1
|
Longworth S, Damania B. Modulation of Cell Cycle Kinases by Kaposi's Sarcoma-Associated Herpesvirus. J Med Virol 2025; 97:e70157. [PMID: 39804127 PMCID: PMC12009514 DOI: 10.1002/jmv.70157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/12/2024] [Accepted: 12/22/2024] [Indexed: 04/22/2025]
Abstract
The cell cycle is governed by kinase activity that coordinates progression through a series of regulatory checkpoints, preventing the division of damaged cells. The Kaposi's sarcoma-associated herpesvirus (KSHV) encodes multiple genes that modulate or co-opt the activity of these kinases, shaping the cellular environment to promote viral persistence. By advancing the cell cycle, KSHV facilitates latent replication and subsequent transmission of viral genomes to daughter cells, while also contributing to the establishment of multiple cancer types. Conversely, during viral lytic replication, KSHV extends the resting phase of the cell cycle to prevent cellular DNA synthesis that would otherwise compete for essential replication precursors. This review will examine the mechanisms KSHV has evolved to control the kinase activity regulating host cell cycle progression.
Collapse
Affiliation(s)
- Steven Longworth
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Niu D, Ma Y, Ren P, Chang S, Li C, Jiang Y, Han C, Lan K. Methylation of KSHV vCyclin by PRMT5 contributes to cell cycle progression and cell proliferation. PLoS Pathog 2024; 20:e1012535. [PMID: 39255317 PMCID: PMC11421797 DOI: 10.1371/journal.ppat.1012535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/24/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA virus that encodes numerous cellular homologs, including cyclin D, G protein-coupled protein, interleukin-6, and macrophage inflammatory proteins 1 and 2. KSHV vCyclin encoded by ORF72, is the homolog of cellular cyclinD2. KSHV vCyclin can regulate virus replication and cell proliferation by constitutively activating cellular cyclin-dependent kinase 6 (CDK6). However, the regulatory mechanism of KSHV vCyclin has not been fully elucidated. In the present study, we identified a host protein named protein arginine methyltransferase 5 (PRMT5) that interacts with KSHV vCyclin. We further demonstrated that PRMT5 is upregulated by latency-associated nuclear antigen (LANA) through transcriptional activation. Remarkably, knockdown or pharmaceutical inhibition (using EPZ015666) of PRMT5 inhibited the cell cycle progression and cell proliferation of KSHV latently infected tumor cells. Mechanistically, PRMT5 methylates vCyclin symmetrically at arginine 128 and stabilizes vCyclin in a methyltransferase activity-dependent manner. We also show that the methylation of vCyclin by PRMT5 positively regulates the phosphorylate retinoblastoma protein (pRB) pathway. Taken together, our findings reveal an important regulatory effect of PRMT5 on vCyclin that facilitates cell cycle progression and proliferation, which provides a potential therapeutic target for KSHV-associated malignancies.
Collapse
Affiliation(s)
- Danping Niu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuanming Ma
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Pengyu Ren
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Sijia Chang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chenhui Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yong Jiang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chunyan Han
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Wen KW, Wang L, Menke JR, Damania B. Cancers associated with human gammaherpesviruses. FEBS J 2022; 289:7631-7669. [PMID: 34536980 PMCID: PMC9019786 DOI: 10.1111/febs.16206] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/10/2021] [Accepted: 09/16/2021] [Indexed: 01/14/2023]
Abstract
Epstein-Barr virus (EBV; human herpesvirus 4; HHV-4) and Kaposi sarcoma-associated herpesvirus (KSHV; human herpesvirus 8; HHV-8) are human gammaherpesviruses that have oncogenic properties. EBV is a lymphocryptovirus, whereas HHV-8/KSHV is a rhadinovirus. As lymphotropic viruses, EBV and KSHV are associated with several lymphoproliferative diseases or plasmacytic/plasmablastic neoplasms. Interestingly, these viruses can also infect epithelial cells causing carcinomas and, in the case of KSHV, endothelial cells, causing sarcoma. EBV is associated with Burkitt lymphoma, classic Hodgkin lymphoma, nasopharyngeal carcinoma, plasmablastic lymphoma, lymphomatoid granulomatosis, leiomyosarcoma, and subsets of diffuse large B-cell lymphoma, post-transplant lymphoproliferative disorder, and gastric carcinoma. KSHV is implicated in Kaposi sarcoma, primary effusion lymphoma, multicentric Castleman disease, and KSHV-positive diffuse large B-cell lymphoma. Pathogenesis by these two herpesviruses is intrinsically linked to viral proteins expressed during the lytic and latent lifecycles. This comprehensive review intends to provide an overview of the EBV and KSHV viral cycles, viral proteins that contribute to oncogenesis, and the current understanding of the pathogenesis and clinicopathology of their related neoplastic entities.
Collapse
Affiliation(s)
- Kwun Wah Wen
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158
| | - Linlin Wang
- Department of Laboratory Medicine, University of California, San Francisco, CA 94158
| | - Joshua R. Menke
- Department of Pathology, Stanford University, Palo Alto, CA 94304
| | - Blossom Damania
- Department of Microbiology & Immunology & Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
4
|
Boki H, Kimura T, Miyagaki T, Suga H, Blauvelt A, Okochi H, Sugaya M, Sato S. Lymphatic Dysfunction Exacerbates Cutaneous Tumorigenesis and Psoriasis-Like Skin Inflammation through Accumulation of Inflammatory Cytokines. J Invest Dermatol 2021; 142:1692-1702.e3. [PMID: 34780714 DOI: 10.1016/j.jid.2021.05.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 04/20/2021] [Accepted: 05/02/2021] [Indexed: 10/19/2022]
Abstract
Lymphatic transport plays an important role in coordinating local immune responses. However, the biologic effects of impaired lymphatic flow in vivo are not fully understood. In this study, we investigated the roles of the lymphatic system in skin carcinogenesis and psoriasis-like inflammation using k-cyclin transgenic (kCYC+/-) mice, which demonstrate severe lymphatic dysfunction. kCYC+/- mice showed augmented tumor growth in the two-stage skin carcinogenesis model and severe clinical scores in imiquimod-induced psoriasis-like skin inflammation compared with wild-type mice. Although mRNA levels of inflammatory cytokines in skin after topical application of 12-O-tetradecanoylphorbol-13-acetate or imiquimod were comparable between kCYC+/- and wild-type mice, protein levels of inflammatory cytokines, such as IL-17A, IL-22, and IL-23, were significantly upregulated in kCYC+/- mice in both models. Consistently, signal transducer and activator of transcription 3 pathway and NF-κB signaling were augmented in epidermal keratinocytes in kCYC+/- mice. These results suggest that lymphatic dysfunction in kCYC+/- mice caused accumulation of inflammatory cytokines, leading to the exacerbation of two-stage skin carcinogenesis and imiquimod-induced psoriasis-like skin inflammation. These findings add insight into the clinical problems of secondary malignancies and inflammatory dermatoses that may occur with extremity lymphedema.
Collapse
Affiliation(s)
- Hikari Boki
- Department of Dermatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Takayuki Kimura
- Department of Dermatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tomomitsu Miyagaki
- Department of Dermatology, St. Marianna University School of Medicine, Kanagawa, Japan.
| | - Hiraku Suga
- Department of Dermatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | | | - Hitoshi Okochi
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Makoto Sugaya
- Department of Dermatology, School of Medicine, International University of Health and Welfare, Chiba, Japan
| | - Shinichi Sato
- Department of Dermatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Choi YB, Cousins E, Nicholas J. Novel Functions and Virus-Host Interactions Implicated in Pathogenesis and Replication of Human Herpesvirus 8. Recent Results Cancer Res 2021; 217:245-301. [PMID: 33200369 DOI: 10.1007/978-3-030-57362-1_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human herpesvirus 8 (HHV-8) is classified as a γ2-herpesvirus and is related to Epstein-Barr virus (EBV), a γ1-herpesvirus. One important aspect of the γ-herpesviruses is their association with neoplasia, either naturally or in animal model systems. HHV-8 is associated with B-cell-derived primary effusion lymphoma (PEL) and multicentric Castleman's disease (MCD), endothelial-derived Kaposi's sarcoma (KS), and KSHV inflammatory cytokine syndrome (KICS). EBV is also associated with a number of B-cell malignancies, such as Burkitt's lymphoma, Hodgkin's lymphoma, and posttransplant lymphoproliferative disease, in addition to epithelial nasopharyngeal and gastric carcinomas. Despite the similarities between these viruses and their associated malignancies, the particular protein functions and activities involved in key aspects of virus biology and neoplastic transformation appear to be quite distinct. Indeed, HHV-8 specifies a number of proteins for which counterparts had not previously been identified in EBV, other herpesviruses, or even viruses in general, and these proteins are believed to play vital functions in virus biology and to be involved centrally in viral pathogenesis. Additionally, a set of microRNAs encoded by HHV-8 appears to modulate the expression of multiple host proteins to provide conditions conductive to virus persistence within the host and possibly contributing to HHV-8-induced neoplasia. Here, we review the molecular biology underlying these novel virus-host interactions and their potential roles in both virus biology and virus-associated disease.
Collapse
Affiliation(s)
- Young Bong Choi
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street, Baltimore, MD, 21287, USA.
| | - Emily Cousins
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street, Baltimore, MD, 21287, USA
| | - John Nicholas
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street, Baltimore, MD, 21287, USA
| |
Collapse
|
6
|
Seoane R, Vidal S, Bouzaher YH, El Motiam A, Rivas C. The Interaction of Viruses with the Cellular Senescence Response. BIOLOGY 2020; 9:E455. [PMID: 33317104 PMCID: PMC7764305 DOI: 10.3390/biology9120455] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 01/10/2023]
Abstract
Cellular senescence is viewed as a mechanism to prevent malignant transformation, but when it is chronic, as occurs in age-related diseases, it may have adverse effects on cancer. Therefore, targeting senescent cells is a novel therapeutic strategy against senescence-associated diseases. In addition to its role in cancer protection, cellular senescence is also considered a mechanism to control virus replication. Both interferon treatment and some viral infections can trigger cellular senescence as a way to restrict virus replication. However, activation of the cellular senescence program is linked to the alteration of different pathways, which can be exploited by some viruses to improve their replication. It is, therefore, important to understand the potential impact of senolytic agents on viral propagation. Here we focus on the relationship between virus and cellular senescence and the reported effects of senolytic compounds on virus replication.
Collapse
Affiliation(s)
- Rocío Seoane
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (R.S.); (S.V.); (Y.H.B.); (A.E.M.)
| | - Santiago Vidal
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (R.S.); (S.V.); (Y.H.B.); (A.E.M.)
| | - Yanis Hichem Bouzaher
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (R.S.); (S.V.); (Y.H.B.); (A.E.M.)
| | - Ahmed El Motiam
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (R.S.); (S.V.); (Y.H.B.); (A.E.M.)
| | - Carmen Rivas
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (R.S.); (S.V.); (Y.H.B.); (A.E.M.)
- Centro Nacional de Biotecnología (CNB), CSIC, 28049 Madrid, Spain
| |
Collapse
|
7
|
Herbein G, Nehme Z. Polyploid Giant Cancer Cells, a Hallmark of Oncoviruses and a New Therapeutic Challenge. Front Oncol 2020; 10:567116. [PMID: 33154944 PMCID: PMC7591763 DOI: 10.3389/fonc.2020.567116] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/11/2020] [Indexed: 12/19/2022] Open
Abstract
Tumors are renowned as intricate systems that harbor heterogeneous cancer cells with distinctly diverse molecular signatures, sizes and genomic contents. Among those various genomic clonal populations within the complex tumoral architecture are the polyploid giant cancer cells (PGCC). Although described for over a century, PGCC are increasingly being recognized for their prominent role in tumorigenesis, metastasis, therapy resistance and tumor repopulation after therapy. A shared characteristic among all tumors triggered by oncoviruses is the presence of polyploidy. Those include Human Papillomaviruses (HPV), Epstein Barr Virus (EBV), Hepatitis B and C viruses (HBV and HCV, respectively), Human T-cell lymphotropic virus-1 (HTLV-1), Kaposi's sarcoma herpesvirus (KSHV) and Merkel polyomavirus (MCPyV). Distinct viral proteins, for instance Tax for HTLV-1 or HBx for HBV have demonstrated their etiologic role in favoring the appearance of PGCC. Different intriguing biological mechanisms employed by oncogenic viruses, in addition to viruses with high oncogenic potential such as human cytomegalovirus, could support the generation of PGCC, including induction of endoreplication, inactivation of tumor suppressors, development of hypoxia, activation of cellular senescence and others. Interestingly, chemoresistance and radioresistance have been reported in the context of oncovirus-induced cancers, for example KSHV and EBV-associated lymphomas and high-risk HPV-related cervical cancer. This points toward a potential linkage between the previously mentioned players and highlights PGCC as keystone cancer cells in virally-induced tumors. Subsequently, although new therapeutic approaches are actively needed to fight PGCC, attention should also be drawn to reveal the relationship between PGCC and oncoviruses, with the ultimate goal of establishing effective therapeutic platforms for treatment of virus-associated cancers. This review discusses the presence of PGCCs in tumors induced by oncoviruses, biological mechanisms potentially favoring their appearance, as well as their consequent implication at the clinical and therapeutic level.
Collapse
Affiliation(s)
- Georges Herbein
- Pathogens & Inflammation/EPILAB Laboratory, EA 4266, University of Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France.,Department of Virology, CHRU Besancon, Besançon, France
| | - Zeina Nehme
- Pathogens & Inflammation/EPILAB Laboratory, EA 4266, University of Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France.,Faculty of Sciences, Lebanese University, Beirut, Lebanon
| |
Collapse
|
8
|
Dangerous Liaisons: Gammaherpesvirus Subversion of the Immunoglobulin Repertoire. Viruses 2020; 12:v12080788. [PMID: 32717815 PMCID: PMC7472090 DOI: 10.3390/v12080788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
A common biologic property of the gammaherpesviruses Epstein–Barr Virus and Kaposi sarcoma herpesvirus is their use of B lymphocytes as a reservoir of latency in healthy individuals that can undergo oncogenic transformation later in life. Gammaherpesviruses (GHVs) employ an impressive arsenal of proteins and non-coding RNAs to reprogram lymphocytes for proliferative expansion. Within lymphoid tissues, the germinal center (GC) reaction is a hub of B cell proliferation and death. The goal of a GC is to generate and then select for a pool of immunoglobulin (Ig) genes that will provide a protective humoral adaptive immune response. B cells infected with GHVs are detected in GCs and bear the hallmark signatures of the mutagenic processes of somatic hypermutation and isotype class switching of the Ig genes. However, data also supports extrafollicular B cells as a reservoir engaged by GHVs. Next-generation sequencing technologies provide unprecedented detail of the Ig sequence that informs the natural history of infection at the single cell level. Here, we review recent reports from human and murine GHV systems that identify striking differences in the immunoglobulin repertoire of infected B cells compared to their uninfected counterparts. Implications for virus biology, GHV-associated cancers, and host immune dysfunction will be discussed.
Collapse
|
9
|
Liu Y, Tan X. Viral Manipulations of the Cullin-RING Ubiquitin Ligases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:99-110. [PMID: 31898224 DOI: 10.1007/978-981-15-1025-0_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cullin-RING ubiquitin ligases (CRLs) are efficient and diverse toolsets of the cells to regulate almost every biological process. However, these characteristics have also been usurped by many viruses to optimize for their replication. CRLs are often at the forefront of the arms races in the coevolution of viruses and hosts. Here we review the modes of actions and functional consequences of viral manipulations of host cell CRLs. We also discuss the therapeutic applications to target these viral manipulations for treating viral infections.
Collapse
Affiliation(s)
- Ying Liu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structures, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Xu Tan
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structures, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
10
|
In Vivo Models of Oncoproteins Encoded by Kaposi's Sarcoma-Associated Herpesvirus. J Virol 2019; 93:JVI.01053-18. [PMID: 30867309 DOI: 10.1128/jvi.01053-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 03/06/2019] [Indexed: 12/12/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a human oncogenic virus. KSHV utilizes its proteins to modify the cellular environment to promote viral replication and persistence. Some of these proteins are oncogenic, modulating cell proliferation, apoptosis, angiogenesis, genome stability, and immune responses, among other cancer hallmarks. These changes can lead to the development of KSHV-associated malignancies. In this Gem, we focus on animal models of oncogenic KSHV proteins that were developed to enable better understanding of KSHV tumorigenesis.
Collapse
|
11
|
Watanabe T, Sugimoto A, Hosokawa K, Fujimuro M. Signal Transduction Pathways Associated with KSHV-Related Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:321-355. [PMID: 29896674 DOI: 10.1007/978-981-10-7230-7_15] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Signal transduction pathways play a key role in the regulation of cell growth, cell differentiation, cell survival, apoptosis, and immune responses. Bacterial and viral pathogens utilize the cell signal pathways by encoding their own proteins or noncoding RNAs to serve their survival and replication in infected cells. Kaposi's sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8 (HHV-8), is classified as a rhadinovirus in the γ-herpesvirus subfamily and was the eighth human herpesvirus to be discovered from Kaposi's sarcoma specimens. KSHV is closely associated with an endothelial cell malignancy, Kaposi's sarcoma, and B-cell malignancies, primary effusion lymphoma, and multicentric Castleman's disease. Recent studies have revealed that KSHV manipulates the cellular signaling pathways to achieve persistent infection, viral replication, cell proliferation, anti-apoptosis, and evasion of immune surveillance in infected cells. This chapter summarizes recent developments in our understanding of the molecular mechanisms used by KSHV to interact with the cell signaling machinery.
Collapse
Affiliation(s)
- Tadashi Watanabe
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Atsuko Sugimoto
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kohei Hosokawa
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Masahiro Fujimuro
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan.
| |
Collapse
|
12
|
Therapeutic Strategies against Epstein-Barr Virus-Associated Cancers Using Proteasome Inhibitors. Viruses 2017; 9:v9110352. [PMID: 29160853 PMCID: PMC5707559 DOI: 10.3390/v9110352] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 12/15/2022] Open
Abstract
Epstein-Barr virus (EBV) is closely associated with several lymphomas (endemic Burkitt lymphoma, Hodgkin lymphoma and nasal NK/T-cell lymphoma) and epithelial cancers (nasopharyngeal carcinoma and gastric carcinoma). To maintain its persistence in the host cells, the virus manipulates the ubiquitin-proteasome system to regulate viral lytic reactivation, modify cell cycle checkpoints, prevent apoptosis and evade immune surveillance. In this review, we aim to provide an overview of the mechanisms by which the virus manipulates the ubiquitin-proteasome system in EBV-associated lymphoid and epithelial malignancies, to evaluate the efficacy of proteasome inhibitors on the treatment of these cancers and discuss potential novel viral-targeted treatment strategies against the EBV-associated cancers.
Collapse
|
13
|
Low LK, Song JY. B-cell Lymphoproliferative Disorders Associated with Primary and Acquired Immunodeficiency. Surg Pathol Clin 2016; 9:55-77. [PMID: 26940268 DOI: 10.1016/j.path.2015.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The diagnosis of lymphoproliferative disorders associated with immunodeficiency can be challenging because many of these conditions have overlapping clinical and pathologic features and share similarities with their counterparts in the immunocompetent setting. There are subtle but important differences between these conditions that are important to recognize for prognostic and therapeutic purposes. This article provides a clinicopathologic update on how understanding of these B-cell lymphoproliferations in immunodeficiency has evolved over the past decade.
Collapse
Affiliation(s)
- Lawrence K Low
- Department of Pathology, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Joo Y Song
- Department of Pathology, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA.
| |
Collapse
|
14
|
Abstract
Multicentric Castleman disease (MCD) encompasses a spectrum of conditions that give rise to overlapping clinicopathological manifestations. The fundamental pathogenetic mechanism involves dysregulated cytokine activity that causes systemic inflammatory symptoms as well as lymphadenopathy. The histological changes in lymph nodes resemble in part the findings originally described in the unicentric forms Castleman disease, both hyaline vascular and plasma cell variants. In MCD caused by Kaposi sarcoma-associated herpesvirus/human herpesvirus-8 (KSHV/HHV8), the cytokine over activity is caused by viral products, which can also lead to atypical lymphoproliferations and potential progression to lymphoma. In cases negative for KSHV/HHV8, so-called idiopathic MCD, the hypercytokinemia can result from various mechanisms, which ultimately lead to different constellations of clinical presentations and varied pathology in lymphoid tissues. In this article, we review the evolving concepts and definitions of the various conditions under the eponym of Castleman disease, and summarize current knowledge regarding the histopathology and pathogenesis of lesions within the MCD spectrum.
Collapse
Affiliation(s)
- Hao-Wei Wang
- Hematopathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Stefania Pittaluga
- Hematopathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Elaine S Jaffe
- Hematopathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
15
|
Clambey ET, van Dyk LF. Multifaceted Roles of the Viral Cyclin in Gammaherpesvirus Pathogenesis. CURRENT CLINICAL MICROBIOLOGY REPORTS 2016. [DOI: 10.1007/s40588-016-0042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Purushothaman P, Uppal T, Sarkar R, Verma SC. KSHV-Mediated Angiogenesis in Tumor Progression. Viruses 2016; 8:E198. [PMID: 27447661 PMCID: PMC4974533 DOI: 10.3390/v8070198] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/18/2016] [Accepted: 07/07/2016] [Indexed: 12/14/2022] Open
Abstract
Human herpesvirus 8 (HHV-8), also known as Kaposi's sarcoma-associated herpesvirus (KSHV), is a malignant human oncovirus belonging to the gamma herpesvirus family. HHV-8 is closely linked to the pathogenesis of Kaposi's sarcoma (KS) and two other B-cell lymphoproliferative diseases: primary effusion lymphoma (PEL) and a plasmablastic variant of multicentric Castleman's disease (MCD). KS is an invasive tumor of endothelial cells most commonly found in untreated HIV-AIDS or immuno-compromised individuals. KS tumors are highly vascularized and have abnormal, excessive neo-angiogenesis, inflammation, and proliferation of infected endothelial cells. KSHV directly induces angiogenesis in an autocrine and paracrine fashion through a complex interplay of various viral and cellular pro-angiogenic and inflammatory factors. KS is believed to originate due to a combination of KSHV's efficient strategies for evading host immune systems and several pro-angiogenic and pro-inflammatory stimuli. In addition, KSHV infection of endothelial cells produces a wide array of viral oncoproteins with transforming capabilities that regulate multiple host-signaling pathways involved in the activation of angiogenesis. It is likely that the cellular-signaling pathways of angiogenesis and lymph-angiogenesis modulate the rate of tumorigenesis induction by KSHV. This review summarizes the current knowledge on regulating KSHV-mediated angiogenesis by integrating the findings reported thus far on the roles of host and viral genes in oncogenesis, recent developments in cell-culture/animal-model systems, and various anti-angiogenic therapies for treating KSHV-related lymphoproliferative disorders.
Collapse
Affiliation(s)
- Pravinkumar Purushothaman
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, 1664 N Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Timsy Uppal
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, 1664 N Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Roni Sarkar
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, 1664 N Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Subhash C Verma
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, 1664 N Virginia Street, MS 320, Reno, NV 89557, USA.
| |
Collapse
|
17
|
Banerjee S, Uppal T, Strahan R, Dabral P, Verma SC. The Modulation of Apoptotic Pathways by Gammaherpesviruses. Front Microbiol 2016; 7:585. [PMID: 27199919 PMCID: PMC4847483 DOI: 10.3389/fmicb.2016.00585] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/11/2016] [Indexed: 12/11/2022] Open
Abstract
Apoptosis or programmed cell death is a tightly regulated process fundamental for cellular development and elimination of damaged or infected cells during the maintenance of cellular homeostasis. It is also an important cellular defense mechanism against viral invasion. In many instances, abnormal regulation of apoptosis has been associated with a number of diseases, including cancer development. Following infection of host cells, persistent and oncogenic viruses such as the members of the Gammaherpesvirus family employ a number of different mechanisms to avoid the host cell’s “burglar” alarm and to alter the extrinsic and intrinsic apoptotic pathways by either deregulating the expressions of cellular signaling genes or by encoding the viral homologs of cellular genes. In this review, we summarize the recent findings on how gammaherpesviruses inhibit cellular apoptosis via virus-encoded proteins by mediating modification of numerous signal transduction pathways. We also list the key viral anti-apoptotic proteins that could be exploited as effective targets for novel antiviral therapies in order to stimulate apoptosis in different types of cancer cells.
Collapse
Affiliation(s)
- Shuvomoy Banerjee
- Amity Institute of Virology and Immunology, Amity University Noida, India
| | - Timsy Uppal
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Roxanne Strahan
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Prerna Dabral
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Subhash C Verma
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| |
Collapse
|
18
|
Pekkonen P, Järviluoma A, Zinovkina N, Cvrljevic A, Prakash S, Westermarck J, Evan GI, Cesarman E, Verschuren EW, Ojala PM. KSHV viral cyclin interferes with T-cell development and induces lymphoma through Cdk6 and Notch activation in vivo. Cell Cycle 2015; 13:3670-84. [PMID: 25483078 PMCID: PMC4613844 DOI: 10.4161/15384101.2014.964118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Kaposi's sarcoma herpesvirus (KSHV)-encoded v-cyclin, a homolog of cellular cyclin D2, activates cellular CDK6, promotes G1-S transition of the cell cycle, induces DNA damage, apoptosis, autophagy and is reported to have oncogenic potential. Here we show that in vivo expression of v-cyclin in the B- and T-cell lymphocyte compartments results in a markedly low survival due to high penetrance of early-onset T-cell lymphoma and pancarditis. The v-cyclin transgenic mice have smaller pre-tumorigenic lymphoid organs, showing decreased cellularity, and increased proliferation and apoptosis. Furthermore, v-cyclin expression resulted in decreased amounts of CD3-expressing mature T-cells in the secondary lymphoid organs concurrent with alterations in the T-cell subpopulations of the thymus. This suggests that v-cyclin interferes with normal T-cell development. As the Notch pathway is recognized for its role in both T-cell development and lymphoma initiation, we addressed the role of Notch in the v-cyclin-induced alterations. Fittingly, we demonstrate induction of Notch3 and Hes1 in the pre-tumorigenic thymi and lymphomas of v-cyclin expressing mice, and show that lymphoma growth and viability are dependent on activated Notch signaling. Notch3 transcription and growth of the lymphomas was dependent on CDK6, as determined by silencing of CDK6 expression or chemical inhibition, respectively. Our work here reveals a viral cyclin-CDK6 complex as an upstream regulator of Notch receptor, suggesting that cyclins can play a role in the initiation of Notch-dependent lymphomagenesis.
Collapse
Affiliation(s)
- Pirita Pekkonen
- a Institute of Biotechnology ; University of Helsinki ; Helsinki , Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
A Conserved Gammaherpesvirus Cyclin Specifically Bypasses Host p18(INK4c) To Promote Reactivation from Latency. J Virol 2015; 89:10821-31. [PMID: 26292318 DOI: 10.1128/jvi.00891-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/08/2015] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED Gammaherpesviruses (GHVs) carry homologs of cellular genes, including those encoding a viral cyclin that promotes reactivation from latent infection. The viral cyclin has reduced sensitivity to host cyclin-dependent kinase inhibitors in vitro; however, the in vivo significance of this is unclear. Here, we tested the genetic requirement for the viral cyclin in mice that lack the host inhibitors p27(Kip1) and p18(INK4c), two cyclin-dependent kinase inhibitors known to be important in regulating B cell proliferation and differentiation. While the viral cyclin was essential for reactivation in wild-type mice, strikingly, it was dispensable for reactivation in mice lacking p27(Kip1) and p18(INK4c). Further analysis revealed that genetic ablation of only p18(INK4c) alleviated the requirement for the viral cyclin for reactivation from latency. p18(INK4c) regulated reactivation in a dose-dependent manner so that the viral cyclin was dispensable in p18(INK4c) heterozygous mice. Finally, treatment of wild-type cells with the cytokine BAFF, a known attenuator of p18(INK4c) function in B lymphocytes, was also able to bypass the requirement for the viral cyclin in reactivation. These data show that the gammaherpesvirus viral cyclin functions specifically to bypass the cyclin-dependent kinase inhibitor p18(INK4c), revealing an unanticipated specificity between a GHV cyclin and a single cyclin-dependent kinase inhibitor. IMPORTANCE The gammaherpesviruses (GHVs) cause lifelong infection and can cause chronic inflammatory diseases and cancer, especially in immunosuppressed individuals. Many GHVs encode a conserved viral cyclin that is required for infection and disease. While a common property of the viral cyclins is that they resist inhibition by normal cellular mechanisms, it remains unclear how important it is that the GHVs resist this inhibition. We used a mouse GHV that either contained or lacked a viral cyclin to test whether the viral cyclin lost importance when these inhibitory pathways were removed. These studies revealed that the viral cyclin was required for optimal function in normal mice but that it was no longer required following removal or reduced function of a single cellular inhibitor. These data define a very specific role for the viral cyclin in bypassing one cellular inhibitor and point to new methods to intervene with viral cyclins.
Collapse
|
20
|
Gramolelli S, Schulz TF. The role of Kaposi sarcoma-associated herpesvirus in the pathogenesis of Kaposi sarcoma. J Pathol 2015; 235:368-80. [PMID: 25212381 DOI: 10.1002/path.4441] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/05/2014] [Accepted: 09/06/2014] [Indexed: 01/07/2023]
Abstract
Kaposi sarcoma (KS) is an unusual vascular tumour caused by an oncogenic-herpesvirus, Kaposi sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8 (HHV 8). KS lesions are characterized by an abundant inflammatory infiltrate, the presence of KSHV-infected endothelial cells that show signs of aberrant differentiation, as well as faulty angiogenesis/ vascularization. Here we discuss the molecular mechanisms that lead to the development of these histological features of KS, with an emphasis on the viral proteins that are responsible for their development.
Collapse
Affiliation(s)
- Silvia Gramolelli
- Institute of Virology, Hannover Medical School, Carl Neuberg Strasse 1, 30625 Hannover, Germany; German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | | |
Collapse
|
21
|
Mesri EA, Feitelson MA, Munger K. Human viral oncogenesis: a cancer hallmarks analysis. Cell Host Microbe 2014; 15:266-82. [PMID: 24629334 DOI: 10.1016/j.chom.2014.02.011] [Citation(s) in RCA: 462] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Approximately 12% of all human cancers are caused by oncoviruses. Human viral oncogenesis is complex, and only a small percentage of the infected individuals develop cancer, often many years to decades after the initial infection. This reflects the multistep nature of viral oncogenesis, host genetic variability, and the fact that viruses contribute to only a portion of the oncogenic events. In this review, the Hallmarks of Cancer framework of Hanahan and Weinberg (2000 and 2011) is used to dissect the viral, host, and environmental cofactors that contribute to the biology of multistep oncogenesis mediated by established human oncoviruses. The viruses discussed include Epstein-Barr virus (EBV), high-risk human papillomaviruses (HPVs), hepatitis B and C viruses (HBV and HCV, respectively), human T cell lymphotropic virus-1 (HTLV-1), and Kaposi's sarcoma herpesvirus (KSHV).
Collapse
Affiliation(s)
- Enrique A Mesri
- Viral Oncology Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; AIDS Malignancies Scientific Working Group, Miami Center for AIDS Research, Department and Graduate Program in Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Mark A Feitelson
- Department of Biology, Temple University, Philadelphia, PA 19122, USA.
| | - Karl Munger
- Division of Infectious Diseases, Department of Medicine, Brigham and Women Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Cullin E3 ligases and their rewiring by viral factors. Biomolecules 2014; 4:897-930. [PMID: 25314029 PMCID: PMC4279162 DOI: 10.3390/biom4040897] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 08/20/2014] [Accepted: 09/15/2014] [Indexed: 02/06/2023] Open
Abstract
The ability of viruses to subvert host pathways is central in disease pathogenesis. Over the past decade, a critical role for the Ubiquitin Proteasome System (UPS) in counteracting host immune factors during viral infection has emerged. This counteraction is commonly achieved by the expression of viral proteins capable of sequestering host ubiquitin E3 ligases and their regulators. In particular, many viruses hijack members of the Cullin-RING E3 Ligase (CRL) family. Viruses interact in many ways with CRLs in order to impact their ligase activity; one key recurring interaction involves re-directing CRL complexes to degrade host targets that are otherwise not degraded within host cells. Removal of host immune factors by this mechanism creates a more amenable cellular environment for viral propagation. To date, a small number of target host factors have been identified, many of which are degraded via a CRL-proteasome pathway. Substantial effort within the field is ongoing to uncover the identities of further host proteins targeted in this fashion and the underlying mechanisms driving their turnover by the UPS. Elucidation of these targets and mechanisms will provide appealing anti-viral therapeutic opportunities. This review is focused on the many methods used by viruses to perturb host CRLs, focusing on substrate sequestration and viral regulation of E3 activity.
Collapse
|
23
|
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV; also known as human herpesvirus 8) is the etiologic agent of Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. These cancers often occur in the context of immunosuppression, which has made KSHV-associated malignancies an increasing global health concern with the persistence of the AIDS epidemic. KSHV has also been linked to several acute inflammatory diseases. KSHV exists between a lytic and latent lifecycle, which allows the virus to transition between active replication and quiescent infection. KSHV encodes a number of proteins and small RNAs that are thought to inadvertently transform host cells while performing their functions of helping the virus persist in the infected host. KSHV also has an arsenal of components that aid the virus in evading the host immune response, which help the virus establish a successful lifelong infection. In this comprehensive chapter, we will discuss the diseases associated with KSHV infection, the biology of latent and lytic infection, and individual proteins and microRNAs that are known to contribute to host cell transformation and immune evasion.
Collapse
Affiliation(s)
- Louise Giffin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
24
|
Cesarman E. Gammaherpesviruses and Lymphoproliferative Disorders. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2014; 9:349-72. [DOI: 10.1146/annurev-pathol-012513-104656] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065;
| |
Collapse
|
25
|
Jones T, Ramos da Silva S, Bedolla R, Ye F, Zhou F, Gao SJ. Viral cyclin promotes KSHV-induced cellular transformation and tumorigenesis by overriding contact inhibition. Cell Cycle 2014; 13:845-58. [PMID: 24419204 DOI: 10.4161/cc.27758] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) is a tumor virus encoding several proto-oncogenes. However, the roles of these viral genes in KSHV-induced tumorigenesis have not been defined. In this study, we used a recently developed model of KSHV-induced cellular transformation and tumorigenesis combining with a reverse genetic system to examine the role of a KSHV latent gene vCyclin (ORF72), a cellular Cyclin D2 homolog, in KSHV-induced oncogenesis. Deletion of vCyclin did not affect cell proliferation and cell cycle progression at a low-density condition, when cells were at an active proliferation state. However, vCyclin mutant cells were contact-inhibited and arrested at G 1 phase at a high-density condition. As a result, vCyclin mutant cells formed less and smaller colonies in soft agar assay. Nude mice inoculated with vCyclin mutant cells had reduced tumor incidence and extended tumor latency and survival compared with mice inoculated with wild-type (WT) virus-infected cells. WT but not mutant virus effectively induced Cyclin-dependent kinase inhibitor p27/Kip1 Ser10 phosphorylation and cytoplasmic relocalization. shRNA knockdown of p27 released the blockage of the mutant cells from cell cycle arrest at G 1 phase at a high-density condition. Together, these results indicate that vCyclin primarily functions to enhance cellular transformation and tumorigenesis by promoting cell cycle progression and cell proliferation at a contact-inhibited condition.
Collapse
Affiliation(s)
- Tiffany Jones
- Department of Molecular Medicine; University of Texas Health Science Center at San Antonio; San Antonio, TX USA; Department of Molecular Microbiology and Immunology; Keck School of Medicine; University of Southern California; Los Angeles, CA USA
| | - Suzane Ramos da Silva
- Department of Molecular Microbiology and Immunology; Keck School of Medicine; University of Southern California; Los Angeles, CA USA
| | - Roble Bedolla
- Department of Pediatrics; University of Texas Health Science Center at San Antonio; San Antonio, TX USA
| | - Fengchun Ye
- Department of Pediatrics; University of Texas Health Science Center at San Antonio; San Antonio, TX USA
| | - Fuchun Zhou
- Department of Pediatrics; University of Texas Health Science Center at San Antonio; San Antonio, TX USA
| | - Shou-Jiang Gao
- Department of Molecular Medicine; University of Texas Health Science Center at San Antonio; San Antonio, TX USA; Department of Molecular Microbiology and Immunology; Keck School of Medicine; University of Southern California; Los Angeles, CA USA; Department of Pediatrics; University of Texas Health Science Center at San Antonio; San Antonio, TX USA
| |
Collapse
|
26
|
Abstract
To replicate their genomes in cells and generate new progeny, viruses typically require factors provided by the cells that they have infected. Subversion of the cellular machinery that controls replication of the infected host cell is a common activity of many viruses. Viruses employ different strategies to deregulate cell cycle checkpoint controls and modulate cell proliferation pathways. A number of DNA and RNA viruses encode proteins that target critical cell cycle regulators to achieve cellular conditions that are beneficial for viral replication. Many DNA viruses induce quiescent cells to enter the cell cycle; this is thought to increase pools of deoxynucleotides and thus, facilitate viral replication. In contrast, some viruses can arrest cells in a particular phase of the cell cycle that is favorable for replication of the specific virus. Cell cycle arrest may inhibit early cell death of infected cells, allow the cells to evade immune defenses, or help promote virus assembly. Although beneficial for the viral life cycle, virus-mediated alterations in normal cell cycle control mechanisms could have detrimental effects on cellular physiology and may ultimately contribute to pathologies associated with the viral infection, including cell transformation and cancer progression and maintenance. In this chapter, we summarize various strategies employed by DNA and RNA viruses to modulate the replication cycle of the virus-infected cell. When known, we describe how these virus-associated effects influence replication of the virus and contribute to diseases associated with infection by that specific virus.
Collapse
Affiliation(s)
- Eishi Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania USA
| | - Mariana C. Gadaleta
- Dept of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, USA
| |
Collapse
|
27
|
Kim JA, Kim DH, Hossain MA, Kim MY, Sung B, Yoon JH, Suh H, Jeong TC, Chung HY, Kim ND. HS-1793, a resveratrol analogue, induces cell cycle arrest and apoptotic cell death in human breast cancer cells. Int J Oncol 2013; 44:473-80. [PMID: 24316714 DOI: 10.3892/ijo.2013.2207] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/30/2013] [Indexed: 11/05/2022] Open
Abstract
Resveratrol, a polyphenolic compound, is a naturally occurring phytochemical and is found in a variety of plants, including food such as grapes, berries and peanuts. It has gained much attention for its potential anticancer activity against various types of human cancer. However, the usefulness of resveratrol as a chemotherapeutic agent is limited by its photosensitivity and metabolic instability. In this study the effects of a synthetic analogue of resveratrol, HS-1793, on the proliferation and apoptotic cell death were investigated using MCF-7 (wild-type p53) and MDA-MB-231 (mutant p53) human breast cancer cells. HS-1793 inhibited cell growth and induced apoptotic cell death in a concentration-dependent manner. The induction of apoptosis was determined by morphological changes, cleavage of poly(ADP-ribose) poly-merase, alteration of Bax/Bcl-2 expression ratio and caspase activities. Flow cytometric analysis revealed that HS-1793 induced G2/M arrest in the cell cycle progression in both types of cells. Of note, HS-1793 induced p53/p21WAF1/CIP1-dependent apoptosis in MCF-7 cells, whereas it exhibited p53-independent apoptosis in MDA-MB-231 cells. Furthermore, HS-1793 showed more potent anticancer effects in several aspects compared to resveratrol in MCF-7 and MDA-MB-231 cells. Thus, these findings suggest that HS-1793 has potential as a candidate chemotherapeutic agent against human breast cancer.
Collapse
Affiliation(s)
- Jin-Ah Kim
- Department of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 609-735, Republic of Korea
| | - Dong Hwan Kim
- Department of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 609-735, Republic of Korea
| | - Mohammad Akbar Hossain
- Department of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 609-735, Republic of Korea
| | - Min Young Kim
- Department of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 609-735, Republic of Korea
| | - Bokyung Sung
- Department of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 609-735, Republic of Korea
| | - Jeong-Hyun Yoon
- Department of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 609-735, Republic of Korea
| | - Hongsuk Suh
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735, Republic of Korea
| | - Tae Cheon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Hae Young Chung
- Department of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 609-735, Republic of Korea
| | - Nam Deuk Kim
- Department of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 609-735, Republic of Korea
| |
Collapse
|
28
|
Amin M, Pantanowitz L. Review of latent and lytic phase biomarkers in Kaposi's sarcoma. ACTA ACUST UNITED AC 2013; 7:531-42. [PMID: 24070121 DOI: 10.1517/17530059.2013.842227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Kaposi's sarcoma (KS) is a vascular neoplasm with distinct clinical-epidemiological subtypes and varied clinical presentations. While the association of KS with human herpesvirus-8 (HHV8, KSHV) infection is well known, additional factors are needed for tumorigenesis. The precise sequence of events involved in KS development, progression and regression continues to be investigated. The discovery of KSHV biomarkers is helpful for diagnostic purposes, for understanding KS pathogenesis and for identifying potential druggable targets. AREAS COVERED This article reviews a number of key biomarkers relevant for the diagnosis of KS and HHV8-related pathogenesis. New developments in KS, potential therapeutic targets and the challenges involved in their discovery are highlighted. EXPERT OPINION Although there is currently no cure for KS, continued research devoted to uncovering biomarkers and understanding their pathogenic roles remains encouraging. The hope is that sometime soon one of these candidate targets will provide a curative therapy for this enigmatic sarcoma.
Collapse
Affiliation(s)
- Milon Amin
- University of Pittsburgh Medical Center, Department of Pathology , Suite 201, 5150 Centre Street, Pittsburgh , USA +1 412 794 4195 ; +1 412 794 3195 ;
| | | |
Collapse
|
29
|
Abstract
The dimerization partner, RB-like, E2F and multi-vulval class B (DREAM) complex provides a previously unsuspected unifying role in the cell cycle by directly linking p130, p107, E2F, BMYB and forkhead box protein M1. DREAM mediates gene repression during the G0 phase and coordinates periodic gene expression with peaks during the G1/S and G2/M phases. Perturbations in DREAM complex regulation shift the balance from quiescence towards proliferation and contribute to the increased mitotic gene expression levels that are frequently observed in cancers with a poor prognosis.
Collapse
Affiliation(s)
- Subhashini Sadasivam
- Institute for Stem Cell Biology and Regenerative Medicine National Centre for Biological Sciences (TIFR), Bellary Road, Bangalore 560065, India
| | - James A. DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA 02215 USA Department of Medicine, Brigham and Women's Hospital, Boston MA 02115 USA Department of Medicine, Harvard Medical School, Boston, MA 02115 USA
- Corresponding author James A. DeCaprio Dana-Farber Cancer Institute 450 Brookline Avenue Boston, MA 02215 Tel: 617-632-3825 Fax: 617-582-8601
| |
Collapse
|
30
|
Abstract
The dimerization partner, RB-like, E2F and multi-vulval class B (DREAM) complex provides a previously unsuspected unifying role in the cell cycle by directly linking p130, p107, E2F, BMYB and forkhead box protein M1. DREAM mediates gene repression during the G0 phase and coordinates periodic gene expression with peaks during the G1/S and G2/M phases. Perturbations in DREAM complex regulation shift the balance from quiescence towards proliferation and contribute to the increased mitotic gene expression levels that are frequently observed in cancers with a poor prognosis.
Collapse
|
31
|
Xue M, Guo Y, Yan Q, Qin D, Lu C. Preparation and application of polyclonal antibodiesagainst KSHV v-cyclin. J Biomed Res 2013; 27:421-9. [PMID: 24086175 PMCID: PMC3783827 DOI: 10.7555/jbr.27.20120085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/20/2012] [Accepted: 12/04/2012] [Indexed: 12/12/2022] Open
Abstract
We prepared rabbit polyclonal antibodies against Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded v-cyclin (ORF 72) and detected the natural viral protein using these polyclonal antibodies. Three antigenic polypeptides of v-cyclin were designed and synthesized. A fragment of the v-cyclin gene was cloned into a eukaryotic expression vector pEF-MCS-Flag-IRES/Puro to construct a recombinant vector, pEF v-cyclin. Then, pEF v-cyclin was transfected into 293T and EA.hy926 cells to obtain v-cyclin-Flag fusion proteins. Six New Zealand white rabbits were immunized with KLH-conjugated peptides to generate polyclonal antibodies against v-cyclin. The polyclonal antibodies were then characterized by ELISA and Western blotting assays. Finally, the polyclonal antibodies against v-cyclin were used to detect natural viral protein expressed in BCBL-1, BC-3, and JSC-1 cells. The results showed that using the Flag antibody, v-cyclin-Flag fusion protein was detected in 293T and EA.hy926 cells transfected with pEF-v-cyclin. Furthermore, ELISA showed that the titer of the induced polyclonal rabbit anti-v-cyclin antibodies was higher than 1:8,000. In Western blotting assays, the antibodies reacted specifically with the v-cyclin-Flag fusion protein as well as the natural viral protein. The recombinant expression vector pEF-v-cyclin was constructed successfully, and the polyclonal antibodies prepared can be used for various biological tests including ELISA and Western blotting assays.
Collapse
Affiliation(s)
- Min Xue
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing 210029, P. R. China; ; Department of Physiology, Xuzhou Medical College, Xuzhou, Jiangsu, 221000, P. R. China; Jiangsu 223300, China
| | | | | | | | | |
Collapse
|
32
|
Leidal AM, Cyr DP, Hill RJ, Lee PWK, McCormick C. Subversion of autophagy by Kaposi's sarcoma-associated herpesvirus impairs oncogene-induced senescence. Cell Host Microbe 2012; 11:167-80. [PMID: 22341465 DOI: 10.1016/j.chom.2012.01.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 09/10/2011] [Accepted: 01/09/2012] [Indexed: 11/19/2022]
Abstract
Acute oncogenic stress can activate autophagy and facilitate permanent arrest of the cell cycle through a failsafe mechanism known as oncogene-induced senescence (OIS). Kaposi's sarcoma-associated herpesvirus (KSHV) proteins are known to subvert autophagic pathways, but the link to Kaposi's sarcoma pathogenesis is unclear. We find that oncogenic assault caused by latent KSHV infection elicits DNA damage responses (DDRs) characteristic of OIS, yet infected cells display only modest levels of autophagy and fail to senesce. These aberrant responses result from the combined activities of tandemly expressed KSHV v-cyclin and v-FLIP proteins. v-Cyclin deregulates the cell cycle, triggers DDRs, and if left unchecked can promote autophagy and senescence. However, during latency v-FLIP blocks v-cyclin-induced autophagy and senescence in a manner that requires intact v-FLIP ATG3-binding domains. Together, these data reveal a coordinated viral gene expression program that usurps autophagy, blocks senescence, and facilitates the proliferation of KSHV-infected cells.
Collapse
Affiliation(s)
- Andrew M Leidal
- Department of Microbiology and Immunology, Dalhousie University, 5850 College Street, Halifax, Nova Scotia B3H 4R2, Canada
| | | | | | | | | |
Collapse
|
33
|
Ashizawa A, Higashi C, Masuda K, Ohga R, Taira T, Fujimuro M. The Ubiquitin System and Kaposi's Sarcoma-Associated Herpesvirus. Front Microbiol 2012; 3:66. [PMID: 22375140 PMCID: PMC3284729 DOI: 10.3389/fmicb.2012.00066] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 02/07/2012] [Indexed: 11/28/2022] Open
Abstract
Ubiquitination is a post-translational modification in which one or more ubiquitin molecules are covalently linked to lysine residues of target proteins. The ubiquitin system plays a key role in the regulation of protein degradation, which contributes to cell signaling, vesicular trafficking, apoptosis, and immune regulation. Bacterial and viral pathogens exploit the cellular ubiquitin system by encoding their own proteins to serve their survival and replication in infected cells. Recent studies have revealed that Kaposi’s sarcoma-associated herpesvirus (KSHV) manipulates the ubiquitin system of infected cells to facilitate cell proliferation, anti-apoptosis, and evasion from immunity. This review summarizes recent developments in our understanding of the molecular mechanisms used by KSHV to interact with the cellular ubiquitin machinery.
Collapse
Affiliation(s)
- Akira Ashizawa
- Department of Molecular Cell Biology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi Yamanashi, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Cesarman E. Gammaherpesvirus and lymphoproliferative disorders in immunocompromised patients. Cancer Lett 2011; 305:163-74. [PMID: 21493001 PMCID: PMC3742547 DOI: 10.1016/j.canlet.2011.03.003] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 03/04/2011] [Accepted: 03/08/2011] [Indexed: 12/12/2022]
Abstract
Two lymphotropic human gamma herpesviruses can cause lymphoproliferative disorders: Epstein Barr virus (EBV, formally designated as human herpesvirus 4) and Kaposi sarcoma herpesvirus (KSHV, also called human herpesvirus 8). Individuals with inherited or acquired immunodeficiency have a greatly increased risk of developing a malignancy caused by one of these two viruses. Specific types of lymphoproliferations, including malignant lymphomas, occur in individuals with HIV infection, transplant recipients and children with primary immunodeficiency. Some of these diseases, such as Hodgkin's and non-Hodgkin lymphoma resemble those occurring in immunocompetent patients, but the proportion of tumors in which EBV is present is increased. Others, like primary effusion lymphoma and polymorphic post-transplant lymphoproliferative disorder are rarely seen outside the context of a specific immunodeficient state. Understanding the specific viral associations in selected lymphoproliferative disorders, and the insights into the molecular mechanisms of viral oncogenesis, will lead to better treatments for these frequently devastating diseases.
Collapse
Affiliation(s)
- Ethel Cesarman
- Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
35
|
He M, Bakken T, Kassimova A, Boshoff C, Philpott N, Cannon ML. Focal adhesion kinase is required for KSHV vGPCR signaling. Mol Carcinog 2011; 51:339-51. [PMID: 21538577 DOI: 10.1002/mc.20790] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 03/21/2011] [Accepted: 04/06/2011] [Indexed: 01/01/2023]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma, an angiogenic and inflammatory endothelial cell (EC) tumor that is common in areas of high KSHV prevalence. KSHV encodes a pro-angiogenic viral chemokine receptor (vGPCR) that promotes EC growth in vitro and KS-like tumors in mouse models. vGPCR is therefore considered a viral oncogene that plays a crucial role in the pathobiology of KS. In this study, we show that focal adhesion kinase (FAK) becomes activated upon vGPCR expression in primary ECs and that FAK is required for vGPCR-mediated activation of ERK1/2, NFκB, AP-1, and vGPCR-induced migration and inhibition of anoikis. FAK is crucial to cell motility and tumor invasiveness and is a potential therapeutic target in various malignancies. Our data show that via vGPCR, KSHV has evolved a way to constitutively activate FAK signaling.
Collapse
Affiliation(s)
- Meilan He
- The Department of Medicine, The University of Minnesota, Minneapolis, Minnesota; The Center for Infectious Diseases and Microbiology Translational Research, The University of Minnesota, Minneapolis, Minnesota
| | | | | | | | | | | |
Collapse
|
36
|
Cuomo ME, Platt GM, Pearl LH, Mittnacht S. Cyclin-cyclin-dependent kinase regulatory response is linked to substrate recognition. J Biol Chem 2011; 286:9713-25. [PMID: 21233209 DOI: 10.1074/jbc.m110.173872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclin/cyclin-dependent kinase (CDK) complexes are critical regulators of cellular proliferation. A complex network of regulatory mechanisms has evolved to control their activity, including activating and inactivating phosphorylation of the catalytic CDK subunit and inhibition through specific regulatory proteins. Primate herpesviruses, including the oncogenic Kaposi sarcoma herpesvirus, encode cyclin D homologues. Viral cyclins have diverged from their cellular progenitor in that they elicit holoenzyme activity independent of activating phosphorylation by the CDK-activating kinase and resistant to inhibition by CDK inhibitors. Using sequence comparison and site-directed mutagenesis, we performed molecular analysis of the cellular cyclin D and the Kaposi sarcoma herpesvirus-cyclin to delineate the molecular mechanisms behind their different behavior. This provides evidence that a surface recognized for its involvement in the docking of CIP/KIP inhibitors is required and sufficient to modulate cyclin-CDK response to a range of regulatory cues, including INK4 sensitivity and CDK-activating kinase dependence. Importantly, amino acids in this region are critically linked to substrate selection, suggesting that a mutational drift in this surface simultaneously affects function and regulation. Together our work provides novel insight into the molecular mechanisms governing cyclin-CDK function and regulation and defines the biological forces that may have driven evolution of viral cyclins.
Collapse
Affiliation(s)
- Maria Emanuela Cuomo
- Section of Cell and Molecular Biology, Institute of Cancer Research, 237 Fulham Road, SW3 6JB London, United Kingdom.
| | | | | | | |
Collapse
|
37
|
Abstract
The life cycle of Kaposi's sarcoma-associated herpesvirus (KSHV) consists of latent and lytic replication phases. During latent infection, only a limited number of KSHV genes are expressed. However, this phase of replication is essential for persistent infection, evasion of host immune response, and induction of KSHV-related malignancies. KSHV reactivation from latency produces a wide range of viral products and infectious virions. The resulting de novo infection and viral lytic products modulate diverse cellular pathways and stromal microenvironment, which promote the development of Kaposi's sarcoma (KS). The mechanisms controlling KSHV latency and reactivation are complex, involving both viral and host factors, and are modulated by diverse environmental factors. Here, we review the cellular and molecular basis of KSHV latency and reactivation with a focus on the most recent advancements in the field.
Collapse
|
38
|
Sato Y, Tsurumi T. Noise cancellation: viral fine tuning of the cellular environment for its own genome replication. PLoS Pathog 2010; 6:e1001158. [PMID: 21187893 PMCID: PMC3002979 DOI: 10.1371/journal.ppat.1001158] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Productive replication of DNA viruses elicits host cell DNA damage responses, which cause both beneficial and detrimental effects on viral replication. In response to the viral productive replication, host cells attempt to attenuate the S-phase cyclin-dependent kinase (CDK) activities to inhibit viral replication. However, accumulating evidence regarding interactions between viral factors and cellular signaling molecules indicate that viruses utilize them and selectively block the downstream signaling pathways that lead to attenuation of the high S-phase CDK activities required for viral replication. In this review, we describe the sophisticated strategy of Epstein-Barr virus to cancel such “noisy” host defense signals in order to hijack the cellular environment.
Collapse
Affiliation(s)
- Yoshitaka Sato
- Division of Virology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Cell Biology, G-COE, Kobe University School of Medicine, Kobe, Japan
| | - Tatsuya Tsurumi
- Division of Virology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Oncology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
- * E-mail:
| |
Collapse
|
39
|
Abstract
Latency is a state of cryptic viral infection associated with genomic persistence and highly restricted gene expression. Its hallmark is reversibility: under appropriate circumstances, expression of the entire viral genome can be induced, resulting in the production of infectious progeny. Among the small number of virus families capable of authentic latency, the herpesviruses stand out for their ability to produce such infections in every infected individual and for being completely dependent upon latency as a mode of persistence. Here, we review the molecular basis of latency, with special attention to the gamma-herpesviruses, in which the understanding of this process is most advanced.
Collapse
Affiliation(s)
- Samuel H Speck
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
40
|
Ganem D. KSHV and the pathogenesis of Kaposi sarcoma: listening to human biology and medicine. J Clin Invest 2010; 120:939-49. [PMID: 20364091 DOI: 10.1172/jci40567] [Citation(s) in RCA: 277] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The linkage of Kaposi sarcoma (KS) to infection by a novel human herpesvirus (Kaposi sarcoma-associated herpesvirus [KSHV]) is one of the great successes of contemporary biomedical research and was achieved by using advanced genomic technologies in a manner informed by a nuanced understanding of epidemiology and clinical investigation. Ongoing efforts to understand the molecular mechanisms by which KSHV infection predisposes to KS continue to be powerfully influenced by insights emanating from the clinic. Here, recent developments in KS pathogenesis are reviewed, with particular emphasis on clinical, pathologic, and molecular observations that highlight the many differences between this process and tumorigenesis by other oncogenic viruses.
Collapse
Affiliation(s)
- Don Ganem
- Department of Medicine and Microbiology, University of California, 513 Parnassus Ave., San Francisco, CA 91413, USA.
| |
Collapse
|
41
|
Human tumor-associated viruses and new insights into the molecular mechanisms of cancer. Oncogene 2010; 27 Suppl 2:S31-42. [PMID: 19956178 DOI: 10.1038/onc.2009.351] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The study of acute-transforming retroviruses and their oncogenes and of the multiple mechanisms deployed by DNA viruses to circumvent the growth-suppressive and proapoptotic function of tumor suppressor genes has provided the foundation of our current understanding of cancer biology. Unlike acute-transforming animal viruses, however, human tumor-associated viruses lead to malignancies with a prolonged latency and in conjunction with other environmental and host-related cooperating events. The relevance of viral infection to human cancer development has often been debated. We now know that at least six human viruses, Epstein-Barr virus (EBV), hepatitis B virus (HBV), hepatitis C virus (HCV), human papilloma virus (HPV), human T-cell lymphotropic virus (HTLV-1) and Kaposi's associated sarcoma virus (KSHV) contribute to 10-15% of the cancers worldwide. Hence, the opportunity exists to fight cancer at the global scale by preventing the spread of these viruses, by the development and distribution of effective and safe antiviral vaccines, and by identifying their oncogenic mechanism. Here, we discuss the molecular events underlying the neoplastic potential of the human tumor-associated viruses, with emphasis on the enigmatic KSHV and its numerous virally hijacked proangiogenic, immune-evasive and tumor-promoting genes. The emerging information may facilitate the development of new molecular-targeted approaches to prevent and treat virally associated human malignancies.
Collapse
|
42
|
Iwahori S, Murata T, Kudoh A, Sato Y, Nakayama S, Isomura H, Kanda T, Tsurumi T. Phosphorylation of p27Kip1 by Epstein-Barr virus protein kinase induces its degradation through SCFSkp2 ubiquitin ligase actions during viral lytic replication. J Biol Chem 2009; 284:18923-31. [PMID: 19451650 DOI: 10.1074/jbc.m109.015123] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epstein-Barr virus (EBV) productive replication occurs in an S-phase-like cellular environment with high cyclin-dependent kinase (CDK) activity. The EBV protein kinase (PK), encoded by the viral BGLF4 gene, is a Ser/Thr protein kinase, which phosphorylates both viral and cellular proteins, modifying the cellular environment for efficient viral productive replication. We here provide evidence that the EBV PK phosphorylates the CDK inhibitor p27(Kip1), resulting in ubiquitination and degradation in a proteasome-dependent manner during EBV productive replication. Experiments with BGLF4 knockdown by small interfering RNA and BGLF4 knock-out viruses clarified that EBV PK is involved in p27(Kip1) degradation upon lytic replication. Transfection of the BGLF4 expression vector revealed that EBV PK alone could phosphorylate the Thr-187 residue of p27(Kip1) and that the ubiquitination and degradation of p27(Kip1) occurred in an SCF(Skp2) ubiquitin ligase-dependent manner. In vitro, EBV PK proved capable of phosphorylating p27(Kip1) at Thr-187. Unlike cyclin E-CDK2 activity, the EBV PK activity was not inhibited by p27(Kip1). Overall, EBV PK enhances p27(Kip1) degradation effectively upon EBV productive replication, contributing to establishment of an S-phase-like cellular environment with high CDK activity.
Collapse
Affiliation(s)
- Satoko Iwahori
- Division of Virology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Lai J, Chen H, Teng K, Zhao Q, Zhang Z, Li Y, Liang L, Xia R, Wu Y, Guo H, Xie Q. RKP, a RING finger E3 ligase induced by BSCTV C4 protein, affects geminivirus infection by regulation of the plant cell cycle. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:905-17. [PMID: 19000158 DOI: 10.1111/j.1365-313x.2008.03737.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The C4 protein from Curtovirus is known as a major symptom determinant, but the mode of action of the C4 protein remains unclear. To understand the mechanism of involvement of C4 protein in virus-plant interactions, we introduced the C4 gene from Beet severe curly top virus (BSCTV) into Arabidopsis under a conditional expression promoter; the resulting overexpression of BSCTV C4 led to abnormal host cell division. RKP, a RING finger protein, which is a homolog of the human cell cycle regulator KPC1, was discovered to be induced by BSCTV C4 protein. Mutation of RKP reduced the susceptibility to BSCTV in Arabidopsis and impaired BSCTV replication in plant cells. Callus formation is impaired in rkp mutants, indicating a role of RKP in the plant cell cycle. RKP was demonstrated to be a functional ubiquitin E3 ligase and is able to interact with cell-cycle inhibitor ICK/KRP proteins in vitro. Accumulation of the protein ICK2/KRP2 was found increased in the rkp mutant. The above results strengthen the possibility that RKP might regulate the degradation of ICK/KRP proteins. In addition, the protein level of ICK2/KRP2 was decreased upon BSCTV infection. Overexpression of ICK1/KRP1 in Arabidopsis could reduce the susceptibility to BSCTV. In conclusion, we found that RKP is induced by BSCTV C4 and may affect BSCTV infection by regulating the host cell cycle.
Collapse
Affiliation(s)
- Jianbin Lai
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen Zhongshan University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hume AJ, Kalejta RF. Regulation of the retinoblastoma proteins by the human herpesviruses. Cell Div 2009; 4:1. [PMID: 19146698 PMCID: PMC2636798 DOI: 10.1186/1747-1028-4-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 01/15/2009] [Indexed: 01/21/2023] Open
Abstract
Viruses are obligate intracellular parasites that alter the environment of infected cells in order to replicate more efficiently. One way viruses achieve this is by modulating cell cycle progression. The main regulators of progression out of G0, through G1, and into S phase are the members of the retinoblastoma (Rb) family of tumor suppressors. Rb proteins repress the transcription of genes controlled by the E2F transcription factors. Because the expression of E2F-responsive genes is required for cell cycle progression into the S phase, Rb arrests the cell cycle in G0/G1. A number of viral proteins directly target Rb family members for inactivation, presumably to create an environment more hospitable for viral replication. Such viral proteins include the extensively studied oncoproteins E7 (from human papillomavirus), E1A (from adenovirus), and the large T (tumor) antigen (from simian virus 40). Elucidating how these three viral proteins target and inactivate Rb has proven to be an invaluable approach to augment our understanding of both normal cell cycle progression and carcinogenesis. In addition to these proteins, a number of other virally-encoded inactivators of the Rb family have subsequently been identified including a surprising number encoded by human herpesviruses. Here we review how the human herpesviruses modulate Rb function during infection, introduce the individual viral proteins that directly or indirectly target Rb, and speculate about what roles Rb modulation by these proteins may play in viral replication, pathogenesis, and oncogenesis.
Collapse
Affiliation(s)
- Adam J Hume
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706-1596, USA.
| | | |
Collapse
|
45
|
Wang Z, Yu BW, Rahman KMW, Ahmad F, Sarkar FH. Induction of growth arrest and apoptosis in human breast cancer cells by 3,3-diindolylmethane is associated with induction and nuclear localization of p27kip. Mol Cancer Ther 2008; 7:341-9. [PMID: 18281517 DOI: 10.1158/1535-7163.mct-07-0476] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
3,3'-Diindolylmethane (DIM) is a stable condensation product of indole-3-carbanol, a potential breast cancer chemoprevention agent. Human breast cancer cell lines were studied to better understand its mechanisms. In vitro experiments were done in MCF-7, T47D, BT-20 and BT-474 cells using MTT, ELISA, immunoblotting assays, reverse transcription-PCR, protein half-life, confocal microscopy, cell fractionation, and immunoprecipitation assays. We found that DIM inhibited the growth of all four breast cancer cell lines (IC(50)s, 25-56 micromol/L). Because BT-20 and BT-474 overexpressed Her-2 and activated Akt, and BT-20 lacks estrogen receptor, these were studied further. In both cell lines, DIM appeared to induce expression of p27(kip) protein before the loss of cell viability and apoptosis. In BT-20 cells, DIM also inhibited expression of activated Akt, but this appeared after p27(kip) induction. In both cell lines, DIM induced p27(kip) transcript expression within 6 h. DIM prolonged the p27(kip) protein half-life in BT-20 but not BT-474 cells. We also showed, for the first time, that DIM induced nuclear localization of p27(kip) in both cell lines. Moreover, in BT-20 cells, DIM induced a decrease in p27(kip) phosphorylation at Thr(187), and its association with the 14-3-3 protein, which helped to explain the protein half-life increase and nuclear localization, respectively. DIM modulates p27(kip) through transcription, prolongation of protein half-life, and nuclear localization. These effects appear to be independent of Her-2, Akt, or estrogen receptor status and should support further study for its chemoprevention potential in breast cancer.
Collapse
Affiliation(s)
- Zhiwei Wang
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
46
|
Ganem D. KSHV infection and the pathogenesis of Kaposi's sarcoma. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2007; 1:273-96. [PMID: 18039116 DOI: 10.1146/annurev.pathol.1.110304.100133] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Kaposi's sarcoma (KS) has long been suspected of having an infectious etiology on the basis of its unusual epidemiology, histopathology, and natural history. Nearly a decade ago, a novel herpesviral genome was discovered in KS biopsies, and since that time strong epidemiologic evidence has accumulated correlating infection with this KS-associated herpesvirus (KSHV, also known as human herpesvirus 8) with the development of the disease. Here we review the evidence linking KSHV infection to KS risk and discuss current notions of how KSHV gene expression promotes the development of this remarkable neoplasm. These studies show that both latent and lytic viral replicative cycles contribute significantly-but differently-to KS development. The studies also highlight mechanistic differences between oncogenesis caused by KSHV and that caused by its distant relative Epstein-Barr virus.
Collapse
Affiliation(s)
- Don Ganem
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, University of California, San Francisco, California 94143, USA.
| |
Collapse
|
47
|
Koopal S, Furuhjelm JH, Järviluoma A, Jäämaa S, Pyakurel P, Pussinen C, Wirzenius M, Biberfeld P, Alitalo K, Laiho M, Ojala PM. Viral oncogene-induced DNA damage response is activated in Kaposi sarcoma tumorigenesis. PLoS Pathog 2007; 3:1348-60. [PMID: 17907806 PMCID: PMC1994968 DOI: 10.1371/journal.ppat.0030140] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Accepted: 08/09/2007] [Indexed: 12/29/2022] Open
Abstract
Kaposi sarcoma is a tumor consisting of Kaposi sarcoma herpesvirus (KSHV)–infected tumor cells that express endothelial cell (EC) markers and viral genes like v-cyclin, vFLIP, and LANA. Despite a strong link between KSHV infection and certain neoplasms, de novo virus infection of human primary cells does not readily lead to cellular transformation. We have studied the consequences of expression of v-cyclin in primary and immortalized human dermal microvascular ECs. We show that v-cyclin, which is a homolog of cellular D-type cyclins, induces replicative stress in ECs, which leads to senescence and activation of the DNA damage response. We find that antiproliferative checkpoints are activated upon KSHV infection of ECs, and in early-stage but not late-stage lesions of clinical Kaposi sarcoma specimens. These are some of the first results suggesting that DNA damage checkpoint response also functions as an anticancer barrier in virally induced cancers. Recent findings have indicated that DNA hyper-replication triggered by oncogenes can induce cellular senescence, which together with the oncogene-induced DNA damage checkpoint confers a barrier to tumorigenesis. Kaposi sarcoma herpesvirus (KSHV) can infect human dermal microvascular endothelial cells (ECs) in vitro, but KSHV infection does not seem to provide growth advantage to the cells, but rather leads to retarded growth. Moreover, the proliferative index has long been known to be low in KSHV-infected spindle cells in Kaposi sarcoma (KS) tumors. Our results provide an explanation for these observations by showing that activation of the DNA damage response, exerted by KSHV and a latent viral protein v-cyclin, functions as a barrier against transformation of KSHV-infected cells. Interestingly, the antiproliferative checkpoints are activated during the initial stages of KSHV infection and KS tumorigenesis. During the course of infection, the infected cells are imposed to overcome the checkpoint, and oncogenic stress elicited by the expression of v-cyclin may further contribute to the induction of genomic instability and malignant transformation.
Collapse
Affiliation(s)
- Sonja Koopal
- Genome-Scale Biology Program and Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Finland
| | - Johanna H Furuhjelm
- Genome-Scale Biology Program and Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Finland
| | - Annika Järviluoma
- Genome-Scale Biology Program and Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Finland
| | - Sari Jäämaa
- Molecular Cancer Biology Program, Haartman Institute, Biomedicum Helsinki, University of Helsinki, Finland
| | - Pawan Pyakurel
- Department of Pathology and Oncology, Karolinska Institute/Hospital, Stockholm, Sweden
| | - Christel Pussinen
- Genome-Scale Biology Program and Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Finland
| | - Maria Wirzenius
- Molecular Cancer Biology Program, Haartman Institute, Biomedicum Helsinki, University of Helsinki, Finland
| | - Peter Biberfeld
- Department of Pathology and Oncology, Karolinska Institute/Hospital, Stockholm, Sweden
| | - Kari Alitalo
- Molecular Cancer Biology Program, Haartman Institute, Biomedicum Helsinki, University of Helsinki, Finland
| | - Marikki Laiho
- Molecular Cancer Biology Program, Haartman Institute, Biomedicum Helsinki, University of Helsinki, Finland
| | - Päivi M Ojala
- Genome-Scale Biology Program and Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Finland
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
48
|
Kaposi's sarcoma-associated herpesvirus K-cyclin interacts with Cdk9 and stimulates Cdk9-mediated phosphorylation of p53 tumor suppressor. J Virol 2007; 82:278-90. [PMID: 17942552 DOI: 10.1128/jvi.01552-07] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
K-cyclin, encoded by Kaposi's sarcoma-associated herpesvirus, has previously been demonstrated to activate cyclin-dependent kinase 6 (Cdk6) to induce the phosphorylation of various cell cycle regulators. In this study, we identified Cdk9 as a new K-cyclin-associated Cdk and showed that K-cyclin interacted with Cdk9 through its basic domain. We hypothesized that K-cyclin served as a regulatory subunit for the activity of Cdk9. Recent reports show that Cdk9 phosphorylates tumor suppressor p53, and we found that the K-cyclin/Cdk9 interaction greatly enhanced the kinase activity of Cdk9 toward p53. The phosphorylation site(s) of K-cyclin/Cdk9 kinase complexes was mapped in the transactivation domain of p53. We showed that the ectopic expression of K-cyclin led to a sustained increase of p53 phosphorylation on Ser(33) in vivo, and the phosphorylation could be inhibited by a dominant negative Cdk9 mutant, dn-Cdk9. Using p53-positive U2OS and p53-null SaOS2 cells, we demonstrated that K-cyclin-induced growth arrest was associated with the presence of p53. In addition, K-cyclin-induced p53-dependent growth arrest was rescued by the dn-Cdk9- or Cdk9-specific short hairpin RNA in SaOS2 cells. Together, our findings for the first time demonstrated the interaction of K-cyclin and Cdk9 and revealed a new molecular link between K-cyclin and p53.
Collapse
|
49
|
Differential regulation of the cyclin-dependent kinase inhibitors p21(Cip1) and p27(Kip1) by phosphorylation directed by the cyclin encoded by Murine Herpesvirus 68. Exp Cell Res 2007; 314:204-12. [PMID: 17997402 DOI: 10.1016/j.yexcr.2007.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 09/18/2007] [Accepted: 09/22/2007] [Indexed: 10/22/2022]
Abstract
Members of the gamma2-herpesvirus family encode cyclin-like proteins that have the ability to deregulate mammalian cell cycle control. Here we report the key features of the viral cyclin encoded by Murine Herpesvirus 68, M cyclin. M cyclin preferentially associated with and activated cdk2; the M cyclin/cdk2 holoenzyme displayed a strong reliance on phosphorylation of the cdk T loop for activity. cdk2 associated with M cyclin exhibited substantial resistance to the cdk inhibitor proteins p21(Cip) and p27(Kip). Furthermore, M cyclin directed cdk2 to phosphorylate p27(Kip1) on threonine 187 (T187) and cellular expression of M cyclin led to down-regulation of p27(Kip1) and the partial subversion of the associated G1 arrest. Mutation of T187 to a non-phosphorylatable alanine rendered the p27(Kip1)-imposed G1 arrest resistant to M cyclin expression. Unlike the related K cyclin, M cyclin was unable to circumvent the G1 arrest associated with p21(Cip1) and was unable to direct its associated catalytic subunit to phosphorylate this cdk inhibitor. These results imply that M cyclin has properties that are distinct from other viral cyclins and that M cyclin expression alone is insufficient for S phase entry.
Collapse
|
50
|
Noguchi K, Fukazawa H, Murakami Y, Takahashi N, Yamagoe S, Uehara Y. Gamma-herpesviruses and cellular signaling in AIDS-associated malignancies. Cancer Sci 2007; 98:1288-96. [PMID: 17640300 PMCID: PMC11158765 DOI: 10.1111/j.1349-7006.2007.00555.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2007] [Revised: 04/24/2007] [Accepted: 04/30/2007] [Indexed: 11/29/2022] Open
Abstract
gamma-Herpesviruses, Epstein-Barr virus (EBV/HHV-4) and Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8), are involved in human carcinogenesis, particularly in immunocompromised patients. Virus-associated malignancies are becoming of significant concern for the mortality of long-lived immunocompromised patients, and therefore, research of advanced strategies for AIDS-related malignancies is an important field in cancer chemotherapy. Detailed understanding of the EBV and KSHV lifecycle and related cancers at the molecular level is required for novel strategies of molecular-targeted cancer chemotherapy. The present review gives a simple outline of the functional interactions between KSHV- and EBV-viral gene products and host cell deregulated signaling pathways as possible targets of chemotherapy against AIDS-related malignancies.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/pathogenicity
- Herpesvirus 4, Human/physiology
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/pathogenicity
- Herpesvirus 8, Human/physiology
- Humans
- Lymphoma, AIDS-Related/drug therapy
- Lymphoma, AIDS-Related/metabolism
- Lymphoma, AIDS-Related/pathology
- Lymphoma, AIDS-Related/virology
- Sarcoma, Kaposi/drug therapy
- Sarcoma, Kaposi/metabolism
- Sarcoma, Kaposi/pathology
- Sarcoma, Kaposi/virology
- Signal Transduction/genetics
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Kohji Noguchi
- Department of Bioactive Molecules, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | | | | | |
Collapse
|