mammalian or its homolog proteins from model systems such as Arabidopsis thaliana, Schizosaccharomyces pombe, Trypanosoma curzi, Xenopus laevis, Danio rerio, Mus musculus, and Homo sapiens.
Collapse
|
24
|
Kavli B, Iveland TS, Buchinger E, Hagen L, Liabakk NB, Aas PA, Obermann TS, Aachmann FL, Slupphaug G. RPA2 winged-helix domain facilitates UNG-mediated removal of uracil from ssDNA; implications for repair of mutagenic uracil at the replication fork. Nucleic Acids Res 2021; 49:3948-3966. [PMID: 33784377 PMCID: PMC8053108 DOI: 10.1093/nar/gkab195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 01/14/2023] Open
Abstract
Uracil occurs at replication forks via misincorporation of deoxyuridine monophosphate (dUMP) or via deamination of existing cytosines, which occurs 2-3 orders of magnitude faster in ssDNA than in dsDNA and is 100% miscoding. Tethering of UNG2 to proliferating cell nuclear antigen (PCNA) allows rapid post-replicative removal of misincorporated uracil, but potential 'pre-replicative' removal of deaminated cytosines in ssDNA has been questioned since this could mediate mutagenic translesion synthesis and induction of double-strand breaks. Here, we demonstrate that uracil-DNA glycosylase (UNG), but not SMUG1 efficiently excises uracil from replication protein A (RPA)-coated ssDNA and that this depends on functional interaction between the flexible winged-helix (WH) domain of RPA2 and the N-terminal RPA-binding helix in UNG. This functional interaction is promoted by mono-ubiquitination and diminished by cell-cycle regulated phosphorylations on UNG. Six other human proteins bind the RPA2-WH domain, all of which are involved in DNA repair and replication fork remodelling. Based on this and the recent discovery of the AP site crosslinking protein HMCES, we propose an integrated model in which templated repair of uracil and potentially other mutagenic base lesions in ssDNA at the replication fork, is orchestrated by RPA. The UNG:RPA2-WH interaction may also play a role in adaptive immunity by promoting efficient excision of AID-induced uracils in transcribed immunoglobulin loci.
Collapse
Affiliation(s)
- Bodil Kavli
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| | - Tobias S Iveland
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Cancer Clinic, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| | - Edith Buchinger
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, N-7034 Trondheim, Norway
| | - Lars Hagen
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway.,PROMEC Proteomics and Modomics Experimental Core at NTNU and the Central Norway Regional Health Authority, NO-7491 Trondheim, Norway
| | - Nina B Liabakk
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| | - Per A Aas
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| | - Tobias S Obermann
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| | - Finn L Aachmann
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, N-7034 Trondheim, Norway
| | - Geir Slupphaug
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway.,PROMEC Proteomics and Modomics Experimental Core at NTNU and the Central Norway Regional Health Authority, NO-7491 Trondheim, Norway
| |
Collapse
|
25
|
Viruses with U-DNA: New Avenues for Biotechnology. Viruses 2021; 13:v13050875. [PMID: 34068736 PMCID: PMC8150378 DOI: 10.3390/v13050875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
Deoxyuridine in DNA has recently been in the focus of research due to its intriguing roles in several physiological and pathophysiological situations. Although not an orthodox DNA base, uracil may appear in DNA via either cytosine deamination or thymine-replacing incorporations. Since these alterations may induce mutation or may perturb DNA–protein interactions, free living organisms from bacteria to human contain several pathways to counteract uracilation. These efficient and highly specific repair routes uracil-directed excision repair initiated by representative of uracil-DNA glycosylase families. Interestingly, some bacteriophages exist with thymine-lacking uracil-DNA genome. A detailed understanding of the strategy by which such phages can replicate in bacteria where an efficient repair pathway functions for uracil-excision from DNA is expected to reveal novel inhibitors that can also be used for biotechnological applications. Here, we also review the several potential biotechnological applications already implemented based on inhibitors of uracil-excision repair, such as Crispr-base-editing and detection of nascent uracil distribution pattern in complex genomes.
Collapse
|
26
|
Genomic Uracil and Aberrant Profile of Demethylation Intermediates in Epigenetics and Hematologic Malignancies. Int J Mol Sci 2021; 22:ijms22084212. [PMID: 33921666 PMCID: PMC8073381 DOI: 10.3390/ijms22084212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/30/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022] Open
Abstract
DNA of all living cells undergoes continuous structural and chemical alterations resulting from fundamental cellular metabolic processes and reactivity of normal cellular metabolites and constituents. Examples include enzymatically oxidized bases, aberrantly methylated bases, and deaminated bases, the latter largely uracil from deaminated cytosine. In addition, the non-canonical DNA base uracil may result from misincorporated dUMP. Furthermore, uracil generated by deamination of cytosine in DNA is not always damage as it is also an intermediate in normal somatic hypermutation (SHM) and class shift recombination (CSR) at the Ig locus of B-cells in adaptive immunity. Many of the modifications alter base-pairing properties and may thus cause replicative and transcriptional mutagenesis. The best known and most studied epigenetic mark in DNA is 5-methylcytosine (5mC), generated by a methyltransferase that uses SAM as methyl donor, usually in CpG contexts. Oxidation products of 5mC are now thought to be intermediates in active demethylation as well as epigenetic marks in their own rights. The aim of this review is to describe the endogenous processes that surround the generation and removal of the most common types of DNA nucleobase modifications, namely, uracil and certain epigenetic modifications, together with their role in the development of hematological malignances. We also discuss what dictates whether the presence of an altered nucleobase is defined as damage or a natural modification.
Collapse
|
27
|
Wang B, Chen Y, Zhang X, Jiang Z, Wang Y, Chen K, Wang F, Weng X, Zhou X. A far-red emissive two-photon fluorescent probe for quantification of uracil in genomic DNA. Chem Commun (Camb) 2021; 57:2784-2787. [PMID: 33599665 DOI: 10.1039/d1cc00016k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a new method for dU detection in genomic DNA combined with UNG excision and fluorescent probe labeling. UNG can remove uracil bases to introduce abasic sites, which can react with NRNO to produce intense fluorescence because of the inhibition of the PET effect. It can also cause the polymerase extension to stop to provide details of dU site information.
Collapse
Affiliation(s)
- Bingyao Wang
- The Institute of Advanced Studies, College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Yi Chen
- The Institute of Advanced Studies, College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Xiong Zhang
- The Institute of Advanced Studies, College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Zhuoran Jiang
- The Institute of Advanced Studies, College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Yafen Wang
- The Institute of Advanced Studies, College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Kun Chen
- The Institute of Advanced Studies, College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Fang Wang
- Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Xiaocheng Weng
- The Institute of Advanced Studies, College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Xiang Zhou
- The Institute of Advanced Studies, College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China.
| |
Collapse
|
28
|
Perkins JL, Zhao L. The N-terminal domain of uracil-DNA glycosylase: Roles for disordered regions. DNA Repair (Amst) 2021; 101:103077. [PMID: 33640758 DOI: 10.1016/j.dnarep.2021.103077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 02/14/2021] [Indexed: 01/10/2023]
Abstract
The presence of uracil in DNA calls for rapid removal facilitated by the uracil-DNA glycosylase superfamily of enzymes, which initiates the base excision repair (BER) pathway. In humans, uracil excision is accomplished primarily by the human uracil-DNA glycosylase (hUNG) enzymes. In addition to BER, hUNG enzymes play a key role in somatic hypermutation to generate antibody diversity. hUNG has several isoforms, with hUNG1 and hUNG2 being the two major isoforms. Both isoforms contain disordered N-terminal domains, which are responsible for a wide range of functions, with minimal direct impact on catalytic efficiency. Subcellular localization of hUNG enzymes is directed by differing N-terminal sequences, with hUNG1 dedicated to mitochondria and hUNG2 dedicated to the nucleus. An alternative isoform of hUNG1 has also been identified to localize to the nucleus in mouse and human cell models. Furthermore, hUNG2 has been observed at replication forks performing both pre- and post-replicative uracil excision to maintain genomic integrity. Replication protein A (RPA) and proliferating cell nuclear antigen (PCNA) are responsible for recruitment to replication forks via protein-protein interactions with the N-terminus of hUNG2. These interactions, along with protein degradation, are regulated by various post-translational modifications within the N-terminal tail, which are primarily cell-cycle dependent. Finally, translocation on DNA is also mediated by interactions between the N-terminus and DNA, which is enhanced under molecular crowding conditions by preventing diffusion events and compacting tail residues. This review summarizes recent research supporting the emerging roles of the N-terminal domain of hUNG.
Collapse
Affiliation(s)
- Jacob L Perkins
- Department of Chemistry and Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, CA 92521, United States
| | - Linlin Zhao
- Department of Chemistry and Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, CA 92521, United States.
| |
Collapse
|
29
|
Bao Y, Tong L, Song B, Liu G, Zhu Q, Lu X, Zhang J, Lu YF, Wen H, Tian Y, Sun Y, Zhu WG. UNG2 deacetylation confers cancer cell resistance to hydrogen peroxide-induced cytotoxicity. Free Radic Biol Med 2020; 160:403-417. [PMID: 32649985 DOI: 10.1016/j.freeradbiomed.2020.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/29/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023]
Abstract
Cancer therapeutics produce reactive oxygen species (ROS) that damage the cancer genome and lead to cell death. However, cancer cells can resist ROS-induced cytotoxicity and survive. We show that nuclear-localized uracil-DNA N-glycosylase isoform 2 (UNG2) has a critical role in preventing ROS-induced DNA damage and enabling cancer-cell resistance. Under physiological conditions, UNG2 is targeted for rapid degradation via an interaction with the E3 ligase UHRF1. In response to ROS, however, UNG2 protein in cancer cells exhibits a remarkably extended half-life. Upon ROS exposure, UNG2 is deacetylated at lysine 78 by histone deacetylases, which prevents the UNG2-UHRF1 interaction. Accumulated UNG2 protein can thus excise the base damaged by ROS and enable the cell to survive these otherwise toxic conditions. Consequently, combining HDAC inhibitors (to permit UNG2 degradation) with genotoxic agents (to produce cytotoxic cellular levels of ROS) leads to a robust synergistic killing effect in cancer cells in vitro. Altogether, these data support the application of a novel approach to cancer treatment based on promoting UNG2 degradation by altering its acetylation status using an HDAC inhibitor.
Collapse
Affiliation(s)
- Yantao Bao
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, 518055, China; International Cancer Center, Shenzhen University School of Medicine, Shenzhen, 518055, China
| | - Lili Tong
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, 518055, China
| | - Boyan Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ge Liu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, 518055, China
| | - Qian Zhu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, 518055, China
| | - Xiaopeng Lu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, 518055, China
| | - Jun Zhang
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, 518055, China
| | - Ya-Fei Lu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, 518055, China
| | - He Wen
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, 518055, China
| | - Yuan Tian
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, 518055, China
| | - Yujie Sun
- Department of Cell Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Wei-Guo Zhu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, 518055, China; International Cancer Center, Shenzhen University School of Medicine, Shenzhen, 518055, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China; Shenzhen Bay Laboratory, Shenzhen University School of Medicine, Shenzhen, 518055, China.
| |
Collapse
|
30
|
Caldwell CC, Spies M. Dynamic elements of replication protein A at the crossroads of DNA replication, recombination, and repair. Crit Rev Biochem Mol Biol 2020; 55:482-507. [PMID: 32856505 PMCID: PMC7821911 DOI: 10.1080/10409238.2020.1813070] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 01/19/2023]
Abstract
The heterotrimeric eukaryotic Replication protein A (RPA) is a master regulator of numerous DNA metabolic processes. For a long time, it has been viewed as an inert protector of ssDNA and a platform for assembly of various genome maintenance and signaling machines. Later, the modular organization of the RPA DNA binding domains suggested a possibility for dynamic interaction with ssDNA. This modular organization has inspired several models for the RPA-ssDNA interaction that aimed to explain how RPA, the high-affinity ssDNA binding protein, is replaced by the downstream players in DNA replication, recombination, and repair that bind ssDNA with much lower affinity. Recent studies, and in particular single-molecule observations of RPA-ssDNA interactions, led to the development of a new model for the ssDNA handoff from RPA to a specific downstream factor where not only stability and structural rearrangements but also RPA conformational dynamics guide the ssDNA handoff. Here we will review the current knowledge of the RPA structure, its dynamic interaction with ssDNA, and how RPA conformational dynamics may be influenced by posttranslational modification and proteins that interact with RPA, as well as how RPA dynamics may be harnessed in cellular decision making.
Collapse
Affiliation(s)
- Colleen C. Caldwell
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Maria Spies
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
31
|
Thompson PS, Cortez D. New insights into abasic site repair and tolerance. DNA Repair (Amst) 2020; 90:102866. [PMID: 32417669 PMCID: PMC7299775 DOI: 10.1016/j.dnarep.2020.102866] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022]
Abstract
Thousands of apurinic/apyrimidinic (AP or abasic) sites form in each cell, each day. This simple DNA lesion can have profound consequences to cellular function, genome stability, and disease. As potent blocks to polymerases, they interfere with the reading and copying of the genome. Since they provide no coding information, they are potent sources of mutation. Due to their reactive chemistry, they are intermediates in the formation of lesions that are more challenging to repair including double-strand breaks, interstrand crosslinks, and DNA protein crosslinks. Given their prevalence and deleterious consequences, cells have multiple mechanisms of repairing and tolerating these lesions. While base excision repair of abasic sites in double-strand DNA has been studied for decades, new interest in abasic site processing has come from more recent insights into how they are processed in single-strand DNA. In this review, we discuss the source of abasic sites, their biological consequences, tolerance mechanisms, and how they are repaired in double and single-stranded DNA.
Collapse
Affiliation(s)
- Petria S Thompson
- Vanderbilt University School of Medicine, Department of Biochemistry, Nashville, TN, 37232, USA
| | - David Cortez
- Vanderbilt University School of Medicine, Department of Biochemistry, Nashville, TN, 37232, USA.
| |
Collapse
|
32
|
Iveland TS, Hagen L, Sharma A, Sousa MML, Sarno A, Wollen KL, Liabakk NB, Slupphaug G. HDACi mediate UNG2 depletion, dysregulated genomic uracil and altered expression of oncoproteins and tumor suppressors in B- and T-cell lines. J Transl Med 2020; 18:159. [PMID: 32264925 PMCID: PMC7137348 DOI: 10.1186/s12967-020-02318-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND HDAC inhibitors (HDACi) belong to a new group of chemotherapeutics that are increasingly used in the treatment of lymphocyte-derived malignancies, but their mechanisms of action remain poorly understood. Here we aimed to identify novel protein targets of HDACi in B- and T-lymphoma cell lines and to verify selected candidates across several mammalian cell lines. METHODS Jurkat T- and SUDHL5 B-lymphocytes were treated with the HDACi SAHA (vorinostat) prior to SILAC-based quantitative proteome analysis. Selected differentially expressed proteins were verified by targeted mass spectrometry, RT-PCR and western analysis in multiple mammalian cell lines. Genomic uracil was quantified by LC-MS/MS, cell cycle distribution analyzed by flow cytometry and class switch recombination monitored by FACS in murine CH12F3 cells. RESULTS SAHA treatment resulted in differential expression of 125 and 89 proteins in Jurkat and SUDHL5, respectively, of which 19 were commonly affected. Among these were several oncoproteins and tumor suppressors previously not reported to be affected by HDACi. Several key enzymes determining the cellular dUTP/dTTP ratio were downregulated and in both cell lines we found robust depletion of UNG2, the major glycosylase in genomic uracil sanitation. UNG2 depletion was accompanied by hyperacetylation and mediated by increased proteasomal degradation independent of cell cycle stage. UNG2 degradation appeared to be ubiquitous and was observed across several mammalian cell lines of different origin and with several HDACis. Loss of UNG2 was accompanied by 30-40% increase in genomic uracil in freely cycling HEK cells and reduced immunoglobulin class-switch recombination in murine CH12F3 cells. CONCLUSION We describe several oncoproteins and tumor suppressors previously not reported to be affected by HDACi in previous transcriptome analyses, underscoring the importance of proteome analysis to identify cellular effectors of HDACi treatment. The apparently ubiquitous depletion of UNG2 and PCLAF establishes DNA base excision repair and translesion synthesis as novel pathways affected by HDACi treatment. Dysregulated genomic uracil homeostasis may aid interpretation of HDACi effects in cancer cells and further advance studies on this class of inhibitors in the treatment of APOBEC-expressing tumors, autoimmune disease and HIV-1.
Collapse
Affiliation(s)
- Tobias S Iveland
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health, Norwegian University of Science and Technology, 7491, Trondheim, Norway.,Cancer Clinic, St. Olav's Hospital, Trondheim, Norway
| | - Lars Hagen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health, Norwegian University of Science and Technology, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim, Norway.,Proteomics and Modomics Experimental Core, PROMEC, at NTNU and the Central Norway Regional Health Authority, Stjørdal, Norway
| | - Animesh Sharma
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health, Norwegian University of Science and Technology, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim, Norway.,Proteomics and Modomics Experimental Core, PROMEC, at NTNU and the Central Norway Regional Health Authority, Stjørdal, Norway
| | - Mirta M L Sousa
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health, Norwegian University of Science and Technology, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim, Norway
| | - Antonio Sarno
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health, Norwegian University of Science and Technology, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim, Norway
| | - Kristian Lied Wollen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Nina Beate Liabakk
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health, Norwegian University of Science and Technology, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim, Norway
| | - Geir Slupphaug
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health, Norwegian University of Science and Technology, 7491, Trondheim, Norway. .,Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim, Norway. .,Proteomics and Modomics Experimental Core, PROMEC, at NTNU and the Central Norway Regional Health Authority, Stjørdal, Norway.
| |
Collapse
|
33
|
Weiser BP. Analysis of uracil DNA glycosylase (UNG2) stimulation by replication protein A (RPA) at ssDNA-dsDNA junctions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140347. [PMID: 31866506 DOI: 10.1016/j.bbapap.2019.140347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022]
Abstract
Replication Protein A (RPA) is a single-stranded DNA binding protein that interacts with DNA repair proteins including Uracil DNA Glycosylase (UNG2). Here, I report DNA binding and activity assays using purified recombinant RPA and UNG2. Using synthetic DNA substrates, RPA was found to promote UNG2's interaction with ssDNA-dsDNA junctions regardless of the DNA strand polarity surrounding the junction. RPA stimulated UNG2's removal of uracil bases paired with adenine or guanine in DNA as much as 17-fold when the uracil was positioned 21 bps from ssDNA-dsDNA junctions, and the largest degree of UNG2 stimulation occurred when RPA was in molar excess compared to DNA. I found that RPA becomes sequestered on ssDNA regions surrounding junctions which promotes its spatial targeting of UNG2 near the junction. However, when RPA concentration exceeds free ssDNA, RPA promotes UNG2's activity without spatial constraints in dsDNA regions. These effects of RPA on UNG2 were found to be mediated primarily by interactions between RPA's winged-helix domain and UNG2's N-terminal domain, but when the winged-helix domain is unavailable, a secondary interaction between UNG2's N-terminal domain and RPA can occur. This work supports a widespread role for RPA in stimulating uracil base excision repair.
Collapse
Affiliation(s)
- Brian P Weiser
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA.
| |
Collapse
|
34
|
Rodriguez G, Orris B, Majumdar A, Bhat S, Stivers JT. Macromolecular crowding induces compaction and DNA binding in the disordered N-terminal domain of hUNG2. DNA Repair (Amst) 2019; 86:102764. [PMID: 31855846 DOI: 10.1016/j.dnarep.2019.102764] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/25/2019] [Accepted: 12/04/2019] [Indexed: 11/15/2022]
Abstract
Many human DNA repair proteins have disordered domains at their N- or C-termini with poorly defined biological functions. We recently reported that the partially structured N-terminal domain (NTD) of human uracil DNA glycosylase 2 (hUNG2), functions to enhance DNA translocation in crowded environments and also targets the enzyme to single-stranded/double-stranded DNA junctions. To understand the structural basis for these effects we now report high-resolution heteronuclear NMR studies of the isolated NTD in the presence and absence of an inert macromolecular crowding agent (PEG8K). Compared to dilute buffer, we find that crowding reduces the degrees of freedom for the structural ensemble, increases the order of a PCNA binding motif and dramatically promotes binding of the NTD for DNA through a conformational selection mechanism. These findings shed new light on the function of this disordered domain in the context of the crowded nuclear environment.
Collapse
Affiliation(s)
- Gaddiel Rodriguez
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, United States
| | - Benjamin Orris
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, United States
| | - Ananya Majumdar
- Biomolecular NMR Center, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Shridhar Bhat
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, United States
| | - James T Stivers
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, United States.
| |
Collapse
|
35
|
Sarno A, Lundbæk M, Liabakk NB, Aas PA, Mjelle R, Hagen L, Sousa MML, Krokan HE, Kavli B. Uracil-DNA glycosylase UNG1 isoform variant supports class switch recombination and repairs nuclear genomic uracil. Nucleic Acids Res 2019; 47:4569-4585. [PMID: 30838409 PMCID: PMC6511853 DOI: 10.1093/nar/gkz145] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 01/18/2019] [Accepted: 02/25/2019] [Indexed: 11/23/2022] Open
Abstract
UNG is the major uracil-DNA glycosylase in mammalian cells and is involved in both error-free base excision repair of genomic uracil and mutagenic uracil-processing at the antibody genes. However, the regulation of UNG in these different processes is currently not well understood. The UNG gene encodes two isoforms, UNG1 and UNG2, each possessing unique N-termini that mediate translocation to the mitochondria and the nucleus, respectively. A strict subcellular localization of each isoform has been widely accepted despite a lack of models to study them individually. To determine the roles of each isoform, we generated and characterized several UNG isoform-specific mouse and human cell lines. We identified a distinct UNG1 isoform variant that is targeted to the cell nucleus where it supports antibody class switching and repairs genomic uracil. We propose that the nuclear UNG1 variant, which in contrast to UNG2 lacks a PCNA-binding motif, may be specialized to act on ssDNA through its ability to bind RPA. RPA-coated ssDNA regions include both transcribed antibody genes that are targets for deamination by AID and regions in front of the moving replication forks. Our findings provide new insights into the function of UNG isoforms in adaptive immunity and DNA repair.
Collapse
Affiliation(s)
- Antonio Sarno
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway.,PROMEC Core Facility for Proteomics and Modomics at NTNU and the Central Norway Regional Health Authority
| | - Marie Lundbæk
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Nina Beate Liabakk
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Per Arne Aas
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Robin Mjelle
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Lars Hagen
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,PROMEC Core Facility for Proteomics and Modomics at NTNU and the Central Norway Regional Health Authority
| | - Mirta M L Sousa
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway.,PROMEC Core Facility for Proteomics and Modomics at NTNU and the Central Norway Regional Health Authority
| | - Hans E Krokan
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Bodil Kavli
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| |
Collapse
|
36
|
|
37
|
Weiser BP, Rodriguez G, Cole PA, Stivers JT. N-terminal domain of human uracil DNA glycosylase (hUNG2) promotes targeting to uracil sites adjacent to ssDNA-dsDNA junctions. Nucleic Acids Res 2019; 46:7169-7178. [PMID: 29917162 PMCID: PMC6101581 DOI: 10.1093/nar/gky525] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 05/24/2018] [Indexed: 01/29/2023] Open
Abstract
The N-terminal domain (NTD) of nuclear human uracil DNA glycosylase (hUNG2) assists in targeting hUNG2 to replication forks through specific interactions with replication protein A (RPA). Here, we explored hUNG2 activity in the presence and absence of RPA using substrates with ssDNA–dsDNA junctions that mimic structural features of the replication fork and transcriptional R-loops. We find that when RPA is tightly bound to the ssDNA overhang of junction DNA substrates, base excision by hUNG2 is strongly biased toward uracils located 21 bp or less from the ssDNA–dsDNA junction. In the absence of RPA, hUNG2 still showed an 8-fold excision bias for uracil located <10 bp from the junction, but only when the overhang had a 5′ end. Biased targeting required the NTD and was not observed with the hUNG2 catalytic domain alone. Consistent with this requirement, the isolated NTD was found to bind weakly to ssDNA. These findings indicate that the NTD of hUNG2 targets the enzyme to ssDNA–dsDNA junctions using RPA-dependent and RPA-independent mechanisms. This structure-based specificity may promote efficient removal of uracils that arise from dUTP incorporation during DNA replication, or additionally, uracils that arise from DNA cytidine deamination at transcriptional R-loops during immunoglobulin class-switch recombination.
Collapse
Affiliation(s)
- Brian P Weiser
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Gaddiel Rodriguez
- Department of Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Philip A Cole
- Division of Genetics, Department of Medicine and Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - James T Stivers
- Department of Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
38
|
Boldinova EO, Khairullin RF, Makarova AV, Zharkov DO. Isoforms of Base Excision Repair Enzymes Produced by Alternative Splicing. Int J Mol Sci 2019; 20:ijms20133279. [PMID: 31277343 PMCID: PMC6651865 DOI: 10.3390/ijms20133279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 06/29/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023] Open
Abstract
Transcripts of many enzymes involved in base excision repair (BER) undergo extensive alternative splicing, but functions of the corresponding alternative splice variants remain largely unexplored. In this review, we cover the studies describing the common alternatively spliced isoforms and disease-associated variants of DNA glycosylases, AP-endonuclease 1, and DNA polymerase beta. We also discuss the roles of alternative splicing in the regulation of their expression, catalytic activities, and intracellular transport.
Collapse
Affiliation(s)
| | - Rafil F Khairullin
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 9 Parizhskoy Kommuny Str., 420012 Kazan, Russia
| | - Alena V Makarova
- RAS Institute of Molecular Genetics, 2 Kurchatova Sq., 123182 Moscow, Russia.
| | - Dmitry O Zharkov
- Novosibirsk State University, 1 Pirogova St., 630090 Novosibirsk, Russia.
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia.
| |
Collapse
|
39
|
Squillaro T, Finicelli M, Alessio N, Del Gaudio S, Di Bernardo G, Melone MAB, Peluso G, Galderisi U. A rapid, safe, and quantitative in vitro assay for measurement of uracil-DNA glycosylase activity. J Mol Med (Berl) 2019; 97:991-1001. [PMID: 31041464 DOI: 10.1007/s00109-019-01788-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/26/2022]
Abstract
Base excision repair (BER) is a frontline repair mechanism that operates through the G1 phase of the cell cycle, which ensures the genome integrity by repairing thousands of DNA lesions due to endogenous and exogenous agents. Its correct functioning is fundamental for cell viability and the health of the organism. Uracil is one of the most prevalent lesions that appears in DNA arising by spontaneous or enzymatic deamination of cytosine or misincorporation of the deoxyuridine 5'-triphosphate nucleotide (dUTP) in place of deoxythymidine 5'-triphosphate (dTTP) during DNA replication. In the first pathway, the uracil will preferentially pair with adenine, leading to C:G → T:A transition. When uracil in DNA arises from misincorporation of dUTP instead of dTTP, this process will result in A:U pairs. Organisms counteract the mutagenic effects of uracil in DNA using the BER repair system, which is mediated by a member of the uracil-DNA glycosylase (UDG) superfamily. Several assays evaluating the in vitro BER enzyme activity have been described so far. Some of these measure the BER activity by an oligonucleotide incision assay using radiolabeled duplex oligo. Others use circular double-stranded DNA substrates containing a defined lesion. The novelty of our method resides in its rapidity and safety (radioactive free detection) as well as in the possibility of having a reliable quantitative determination of UDG activity in both cell and tissue extracts. We also demonstrated the effectiveness of our method in assessing UDG activity in cell lines with a reduced DNA repair capacity and in different kinds of tissues. KEY MESSAGES: • Base excision repair is a fundamental repair mechanism ensuring the genome integrity. • Uracil is one of the most prevalent lesions that appears in DNA. • The mutagenic effects of uracil in DNA are mitigated by the uracil-DNA glycosylase. • Several assays evaluating the in vitro BER activity have been described so far. • A safe and quantitative assay evaluating the in vitro UDG activity is required.
Collapse
Affiliation(s)
- Tiziana Squillaro
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mauro Finicelli
- Research Institute on Terrestrial Ecosystems, National Research Council, Naples, Italy
| | - Nicola Alessio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Stefania Del Gaudio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanni Di Bernardo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mariarosa Anna Beatrice Melone
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems, National Research Council, Naples, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
40
|
Abstract
The mitochondrial genome encodes proteins essential for the oxidative phosphorylation and, consequently, for proper mitochondrial function. Its localization and, possibly, structural organization contribute to higher DNA damage accumulation, when compared to the nuclear genome. In addition, the mitochondrial genome mutates at rates several times higher than the nuclear, although the causal relationship between these events are not clearly established. Maintaining mitochondrial DNA stability is critical for cellular function and organismal fitness, and several pathways contribute to that, including damage tolerance and bypass, degradation of damaged genomes and DNA repair. Despite initial evidence suggesting that mitochondria lack DNA repair activities, most DNA repair pathways have been at least partially characterized in mitochondria from several model organisms, including humans. In this chapter, we review what is currently known about how the main DNA repair pathways operate in mitochondria and contribute to mitochondrial DNA stability, with focus on the enzymology of mitochondrial DNA repair.
Collapse
Affiliation(s)
- Rebeca R Alencar
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Caio M P F Batalha
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Thiago S Freire
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Nadja C de Souza-Pinto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
41
|
Esadze A, Stivers JT. Facilitated Diffusion Mechanisms in DNA Base Excision Repair and Transcriptional Activation. Chem Rev 2018; 118:11298-11323. [PMID: 30379068 DOI: 10.1021/acs.chemrev.8b00513] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Preservation of the coding potential of the genome and highly regulated gene expression over the life span of a human are two fundamental requirements of life. These processes require the action of repair enzymes or transcription factors that efficiently recognize specific sites of DNA damage or transcriptional regulation within a restricted time frame of the cell cycle or metabolism. A failure of these systems to act results in accumulated mutations, metabolic dysfunction, and disease. Despite the multifactorial complexity of cellular DNA repair and transcriptional regulation, both processes share a fundamental physical requirement that the proteins must rapidly diffuse to their specific DNA-binding sites that are embedded within the context of a vastly greater number of nonspecific DNA-binding sites. Superimposed on the needle-in-the-haystack problem is the complex nature of the cellular environment, which contains such high concentrations of macromolecules that the time frame for diffusion is expected to be severely extended as compared to dilute solution. Here we critically review the mechanisms for how these proteins solve the needle-in-the-haystack problem and how the effects of cellular macromolecular crowding can enhance facilitated diffusion processes. We restrict the review to human proteins that use stochastic, thermally driven site-recognition mechanisms, and we specifically exclude systems involving energy cofactors or circular DNA clamps. Our scope includes ensemble and single-molecule studies of the past decade or so, with an emphasis on connecting experimental observations to biological function.
Collapse
Affiliation(s)
- Alexandre Esadze
- Department of Pharmacology and Molecular Sciences , Johns Hopkins University School of Medicine , 725 North Wolfe Street , WBSB 314, Baltimore , Maryland 21205 , United States
| | - James T Stivers
- Department of Pharmacology and Molecular Sciences , Johns Hopkins University School of Medicine , 725 North Wolfe Street , WBSB 314, Baltimore , Maryland 21205 , United States
| |
Collapse
|
42
|
Hanzlikova H, Kalasova I, Demin AA, Pennicott LE, Cihlarova Z, Caldecott KW. The Importance of Poly(ADP-Ribose) Polymerase as a Sensor of Unligated Okazaki Fragments during DNA Replication. Mol Cell 2018; 71:319-331.e3. [PMID: 29983321 PMCID: PMC6060609 DOI: 10.1016/j.molcel.2018.06.004] [Citation(s) in RCA: 281] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/11/2018] [Accepted: 06/01/2018] [Indexed: 01/08/2023]
Abstract
Poly(ADP-ribose) is synthesized by PARP enzymes during the repair of stochastic DNA breaks. Surprisingly, however, we show that most if not all endogenous poly(ADP-ribose) is detected in normal S phase cells at sites of DNA replication. This S phase poly(ADP-ribose) does not result from damaged or misincorporated nucleotides or from DNA replication stress. Rather, perturbation of the DNA replication proteins LIG1 or FEN1 increases S phase poly(ADP-ribose) more than 10-fold, implicating unligated Okazaki fragments as the source of S phase PARP activity. Indeed, S phase PARP activity is ablated by suppressing Okazaki fragment formation with emetine, a DNA replication inhibitor that selectively inhibits lagging strand synthesis. Importantly, PARP activation during DNA replication recruits the single-strand break repair protein XRCC1, and human cells lacking PARP activity and/or XRCC1 are hypersensitive to FEN1 perturbation. Collectively, our data indicate that PARP1 is a sensor of unligated Okazaki fragments during DNA replication and facilitates their repair.
Collapse
Affiliation(s)
- Hana Hanzlikova
- Genome Damage and Stability Centre & Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK; Department of Genome Dynamics, Institute of Molecular Genetics of the ASCR, v.v.i., 142 20 Prague 4, Czech Republic.
| | - Ilona Kalasova
- Department of Genome Dynamics, Institute of Molecular Genetics of the ASCR, v.v.i., 142 20 Prague 4, Czech Republic
| | - Annie A Demin
- Genome Damage and Stability Centre & Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Lewis E Pennicott
- Genome Damage and Stability Centre & Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Zuzana Cihlarova
- Department of Genome Dynamics, Institute of Molecular Genetics of the ASCR, v.v.i., 142 20 Prague 4, Czech Republic
| | - Keith W Caldecott
- Genome Damage and Stability Centre & Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK; Department of Genome Dynamics, Institute of Molecular Genetics of the ASCR, v.v.i., 142 20 Prague 4, Czech Republic.
| |
Collapse
|
43
|
Genome-wide mapping reveals that deoxyuridine is enriched in the human centromeric DNA. Nat Chem Biol 2018; 14:680-687. [PMID: 29785056 DOI: 10.1038/s41589-018-0065-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 03/19/2018] [Indexed: 02/06/2023]
Abstract
Uracil in DNA can be generated by cytosine deamination or dUMP misincorporation; however, its distribution in the human genome is poorly understood. Here we present a selective labeling and pull-down technology for genome-wide uracil profiling and identify thousands of uracil peaks in three different human cell lines. Surprisingly, uracil is highly enriched at the centromere of the human genome. Using mass spectrometry, we demonstrate that human centromeric DNA contains a higher level of uracil. We also directly verify the presence of uracil within two centromeric uracil peaks on chromosomes 6 and 11. Moreover, centromeric uracil is preferentially localized within the binding regions of the centromere-specific histone CENP-A and can be excised by human uracil-DNA glycosylase UNG. Collectively, our approaches allow comprehensive analysis of uracil in the human genome and provide robust tools for mapping and future functional studies of uracil in DNA.
Collapse
|
44
|
Buchinger E, Wiik SÅ, Kusnierczyk A, Rabe R, Aas PA, Kavli B, Slupphaug G, Aachmann FL. Backbone 1H, 13C and 15N chemical shift assignment of full-length human uracil DNA glycosylase UNG2. BIOMOLECULAR NMR ASSIGNMENTS 2018; 12:15-22. [PMID: 28879561 DOI: 10.1007/s12104-017-9772-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/28/2017] [Indexed: 06/07/2023]
Abstract
Human uracil N-glycosylase isoform 2-UNG2 consists of an N-terminal intrinsically disordered regulatory domain (UNG2 residues 1-92, 9.3 kDa) and a C-terminal structured catalytic domain (UNG2 residues 93-313, 25.1 kDa). Here, we report the backbone 1H, 13C, and 15N chemical shift assignment as well as secondary structure analysis of the N-and C-terminal domains of UNG2 representing the full-length UNG2 protein.
Collapse
Affiliation(s)
- Edith Buchinger
- NOBIPOL, Department of Biotechnology, NTNU-Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Siv Å Wiik
- NOBIPOL, Department of Biotechnology, NTNU-Norwegian University of Science and Technology, 7491, Trondheim, Norway
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway
| | - Anna Kusnierczyk
- Department of Cancer Research and Molecular Medicine, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Renana Rabe
- Department of Cancer Research and Molecular Medicine, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Per A Aas
- Department of Cancer Research and Molecular Medicine, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Bodil Kavli
- Department of Cancer Research and Molecular Medicine, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Geir Slupphaug
- Department of Cancer Research and Molecular Medicine, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Finn L Aachmann
- NOBIPOL, Department of Biotechnology, NTNU-Norwegian University of Science and Technology, 7491, Trondheim, Norway.
| |
Collapse
|
45
|
Bj Rås KØ, Sousa MML, Sharma A, Fonseca DM, S Gaard CK, Bj Rås M, Otterlei M. Monitoring of the spatial and temporal dynamics of BER/SSBR pathway proteins, including MYH, UNG2, MPG, NTH1 and NEIL1-3, during DNA replication. Nucleic Acids Res 2017; 45:8291-8301. [PMID: 28575236 PMCID: PMC5737410 DOI: 10.1093/nar/gkx476] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 05/15/2017] [Indexed: 12/03/2022] Open
Abstract
Base lesions in DNA can stall the replication machinery or induce mutations if bypassed. Consequently, lesions must be repaired before replication or in a post-replicative process to maintain genomic stability. Base excision repair (BER) is the main pathway for repair of base lesions and is known to be associated with DNA replication, but how BER is organized during replication is unclear. Here we coupled the iPOND (isolation of proteins on nascent DNA) technique with targeted mass-spectrometry analysis, which enabled us to detect all proteins required for BER on nascent DNA and to monitor their spatiotemporal orchestration at replication forks. We demonstrate that XRCC1 and other BER/single-strand break repair (SSBR) proteins are enriched in replisomes in unstressed cells, supporting a cellular capacity of post-replicative BER/SSBR. Importantly, we identify for the first time the DNA glycosylases MYH, UNG2, MPG, NTH1, NEIL1, 2 and 3 on nascent DNA. Our findings suggest that a broad spectrum of DNA base lesions are recognized and repaired by BER in a post-replicative process.
Collapse
Affiliation(s)
- Karine Ø Bj Rås
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Mirta M L Sousa
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway.,The Central Norway Regional Health Authority, N-7501 Stj⊘rdal, Norway
| | - Animesh Sharma
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway.,The Central Norway Regional Health Authority, N-7501 Stj⊘rdal, Norway.,Proteomics and Metabolomics Core Facility (PROMEC), Department of Cancer Research and Molecular Medicine, NTNU, N-7491 Trondheim, Norway
| | - Davi M Fonseca
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway.,The Central Norway Regional Health Authority, N-7501 Stj⊘rdal, Norway.,Proteomics and Metabolomics Core Facility (PROMEC), Department of Cancer Research and Molecular Medicine, NTNU, N-7491 Trondheim, Norway
| | - Caroline K S Gaard
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Magnar Bj Rås
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway.,Department of Microbiology, Oslo University Hospital and University of Oslo, N-0027 Oslo, Norway
| | - Marit Otterlei
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| |
Collapse
|
46
|
Rodriguez G, Esadze A, Weiser BP, Schonhoft JD, Cole PA, Stivers JT. Disordered N-Terminal Domain of Human Uracil DNA Glycosylase (hUNG2) Enhances DNA Translocation. ACS Chem Biol 2017; 12:2260-2263. [PMID: 28787572 DOI: 10.1021/acschembio.7b00521] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nuclear human uracil-DNA glycosylase (hUNG2) initiates base excision repair (BER) of genomic uracils generated through misincorporation of dUMP or through deamination of cytosines. Like many human DNA glycosylases, hUNG2 contains an unstructured N-terminal domain that encodes a nuclear localization signal, protein binding motifs, and sites for post-translational modifications. Although the N-terminal domain has minimal effects on DNA binding and uracil excision kinetics, we report that this domain enhances the ability of hUNG2 to translocate on DNA chains as compared to the catalytic domain alone. The enhancement is most pronounced when physiological ion concentrations and macromolecular crowding agents are used. These data suggest that crowded conditions in the human cell nucleus promote the interaction of the N-terminus with duplex DNA during translocation. The increased contact time with the DNA chain likely contributes to the ability of hUNG2 to locate densely spaced uracils that arise during somatic hypermutation and during fluoropyrimidine chemotherapy.
Collapse
Affiliation(s)
- Gaddiel Rodriguez
- Department of Pharmacology
and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205−2185, United States
| | - Alexandre Esadze
- Department of Pharmacology
and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205−2185, United States
| | - Brian P. Weiser
- Department of Pharmacology
and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205−2185, United States
| | - Joseph D. Schonhoft
- Department of Pharmacology
and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205−2185, United States
| | - Philip A. Cole
- Department of Pharmacology
and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205−2185, United States
| | - James T. Stivers
- Department of Pharmacology
and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205−2185, United States
| |
Collapse
|
47
|
Weiser BP, Stivers JT, Cole PA. Investigation of N-Terminal Phospho-Regulation of Uracil DNA Glycosylase Using Protein Semisynthesis. Biophys J 2017; 113:393-401. [PMID: 28746850 DOI: 10.1016/j.bpj.2017.06.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/09/2017] [Accepted: 06/12/2017] [Indexed: 11/16/2022] Open
Abstract
Uracil DNA Glycosylase (UNG2) is the primary enzyme in humans that prevents the stable incorporation of deoxyuridine monophosphate into DNA in the form of U/A basepairs. During S-phase, UNG2 remains associated with the replication fork through its interactions with two proteins, Proliferating Cell Nuclear Antigen (PCNA) and Replication Protein A (RPA), which are critical for DNA replication and repair. In this work, we used protein semisynthesis and fluorescence anisotropy assays to explore the interactions of UNG2 with PCNA and RPA and to determine the effects of two UNG2 phosphorylation sites (Thr6 and Tyr8) located within its PCNA-interacting motif (PIP-box). In binding assays, we found that phosphorylation of Thr6 or Tyr8 on UNG2 can impede PCNA binding without affecting UNG2 catalytic activity or its RPA interaction. Our data also suggests that unmodified UNG2, PCNA, and RPA can form a ternary protein complex. We propose that the UNG2 N-terminus may serve as a flexible scaffold to tether PCNA and RPA at the replication fork, and that post-translational modifications on the UNG2 N-terminus disrupt formation of the PCNA-UNG2-RPA protein complex.
Collapse
Affiliation(s)
- Brian P Weiser
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - James T Stivers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Philip A Cole
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland.
| |
Collapse
|
48
|
Rangaswamy S, Pandey A, Mitra S, Hegde ML. Pre-Replicative Repair of Oxidized Bases Maintains Fidelity in Mammalian Genomes: The Cowcatcher Role of NEIL1 DNA Glycosylase. Genes (Basel) 2017; 8:E175. [PMID: 28665322 PMCID: PMC5541308 DOI: 10.3390/genes8070175] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/16/2017] [Accepted: 06/24/2017] [Indexed: 02/06/2023] Open
Abstract
Genomic fidelity in the humans is continuously challenged by genotoxic reactive oxygen species (ROS) generated both endogenously during metabolic processes, and by exogenous agents. Mispairing of most ROS-induced oxidized base lesions during DNA replication induces mutations. Although bulky base adducts induced by ultraviolet light and other environmental mutagens block replicative DNA polymerases, most oxidized base lesions do not block DNA synthesis. In 8-oxo-G:A mispairs generated by the incorporation of A opposite unrepaired 8-oxo-G, A is removed by MutYH (MYH) for post-replicative repair, and other oxidized base lesions must be repaired prior to replication in order to prevent mutation fixation. Our earlier studies documented S phase-specific overexpression of endonuclease VIII-like 1 (NEIL1) DNA glycosylase (DG), one of five oxidized base excision repair (BER)-initiating enzymes in mammalian cells, and its high affinity for replication fork-mimicking single-stranded (ss)DNA substrates. We recently provided experimental evidence for the role of NEIL1 in replicating-strand repair, and proposed the "cowcatcher" model of pre-replicative BER, where NEIL1's nonproductive binding to the lesion base in ssDNA template blocks DNA chain elongation, causing fork regression. Repair of the lesion in the then re-annealed duplex is carried out by NEIL1 in association with the DNA replication proteins. In this commentary, we highlight the critical role of pre-replicative BER in preventing mutagenesis, and discuss the distinction between pre-replicative vs. post-replicative BER.
Collapse
Affiliation(s)
- Suganya Rangaswamy
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Arvind Pandey
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Sankar Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA.
- Weill Cornell Medical College, Cornell University, New York, NY 10065, USA.
| | - Muralidhar L Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA.
- Weill Cornell Medical College, Cornell University, New York, NY 10065, USA.
- Houston Methodist Neurological Institute, Houston, TX 77030, USA.
| |
Collapse
|
49
|
Limpose KL, Corbett AH, Doetsch PW. BERing the burden of damage: Pathway crosstalk and posttranslational modification of base excision repair proteins regulate DNA damage management. DNA Repair (Amst) 2017. [PMID: 28629773 DOI: 10.1016/j.dnarep.2017.06.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
DNA base damage and non-coding apurinic/apyrimidinic (AP) sites are ubiquitous types of damage that must be efficiently repaired to prevent mutations. These damages can occur in both the nuclear and mitochondrial genomes. Base excision repair (BER) is the frontline pathway for identifying and excising damaged DNA bases in both of these cellular compartments. Recent advances demonstrate that BER does not operate as an isolated pathway but rather dynamically interacts with components of other DNA repair pathways to modulate and coordinate BER functions. We define the coordination and interaction between DNA repair pathways as pathway crosstalk. Numerous BER proteins are modified and regulated by post-translational modifications (PTMs), and PTMs could influence pathway crosstalk. Here, we present recent advances on BER/DNA repair pathway crosstalk describing specific examples and also highlight regulation of BER components through PTMs. We have organized and reported functional interactions and documented PTMs for BER proteins into a consolidated summary table. We further propose the concept of DNA repair hubs that coordinate DNA repair pathway crosstalk to identify central protein targets that could play a role in designing future drug targets.
Collapse
Affiliation(s)
- Kristin L Limpose
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA, 30322, United States
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, GA, 30322, United States; Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States.
| | - Paul W Doetsch
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA, 30322, United States; Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, United States; Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States; Department of Biochemistry, Emory University, Atlanta, GA, 30322, United States.
| |
Collapse
|
50
|
D'Errico M, Parlanti E, Pascucci B, Fortini P, Baccarini S, Simonelli V, Dogliotti E. Single nucleotide polymorphisms in DNA glycosylases: From function to disease. Free Radic Biol Med 2017; 107:278-291. [PMID: 27932076 DOI: 10.1016/j.freeradbiomed.2016.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/25/2016] [Accepted: 12/02/2016] [Indexed: 02/08/2023]
Abstract
Oxidative stress is associated with a growing number of diseases that span from cancer to neurodegeneration. Most oxidatively induced DNA base lesions are repaired by the base excision repair (BER) pathway which involves the action of various DNA glycosylases. There are numerous genome wide studies attempting to associate single-nucleotide polymorphisms (SNPs) with predispositions to various types of disease; often, these common variants do not have significant alterations in their biochemical function and do not exhibit a convincing phenotype. Nevertheless several lines of evidence indicate that SNPs in DNA repair genes may modulate DNA repair capacity and contribute to risk of disease. This overview provides a convincing picture that SNPs of DNA glycosylases that remove oxidatively generated DNA lesions are susceptibility factors for a wide disease spectrum that includes besides cancer (particularly lung, breast and gastrointestinal tract), cochlear/ocular disorders, myocardial infarction and neurodegenerative disorders which can be all grouped under the umbrella of oxidative stress-related pathologies.
Collapse
Affiliation(s)
- Mariarosaria D'Errico
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Eleonora Parlanti
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Barbara Pascucci
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via Salaria, Km 29,300, 00016 Monterotondo Stazione, Rome, Italy
| | - Paola Fortini
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Sara Baccarini
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Valeria Simonelli
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Eugenia Dogliotti
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|