1
|
Filisola-Villaseñor JG, Arroyo-Sánchez BI, Navarro-González LJ, Morales-Ríos E, Olin-Sandoval V. Ornithine decarboxylase and its role in cancer. Arch Biochem Biophys 2025:110321. [PMID: 39870288 DOI: 10.1016/j.abb.2025.110321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/03/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
Cancer is among the leading causes of death worldwide. The effectiveness of conventional chemotherapy has some drawbacks, therefore, there is an urgency to develop novel strategies to fight this disease. Ornithine decarboxylase (ODC) is the most finely tuned enzyme of the polyamine (PA) biosynthesis pathway as it is regulated at different levels: transcriptional, translational, post-translational, and by feedback inhibition. In cancer, this enzyme is overexpressed due to its regulation by the protooncogene c-Myc, thus it has been proposed as a drug target against this disease. This review describes information regarding the biochemistry and regulation of ODC at different levels and its role in cancer. Moreover, we discuss the molecules aiming on the inhibition of the ODC activity that have been tested as therapeutic options. ODC remains as a therapeutic opportunity that needs to be more explored.
Collapse
Affiliation(s)
| | - Beatriz Irene Arroyo-Sánchez
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Luis Janiel Navarro-González
- Department of Biochemistry, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Edgar Morales-Ríos
- Department of Biochemistry, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico.
| | - Viridiana Olin-Sandoval
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico.
| |
Collapse
|
2
|
Chen Y, León-Letelier RA, Abdel Sater AH, Vykoukal J, Dennison JB, Hanash S, Fahrmann JF. c-MYC-Driven Polyamine Metabolism in Ovarian Cancer: From Pathogenesis to Early Detection and Therapy. Cancers (Basel) 2023; 15:623. [PMID: 36765581 PMCID: PMC9913358 DOI: 10.3390/cancers15030623] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
c-MYC and its paralogues MYCN and MYCL are among the most frequently amplified and/or overexpressed oncoproteins in ovarian cancer. c-MYC plays a key role in promoting ovarian cancer initiation and progression. The polyamine pathway is a bona fide target of c-MYC signaling, and polyamine metabolism is strongly intertwined with ovarian malignancy. Targeting of the polyamine pathway via small molecule inhibitors has garnered considerable attention as a therapeutic strategy for ovarian cancer. Herein, we discuss the involvement of c-MYC signaling and that of its paralogues in promoting ovarian cancer tumorigenesis. We highlight the potential of targeting c-MYC-driven polyamine metabolism for the treatment of ovarian cancers and the utility of polyamine signatures in biofluids for early detection applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Johannes F. Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
3
|
Prokop JW, Bupp CP, Frisch A, Bilinovich SM, Campbell DB, Vogt D, Schultz CR, Uhl KL, VanSickle E, Rajasekaran S, Bachmann AS. Emerging Role of ODC1 in Neurodevelopmental Disorders and Brain Development. Genes (Basel) 2021; 12:genes12040470. [PMID: 33806076 PMCID: PMC8064465 DOI: 10.3390/genes12040470] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 01/18/2023] Open
Abstract
Ornithine decarboxylase 1 (ODC1 gene) has been linked through gain-of-function variants to a rare disease featuring developmental delay, alopecia, macrocephaly, and structural brain anomalies. ODC1 has been linked to additional diseases like cancer, with growing evidence for neurological contributions to schizophrenia, mood disorders, anxiety, epilepsy, learning, and suicidal behavior. The evidence of ODC1 connection to neural disorders highlights the need for a systematic analysis of ODC1 genotype-to-phenotype associations. An analysis of variants from ClinVar, Geno2MP, TOPMed, gnomAD, and COSMIC revealed an intellectual disability and seizure connected loss-of-function variant, ODC G84R (rs138359527, NC_000002.12:g.10444500C > T). The missense variant is found in ~1% of South Asian individuals and results in 2.5-fold decrease in enzyme function. Expression quantitative trait loci (eQTLs) reveal multiple functionally annotated, non-coding variants regulating ODC1 that associate with psychiatric/neurological phenotypes. Further dissection of RNA-Seq during fetal brain development and within cerebral organoids showed an association of ODC1 expression with cell proliferation of neural progenitor cells, suggesting gain-of-function variants with neural over-proliferation and loss-of-function variants with neural depletion. The linkage from the expression data of ODC1 in early neural progenitor proliferation to phenotypes of neurodevelopmental delay and to the connection of polyamine metabolites in brain function establish ODC1 as a bona fide neurodevelopmental disorder gene.
Collapse
Affiliation(s)
- Jeremy W. Prokop
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (C.P.B.); (A.F.); (S.M.B.); (D.B.C.); (D.V.); (C.R.S.); (K.L.U.); (S.R.)
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
- Center for Research in Autism, Intellectual, and Other Neurodevelopmental Disabilities, Michigan State University, East Lansing, MI 48824, USA
- Correspondence: (J.W.P.); (A.S.B.)
| | - Caleb P. Bupp
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (C.P.B.); (A.F.); (S.M.B.); (D.B.C.); (D.V.); (C.R.S.); (K.L.U.); (S.R.)
- Spectrum Health Medical Genetics, Grand Rapids, MI 49503, USA;
| | - Austin Frisch
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (C.P.B.); (A.F.); (S.M.B.); (D.B.C.); (D.V.); (C.R.S.); (K.L.U.); (S.R.)
| | - Stephanie M. Bilinovich
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (C.P.B.); (A.F.); (S.M.B.); (D.B.C.); (D.V.); (C.R.S.); (K.L.U.); (S.R.)
| | - Daniel B. Campbell
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (C.P.B.); (A.F.); (S.M.B.); (D.B.C.); (D.V.); (C.R.S.); (K.L.U.); (S.R.)
- Center for Research in Autism, Intellectual, and Other Neurodevelopmental Disabilities, Michigan State University, East Lansing, MI 48824, USA
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - Daniel Vogt
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (C.P.B.); (A.F.); (S.M.B.); (D.B.C.); (D.V.); (C.R.S.); (K.L.U.); (S.R.)
- Center for Research in Autism, Intellectual, and Other Neurodevelopmental Disabilities, Michigan State University, East Lansing, MI 48824, USA
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - Chad R. Schultz
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (C.P.B.); (A.F.); (S.M.B.); (D.B.C.); (D.V.); (C.R.S.); (K.L.U.); (S.R.)
| | - Katie L. Uhl
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (C.P.B.); (A.F.); (S.M.B.); (D.B.C.); (D.V.); (C.R.S.); (K.L.U.); (S.R.)
| | | | - Surender Rajasekaran
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (C.P.B.); (A.F.); (S.M.B.); (D.B.C.); (D.V.); (C.R.S.); (K.L.U.); (S.R.)
- Pediatric Intensive Care Unit, Helen DeVos Children’s Hospital, Grand Rapids, MI 49503, USA
- Office of Research, Spectrum Health, Grand Rapids, MI 49503, USA
| | - André S. Bachmann
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (C.P.B.); (A.F.); (S.M.B.); (D.B.C.); (D.V.); (C.R.S.); (K.L.U.); (S.R.)
- Correspondence: (J.W.P.); (A.S.B.)
| |
Collapse
|
4
|
Rasila T, Saavalainen O, Attalla H, Lankila P, Haglund C, Hölttä E, Andersson LC. Astroprincin (FAM171A1, C10orf38): A Regulator of Human Cell Shape and Invasive Growth. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:177-189. [PMID: 30312582 DOI: 10.1016/j.ajpath.2018.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/31/2018] [Accepted: 09/10/2018] [Indexed: 11/29/2022]
Abstract
Our group originally found and cloned cDNA for a 98-kDa type 1 transmembrane glycoprotein of unknown function. Because of its abundant expression in astrocytes, it was called the protein astroprincin (APCN). Two thirds of the evolutionarily conserved protein is intracytoplasmic, whereas the extracellular domain carries two N-glycosidic side chains. APCN is physiologically expressed in placental trophoblasts, skeletal and hearth muscle, and kidney and pancreas. Overexpression of APCN (cDNA) in various cell lines induced sprouting of slender projections, whereas knockdown of APCN expression by siRNA caused disappearance of actin stress fibers. Immunohistochemical staining of human cancers for endogenous APCN showed elevated expression in invasive tumor cells compared with intratumoral cells. Human melanoma cells (SK-MEL-28) transfected with APCN cDNA acquired the ability of invasive growth in semisolid medium (Matrigel) not seen with control cells. A conserved carboxyterminal stretch of 21 amino acids was found to be essential for APCN to induce cell sprouting and invasive growth. Yeast two-hybrid screening revealed several interactive partners, of which ornithine decarboxylase antizyme-1, NEEP21 (NSG1), and ADAM10 were validated by coimmunoprecipitation. This is the first functional description of APCN. These data show that APCN regulates the dynamics of the actin cytoskeletal and, thereby, the cell shape and invasive growth potential of tumor cells.
Collapse
Affiliation(s)
- Tiina Rasila
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Olga Saavalainen
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Hesham Attalla
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Petri Lankila
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Caj Haglund
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland; HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Erkki Hölttä
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Leif C Andersson
- Department of Pathology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
5
|
Lane DJR, Bae DH, Siafakas AR, Suryo Rahmanto Y, Al-Akra L, Jansson PJ, Casero RA, Richardson DR. Coupling of the polyamine and iron metabolism pathways in the regulation of proliferation: Mechanistic links to alterations in key polyamine biosynthetic and catabolic enzymes. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2793-2813. [PMID: 29777905 DOI: 10.1016/j.bbadis.2018.05.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/09/2018] [Accepted: 05/12/2018] [Indexed: 12/21/2022]
Abstract
Many biological processes result from the coupling of metabolic pathways. Considering this, proliferation depends on adequate iron and polyamines, and although iron-depletion impairs proliferation, the metabolic link between iron and polyamine metabolism has never been thoroughly investigated. This is important to decipher, as many disease states demonstrate co-dysregulation of iron and polyamine metabolism. Herein, for the first time, we demonstrate that cellular iron levels robustly regulate 13 polyamine pathway proteins. Seven of these were regulated in a conserved manner by iron-depletion across different cell-types, with four proteins being down-regulated (i.e., acireductone dioxygenase 1 [ADI1], methionine adenosyltransferase 2α [MAT2α], Antizyme and polyamine oxidase [PAOX]) and three proteins being up-regulated (i.e., S-adenosyl methionine decarboxylase [AMD1], Antizyme inhibitor 1 [AZIN1] and spermidine/spermine-N1-acetyltransferase 1 [SAT1]). Depletion of iron also markedly decreased polyamine pools (i.e., spermidine and/or spermine, but not putrescine). Accordingly, iron-depletion also decreased S-adenosylmethionine that is essential for spermidine/spermine biosynthesis. Iron-depletion additionally reduced 3H-spermidine uptake in direct agreement with the lowered levels of the polyamine importer, SLC22A16. Regarding mechanism, the "reprogramming" of polyamine metabolism by iron-depletion is consistent with the down-regulation of ADI1 and MAT2α, and the up-regulation of SAT1. Moreover, changes in ADI1 (biosynthetic) and SAT1 (catabolic) partially depended on the iron-regulated changes in c-Myc and/or p53. The ability of iron chelators to inhibit proliferation was rescuable by putrescine and spermidine, and under some conditions by spermine. Collectively, iron and polyamine metabolism are intimately coupled, which has significant ramifications for understanding the integrated role of iron and polyamine metabolism in proliferation.
Collapse
Affiliation(s)
- Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, The University of Melbourne, Parkville, Victoria 3052, Australia.
| | - Dong-Hun Bae
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Aritee R Siafakas
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Yohan Suryo Rahmanto
- Department of Pathology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Lina Al-Akra
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Robert A Casero
- Johns Hopkins University School of Medicine and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
6
|
Schipper RG, Cuijpers VMJI, De Groot LHJM, Thio M, Verhofstad AAJ. Intracellular Localization of Ornithine Decarboxylase and Its Regulatory Protein, Antizyme-1. J Histochem Cytochem 2016; 52:1259-66. [PMID: 15385572 DOI: 10.1177/002215540405201002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The enzyme ornithine decarboxylase (ODC) and its regulatory protein antizyme-1 (AZ1) are key regulators in the homeostasis of polyamines. To gain more insight into the exact intracellular distribution of ODC and AZ1, we performed immunocytochemical and Green Fluorescent Protein-fluorocytochemical studies in cultured human cervix carcinoma and human prostatic carcinoma (PC-346C) cells. ODC localization patterns varied from predominantly cytoplasmic to both cytoplasmic and nuclear staining, whereas AZ1 was mostly found in the nucleus. In cells that were synchronized in the mitotic phase, localization of both ODC and AZ1 changed from perinuclear at the beginning of mitosis into nucleoplasmic at close proximity to the chromosomes during meta-, ana- and telophase. Upon completion of mitosis, localization of ODC and AZ1 was reverted back to the cytoplasm, i.e., predominantly perinuclear immediately after cytokinesis. When PC-346C cells were treated with polyamines to induce AZ1-regulated ODC degradation, ODC was predominantly found in the nucleus and colocalized with immunoreactive AZ1. A comparable accumulation of ODC and AZ1 in the nucleus was found in PC-346C cells treated with the polyamine analog SL-11093. The present study suggests that AZ1 is involved in nucleocyto-plasmic shuttling of ODC, which may be a prerequisite for ODC regulation and/or function.
Collapse
Affiliation(s)
- Raymond G Schipper
- Department of Pathology, University Medical Centre Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
7
|
Montero-Fernández M, Robaina RR, Garcia-Jimenez P. In silico characterization of DNA motifs associated with the differential expression of the ornithine decarboxylase gene during in vitro cystocarp development in the red seaweed Grateloupia imbricata. JOURNAL OF PLANT PHYSIOLOGY 2016; 195:31-38. [PMID: 26991607 DOI: 10.1016/j.jplph.2016.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/05/2016] [Accepted: 03/06/2016] [Indexed: 06/05/2023]
Abstract
To gain a better understanding of the regulatory mechanism(s) modulating expression of the ornithine decarboxylase gene ODC during cystocarp development in the red seaweed Grateloupia imbricata, DNA motifs found in the 5'-upstream region of the gene were identified by in silico analysis. In addition, when infertile G. imbricata thalli were treated with ethylene, methyl jasmonate, or light as an elicitor of cystocarp development, different ODC expression patterns were observed. ODC expression correlated with (i) the elicitation (treatment) period and the period post-treatment just prior to observation of the first visible developing cystocarps (disclosure period), and (ii) the type of elicitor. Ethylene and light activated ODC expression during the elicitation period, and methyl jasmonate activated its expression during the disclosure period, suggesting that initiation and cystocarp development may involve more than one signaling pathway. In addition, expression of ODC was 450-fold greater when thalli were stimulated by ethylene compared with untreated control thalli, suggesting that G. imbricata mounts an efficient response to sense and activate ethylene-responsive signaling pathways. The patterns of differential ODC expression induced by the different elicitors during cystocarp development might provide an useful tool for characterizing the precise transcriptional regulation of ODC in G. imbricata.
Collapse
Affiliation(s)
- Montserrat Montero-Fernández
- Departamento de Biología, Facultad de Ciencias del Mar, Universidad of Las Palmas de Gran Canaria, E-35017 Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Rafael R Robaina
- Departamento de Biología, Facultad de Ciencias del Mar, Universidad of Las Palmas de Gran Canaria, E-35017 Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Pilar Garcia-Jimenez
- Departamento de Biología, Facultad de Ciencias del Mar, Universidad of Las Palmas de Gran Canaria, E-35017 Las Palmas de Gran Canaria, Canary Islands, Spain.
| |
Collapse
|
8
|
Toutges MJ, Santoso A. Cloning and molecular characterization of an ornithine decarboxylase gene and its expression during embryonic development of the housefly, Musca domestica. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2011; 78:87-103. [PMID: 21928394 DOI: 10.1002/arch.20442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We are interested in identifying targets that may be used to develop new control products for the common housefly, Musca domestica, a vector of disease for many vertebrates. One such target, ornithine decarboxylase (ODC), is an embryonic enzyme involved in the regulation of polyamines and is a critical enzyme during M. domestica development. In this study, the cDNA for ODC from M. domestica was cloned, sequenced, and characterized. The full-length cDNA was 1,337-bp, consistent with a single band of approximately 1.35 kb obtained by northern analysis. The open-reading frame contains 1,191 bp, yielding a deduced polypeptide of 396 amino acid residues with a predicted mass of 44,618 Da. The deduced M. domestica ODC protein was homologous to other ODC proteins. mRNA expression profiles analyzed by real-time PCR indicated that the ODC transcript is temporally regulated throughout embryogenesis. Sequence data and Southern blot analysis suggests that there were likely only one or two closely linked copies of the M. domestica ODC gene.
Collapse
Affiliation(s)
- Michelle J Toutges
- Department of Chemistry and Molecular Biology, North Dakota State University, Fargo, USA.
| | | |
Collapse
|
9
|
Lefèvre PLC, Palin MF, Chen G, Turecki G, Murphy BD. Polyamines are implicated in the emergence of the embryo from obligate diapause. Endocrinology 2011; 152:1627-39. [PMID: 21303959 DOI: 10.1210/en.2010-0955] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Embryonic diapause is a poorly understood phenomenon of reversible arrest of embryo development prior to implantation. In many carnivores, such as the mink (Neovison vison), obligate diapause characterizes each gestation. Embryo reactivation is controlled by the uterus by mechanisms that remain elusive. Because polyamines are essential regulators of cell proliferation and growth, it was hypothesized that they trigger embryo reactivation. To test this, mated mink females were treated with α-difluoromethylornithine, an inhibitor of ornithine decarboxylase 1, the rate-limiting enzyme in polyamine biosynthesis, or saline as a control during the first 5 d of reactivation. This treatment induced polyamine deprivation with the consequence of rearrest in embryo cell proliferation. A mink trophoblast cell line in vitro subjected to α-difluoromethylornithine treatment likewise displayed an arrest in cell proliferation, morphological changes, and intracellular translocation of ornithine decarboxylase 1 protein. The arrest in embryo development deferred implantation for a period consistent with the length of treatment. Successful implantation and parturition ensued. We conclude that polyamine deprivation brought about a reversible rearrest of embryo development, which returned the mink embryo to diapause and induced a second delay in embryo implantation. The results are the first demonstration of a factor essential to reactivation of embryos in obligate diapause.
Collapse
Affiliation(s)
- Pavine L C Lefèvre
- Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Rue Sicotte, St. Hyacinthe, Québec, Canada J2S 7C6.
| | | | | | | | | |
Collapse
|
10
|
Kanerva K, Mäkitie LT, Bäck N, Andersson LC. Ornithine decarboxylase antizyme inhibitor 2 regulates intracellular vesicle trafficking. Exp Cell Res 2010; 316:1896-906. [PMID: 20188728 DOI: 10.1016/j.yexcr.2010.02.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 02/18/2010] [Accepted: 02/19/2010] [Indexed: 11/25/2022]
Abstract
Antizyme inhibitor 1 (AZIN1) and 2 (AZIN2) are proteins that activate ornithine decarboxylase (ODC), the key enzyme of polyamine biosynthesis. Both AZINs release ODC from its inactive complex with antizyme (AZ), leading to formation of the catalytically active ODC. The ubiquitously expressed AZIN1 is involved in cell proliferation and transformation whereas the role of the recently found AZIN2 in cellular functions is unknown. Here we report the intracellular localization of AZIN2 and present novel evidence indicating that it acts as a regulator of vesicle trafficking. We used immunostaining to demonstrate that both endogenous and FLAG-tagged AZIN2 localize to post-Golgi vesicles of the secretory pathway. Immuno-electron microscopy revealed that the vesicles associate mainly with the trans-Golgi network (TGN). RNAi-mediated knockdown of AZIN2 or depletion of cellular polyamines caused selective fragmentation of the TGN and retarded the exocytotic release of vesicular stomatitis virus glycoprotein. Exogenous addition of polyamines normalized the morphological changes and reversed the inhibition of protein secretion. Our findings demonstrate that AZIN2 regulates the transport of secretory vesicles by locally activating ODC and polyamine biosynthesis.
Collapse
Affiliation(s)
- Kristiina Kanerva
- Department of Pathology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
11
|
López-Contreras AJ, Sánchez-Laorden BL, Ramos-Molina B, de la Morena ME, Cremades A, Peñafiel R. Subcellular localization of antizyme inhibitor 2 in mammalian cells: Influence of intrinsic sequences and interaction with antizymes. J Cell Biochem 2009; 107:732-40. [PMID: 19449338 DOI: 10.1002/jcb.22168] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ornithine decarboxylase (ODC) and the antizyme inhibitors (AZIN1 and AZIN2), regulatory proteins of polyamine levels, are antizyme-binding proteins. Although it is widely recognized that ODC is mainly a cytosolic enzyme, less is known about the subcellular distribution of AZIN1 and AZIN2. We found that these proteins, which share a high degree of homology in their amino acid sequences, presented differences in their subcellular location in transfected mammalian cells. Whereas ODC was mainly present in the cytosol, and AZIN1 was found predominantly in the nucleus, interestingly, AZIN2 was located in the ER-Golgi intermediate compartment (ERGIC) and in the cis-Golgi network, apparently not related to any known cell-sorting sequence. Our results rather suggest that the N-terminal region may be responsible for this particular location, since its deletion abrogated the incorporation of the mutated AZIN2 to the ERGIC complex and, on the other hand, the substitution of this sequence for the corresponding sequence in ODC, translocated ODC from cytosol to the ERGIC compartment. Furthermore, the coexpression of AZIN2 with any members of the antizyme family induced a shift of AZIN2 from the ERGIC to the cytosol. These findings underline the complexity of the AZs/AZINs regulatory system, supporting early evidence that relates these proteins with additional functions other than regulating polyamine homeostasis.
Collapse
|
12
|
Van Der Kelen K, Beyaert R, Inzé D, De Veylder L. Translational control of eukaryotic gene expression. Crit Rev Biochem Mol Biol 2009; 44:143-68. [PMID: 19604130 DOI: 10.1080/10409230902882090] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Translational control mechanisms are, besides transcriptional control and mRNA stability, the most determining for final protein levels. A large number of accessory factors that assist the ribosome during initiation, elongation, and termination of translation are required for protein synthesis. Cap-dependent translational control occurs mainly during the initiation step, involving eukaryotic initiation factors (eIFs) and accessory proteins. Initiation is affected by various stimuli that influence the phosphorylation status of both eIF4E and eIF2 and through binding of 4E-binding proteins to eIF4E, which finally inhibits cap- dependent translation. Under conditions where cap-dependent translation is hampered, translation of transcripts containing an internal ribosome entry site can still be supported in a cap-independent manner. An interesting example of translational control is the switch between cap-independent and cap-dependent translation during the eukaryotic cell cycle. At the G1-to-S transition, translation occurs predominantly in a cap-dependent manner, while during the G2-to-M transition, cap-dependent translation is inhibited and transcripts are predominantly translated through a cap-independent mechanism.
Collapse
|
13
|
Ornithine decarboxylase regulates the activity and localization of rhoA via polyamination. Exp Cell Res 2009; 315:1008-14. [PMID: 19331812 DOI: 10.1016/j.yexcr.2009.01.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 12/29/2008] [Accepted: 01/28/2009] [Indexed: 10/25/2022]
Abstract
Ornithine decarboxylase (ODC) is the rate-limiting enzyme of polyamine synthesis. Polyamines and ODC are connected to cell proliferation and transformation. Resting cells display a low ODC activity while normal, proliferating cells display fluctuations in ODC activity that coincide with changes in the actin cytoskeleton during the cell cycle. Cancerous cells display constitutively elevated ODC activity. Overexpression of ODC in NIH 3T3 fibroblasts induces a transformed phenotype. The cytoskeletal rearrangements during cytokinesis and cell transformation are intimately coupled to the ODC activity but the molecular mechanisms have remained elusive. In this study we investigated how ODC and polyamines influence the organization of the cytoskeleton. Given that the small G-proteins of the rho family are key modulators of the actin cytoskeleton, we investigated the molecular interactions of rhoA with ODC and polyamines. Our results show that transglutaminase-catalyzed polyamination of rhoA regulates its activity. The polyamination status of rhoA crucially influences the progress of the cell cycle as well as the rate of transformation of rat fibroblasts infected with temperature-sensitive v-src. We also show that ODC influences the intracellular distribution of rhoA. These findings provide novel insights into the mechanisms by which ODC and polyamines regulate the dynamics of the cytoskeleton during cell proliferation and transformation.
Collapse
|
14
|
Liao CP, Lasbury ME, Wang SH, Zhang C, Durant PJ, Murakami Y, Matsufuji S, Lee CH. Pneumocystis mediates overexpression of antizyme inhibitor resulting in increased polyamine levels and apoptosis in alveolar macrophages. J Biol Chem 2009; 284:8174-84. [PMID: 19158080 DOI: 10.1074/jbc.m805787200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Pneumocystis pneumonia (PcP) is the most common opportunistic disease in immunocompromised patients. Alveolar macrophages are responsible for the clearance of Pneumocystis organisms; however, they undergo a high rate of apoptosis during PcP due to increased intracellular polyamine levels. In this study, the sources of polyamines and mechanisms of polyamine increase and polyamine-induced apoptosis were investigated. The level of ornithine decarboxylase (ODC) was elevated in alveolar macrophages, and the number of alveolar macrophages that took up exogenous polyamines was increased 20-fold during PcP. Monocytes, B lymphocytes, and CD8+ T lymphocytes that were recruited into the lung during PcP expressed high levels of ornithine decarboxylase, suggesting that these cells are sources of polyamines. Both protein and mRNA levels of antizyme inhibitor (AZI) were increased in alveolar macrophages during PcP. This AZI overexpression correlated with increased polyamine uptake by alveolar macrophages, because AZI expression knockdown decreased the polyamine uptake ability of these cells. AZI expression knockdown also decreased the apoptosis rate of alveolar macrophages. Pneumocystis organisms and zymosan A were found to induce AZI overexpression in alveolar macrophages, suggesting that beta-glucan, which is the major component of the Pneumocystis cell wall, induces AZI overexpression. The levels of mRNA, protein, and activity of polyamine oxidase were increased in alveolar macrophages during PcP, indicating that the H(2)O(2) generated during polyamine catabolism caused alveolar macrophages to undergo apoptosis. Taken together, results of this study indicate that Pneumocystis organisms induce AZI overexpression in alveolar macrophages, leading to increased polyamine synthesis and uptake and apoptosis rate of these cells.
Collapse
Affiliation(s)
- Chung-Ping Liao
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Uemura T, Yerushalmi HF, Tsaprailis G, Stringer DE, Pastorian KE, Hawel L, Byus CV, Gerner EW. Identification and characterization of a diamine exporter in colon epithelial cells. J Biol Chem 2008; 283:26428-35. [PMID: 18660501 DOI: 10.1074/jbc.m804714200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SLC3A2, a member of the solute carrier family, was identified by proteomics methods as a component of a transporter capable of exporting the diamine putrescine in the Chinese hamster ovary (CHO) cells selected for resistance to growth inhibition by high exogenous concentrations of putrescine. Putrescine transport was increased in inverted plasma membrane vesicles prepared from cells resistant to growth inhibition by putrescine compared with transport in inverted vesicles prepared from non-selected cells. Knockdown of SLC3A2 in human cells, using short hairpin RNA, caused an increase in putrescine uptake and a decrease in arginine uptake activity. SLC3A2 knockdown cells accumulated higher polyamine levels and grew faster than control cells. The growth of SLC3A2 knockdown cells was inhibited by high concentrations of putrescine. Knockdown of SLC3A2 reduced export of polyamines from cells. Expression of SLC3A2 was suppressed in human HCT116 colon cancer cells, which have an activated K-RAS, compared with their isogenic clone, Hkh2 cells, which lack an activated K-RAS allele. Spermidine/spermine N(1)-acetyltransferase (SAT1) was co-immunoprecipitated by an anti-SLC3A2 antibody as was SLC3A2 with an anti-SAT1 antibody. SLC3A2 and SAT1 colocalized on the plasma membrane. These data provide the first molecular characterization of a polyamine exporter in animal cells and indicate that the diamine putrescine is exported by an arginine transporter containing SLC3A2, whose expression is negatively regulated by K-RAS. The interaction between SLC3A2 and SAT1 suggests that these proteins may facilitate excretion of acetylated polyamines.
Collapse
Affiliation(s)
- Takeshi Uemura
- Arizona Cancer Center, University of Arizona, Tucson, Arizona 85724, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Kanerva K, Mäkitie LT, Pelander A, Heiskala M, Andersson LC. Human ornithine decarboxylase paralogue (ODCp) is an antizyme inhibitor but not an arginine decarboxylase. Biochem J 2008; 409:187-92. [PMID: 17900240 DOI: 10.1042/bj20071004] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ODC (ornithine decarboxylase), the rate-limiting enzyme in polyamine biosynthesis, is regulated by specific inhibitors, AZs (antizymes), which in turn are inhibited by AZI (AZ inhibitor). We originally identified and cloned the cDNA for a novel human ODC-like protein called ODCp (ODC paralogue). Since ODCp was devoid of ODC catalytic activity, we proposed that ODCp is a novel form of AZI. ODCp has subsequently been suggested to function either as mammalian ADC (arginine decarboxylase) or as AZI in mice. Here, we report that human ODCp is a novel AZI (AZIN2). By using yeast two-hybrid screening and in vitro binding assay, we show that ODCp binds AZ1-3. Measurements of the ODC activity and ODC degradation assay reveal that ODCp inhibits AZ1 function as efficiently as AZI both in vitro and in vivo. We further demonstrate that the degradation of ODCp is ubiquitin-dependent and AZ1-independent similar to the degradation of AZI. We also show that human ODCp has no intrinsic ADC activity.
Collapse
Affiliation(s)
- Kristiina Kanerva
- Department of Pathology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | | | | | | | | |
Collapse
|
17
|
Wu F, Grossenbacher D, Gehring H. New transition state-based inhibitor for human ornithine decarboxylase inhibits growth of tumor cells. Mol Cancer Ther 2007; 6:1831-9. [PMID: 17575112 DOI: 10.1158/1535-7163.mct-07-0045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pyridoxal 5'-phosphate (PLP)-dependent ornithine decarboxylase (ODC) is the key enzyme in polyamine synthesis. ODC is overexpressed in many tumor cells and thus a potential drug target. Here we show the design and synthesis of a coenzyme-substrate analogue as a novel precursor inhibitor of ODC. Structural analysis of the crystal structure of human ODC disclosed an additional hydrophobic pocket surrounding the epsilon-amino group of its substrate ornithine. Molecular modeling methods showed favorable interactions of the BOC-protected pyridoxyl-ornithine conjugate, termed POB, in the active site of human ODC. The synthesized and purified POB completely inhibited the activity of newly induced ODC activity at 100 micromol/L in glioma LN229 and COS7 cells. In correlation with the inhibition of ODC activity, a time-dependent inhibition of cell growth was observed in myeloma, glioma LN18 and LN229, Jurkat, COS7, and SW2 small-cell lung cancer cells if DNA synthesis and cell number were measured, but not in the nontumorigenic human aortic smooth muscle cells. POB strongly inhibited cell proliferation not only of low-grade glioma LN229 cells in a dose-dependent manner (IC(50) approximately 50 micromol/L) but also of high-grade glioblastoma multiforme cells. POB is much more efficient in inhibiting proliferation of several types of tumor cells than alpha-DL-difluoromethylornithine, the best known irreversible inhibitor of ODC.
Collapse
Affiliation(s)
- Fang Wu
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | |
Collapse
|
18
|
Smith KJ, Skelton H. alpha-Difluoromethylornithine, a polyamine inhibitor: its potential role in controlling hair growth and in cancer treatment and chemo-prevention. Int J Dermatol 2006; 45:337-44. [PMID: 16650154 DOI: 10.1111/j.1365-4632.2006.01231.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Levin VA, Jochec JL, Shantz LM, Koch PE, Pegg AE. Tissue-based assay for ornithine decarboxylase to identify patients likely to respond to difluoromethylornithine. J Histochem Cytochem 2004; 52:1467-74. [PMID: 15505341 PMCID: PMC3957822 DOI: 10.1369/jhc.4a6358.2004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In a previous publication, we showed that a clinical trial of DL-alpha-difluoromethyl ornithine (DFMO), in combination with PCV (procarbazine, CCNU, vincristine) increased survival of patients with anaplastic gliomas (WHO III) but not glioblastoma multiforme (WHO IV). We believe that treatment outcome (survival) is inversely related to tumor ornithine decarboxylase (ODC) levels. To prove this, we needed to develop an assay to quantify ODC levels in formalin-fixed tumor tissues, which would enable a retrospective study of tumor biopsy specimens from the landmark clinical trial. We developed an assay using a specific polyclonal antibody coupled to an Alexa fluorescent dye. Transgenic MHC-ODC mice with differing levels of ODC in heart muscle were used to establish the relationship between mean gray-scale intensity and enzymatic ODC activity. We found a direct relationship between mean gray-scale intensity of the ODC antibody coupled to Alexa 647 dye and enzymatic activity. Preliminary analysis of a human glioma tissue array shows that tumor-specific variations in levels of ODC can be semiquantitated. We show that mean gray-scale intensity of astrocytoma:glioblastoma is 1:6 and of anaplastic astrocytoma:glioblastoma is 1:4. We also compared the intensity of antibody to Ki67 coupled with phycoerythrin simultaneously in cells but failed to see a relationship that crossed histologies. We conclude that we can measure levels of ODC in formalin-fixed tumor tissue using an antibody to ODC coupled to Alexa 647 dye, and this will enable us to conduct a future study to correlate survival of patients with gliomas of different histologies treated with DFMO to tumor ODC levels.
Collapse
Affiliation(s)
- Victor A Levin
- Dept. of Neuro-Oncology, Unit 431, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030-4009, USA.
| | | | | | | | | |
Collapse
|
20
|
Schipper RG, Verhofstad AAJ. Distribution patterns of ornithine decarboxylase in cells and tissues: facts, problems, and postulates. J Histochem Cytochem 2002; 50:1143-60. [PMID: 12185192 DOI: 10.1177/002215540205000901] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Ornithine decarboxylase (ODC) is a key enzyme in polyamine biosynthesis. Increased polyamine levels are required for growth, differentiation, and transformation of cells. In situ detection of ODC in cells and tissues has been performed with biochemical, enzyme cytochemical, immunocytochemical, and in situ hybridization techniques. Different localization patterns at the cellular level have been described, depending on the type of cells or tissues studied. These patterns varied from exclusively cytoplasmic to both cytoplasmic and nuclear. These discrepancies can be partially explained by the (lack of) sensitivity and/or specificity of the methods used, but it is more likely that (sub)cellular localization of ODC is cell type-specific and/or depends on the physiological status (growth, differentiation, malignant transformation, apoptosis) of cells. Intracellular translocation of ODC may be a prerequisite for its regulation and function.
Collapse
Affiliation(s)
- Raymond G Schipper
- Department of Pathology, University Medical Centre Nijmegen, Nijmegen, The Netherlands
| | | |
Collapse
|
21
|
Pitkänen LT, Heiskala M, Andersson LC. Expression of a novel human ornithine decarboxylase-like protein in the central nervous system and testes. Biochem Biophys Res Commun 2001; 287:1051-7. [PMID: 11587527 DOI: 10.1006/bbrc.2001.5703] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Ornithine decarboxylase (ODC) is the key enzyme of polyamine synthesis. The physiological activity of ODC is associated with cell proliferation, and high ODC activities are encountered in rapidly growing cancer cells. We have cloned a cDNA for a novel human protein that is 54% identical to ODC and 45% identical to antizyme inhibitor (AZI). mRNA for ODC-paralogue (ODC-p) was found only in the central nervous system and testes, suggesting a role in terminal differentiation rather than cell proliferation. ODC-p occurs at least in eight alternatively spliced forms. In vitro translated ODC-p did not decarboxylate ornithine, whereas, in vivo, one splice variant exerted modest ODC-like activity upon expression in COS-7 cells. ODC-p has a unique mutation in cysteine 360, where this ornithine decarboxylase reaction-directing residue is substituted by a valine. This substitution might lead to an enzymatic reaction that differs from typical ODC activity. ODC-p might also function as a brain- and testis-specific AZI.
Collapse
Affiliation(s)
- L T Pitkänen
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
22
|
van der Flier S, Chan CM, Brinkman A, Smid M, Johnston SR, Dorssers LC, Dowsett M. BCAR1/p130Cas expression in untreated and acquired tamoxifen-resistant human breast carcinomas. Int J Cancer 2000; 89:465-8. [PMID: 11008210 DOI: 10.1002/1097-0215(20000920)89:5<465::aid-ijc11>3.0.co;2-o] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
High BCAR1/p130Cas expression in primary breast tumour cytosol predicts a poor chance of response recurrent disease to tamoxifen treatment in patients with oestrogen receptor (ER)-positive breast carcinomas. In this study, we assessed whether BCAR1/p130Cas expression is altered during acquisition of anti-oestrogen resistance. BCAR1/p130Cas protein was quantitatively measured by chemiluminescent Western blot analysis in the cytosol of 34 predominantly ER(+) carcinomas that initially responded to primary tamoxifen treatment and subsequently progressed (n = 22 ) or developed during adjuvant tamoxifen treatment (n = 12) and compared to 54 untreated ER(+) human breast carcinomas. We did not detect significant differences in the level of BCAR1/p130Cas protein in untreated and acquired tamoxifen-resistant carcinomas. Our results indicate that in tumour progression towards tamoxifen resistance, increase of BCAR1/p130Cas may be only one of the molecular mechanisms. Thus, high BCAR1/p130Cas protein levels appear to be a hallmark for intrinsic resistance to tamoxifen in breast carcinomas.
Collapse
Affiliation(s)
- S van der Flier
- Department of Pathology, Division of Molecular Biology, Josephine Nefkens Institute, University Hospital Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
23
|
Ivanov IP, Matsufuji S, Murakami Y, Gesteland RF, Atkins JF. Conservation of polyamine regulation by translational frameshifting from yeast to mammals. EMBO J 2000; 19:1907-17. [PMID: 10775274 PMCID: PMC302018 DOI: 10.1093/emboj/19.8.1907] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2000] [Revised: 03/07/2000] [Accepted: 03/07/2000] [Indexed: 01/13/2023] Open
Abstract
Regulation of ornithine decarboxylase in vertebrates involves a negative feedback mechanism requiring the protein antizyme. Here we show that a similar mechanism exists in the fission yeast Schizosaccharomyces pombe. The expression of mammalian antizyme genes requires a specific +1 translational frameshift. The efficiency of the frameshift event reflects cellular polyamine levels creating the autoregulatory feedback loop. As shown here, the yeast antizyme gene and several newly identified antizyme genes from different nematodes also require a ribosomal frameshift event for their expression. Twelve nucleotides around the frameshift site are identical between S.pombe and the mammalian counterparts. The core element for this frameshifting is likely to have been present in the last common ancestor of yeast, nematodes and mammals.
Collapse
Affiliation(s)
- I P Ivanov
- Department of Human Genetics, University of Utah, 2030 E 15N, Salt Lake City, UT 84112-5330, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
The eukaryotic mRNA 5' cap structure facilitates translation. However, cap-dependent translation is impaired at mitosis, suggesting a cap-independent mechanism for mRNAs translated during mitosis. Translation of ornithine decarboxylase (ODC), the rate-limiting enzyme in the biosynthesis of polyamines, peaks twice during the cell cycle, at the G1/S transition and at G2/M. Here, we describe a cap-independent internal ribosome entry site (IRES) in the ODC mRNA that functions exclusively at G2/M. This ensures elevated levels of polyamines, which are implicated in mitotic spindle formation and chromatin condensation. c-myc mRNA also contains an IRES that functions during mitosis. Thus, IRES-dependent translation is likely to be a general mechanism to synthesize short-lived proteins even at mitosis, when cap-dependent translation is interdicted.
Collapse
Affiliation(s)
- S Pyronnet
- Department of Biochemistry and McGill Cancer Center, McGill University, Montréal, Qúebec, Canada
| | | | | |
Collapse
|
25
|
Guevara-Olvera L, Hung CY, Yu JJ, Cole GT. Sequence, expression and functional analysis of the Coccidioides immitis ODC (ornithine decarboxylase) gene. Gene 2000; 242:437-48. [PMID: 10721738 DOI: 10.1016/s0378-1119(99)00496-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The ornithine decarboxylase (ODC) gene of the human respiratory fungal pathogen, Coccidioides immitis (Ci) was cloned, sequenced, chromosome-mapped, and expressed in Escherichia coli (Ec). The genomic, cDNA and translated sequences are presented. Transformation of an ODC null mutant strain of Ec (EWH 319) with the Ci ODC gene was conducted to confirm function of the protein encoded by the fungal gene. Activity of the enzyme by the bacterial transformant was inhibited by 1, 4-diamino-2-butanone (DAB), a known inhibitor of eukaryotic ODC. Temporal expression of the Ci ODC gene during the parasitic cell cycle is constitutive, based on results of RT PCR. However, results of enzyme activity assays of cell homogenates obtained at different stages of parasitic cell development in vitro showed that the functional protein is present only during periods of isotropic growth and segmentation, and these morphogenetic events can be arrested by the addition of DAB. The observed absence of a difference in steady-state mRNA transcript amounts, and the developmentally correlated variation in levels of enzyme activity, suggest a translational or post-translational mechanism of ODC regulation. Since no PEST sequence was detected in the Ci ODC, enzyme regulation by programmed protein degradation as reported for many other eukaryotic ODCs may not occur in this case. ODC activity appears to play a key role in the morphogenesis of Ci, and the enzyme could be a rational target for therapy of disseminated coccidioidomycosis.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Blotting, Southern
- Coccidioides/drug effects
- Coccidioides/enzymology
- Coccidioides/genetics
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA, Fungal/isolation & purification
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Gene Expression
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Fungal
- Genes, Fungal/genetics
- Molecular Sequence Data
- Mutation
- Ornithine Decarboxylase/genetics
- Ornithine Decarboxylase Inhibitors
- Putrescine/analogs & derivatives
- Putrescine/pharmacology
- Recombinant Fusion Proteins/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Transformation, Genetic
Collapse
Affiliation(s)
- L Guevara-Olvera
- Department of Microbiology and Immunology, Medical College of Ohio, Toledo 43614-5806, USA
| | | | | | | |
Collapse
|
26
|
Pomidor MM, Cimildoro R, Lazatin B, Zheng P, Gurr JA, Leigh IM, Jänne OA, Tuan RS, Hickok NJ. Phosphorylated human keratinocyte ornithine decarboxylase is preferentially associated with insoluble cellular proteins. Mol Biol Cell 1999; 10:4299-310. [PMID: 10588659 PMCID: PMC25759 DOI: 10.1091/mbc.10.12.4299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Ornithine decarboxylase (ODC), the first enzyme in polyamine biosynthesis, is highly regulated by many trophic stimuli, and changes in its levels and organization correlate with cytoskeletal changes in normal human epidermal keratinocytes (NHEK). NHEK ODC exhibits a filamentous perinuclear/nuclear localization that becomes more diffuse under conditions that alter actin architecture. We have thus asked whether ODC colocalizes with a component of the NHEK cytoskeleton. Confocal immunofluorescence showed that ODC distribution in NHEK was primarily perinuclear; upon disruption of the actin cytoskeleton with cytochalasin D, ODC distribution was diffuse. The ODC distribution in untreated NHEK overlapped with that of keratin in the perinuclear but not cytoplasmic area; after treatment with cytochalasin D, overlap between staining for ODC and for keratin was extensive. No significant overlap with actin and minimal overlap with tubulin filament systems were observed. Subcellular fractionation by sequential homogenizations and centrifugations of NHEK lysates or detergent and salt extractions of NHEK in situ revealed that ODC protein and activity were detectable in both soluble and insoluble fractions, with mechanical disruption causing additional solubilization of ODC activity (three- to sevenfold above controls). Fractionation and ODC immunoprecipitation from [(32)P]orthophosphate-labeled NHEK lysates showed that a phosphorylated form of ODC was present in the insoluble fractions. Taken together, these data suggest that two pools of ODC exist in NHEK. The first is the previously described soluble pool, and the second is enriched in phospho-ODC and associated with insoluble cellular material that by immunohistochemistry appears to be organized in conjunction with the keratin cytoskeleton.
Collapse
Affiliation(s)
- M M Pomidor
- Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|