1
|
Kublanovsky M, Ulu GT, Weirich S, Levy N, Feldman M, Jeltsch A, Levy D. Methylation of the transcription factor E2F1 by SETD6 regulates SETD6 expression via a positive feedback mechanism. J Biol Chem 2023; 299:105236. [PMID: 37690684 PMCID: PMC10551896 DOI: 10.1016/j.jbc.2023.105236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023] Open
Abstract
The protein lysine methyltransferase SET domain-containing protein 6 (SETD6) has been shown to influence different cellular activities and to be critically involved in the regulation of diverse developmental and pathological processes. However, the upstream signals that regulate the mRNA expression of SETD6 are not known. Bioinformatic analysis revealed that the SETD6 promoter has a binding site for the transcription factor E2F1. Using various experimental approaches, we show that E2F1 binds to the SETD6 promoter and regulates SETD6 mRNA expression. Our further observation that this phenomenon is SETD6 dependent suggested that SETD6 and E2F1 are linked. We next demonstrate that SETD6 monomethylates E2F1 specifically at K117 in vitro and in cells. Finally, we show that E2F1 methylation at K117 positively regulates the expression level of SETD6 mRNA. Depletion of SETD6 or overexpression of E2F1 K117R mutant, which cannot be methylated by SETD6, reverses the effect. Taken together, our data provide evidence for a positive feedback mechanism, which regulates the expression of SETD6 by E2F1 in a SETD6 methylation-dependent manner, and highlight the importance of protein lysine methyltransferases and lysine methylation signaling in the regulation of gene transcription.
Collapse
Affiliation(s)
- Margarita Kublanovsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Be'er-Sheva, Israel; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Gizem T Ulu
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Sara Weirich
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Nurit Levy
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Be'er-Sheva, Israel; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Michal Feldman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Be'er-Sheva, Israel; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany.
| | - Dan Levy
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Be'er-Sheva, Israel; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er-Sheva, Israel.
| |
Collapse
|
2
|
Ramanujan A, Bansal S, Guha M, Pande NT, Tiwari S. LxCxD motif of the APC/C coactivator subunit FZR1 is critical for interaction with the retinoblastoma protein. Exp Cell Res 2021; 404:112632. [PMID: 33971196 DOI: 10.1016/j.yexcr.2021.112632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/19/2021] [Accepted: 04/27/2021] [Indexed: 10/21/2022]
Abstract
Retinoblastoma protein (pRB) regulates cell cycle by utilizing different regions of its pocket domain for interacting with E2F family of transcription factors and with cellular and viral proteins containing an LxCxE motif. An LxCxE-like motif, LxCxD, is present in FZR1, an adaptor protein of the multi-subunit E3 ligase complex anaphase-promoting complex/cyclosome (APC/C). The APC/CFZR1 complex regulates the timely degradation of multiple cell cycle proteins for mitotic exit and maintains G1 state. We report that FZR1 interacts with pRB via its LxCxD motif. By using point mutations, we found that the cysteine residue in the FZR1 LxCxD motif is critical for direct interaction with pRb. The direct binding of the LxCxD motif of FZR1 to the pRB LxCxE binding pocket is confirmed by using human papillomavirus protein E7 as a competitor, both in vitro and in vivo. While mutation of the cysteine residue significantly disrupts FZR1 interaction with pRB, this motif does not affect FZR1 and core APC/C association. Expression of the FZR1 point mutant results in accumulation of S-phase kinase-associated protein 2 (SKP2) and Polo-like kinase 1 (PLK1), while p27Kip1 and p21Cip1 proteins are downregulated, indicating a G1 cell cycle defect. Consistently, cells containing point mutant FZR1 enter the S phase prematurely. Together our results suggest that the LxCxD motif of FZR1 is a critical determinant for the interaction between FZR1 and pRB and is important for G1 restriction.
Collapse
Affiliation(s)
- Ajeena Ramanujan
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Shivangee Bansal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Manalee Guha
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Nupur T Pande
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Swati Tiwari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
3
|
Potter ML, Hill WD, Isales CM, Hamrick MW, Fulzele S. MicroRNAs are critical regulators of senescence and aging in mesenchymal stem cells. Bone 2021; 142:115679. [PMID: 33022453 PMCID: PMC7901145 DOI: 10.1016/j.bone.2020.115679] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/16/2020] [Accepted: 07/28/2020] [Indexed: 01/10/2023]
Abstract
MicroRNAs (miRNAs) have recently come under scrutiny for their role in various age-related diseases. Similarly, cellular senescence has been linked to disease and aging. MicroRNAs and senescence likely play an intertwined role in driving these pathologic states. In this review, we present the connection between these two drivers of age-related disease concerning mesenchymal stem cells (MSCs). First, we summarize key miRNAs that are differentially expressed in MSCs and other musculoskeletal lineage cells during senescence and aging. Additionally, we also reviewed miRNAs that are regulated via traditional senescence-associated secretory phenotype (SASP) cytokines in MSC. Lastly, we summarize miRNAs that have been found to target components of the cell cycle arrest pathways inherently activated in senescence. This review attempts to highlight potential miRNA targets for regenerative medicine applications in age-related musculoskeletal disease.
Collapse
Affiliation(s)
- Matthew L Potter
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America
| | - William D Hill
- Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H Johnson Veterans Affairs Medical Center, Charleston, SC, 29403, United States of America
| | - Carlos M Isales
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America; Department of Medicine, Augusta University, Augusta, GA, United States of America; Institute of Healthy Aging, Augusta University, Augusta, GA, United States of America
| | - Mark W Hamrick
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America; Institute of Healthy Aging, Augusta University, Augusta, GA, United States of America; Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, United States of America
| | - Sadanand Fulzele
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America; Department of Medicine, Augusta University, Augusta, GA, United States of America; Institute of Healthy Aging, Augusta University, Augusta, GA, United States of America; Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, United States of America.
| |
Collapse
|
4
|
Krashin E, Piekiełko-Witkowska A, Ellis M, Ashur-Fabian O. Thyroid Hormones and Cancer: A Comprehensive Review of Preclinical and Clinical Studies. Front Endocrinol (Lausanne) 2019; 10:59. [PMID: 30814976 PMCID: PMC6381772 DOI: 10.3389/fendo.2019.00059] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/22/2019] [Indexed: 01/06/2023] Open
Abstract
Thyroid hormones take major part in normal growth, development and metabolism. Over a century of research has supported a relationship between thyroid hormones and the pathophysiology of various cancer types. In vitro studies as well as research in animal models demonstrated an effect of the thyroid hormones T3 and T4 on cancer proliferation, apoptosis, invasiveness and angiogenesis. Thyroid hormones mediate their effects on the cancer cell through several non-genomic pathways including activation of the plasma membrane receptor integrin αvβ3. Furthermore, cancer development and progression are affected by dysregulation of local bioavailability of thyroid hormones. Case-control and population-based studies provide conflicting results regarding the association between thyroid hormones and cancer. However, a large body of evidence suggests that subclinical and clinical hyperthyroidism increase the risk of several solid malignancies while hypothyroidism may reduce aggressiveness or delay the onset of cancer. Additional support is provided from studies in which dysregulation of the thyroid hormone axis secondary to cancer treatment or thyroid hormone supplementation was shown to affect cancer outcomes. Recent preclinical and clinical studies in various cancer types have further shown promising outcomes following chemical reduction of thyroid hormones or inhibition or their binding to the integrin receptor. This review provides a comprehensive overview of the preclinical and clinical research conducted so far.
Collapse
Affiliation(s)
- Eilon Krashin
- Translational Hemato-Oncology Laboratory, Meir Medical Center, Kfar-Saba, Israel
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Martin Ellis
- Translational Hemato-Oncology Laboratory, Meir Medical Center, Kfar-Saba, Israel
- Meir Medical Center, Hematology Institute and Blood Bank, Kfar-Saba, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Osnat Ashur-Fabian
- Translational Hemato-Oncology Laboratory, Meir Medical Center, Kfar-Saba, Israel
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Osnat Ashur-Fabian
| |
Collapse
|
5
|
Farman FU, Haq F, Muhammad N, Ali N, Rahman H, Saeed M. Aberrant promoter methylation status is associated with upregulation of the E2F4 gene in breast cancer. Oncol Lett 2018; 15:8461-8469. [PMID: 29805583 PMCID: PMC5950537 DOI: 10.3892/ol.2018.8382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/11/2018] [Indexed: 12/30/2022] Open
Abstract
E2F4 is an important basal transcription factor with the potential to promote tumor growth. Its upregulation in various types of cancer has been linked to numerous genetic factors; however, the nature of the involvement of epigenetic mechanisms, including DNA methylation, remains elusive. In the present study, E2F4 expression profiles were determined in 100 paired breast tumor and control samples, through RT-qPCR using the SYBR® green method. Furthermore, the E2F4 promoter methylation status in each of these samples was assessed using methylation specific PCR, in order to evaluate its impact on gene expression. A two-fold increase in E2F4 gene expression was observed in the breast tumors compared with in their respective controls (P=0.022); of these tumors, ~72% were under-methylated. The change in methylation status was also significantly higher (P<0.001) in the tumor samples. Methylation status was negatively correlated (r=-30) with E2F4 expression profiles, indicating that a decrease in methylation may promote higher expression of E2F4. The two study cohorts (>45 and ≤45 years) had comparable methylation profiles, though they had significantly decreased methylation status compared with controls. Various histo-pathological types also have different methylation profiles, indicating the presence of a tissue specific methylation signature. The results of the present study demonstrated that E2F4 methylation status can have a notable influence on its expression, and that it may have prognostic value in breast carcinogenesis.
Collapse
Affiliation(s)
- Farman Ullah Farman
- Cancer Genetics and Epigenetics Laboratory, Department of Biosciences, COMSATS Institute of Information Technology, Chak Shahzad, Islamabad 45550, Pakistan
| | - Farhan Haq
- Cancer Genetics and Epigenetics Laboratory, Department of Biosciences, COMSATS Institute of Information Technology, Chak Shahzad, Islamabad 45550, Pakistan
| | - Noor Muhammad
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - Nawab Ali
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - Hazir Rahman
- Department of Microbiology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Muhammad Saeed
- Cancer Genetics and Epigenetics Laboratory, Department of Biosciences, COMSATS Institute of Information Technology, Chak Shahzad, Islamabad 45550, Pakistan
| |
Collapse
|
6
|
Lu Y, Li W. Functional characterization of E2F3b in human HepG2 liver cancer cell line. J Cell Biochem 2017; 119:3429-3439. [PMID: 29135049 DOI: 10.1002/jcb.26513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 10/03/2017] [Indexed: 12/20/2022]
Abstract
E2F3 is a transcription factor that has been shown to be overexpressed in hepatocellular carcinoma (HCC). It is well-known that the E2F3 gene encodes two proteins E2F3a and E2F3b. Therefore, the functions of the two distinct isoforms need to be clarified separately. To characterize the function of E2F3b in HCC, the effects of ectopic expression of E2F3b on cell proliferation, cell cycle, apoptosis and gene expression were investigated. E2F3b promoted G1/S phase transition and markedly increased cell proliferation, but had minor effect on apoptosis. Microarray analyses identified 366 differentially expressed genes (171 upregulated and 195 downregulated) in E2F3b- overexpressing cells. Differential expression of 16 genes relevant to cell cycle and cell proliferation were further verified by real-time PCR. Six genes, including CDC2, CCNE1, ARF, MAP4K2, MUSK, and PAX2 were confirmed to be upregulated by more than twofold; one gene, CCNA2 was validated to be downregulated by more than twofold. We also confirmed that E2F3b increased the protein levels of both cyclin E and Arf but did not affect cyclin D1 protein. These results suggest that E2F3b functions as an important promoter for cell proliferation and plays important roles in transcriptional regulation in HepG2 liver cancer cells.
Collapse
Affiliation(s)
- Yujia Lu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
7
|
Asghar US, Barr AR, Cutts R, Beaney M, Babina I, Sampath D, Giltnane J, Lacap JA, Crocker L, Young A, Pearson A, Herrera-Abreu MT, Bakal C, Turner NC. Single-Cell Dynamics Determines Response to CDK4/6 Inhibition in Triple-Negative Breast Cancer. Clin Cancer Res 2017; 23:5561-5572. [PMID: 28606920 PMCID: PMC6175044 DOI: 10.1158/1078-0432.ccr-17-0369] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/13/2017] [Accepted: 06/05/2017] [Indexed: 02/03/2023]
Abstract
Purpose: Triple-negative breast cancer (TNBC) is a heterogeneous subgroup of breast cancer that is associated with a poor prognosis. We evaluated the activity of CDK4/6 inhibitors across the TNBC subtypes and investigated mechanisms of sensitivity.Experimental Design: A panel of cell lines representative of TNBC was tested for in vitro and in vivo sensitivity to CDK4/6 inhibition. A fluorescent CDK2 activity reporter was used for single-cell analysis in conjunction with time-lapse imaging.Results: The luminal androgen receptor (LAR) subtype of TNBC was highly sensitive to CDK4/6 inhibition both in vitro (P < 0.001 LAR vs. basal-like) and in vivo in MDA-MB-453 LAR cell line xenografts. Single-cell analysis of CDK2 activity demonstrated differences in cell-cycle dynamics between LAR and basal-like cells. Palbociclib-sensitive LAR cells exit mitosis with low levels of CDK2 activity, into a quiescent state that requires CDK4/6 activity for cell-cycle reentry. Palbociclib-resistant basal-like cells exit mitosis directly into a proliferative state, with high levels of CDK2 activity, bypassing the restriction point and the requirement for CDK4/6 activity. High CDK2 activity after mitosis is driven by temporal deregulation of cyclin E1 expression. CDK4/6 inhibitors were synergistic with PI3 kinase inhibitors in PIK3CA-mutant TNBC cell lines, extending CDK4/6 inhibitor sensitivity to additional TNBC subtypes.Conclusions: Cell-cycle dynamics determine the response to CDK4/6 inhibition in TNBC. CDK4/6 inhibitors, alone and in combination, are a novel therapeutic strategy for specific subgroups of TNBC. Clin Cancer Res; 23(18); 5561-72. ©2017 AACR.
Collapse
Affiliation(s)
- Uzma S Asghar
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, United Kingdom
| | - Alexis R Barr
- The Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - Ros Cutts
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, United Kingdom
| | - Matthew Beaney
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, United Kingdom
| | - Irina Babina
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, United Kingdom
| | - Deepak Sampath
- Department of Translational Oncology, Genentech (Roche Group), Genentech, South San Francisco, California
| | - Jennifer Giltnane
- Department of Translational Oncology, Genentech (Roche Group), Genentech, South San Francisco, California
| | - Jennifer Arca Lacap
- Department of Translational Oncology, Genentech (Roche Group), Genentech, South San Francisco, California
| | - Lisa Crocker
- Department of Translational Oncology, Genentech (Roche Group), Genentech, South San Francisco, California
| | - Amy Young
- Department of Translational Oncology, Genentech (Roche Group), Genentech, South San Francisco, California
| | - Alex Pearson
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, United Kingdom
| | | | - Chris Bakal
- The Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - Nicholas C Turner
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, United Kingdom.
- Breast Unit, The Royal Marsden Hospital, London, United Kingdom
| |
Collapse
|
8
|
Ali A, Ullah F, Ali IS, Faraz A, Khan M, Shah STA, Ali N, Saeed M. Aberrant Promoter Methylation at CpG Cytosines Induce the Upregulation of the E2F5 Gene in Breast Cancer. J Breast Cancer 2016; 19:133-41. [PMID: 27382388 PMCID: PMC4929253 DOI: 10.4048/jbc.2016.19.2.133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/27/2016] [Indexed: 02/06/2023] Open
Abstract
Purpose The promoter methylation status of cell cycle regulatory genes plays a crucial role in the regulation of the eukaryotic cell cycle. CpG cytosines are actively subjected to methylation during tumorigenesis, resulting in gain/loss of function. E2F5 gene has growth repressive activities; various studies suggest its involvement in tumorigenesis. This study aims to investigate the epigenetic regulation of E2F5 in breast cancer to better understand tumor biology. Methods The promoter methylation status of 50 breast tumor tissues and adjacent normal control tissues was analyzed. mRNA expression was determined using SYBR® green quantitative polymerase chain reaction (PCR), and methylation-specific PCR was performed for bisulfite-modified genomic DNA using E2F5-specific primers to assess promoter methylation. Data was statistically analyzed. Results Significant (p<0.001) upregulation was observed in E2F5 expression among tumor tissues, relative to the control group. These samples were hypo-methylated at the E2F5 promoter region in the tumor tissues, compared to the control. Change in the methylation status (Δmeth) was significantly lower (p=0.022) in the tumor samples, indicating possible involvement in tumorigenesis. Patients at the postmenopausal stage showed higher methylation (75%) than those at the premenopausal stage (23.1%). Interestingly, methylation levels gradually increased from the early to the advanced stages of the disease (p<0.001), which suggests a putative role of E2F5 methylation in disease progression that can significantly modulate tumor biology at more advanced stage and at postmenopausal age (Pearson's r=0.99 and 0.86, respectively). Among tissues with different histological status, methylation frequency was higher in invasive lobular carcinoma (80.0%), followed by invasive ductal carcinoma (46.7%) and ductal carcinoma in situ (20.0%). Conclusion Methylation is an important epigenetic factor that might be involved in the upregulation of E2F5 gene in tumor tissues, which can be used as a prognostic marker for breast cancer.
Collapse
Affiliation(s)
- Arshad Ali
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan.; Department of Biotechnology & Genetic Engineering, Kohat University of Science & Technology, Kohat, Pakistan
| | - Farman Ullah
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan.; Department of Biotechnology & Genetic Engineering, Kohat University of Science & Technology, Kohat, Pakistan
| | - Irum Sabir Ali
- Department of Surgical C Unit, Post Graduate Medical Institution, Lady Reading Hospital, Peshawar, Pakistan
| | - Ahmad Faraz
- Department of Surgical C Unit, Post Graduate Medical Institution, Lady Reading Hospital, Peshawar, Pakistan
| | - Mumtaz Khan
- Department of Surgical C Unit, Post Graduate Medical Institution, Lady Reading Hospital, Peshawar, Pakistan
| | | | - Nawab Ali
- Department of Biotechnology & Genetic Engineering, Kohat University of Science & Technology, Kohat, Pakistan
| | - Muhammad Saeed
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| |
Collapse
|
9
|
Peek GW, Tollefsbol TO. Combinatorial PX-866 and Raloxifene Decrease Rb Phosphorylation, Cyclin E2 Transcription, and Proliferation of MCF-7 Breast Cancer Cells. J Cell Biochem 2015; 117:1688-96. [PMID: 26660119 DOI: 10.1002/jcb.25462] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/10/2015] [Indexed: 01/03/2023]
Abstract
As a potential means to reduce proliferation of breast cancer cells, a multiple-pathway approach with no effect on control cells was explored. The human interactome being constructed by the Center for Cancer Systems Biology will prove indispensable to understanding composite effects of multiple pathways, but its discovered protein-protein interactions require characterization. Accordingly, we explored the effects of regulators of one protein on downstream targets of the other protein. MCF-7 estrogen receptor-positive (ER+) breast cancer cells were treated with raloxifene to upregulate the TGF-β pathway and PX-866 to down-regulate the PI3K/Akt pathway. This resulted in highly significant downstream reduction of cell cycle proliferation in breast cancer cells with no significant proliferation reduction following similar treatment of noncancerous MCF10A breast epithelial cells. Reduced phosphorylation of p107 and substantial reduction of Rb phosphorylation were observed in response. The effects of reduced Rb and p107 phosphorylation were reflected in significant decline in E2F-1 transcriptional activity, which is dependent on pocket protein phosphorylation status. The reduced proliferation was related to decreased expression of cyclins, including E2F-1-regulated Cyclin E2, which was also in response to raloxifene and PX-866. All combinations of raloxifene and PX-866 produced significant or highly significant results for reduced MCF-7 cell proliferation, reduced Cyclin E2 transcription, and reduced Rb phosphorylation. These studies demonstrated that uncontrolled proliferation of ER+ breast cancer cells can be significantly reduced by combinational targeting of two relevant pathways. J. Cell. Biochem. 117: 1688-1696, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gregory W Peek
- Department of Biology, University of Alabama, Birmingham, Alabama
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama, Birmingham, Alabama.,Comprehensive Cancer Center, University of Alabama, Birmingham, Alabama.,Comprehensive Center for Healthy Aging, University of Alabama, Birmingham, Alabama.,Comprehensive Diabetes Center, University of Alabama, Birmingham, Alabama.,Nutrition Obesity Research Center, University of Alabama, Birmingham, Alabama
| |
Collapse
|
10
|
Cheng PH, Wechman SL, McMasters KM, Zhou HS. Oncolytic Replication of E1b-Deleted Adenoviruses. Viruses 2015; 7:5767-79. [PMID: 26561828 PMCID: PMC4664978 DOI: 10.3390/v7112905] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 01/30/2023] Open
Abstract
Various viruses have been studied and developed for oncolytic virotherapies. In virotherapy, a relatively small amount of viruses used in an intratumoral injection preferentially replicate in and lyse cancer cells, leading to the release of amplified viral particles that spread the infection to the surrounding tumor cells and reduce the tumor mass. Adenoviruses (Ads) are most commonly used for oncolytic virotherapy due to their infection efficacy, high titer production, safety, easy genetic modification, and well-studied replication characteristics. Ads with deletion of E1b55K preferentially replicate in and destroy cancer cells and have been used in multiple clinical trials. H101, one of the E1b55K-deleted Ads, has been used for the treatment of late-stage cancers as the first approved virotherapy agent. However, the mechanism of selective replication of E1b-deleted Ads in cancer cells is still not well characterized. This review will focus on three potential molecular mechanisms of oncolytic replication of E1b55K-deleted Ads. These mechanisms are based upon the functions of the viral E1B55K protein that are associated with p53 inhibition, late viral mRNA export, and cell cycle disruption.
Collapse
Affiliation(s)
- Pei-Hsin Cheng
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Stephen L Wechman
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| | - Kelly M McMasters
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA.
- Department of Surgery, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| | - Heshan Sam Zhou
- Department of Surgery, University of Louisville School of Medicine, Louisville, KY 40292, USA.
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40292, USA.
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|
11
|
Chen L, Cheng PH, Rao XM, McMasters KM, Zhou HS. Indole-3-carbinol (I3C) increases apoptosis, represses growth of cancer cells, and enhances adenovirus-mediated oncolysis. Cancer Biol Ther 2014; 15:1256-67. [PMID: 24972095 DOI: 10.4161/cbt.29690] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Epidemiological studies suggest that high intake of cruciferous vegetables is associated with a lower risk of cancer. Experiments have shown that indole-3-carbinol (I3C), a naturally occurring compound derived from cruciferous vegetables, exhibits potent anticarcinogenic properties in a wide range of cancers. In this study, we showed that higher doses of I3C (≥400 μM) induced apoptotic cancer cell death and lower doses of I3C (≤200 μM) repressed cancer cell growth concurrently with suppressed expression of cyclin E and its partner CDK2. Notably, we found that pretreatment with low doses of I3C enhanced Ad-mediated oncolysis and cytotoxicity of human carcinoma cells by synergistic upregulation of apoptosis. Thus, the vegetable compound I3C as a dietary supplement may benefit cancer prevention and improve Ad oncolytic therapies.
Collapse
Affiliation(s)
- Lan Chen
- Department of Surgery; University of Louisville School of Medicine; Louisville, KY USA
| | - Pei-Hsin Cheng
- Department of Pharmacology and Toxicology; University of Louisville School of Medicine; Louisville, KY USA
| | - Xiao-Mei Rao
- James Graham Brown Cancer Center; University of Louisville School of Medicine; Louisville, KY USA
| | - Kelly M McMasters
- Department of Surgery; University of Louisville School of Medicine; Louisville, KY USA; Department of Pharmacology and Toxicology; University of Louisville School of Medicine; Louisville, KY USA; James Graham Brown Cancer Center; University of Louisville School of Medicine; Louisville, KY USA
| | - Heshan Sam Zhou
- Department of Surgery; University of Louisville School of Medicine; Louisville, KY USA; James Graham Brown Cancer Center; University of Louisville School of Medicine; Louisville, KY USA; Department of Microbiology and Immunology; University of Louisville School of Medicine; Louisville, KY USA
| |
Collapse
|
12
|
Garcia-Jove Navarro M, Basset C, Arcondéguy T, Touriol C, Perez G, Prats H, Lacazette E. Api5 contributes to E2F1 control of the G1/S cell cycle phase transition. PLoS One 2013; 8:e71443. [PMID: 23940755 PMCID: PMC3737092 DOI: 10.1371/journal.pone.0071443] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Accepted: 07/05/2013] [Indexed: 02/02/2023] Open
Abstract
Background The E2f transcription factor family has a pivotal role in controlling the cell fate in general, and in particular cancer development, by regulating the expression of several genes required for S phase entry and progression through the cell cycle. It has become clear that the transcriptional activation of at least one member of the family, E2F1, can also induce apoptosis. An appropriate balance of positive and negative regulators appears to be necessary to modulate E2F1 transcriptional activity, and thus cell fate. Methodology/Principal Findings In this report, we show that Api5, already known as a regulator of E2F1 induced-apoptosis, is required for the E2F1 transcriptional activation of G1/S transition genes, and consequently, for cell cycle progression and cell proliferation. Api5 appears to be a cell cycle regulated protein. Removal of Api5 reduces cyclin E, cyclin A, cyclin D1 and Cdk2 levels, causing G1 cell cycle arrest and cell cycle delay. Luciferase assays established that Api5 directly regulates the expression of several G1/S genes under E2F1 control. Using protein/protein and protein/DNA immunoprecipitation studies, we demonstrate that Api5, even if not physically interacting with E2F1, contributes positively to E2F1 transcriptional activity by increasing E2F1 binding to its target promoters, through an indirect mechanism. Conclusion/Significance The results described here support the pivotal role of cell cycle related proteins, that like E2F1, may act as tumor suppressors or as proto-oncogenes during cancer development, depending on the behavior of their positive and negative regulators. According to our findings, Api5 contributes to E2F1 transcriptional activation of cell cycle-associated genes by facilitating E2F1 recruitment onto its target promoters and thus E2F1 target gene transcription.
Collapse
Affiliation(s)
| | - Céline Basset
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Cancer Department, Toulouse, France
| | - Tania Arcondéguy
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Cancer Department, Toulouse, France
| | - Christian Touriol
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Cancer Department, Toulouse, France
| | - Guillaume Perez
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Cancer Department, Toulouse, France
| | - Hervé Prats
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Cancer Department, Toulouse, France
| | - Eric Lacazette
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Cancer Department, Toulouse, France
- * E-mail:
| |
Collapse
|
13
|
Cheng PH, Rao XM, McMasters KM, Zhou HS. Molecular basis for viral selective replication in cancer cells: activation of CDK2 by adenovirus-induced cyclin E. PLoS One 2013; 8:e57340. [PMID: 23437375 PMCID: PMC3577715 DOI: 10.1371/journal.pone.0057340] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/21/2013] [Indexed: 11/18/2022] Open
Abstract
Adenoviruses (Ads) with deletion of E1b55K preferentially replicate in cancer cells and have been used in cancer therapies. We have previously shown that Ad E1B55K protein is involved in induction of cyclin E for Ad replication, but this E1B55K function is not required in cancer cells in which deregulation of cyclin E is frequently observed. In this study, we investigated the interaction of cyclin E and CDK2 in Ad-infected cells. Ad infection significantly increased the large form of cyclin E (cyclin EL), promoted cyclin E/CDK2 complex formation and increased CDK2 phosphorylation at the T160 site. Activated CDK2 caused pRb phosphorylation at the S612 site. Repression of CDK2 activity with the chemical inhibitor roscovitine or with specific small interfering RNAs significantly decreased pRb phosphorylation, with concomitant repression of viral replication. Our results suggest that Ad-induced cyclin E activates CDK2 that targets the transcriptional repressor pRb to generate a cellular environment for viral productive replication. This study reveals a new molecular basis for oncolytic replication of E1b-deleted Ads and will aid in the development of new strategies for Ad oncolytic virotherapies.
Collapse
Affiliation(s)
- Pei-Hsin Cheng
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Xiao-Mei Rao
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Kelly M. McMasters
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Heshan Sam Zhou
- Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
14
|
Talluri S, Dick FA. Regulation of transcription and chromatin structure by pRB: here, there and everywhere. Cell Cycle 2012; 11:3189-98. [PMID: 22895179 PMCID: PMC3466518 DOI: 10.4161/cc.21263] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Commitment to divide is one of the most crucial steps in the mammalian cell division cycle. It is critical for tissue and organismal homeostasis, and consequently is highly regulated. The vast majority of cancers evade proliferative control, further emphasizing the importance of the commitment step in cell cycle regulation. The Retinoblastoma (RB) tumor suppressor pathway regulates this decision-making step. Since being the subject of Knudson's 'two hit hypothesis', there has been considerable interest in understanding pRB's role in cancer. It is best known for repressing E2F dependent transcription of cell cycle genes. However, pRB's role in controlling chromatin structure is expanding and bringing it into new regulatory paradigms. In this review we discuss pRB function through protein-protein interactions, at the level of transcriptional regulation of individual promoters and in organizing higher order chromatin domains.
Collapse
Affiliation(s)
- Srikanth Talluri
- London Regional Cancer Program; Western University; London, ON Canada
- Department of Biochemistry; Western University; London, ON Canada
| | - Frederick A. Dick
- London Regional Cancer Program; Western University; London, ON Canada
- Department of Biochemistry; Western University; London, ON Canada
- Children’s Health Research Institute; Western University; London, ON Canada
| |
Collapse
|
15
|
The retinoblastoma family of proteins and their regulatory functions in the mammalian cell division cycle. Cell Div 2012; 7:10. [PMID: 22417103 PMCID: PMC3325851 DOI: 10.1186/1747-1028-7-10] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 03/14/2012] [Indexed: 12/15/2022] Open
Abstract
The retinoblastoma (RB) family of proteins are found in organisms as distantly related as humans, plants, and insects. These proteins play a key role in regulating advancement of the cell division cycle from the G1 to S-phases. This is achieved through negative regulation of two important positive regulators of cell cycle entry, E2F transcription factors and cyclin dependent kinases. In growth arrested cells transcriptional activity by E2Fs is repressed by RB proteins. Stimulation of cell cycle entry by growth factor signaling leads to activation of cyclin dependent kinases. They in turn phosphorylate and inactivate the RB family proteins, leading to E2F activation and additional cyclin dependent kinase activity. This propels the cell cycle irreversibly forward leading to DNA synthesis. This review will focus on the basic biochemistry and cell biology governing the regulation and activity of mammalian RB family proteins in cell cycle control.
Collapse
|
16
|
Singh AK, Swarnalatha M, Kumar V. c-ETS1 facilitates G1/S-phase transition by up-regulating cyclin E and CDK2 genes and cooperates with hepatitis B virus X protein for their deregulation. J Biol Chem 2011; 286:21961-70. [PMID: 21515670 DOI: 10.1074/jbc.m111.238238] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent studies on the molecular mechanisms responsible for cell cycle deregulation in cancer have puzzled out the role of oncogenes in mediating unscheduled cellular proliferation. This is reminiscence of their activity as proto-oncogenes that drives scheduled cell cycle progression under physiological conditions. Working on the cell cycle regulatory activity of proto-oncogene, we observed that c-ETS1 transcriptionally up-regulated both cyclin E and CDK2 genes, the master regulators of G(1)/S-phase transition. The process was mediated by kinetic coherence of c-ETS1 expression and its recruitment to both promoters during G(1)/S-phase transition. Furthermore, enforced expression of c-ETS1 helped G(0)-arrested cells to progress into G(1)/S-phases apparently due to the activation of cyclin E/CDK2 genes. Physiological induction of c-ETS1 by EGF showed the remodeling of mononucleosomes bound to the c-ETS1 binding site on both promoters during their activation. The exchange of HDAC1 with histone acetyltransferase-p300 was contemporaneous to the chromatin remodeling with consequent increase in histone H3K9 acetylation. Furthermore, the ATP-dependent chromatin remodeler hBRM1 recruitment was also associated with nucleosome remodeling and promoter occupancy of phospho-Ser5 RNA polymerase II. Intriguingly, the activity of the HBx viral oncoprotein was dependent on c-ETS1 in a hepatotropic manner, which led to the activation of cyclin E/CDK2 genes. Thus, cyclin E and CDK2 genes are key physiological effectors of the c-ETS1 proto-oncogene. Furthermore, c-ETS1 is indispensable for the hepatotropic action of HBx in cell cycle deregulation.
Collapse
Affiliation(s)
- Anup Kumar Singh
- Virology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | |
Collapse
|
17
|
Baxter SA, Cheung DY, Bocangel P, Kim HK, Herbert K, Douville JM, Jangamreddy JR, Zhang S, Eisenstat DD, Wigle JT. Regulation of the lymphatic endothelial cell cycle by the PROX1 homeodomain protein. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:201-12. [DOI: 10.1016/j.bbamcr.2010.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 10/01/2010] [Accepted: 10/25/2010] [Indexed: 11/28/2022]
|
18
|
Baydoun HH, Pancewicz J, Bai X, Nicot C. HTLV-I p30 inhibits multiple S phase entry checkpoints, decreases cyclin E-CDK2 interactions and delays cell cycle progression. Mol Cancer 2010; 9:302. [PMID: 21092281 PMCID: PMC3000403 DOI: 10.1186/1476-4598-9-302] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 11/23/2010] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Human T-cell leukemia virus type I (HTLV-I) has efficiently adapted to its host and establishes a persistent infection characterized by low levels of viral gene expression and slow proliferation of HTLV-I infected cells over decades. We have previously found that HTLV-I p30 is a negative regulator of virus expression. RESULTS In this study we show that p30 targets multiple cell cycle checkpoints resulting in a delayed entry into S phase. We found that p30 binds to cyclin E and CDK2 and prevents the formation of active cyclin E-CDK2 complexes. In turn, this decreases the phosphorylation levels of Rb and prevents the release of E2F and its transcriptional activation of genes required for G1/S transition. Our studies also show that HTLV-II p28 does not bind cyclin E and does not affect cell cycle progression. CONCLUSIONS In contrast to HTLV-I, the HTLV-II-related retrovirus is not oncogenic in humans. Here we report that the HTLV-I p30 delays cell cycle progression while its homologue, HTLV-II p28, does not, providing evidence for important differences between these two related retrovirus proteins.
Collapse
Affiliation(s)
- Hicham H Baydoun
- University of Kansas Medical Center, Department of Pathology and Laboratory Medicine, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
19
|
Wirt SE, Adler AS, Gebala V, Weimann JM, Schaffer BE, Saddic LA, Viatour P, Vogel H, Chang HY, Meissner A, Sage J. G1 arrest and differentiation can occur independently of Rb family function. ACTA ACUST UNITED AC 2010; 191:809-25. [PMID: 21059851 PMCID: PMC2983066 DOI: 10.1083/jcb.201003048] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Repression of E2F target genes is required for cell cycle arrest in Rb family (Rb, p107, and p130)-deficient cells. The ability of progenitor cells to exit the cell cycle is essential for proper embryonic development and homeostasis, but the mechanisms governing cell cycle exit are still not fully understood. Here, we tested the requirement for the retinoblastoma (Rb) protein and its family members p107 and p130 in G0/G1 arrest and differentiation in mammalian cells. We found that Rb family triple knockout (TKO) mouse embryos survive until days 9–11 of gestation. Strikingly, some TKO cells, including in epithelial and neural lineages, are able to exit the cell cycle in G0/G1 and differentiate in teratomas and in culture. This ability of TKO cells to arrest in G0/G1 is associated with the repression of key E2F target genes. Thus, G1 arrest is not always dependent on Rb family members, which illustrates the robustness of cell cycle regulatory networks during differentiation and allows for the identification of candidate pathways to inhibit the expansion of cancer cells with mutations in the Rb pathway.
Collapse
Affiliation(s)
- Stacey E Wirt
- Department of Pediatrics, Stanford Medical School, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Janbandhu VC, Singh AK, Mukherji A, Kumar V. p65 Negatively regulates transcription of the cyclin E gene. J Biol Chem 2010; 285:17453-64. [PMID: 20385564 DOI: 10.1074/jbc.m109.058974] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
NF-kappaB family members play a pivotal role in many cellular and organismal functions, including the cell cycle. As an activator of cyclin D1 and p21(Waf1) genes, NF-kappaB has been regarded as a critical modulator of cell cycle. To study the involvement of NF-kappaB in G(1)/S phase regulation, the levels of selected transcriptional regulators were monitored following overexpression of NF-kappaB or its physiological induction by tumor necrosis factor-alpha. Cyclin E gene was identified as a major transcriptional target of NF-kappaB. Recruitment of NF-kappaB to the cyclin E promoter was correlated with the transrepression of cyclin E gene. Ligation-mediated PCR and micrococcal nuclease-Southern assays suggested the nucleosomal nature of this region while chromatin immunoprecipitation analysis confirmed the exchange of cofactors following tumor necrosis factor-alpha treatment or release from serum starvation. There was a progressive reduction in cyclin E transcription along with the accumulation of catalytically inactive cyclin E-cdk2 complexes and arrest of cells in G(1)/S-phase. Thus, our study clearly establishes NF-kappaB as a negative regulator of cell cycle through transcriptional repression of cyclin E.
Collapse
Affiliation(s)
- Vaibhao C Janbandhu
- Virology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | |
Collapse
|
21
|
Abstract
OBJECTIVES Lysyl oxidase-like 2 (LOXL2) plays a part in epithelial-mesenchymal transition (EMT) by stabilizing the transcription factor SNAI1. Previous studies showed that LOXL2 is one of the most highly and specifically upregulated genes in pancreatic cancer. LOXL2 was also found to be strongly upregulated in the secretome of established pancreatic cancer cell lines. To get more insight into the aggressive growth and infiltrating nature of pancreatic cancer, we evaluated the functional role of LOXL2 in pancreatic cancer cells. METHODS Gene inhibition by small interfering RNAs was used to silence LOXL2 in pancreatic cancer cell lines MiaPaCa-2 and Panc1. Cell death, proliferation, and morphology of transfected cells were determined. Cell characteristics under cell stress and gemcitabine treatment were analyzed. Gene expression analysis of transfected cells by DNA microarray was used to understand the processes of chemosensitization. RESULTS Silencing of LOXL2 in pancreatic cancer cells resulted in an augmented sensitivity toward gemcitabine treatment, with significantly elevated cell death and reduced viable cells. However, transfection had no direct effect on morphology or growth pattern of Mia PaCa-2 and Panc1 cell lines. Gene expression analysis identified among others the transcription factor E2F5 as possible target of LOXL2. CONCLUSIONS Gene inhibition of the EMT regulatory gene LOXL2 resulted in a distinct sensitization toward gemcitabine. Additionally, gene expression analysis showed a role for LOXL2 in the regulation of different transcription factors associated with invasion and metastasis. Our results suggest that the improved response toward chemotherapy in LOLX2-silenced pancreatic cancer cells is possibly mediated by the transcription factor E2F5.
Collapse
|
22
|
Alfieri R, Barberis M, Chiaradonna F, Gaglio D, Milanesi L, Vanoni M, Klipp E, Alberghina L. Towards a systems biology approach to mammalian cell cycle: modeling the entrance into S phase of quiescent fibroblasts after serum stimulation. BMC Bioinformatics 2009; 10 Suppl 12:S16. [PMID: 19828076 PMCID: PMC2762065 DOI: 10.1186/1471-2105-10-s12-s16] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background The cell cycle is a complex process that allows eukaryotic cells to replicate chromosomal DNA and partition it into two daughter cells. A relevant regulatory step is in the G0/G1 phase, a point called the restriction (R) point where intracellular and extracellular signals are monitored and integrated. Subcellular localization of cell cycle proteins is increasingly recognized as a major factor that regulates cell cycle transitions. Nevertheless, current mathematical models of the G1/S networks of mammalian cells do not consider this aspect. Hence, there is a need for a computational model that incorporates this regulatory aspect that has a relevant role in cancer, since altered localization of key cell cycle players, notably of inhibitors of cyclin-dependent kinases, has been reported to occur in neoplastic cells and to be linked to cancer aggressiveness. Results The network of the model components involved in the G1 to S transition process was identified through a literature and web-based data mining and the corresponding wiring diagram of the G1 to S transition drawn with Cell Designer notation. The model has been implemented in Mathematica using Ordinary Differential Equations. Time-courses of level and of sub-cellular localization of key cell cycle players in mouse fibroblasts re-entering the cell cycle after serum starvation/re-feeding have been used to constrain network design and parameter determination. The model allows to recapitulate events from growth factor stimulation to the onset of S phase. The R point estimated by simulation is consistent with the R point experimentally determined. Conclusion The major element of novelty of our model of the G1 to S transition is the explicit modeling of cytoplasmic/nuclear shuttling of cyclins, cyclin-dependent kinases, their inhibitor and complexes. Sensitivity analysis of the network performance newly reveals that the biological effect brought about by Cki overexpression is strictly dependent on whether the Cki is promoting nuclear translocation of cyclin/Cdk containing complexes.
Collapse
Affiliation(s)
- Roberta Alfieri
- Institute for Biomedical Technology--Consiglio Nazionale delle Ricerche, Via Fratelli Cervi 93, Segrate, Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Węsierska-Gądek J, Kryštof V. Selective Cyclin-Dependent Kinase Inhibitors Discriminating between Cell Cycle and Transcriptional Kinases. Ann N Y Acad Sci 2009; 1171:228-41. [DOI: 10.1111/j.1749-6632.2009.04726.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Nambiar S, Mirmohammadsadegh A, Hassan M, Hegemann JH, Hengge UR. Transcriptional regulation ofASK/Dbf4in cutaneous melanoma is dependent on E2F1. Exp Dermatol 2008; 17:986-91. [DOI: 10.1111/j.1600-0625.2008.00730.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Poplawski P, Nauman A. Thyroid hormone - triiodothyronine - has contrary effect on proliferation of human proximal tubules cell line (HK2) and renal cancer cell lines (Caki-2, Caki-1) - role of E2F4, E2F5 and p107, p130. Thyroid Res 2008; 1:5. [PMID: 19014670 PMCID: PMC2583984 DOI: 10.1186/1756-6614-1-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 10/13/2008] [Indexed: 11/26/2022] Open
Abstract
Background Triiodothyronine regulates proliferation acting as stimulator or inhibitor. E2F4 and E2F5 in complexes with pocket proteins p107 or p130 stop cells in G1, repressing transcription of genes important for cell cycle progression. p107 and p130 inhibits activity of cyclin/cdk2 complexes. Expression of all those proteins could be regulated by triiodothyronine. In clear cell renal cell carcinoma many disturbances in T3 signaling pathway was described, in that type of cancer also expression of some key G1 to S phase progression regulators was shown. Methods We investigated role of T3 and its receptors in regulation of proliferation of HK2, Caki-2, Caki-1 cell lines (cell counting, cytometric analysis of DNA content) and expression of thyroid hormone receptors, E2F4, E2F5, p107 and p130 (western blot and semi-quantitative real time PCR). Statistical analysis was performed using one-way ANOVA. Results and Conclusion We show that T3 inhibits proliferation of HK2, and stimulates it in Caki lines. Those differences are result of disturbed expression of TR causing improper regulation of E2F4, E2F5, p107 and p130 in cancer cells.
Collapse
Affiliation(s)
- Piotr Poplawski
- Department of Biochemistry and Molecular Biology, The Medical Centre of Postgraduate Education, Warsaw, Poland.
| | | |
Collapse
|
26
|
Ugland H, Boquest AC, Naderi S, Collas P, Blomhoff HK. cAMP-mediated induction of cyclin E sensitizes growth-arrested adipose stem cells to DNA damage-induced apoptosis. Mol Biol Cell 2008; 19:5082-92. [PMID: 18799628 DOI: 10.1091/mbc.e08-01-0094] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The differentiation capacity of mesenchymal stem cells has been extensively studied, but little is known on cell cycle-related events in the proliferation and differentiation phases of these cells. Here, we demonstrate that exposure to cAMP-increasing agents inhibits proliferation of adipose stem cells (ASCs). This antiproliferative effect is associated with both reduced cdk2 activity and pRB phosphorylation. Concomitantly, however, the level of cyclin E markedly increases upon cAMP induction, indicating that cyclin E may have cdk2-independent functions in these cells besides its role as a cdk2 activator. Indeed, we found indications of a cdk2-independent role of cyclin E in DNA damage-induced apoptosis. 8-CPT-cAMP sensitizes ASCs to gamma-irradiation-induced apoptosis, an effect abolished by knockdown of cyclin E. Moreover, cAMP induces early activation of ERK, leading to reduced degradation of cyclin E. The cAMP-mediated up-regulation of cyclin E was blocked by knockdown of ERK or by an inhibitor of the ERK kinase MEK. We conclude that cAMP inhibits cdk2 activity and pRB phosphorylation, leading to reduced ASC proliferation. Concomitant with this growth inhibition, however, cyclin E levels are increased in a MEK/ERK-dependent manner. Our results suggest that cyclin E plays an important, cdk2-independent role in genotoxic stress-induced apoptosis in mesenchymal stem cells.
Collapse
Affiliation(s)
- Hege Ugland
- Department of Biochemistry, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway
| | | | | | | | | |
Collapse
|
27
|
Rb/E2F4 and Smad2/3 link survivin to TGF-beta-induced apoptosis and tumor progression. Oncogene 2008; 27:5326-38. [PMID: 18504435 DOI: 10.1038/onc.2008.165] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Survivin is a prosurvival protein overexpressed in many cancers through mechanisms that remain poorly explored, and is implicated in control of tumor progression and resistance to cancer chemotherapeutics. Here, we report a critical role for survivin in the induction of apoptosis by transforming growth factor-beta (TGF-beta). We show that TGF-beta rapidly downregulates survivin expression in prostate epithelial cells, through a unique mechanism of transcriptional suppression involving Smads 2 and 3, Rb/E2F4, and the cell-cycle repressor elements CDE and CHR. This TGF-beta response is triggered through a Smad2/3-dependent hypophosphorylation of Rb and the subsequent association of the Rb/E2F4 repressive complex to CDE/CHR elements in the proximal region of the survivin promoter. Viral-mediated gene delivery experiments, involving overexpressing or silencing survivin, reveal critical roles of survivin in apoptosis induced by TGF-beta alone or in cooperation with cancer therapeutic agents. We propose a novel TGF-beta/Rb/survivin axis with a putative role in the functional switch of TGF-beta from tumor suppressor to tumor promoter.
Collapse
|
28
|
Woo CW, Tan F, Cassano H, Lee J, Lee KC, Thiele CJ. Use of RNA interference to elucidate the effect of MYCN on cell cycle in neuroblastoma. Pediatr Blood Cancer 2008; 50:208-12. [PMID: 17420990 DOI: 10.1002/pbc.21195] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND MYCN amplification marks poor prognosis in neuroblastoma (NB) tumors. In evaluating the mechanisms by which retinoic acid (RA) or nerve growth factor (NGF) decrease cell number in MYCN amplified NB cells, we have identified a number of proteins whose expression either decreases (E2F, CDC2, CDK6, cyclin dependent kinase activity) or increases (p27) in association with a decrease in MYCN expression. However, it was still unclear which were MYCN dependent effects or not. PROCEDURE This study aimed to determine which changes in cell cycle gene expression are modulated as a consequence of the decrease in MYCN. We silenced MYCN expression using siRNA targeted to the coding region of MYCN. Then, by using siRNA transient transfections, we analyzed the change of cell cycle related genes and cell cycle in MYCN amplified NB cell lines. RESULTS We demonstrate that expression of MYCN can be suppressed by almost 60% in MYCN amplified NB cell using siRNAs targeted to MYCN. Functionally, the decrease in MYCN leads to a decrease in cells in the S-phase of the cell cycle. Decreases in MYCN are associated with decreases in E2F1-2 and ID2 along with increases in p27 protein levels by post-transcriptional modification. Moreover, we find that a decrease in MYCN is accompanied by a decrease in cdk6 mRNA and protein expression. CONCLUSIONS These results show that E2F and ID2 expression is associated with MYCN regulation and that cdk6 is a possible new transcriptional target of MYCN.
Collapse
Affiliation(s)
- Chan-Wook Woo
- Department of Pediatrics, College of Medicine, Korea University, Seoul 152-703, South Korea.
| | | | | | | | | | | |
Collapse
|
29
|
Characterization of the 12q amplicons by high-resolution, oligonucleotide array CGH and expression analyses of a novel liposarcoma cell line. Cancer Lett 2008; 260:37-47. [DOI: 10.1016/j.canlet.2007.10.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 10/14/2007] [Accepted: 10/15/2007] [Indexed: 11/18/2022]
|
30
|
Thyroid hormone receptor-beta (TR beta 1) impairs cell proliferation by the transcriptional inhibition of cyclins D1, E and A2. Oncogene 2007; 27:2795-800. [PMID: 18037966 DOI: 10.1038/sj.onc.1210936] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Thyroid hormone receptor-beta1 (TRbeta1) belongs to the ligand-inducible transcription factor superfamily. We have previously described that stable TRbeta1 expression impairs fibroblast proliferation diminishing levels and activity of the main regulators of the G(1)/S transition. To unmask the underlying molecular mechanism of this action, we have investigated the expression of cyclin D1, E and A2 upon serum stimulation in TRbeta1 expressing cells, finding a strong downregulation of their mRNAs, concomitant with low protein levels. The inhibition of the transcriptional activation in response to serum of these cyclins is differently exerted. For cyclin D1, we demonstrate that TRbeta1 represses its promoter as a consequence of the downregulation of c-jun levels, diminished AP-1 activation and loss of c-jun recruitment to its binding sites on cyclin D1 promoter. For cyclin E and A2, it is the impairment of the cyclinD/Rb/E2F pathway by TRbeta1 that prevents the activation of these two E2F target genes. Indeed, recruitment of E2F-1 to cyclin A2 promoter could not be detected. In summary, we propose that apo-TRbeta1 exerts its antiproliferative action through a mechanism that could constitute a model by which other nuclear receptors may control cell division.
Collapse
|
31
|
Scimè A, Li L, Ciavarra G, Whyte P. Cyclin D1/cdk4 can interact with E2F4/DP1 and disrupts its DNA-binding capacity. J Cell Physiol 2007; 214:568-81. [PMID: 17894419 DOI: 10.1002/jcp.21243] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The E2F family of transcription factors regulate the expression of many growth-related genes in a cell cycle-dependent manner. These transcription factors can activate or, in conjunction with an Rb-related protein, repress transcription. E2F transcriptional activity is regulated at several different levels that are each linked to cell cycle progression. In many cell types, E2F4 and E2F5 are the predominant E2F species during G(0) and early G(1) and function primarily as repressors of E2F-regulated genes. In this study, co-immunoprecipitation techniques were used to demonstrate that cyclins D1, D2, and D3 are capable of interacting with E2F4, E2F5, and DP1. Overexpression of cyclin D1/cdk4 reduced E2F4-mediated transcription in a simple reporter gene assay and electrophoretic mobility shift analyses using nuclear extracts from transfected cells indicated that cyclin D1/cdk4 disrupts the DNA-binding ability of E2F4. Cell cycle analysis following stimulation of serum-starved 3T3 cells indicated that E2F4 undergoes changes in its phosphorylation pattern coincident with the synthesis of cyclin D1. Examination of a series of E2F4 deletion mutants indicated that a cyclin D1-binding site located close to the carboxyl terminus of E2F4 was critical for the disruption of DNA binding by cyclin D1/cdk4. These data support a model in which E2F4 DNA binding is abolished during mid-G(1) at the same time when E2F interactions with pRb-related proteins are disrupted by cyclin D1/cdk4.
Collapse
Affiliation(s)
- Anthony Scimè
- Department of Pathology and Molecular Medicine, McMaster University, Main Street West, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
32
|
El Messaoudi S, Fabbrizio E, Rodriguez C, Chuchana P, Fauquier L, Cheng D, Theillet C, Vandel L, Bedford MT, Sardet C. Coactivator-associated arginine methyltransferase 1 (CARM1) is a positive regulator of the Cyclin E1 gene. Proc Natl Acad Sci U S A 2006; 103:13351-6. [PMID: 16938873 PMCID: PMC1569167 DOI: 10.1073/pnas.0605692103] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Indexed: 11/18/2022] Open
Abstract
The Cyclin E1 gene (CCNE1) is an ideal model to explore the mechanisms that control the transcription of cell cycle-regulated genes whose expression rises transiently before entry into S phase. E2F-dependent regulation of the CCNE1 promoter was shown to correlate with changes in the level of H3-K9 acetylation/methylation of nucleosomal histones positioned at the transcriptional start site region. Here we show that, upon growth stimulation, the same region is subject to variations of H3-R17 and H3-R26 methylation that correlate with the recruitment of coactivator-associated arginine methyltransferase 1 (CARM1) onto the CCNE1 and DHFR promoters. Accordingly, CARM1-deficient cells lack these modifications and present lowered levels and altered kinetics of CCNE1 and DHFR mRNA expression. Consistently, reporter gene assays demonstrate that CARM1 functions as a transcriptional coactivator for their E2F1/DP1-stimulated expression. CARM1 recruitment at the CCNE1 gene requires activator E2Fs and ACTR, a member of the p160 coactivator family that is frequently overexpressed in human breast cancer. Finally, we show that grade-3 breast tumors present coelevated mRNA levels of ACTR and CARM1, along with their transcriptional target CCNE1. All together, our results indicate that CARM1 is an important regulator of the CCNE1 gene.
Collapse
Affiliation(s)
- Selma El Messaoudi
- *Institut de Génétique Moléculaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5535/Institut Fédératif de Recherche 122, Université de Montpellier II, 34293 Montpellier, France
| | - Eric Fabbrizio
- *Institut de Génétique Moléculaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5535/Institut Fédératif de Recherche 122, Université de Montpellier II, 34293 Montpellier, France
| | - Carmen Rodriguez
- Genotype et Phenotypes Tumoraux E 229, Institut National de la Santé et de la Recherche Médicale, Centre Val d’Aurelle, 34298 Montpellier, France
| | - Paul Chuchana
- Genotype et Phenotypes Tumoraux E 229, Institut National de la Santé et de la Recherche Médicale, Centre Val d’Aurelle, 34298 Montpellier, France
| | - Lucas Fauquier
- Centre de Biologie du Developpement, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5547, 118 Route de Narbonne, 31062 Toulouse, France; and
| | - Donghang Cheng
- Department of Carcinogenesis, University of Texas, Smithville, TX 78957
| | - Charles Theillet
- Genotype et Phenotypes Tumoraux E 229, Institut National de la Santé et de la Recherche Médicale, Centre Val d’Aurelle, 34298 Montpellier, France
| | - Laurence Vandel
- Centre de Biologie du Developpement, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5547, 118 Route de Narbonne, 31062 Toulouse, France; and
| | - Mark T. Bedford
- Department of Carcinogenesis, University of Texas, Smithville, TX 78957
| | - Claude Sardet
- *Institut de Génétique Moléculaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5535/Institut Fédératif de Recherche 122, Université de Montpellier II, 34293 Montpellier, France
| |
Collapse
|
33
|
Yoshimoto T, Boehm M, Olive M, Crook MF, San H, Langenickel T, Nabel EG. The arginine methyltransferase PRMT2 binds RB and regulates E2F function. Exp Cell Res 2006; 312:2040-53. [PMID: 16616919 DOI: 10.1016/j.yexcr.2006.03.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 02/25/2006] [Accepted: 03/06/2006] [Indexed: 11/30/2022]
Abstract
The retinoblastoma gene product (RB) is an important regulator of E2F activity. RB recruits a number of proteins, including HDACs, SWI/SNF complex, lysine methyl transferase (SUV39H1) and DNA methyltransferase (DNMT1), all of which negatively regulate E2F activity with RB. Here, we show that RB interacts with PRMT2, a member of the protein arginine methyltransferase family, to regulate E2F activity. PRMT2 directly bound and interacted with RB through its AdoMet binding domain, in contrast to other PRMT proteins, including PRMT1, PRMT3 and PRMT4. In reporter assays, PRMT2 repressed E2F1 transcriptional activity in an RB-dependent manner. PRMT2 formed a ternary complex with E2F1 in the presence of RB. To further explore the role of endogenous PRMT2 in the regulation of E2F activity, the PRMT2 gene was ablated in mice by gene targeting. Compared with PRMT2(+/+) mouse embryonic fibroblasts (MEFs), PRMT2(-/-) MEFs demonstrated increased E2F activity and early S phase entry following release of serum starvation. Vascular injury to PRMT2(-/-) arteries results in a hyperplastic response, consistent with increased G1-S phase progression. Taken together, these findings demonstrate a novel mechanism for the regulation of E2F activity by a member of the protein arginine methyltransferase family.
Collapse
Affiliation(s)
- Takanobu Yoshimoto
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, 31 Center Dr., 31/5A48, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Popov B, Chang LS, Serikov V. Cell cycle-related transformation of the E2F4-p130 repressor complex. Biochem Biophys Res Commun 2005; 336:762-9. [PMID: 16153605 DOI: 10.1016/j.bbrc.2005.08.163] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 08/18/2005] [Indexed: 11/27/2022]
Abstract
During G0 phase the p130, member of the pRb tumor suppressor protein family, forms a repressor complex with E2F4 which is inactivated in G1/S by hyperphosphorylation of the p130. The role of p130 after G1/S remains poorly investigated. We found that in nuclear extracts of T98G cells, the p130-E2F4-DNA (pp-E2F4) complex does not dissociate at G1/S transition, but instead reverts to the p130-E2F4-cyclin E/A-cdk2 (cyc/cdk-pp-E2F4) complex, which is detected in S and G2/M phases of the cell cycle. Hyperphosphorylation of the p130 at G1/S transition is associated with a decrease of its total amount; however, this protein is still detected during the rest of the cell cycle, and it is increasingly hyperphosphorylated in the cytosol, but continuously dephosphorylated in the nucleus. Both nuclear and cytosol cell fractions in T98G cells contain a hyperphosphorylated form of p130 in complex with E2F4 at S and G2/M cell cycle phases. In contrast to T98G cells, transformation of the p130 containing cyc/cdk-pp-E2F4 complex into the p130-pp-E2F4 repressor does not occur in HeLa cells under growth restriction conditions.
Collapse
Affiliation(s)
- Boris Popov
- Institute of Cytology, Russian Academy of Sciences, 4, Tikhoretsky Ave., St. Petersburg 194064, Russia.
| | | | | |
Collapse
|
35
|
Abstract
Rb was the first tumour suppressor identified through human genetic studies. The most significant achievement after almost twenty years since its cloning is the revelation that Rb possesses functions of a transcription regulator. Rb serves as a transducer between the cell cycle machinery and promoter-specific transcription factors. In this capacity, Rb is best known as a repressor of the E2F/DP family of transcription factors, which regulate expression of genes involved in cell proliferation and survival. An equally important aspect of Rb as a transcription regulator is that Rb also activates certain differentiation transcription factors to promote cellular differentiation. The molecular mechanisms behind the repressive effects of Rb on E2Fs have come to light in significant details, while those relating to Rb activation of differentiation transcription factors are much less understood. Finally, it has become clear that there are other aspects to Rb function that are not immediately related to transcription regulation.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Developmental and Molecular Biology, and Medicine, The Albert Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
36
|
Martinsson HS, Starborg M, Erlandsson F, Zetterberg A. Single cell analysis of G1 check points-the relationship between the restriction point and phosphorylation of pRb. Exp Cell Res 2005; 305:383-91. [PMID: 15817163 DOI: 10.1016/j.yexcr.2005.01.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 01/18/2005] [Accepted: 01/25/2005] [Indexed: 12/26/2022]
Abstract
Single cell analysis allows high resolution investigation of temporal relationships between transition events in G1. It has been suggested that phosphorylation of the retinoblastoma tumor suppressor protein (pRb) is the molecular mechanism behind passage through the restriction point (R). We performed a detailed single cell study of the temporal relationship between R and pRb phosphorylation in human fibroblasts using time lapse video-microscopy combined with immunocytochemistry. Four principally different criteria for pRb phosphorylation were used, namely (i) phosphorylation of residues Ser795 and Ser780, (ii) degree of pRb-association with the nuclear structure, a property that is closely related with pRb phosphorylation status, (iii) release of the transcription factor E2F-1 from pRb, and (iv) accumulation of cyclin E, which is dependent on phosphorylation of pRb. The analyses of individual cells revealed that passage through R preceded phosphorylation of pRb, which occurs in a gradually increasing proportion of cells in late G1. Our data clearly suggest that pRb phosphorylation is not the molecular mechanism behind the passage through R. The restriction point and phosphorylation of pRb thus seem to represent two separate check point in G1.
Collapse
Affiliation(s)
- Hanna-Stina Martinsson
- Department of Oncology-Pathology, Karolinska Institutet, CCK R8:04, KS 171 76 Stockholm, Sweden
| | | | | | | |
Collapse
|
37
|
Abstract
E-type cyclins (cyclin E1 and cyclin E2) are expressed during the late G1 phase of the cell cycle until the end of the S-phase. The activity of cyclin E is limiting for the passage of cells through the restriction point "R" which marks a "point of no return" for cells entering the division cycle from a resting state or passing from G1 into S-phase. Expression of cyclin E is regulated on the level of gene transcription mainly by members of the E2F trrnscription factor family and by its degradation via the proteasome pathway. Cyclin E binds and activates the kinase Cdk2 and by phosphorylating its substrates, the so-called "pocket proteins", the cyclic/Cdk2 complexes initiate a cascade of events that leads to the expression of S-phase specific genes. Aside from this specific function as a regulator of S-phase-entry, cyclin E plays a direct role in the initiation of DNA replication, the control of genomic stability, and the centrosome cycle. Surprisingly, recent studies have shown that the once thought essential cyclin E is dispensable for the development of higher eukaryotes and for the mitotic division of eukaryotic cells. Nevertheless, high level cyclin E expression has been associated with the initiation or progression of different human cancers, in particular breast cancer but also leukemia, lymphoma and others. Transgenic mouse models in which cyclin E is constitutively expressed develop malignant diseases, supporting the notion of cyclin E as a dominant onco-protein.
Collapse
Affiliation(s)
- Tarik Möröy
- Institut für Zellbiologie (Tumorforschung) (IFZ), Universitätsklinikum Essen, Virchowstrasse 173, D-45122 Essen, Germany.
| | | |
Collapse
|
38
|
Mazumder S, DuPree E, Almasan A. A Dual Role of Cyclin E in Cell Proliferation and Apotosis May Provide a Target for Cancer Therapy. Curr Cancer Drug Targets 2004; 4:65-75. [PMID: 14965268 PMCID: PMC1307511 DOI: 10.2174/1568009043481669] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cyclin E is essential for progression through the G1-phase of the cell cycle and initiation of DNA replication by interacting with and activating its catalytic partner, the cyclin dependent kinase 2 (Cdk2). Rb, as well as Cdc6, NPAT, and nucleophosmin, critical components of cell proliferation and DNA replication, respectively, are targets of Cyclin E/Cdk2 phosphorylation. There are a number of putative binding sites for E2F in the cyclin E promoter region, suggesting an E2F-dependent regulation. Skp2 and Fbw7 are novel proteins, responsible for ubiquitin-dependent proteolysis of Cyclin E. The tight regulation of cyclin E expression, both at the transcriptional level and by ubiquitin-mediated proteolysis, indicates that it has a major role in the control of the G1- and S-phase transitions. Cyclin E is also transcriptionally regulated during radiation-induced apoptosis of hematopoietic cells. In addition to its biological roles, deregulated cyclin E expression has an established role in tumorigenesis. Cell cycle regulatory molecules, such as cyclin E, are frequently deregulated in different types of cancers, where overexpressed native or low molecular weight forms of Cyclin E have a significant role in oncogenesis. During apoptosis of hematopoietic cells, caspase-dependent proteolysis of Cyclin E generates a p18-Cyclin E variant. Understanding the role of Cyclin E in apoptosis may provide a novel target, which may be effective in cancer therapy. This review summarizes what is known about the biological role of cyclin E, its deregulation in cancer, and the opportunities it may provide as a target in clinical therapy.
Collapse
Affiliation(s)
- S. Mazumder
- Department of Cancer Biology, Lerner Research Institute
| | - E.L. DuPree
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - A. Almasan
- Department of Cancer Biology, Lerner Research Institute
- Department of Radiation Oncology, The Cleveland Clinic Foundation, Cleveland, OH 44195, and
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
- *Address correspondence to this author at the Departments of Cancer Biology and Radiation Oncology, Lerner Research Institute, NB40, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; Tel.: 216-444-9970; Fax: 216-445-6269; E-mail:
| |
Collapse
|
39
|
Piatelli MJ, Tanguay D, Rothstein TL, Chiles TC. Cell cycle control mechanisms in B-1 and B-2 lymphoid subsets. Immunol Res 2003; 27:31-52. [PMID: 12637767 DOI: 10.1385/ir:27:1:31] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An effective humoral response requires that a given B lymphocyte population express a repertoire of receptors capable of recognizing a distinct array of antigens, while at the same time disregarding self-antigens. Mature B cells interacting with antigen via their B cell antigen receptors (BCRs) enter G(1) phase of the cell cycle and, depending on the strength of the signal, can commit to S phase entry. Input from co-receptors, which may function to either enhance or inhibit BCR signals, also influence the decision to proliferate. We review herein recent advances in the biochemistry of G(1)-cyclin holoenzymes that function to integrate BCR-coupled signaling pathways to the phosphorylation (and inactivation) of the retinoblastoma gene product (pRb) in splenic B lymphocytes (B-2 cells). We also highlight differences in the control of G(1)-to-S phase progression between B-2 cells and peritoneal CD5+ B cells (B-1 cells).
Collapse
|
40
|
Brodigan TM, Liu JI, Park M, Kipreos ET, Krause M. Cyclin E expression during development in Caenorhabditis elegans. Dev Biol 2003; 254:102-15. [PMID: 12606285 DOI: 10.1016/s0012-1606(02)00032-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Our interest in the coordination of cell cycle control and differentiation has led us to investigate the Caenorhabditis elegans cye-1 gene encoding the G(1) cell cycle regulator cyclin E. We have studied the expression and function of cye-1 by using monoclonal antibodies directed against CYE-1 protein, cye-1::GFP reporter genes, and a cye-1 chromosomal deletion mutation. We show that a ubiquitous embryonic pattern of expression becomes restricted and dynamic during postembryonic development. Promoter analysis reveals a relatively small region of cis-acting sequences that are necessary for the complex pattern of expression of this gene. Our studies demonstrate that two other G(1) cell cycle genes, encoding cyclin D and CDK4/6, have similarly compact promoter requirements. This suggests that a relatively simple mechanism of regulation may underlie the dynamic developmental patterns of expression exhibited by these three G(1) cell cycle genes. Our analysis of a new cye-1 deletion allele confirms and extends previous studies of two point mutations in the gene.
Collapse
Affiliation(s)
- Thomas M Brodigan
- Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
41
|
Fernández de Mattos S, Lam EWF, Tauler A. An E2F-binding site mediates the activation of the proliferative isoform of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase by phosphatidylinositol 3-kinase. Biochem J 2002; 368:283-91. [PMID: 12139485 PMCID: PMC1222960 DOI: 10.1042/bj20020622] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2002] [Revised: 07/16/2002] [Accepted: 07/24/2002] [Indexed: 12/23/2022]
Abstract
In the present study, we demonstrate that E2F is implicated in the regulation of the glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (6PF2K/Fru-2,6-BPase) during cell division. The expression of this enzyme is induced during the G(1)/S transition of the cell cycle. We identified and monitored the E2F-pocket protein complexes that bind to the E2F site of the F-type promoter during cell-cycle entry, and we analysed their contribution to the phosphatidylinositol 3-kinase (PI 3-kinase)-mediated regulation of the promoter. We found that the predominant E2F complex bound to the F-type promoter in unstimulated/quiescent cells contains E2F4, DP1 and p130 proteins. In serum-stimulated (S-phase) cells, the composition of the complex switched to E2F1/4, DP1 and p107, together with cyclin A and cyclin-dependent kinase 2. Treatment with the PI 3-kinase specific inhibitor LY 294002 prevented the formation of the S-phase complex, suggesting that activation of the PI 3-kinase pathway is essential for the formation of this complex. Further supporting this idea, we obtained results showing that treatment of cycling NIH 3T3 cells with either wortmannin or LY 294002 induces the accumulation of the transcriptionally repressive p130-E2F4-DP1 complex. Using the Rat-1 ER-E2F1 cell line where E2F1 activity can be conditionally induced, we demonstrated that E2F activity is involved in the in vivo transcriptional regulation of the F-type 6PF2K/Fru-2, 6-BPase gene. Taken together, our results show that the F-type 6PF2K/Fru-2, 6-BPase is a genuine E2F-regulated gene, and that its regulation by the PI 3-kinase pathway is at least partially mediated through the E2F transcription factor.
Collapse
Affiliation(s)
- Silvia Fernández de Mattos
- Departament de Bioqui;mica i Biologia Molecular-Divisió IV, Facultat de Farmàcia, Universitat de Barcelona, Av. Diagonal 643, E-08028 Barcelona, Catalunya, Spain
| | | | | |
Collapse
|
42
|
Abstract
Cell cycle activation is coordinated by D-type cyclins which are rate limiting and essential for the progression through the G1 phase of the cell cycle. D-type cyclins bind to and activate the cyclin-dependent kinases Cdk4 and Cdk6, which in turn phosphorylate their downstream target, the retinoblastoma protein Rb. Upon Rb phosphorylation, the E2F transcription factors activate the expression of S-phase genes and thereby induce cell cycle progression. The raise of cyclin D levels in early G1 also serves to titrate Kip/Cip proteins away from cyclinE/Cdk2 complexes, further accelerating cell cycle progression. Therefore, cyclin D plays essential roles in the response to mitogens, transmitting their signal to the Rb/E2F pathway. Surprisingly, cyclin D1-deficient animals are viable and have developmental abnormalities limited to restricted tissues, such as retina, the nervous system and breast epithelium. This observation, combined with several other studies, have raised the possibility that cyclin D1 may have new activities that are unrelated to its function as a cdk regulatory subunit and as regulator of Rb. Effectively, cyclin D has been reported to have transcriptional functions since it interacts with several transcription factors to regulate their activity. Most often, this effect does not rely on the kinase function of Cdk4, indicating that this function is probably independent of cell cycle progression. Further extending its role in gene regulation, cyclin D interacts with histone acetylases such as P/CAF or NcoA/SRC1a but also with components of the transcriptional machinery such as TAF(II)250. Therefore, these studies suggest that the functions of cyclin D might need to be reevaluated. They have established a new cdk-independent role of cyclin D1 as a transcriptional regulator, indicating that cyclin D1 can act via two different mechanisms, as a cdk activator it regulates cell cycle progression and as a transcriptional regulator, it modulates the activity of transcription factors.
Collapse
Affiliation(s)
- Olivier Coqueret
- INSERM U564, 4 rue Larrey, CHU Angers, 49033 Angers Cedex, France.
| |
Collapse
|
43
|
Catchpole S, Tavner F, Le Cam L, Sardet C, Watson RJ. A B-myb promoter corepressor site facilitates in vivo occupation of the adjacent E2F site by p107 x E2F and p130 x E2F complexes. J Biol Chem 2002; 277:39015-24. [PMID: 12147683 DOI: 10.1074/jbc.m202960200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Transcription from the B-myb (MybL2 gene) promoter is strictly cell cycle-regulated by repression mediated through an E2F site during G(0)/early G(1). We report here the characterization of a corepressor site (downstream repression site (DRS)) required for this activity that is closely linked to the E2F site. Systematic mutagenesis of the DRS enabled a consensus to be derived, and it is notable that this sequence is compatible with cell cycle gene homology region sequences associated with cell cycle-dependent elements in the cyclin A, cdc2, and CDC25C promoters. The B-myb promoter is inappropriately active during G(0) in mouse embryo fibroblasts lacking the p107 and p130 pocket proteins, and we show that the ability of transfected p107 and p130 to re-impose repression on the promoter is dependent on the DRS. In contrast, transfected Rb was unable to repress the B-myb promoter. Consistent with the notion that Rb.E2F complexes are unable to bind the B-myb promoter E2F site in vivo, footprinting showed that this site is unoccupied in cells lacking p107 and p130. Chromatin immunoprecipitation assays showed a requirement for the DRS in recruiting p107 and p130 complexes to the B-myb promoter, indicating that in vivo the DRS governs the occupancy of the adjacent E2F site by transcriptional repressors.
Collapse
Affiliation(s)
- Steven Catchpole
- Ludwig Institute for Cancer Research and the Section of Virology and Cell Biology, Imperial College of Science, Technology and Medicine, Faculty of Medicine, Norfolk Place, London W2 1PG, United Kingdom
| | | | | | | | | |
Collapse
|
44
|
Yamada M, Sato N, Taniyama C, Ohtani K, Arai KI, Masai H. A 63-base pair DNA segment containing an Sp1 site but not a canonical E2F site can confer growth-dependent and E2F-mediated transcriptional stimulation of the human ASK gene encoding the regulatory subunit for human Cdc7-related kinase. J Biol Chem 2002; 277:27668-81. [PMID: 12015319 DOI: 10.1074/jbc.m202884200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cdc7-Dbf4 kinase complexes, conserved widely in eukaryotes, play essential roles in initiation and progression of the S phase. Cdc7 kinase activity fluctuates during cell cycle, and this is mainly the result of oscillation of expression of the Dbf4 subunit. Therefore, it is crucial to understand the mechanisms of regulation of Dbf4 expression. We have isolated and characterized the promoter region of the human ASK gene encoding Dbf4-related regulatory subunit for human Cdc7 kinase. We have identified a 63-base pair ASK promoter segment, which is sufficient for mediating growth stimulation. This minimal promoter segment (MP), containing an Sp1 site but no canonical E2F site, can be activated by ectopic E2F expression as well. Within the 63-base pair region, the Sp1 site as well as other elements are essential for stimulation by growth signals and by E2F, whereas an AT-rich sequence proximal to the coding region may serve as an element required for suppression in quiescence. Gel shift assays in the presence of an antibody demonstrate the presence of E2F1 in the protein-DNA complexes generated on the MP segment. However, the complex formation on MP was not competed by a DHFR promoter fragment, known to bind to E2F, nor by a consensus E2F binding oligonucleotide. Gel shift assays with point mutant MP fragments indicate that a non-canonical E2F site in the middle of this segment is critical for generation of the E2F complex. Our results suggest that E2F regulates the ASK promoter through an atypical mode of recognition of the target site.
Collapse
Affiliation(s)
- Masayuki Yamada
- Department of Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Bukovsky A, Cekanova M, Caudle MR, Wimalasena J, Foster JS, Keenan JA, Elder RF. Variability of placental expression of cyclin E low molecular weight variants. Biol Reprod 2002; 67:568-74. [PMID: 12135897 DOI: 10.1095/biolreprod67.2.568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Cyclin E, a G(1) cyclin serving to activate cyclin-dependent kinase 2, is the only cyclin gene for which alternative splicing leading to structurally different proteins has been described. Different cyclin E proteins are present in tumor tissues but absent from normal (steady) tissues. Cyclin E contributes to the regulation of cell proliferation and ongoing differentiation and aging. Because trophoblast has invasive properties and differentiates into syncytium and placental aging may develop at term, we examined cyclin E protein variants in human placenta. Placental samples were collected from 27 deliveries between 33 and 41 wk and were compared with ovarian cancer (positive control). Both placental and tumor tissues showed seven cyclin E low molecular weight (LMW) bands migrating between 50 and 36 kDa. Placental expression of cyclin E showed certain variability among cases. Lowest cyclin E expression was detected in normal placentas (strong expression of Thy-1 differentiation protein in villous core and low dilatation of villous blood sinusoids). Abnormal placentas (significant depletion of Thy-1 and more or less pronounced dilatation of sinusoids) showed significant increase either of all (early stages of placental aging) or only certain cyclin E proteins (advanced aging). Our studies indicate that a similar spectrum of cyclin E protein variants is expressed in the placental and tumor tissues. Low cyclin E expression in normal placentas suggests a steady state. Overexpression of all cyclin E proteins may indicate an activation of cellular proliferation and differentiation to compensate for developing placental insufficiency. However, an enhanced expression of some cyclin E LMW proteins only might reflect an association of cyclin E isoforms with placental aging or an inefficient placental adaptation.
Collapse
Affiliation(s)
- Antonin Bukovsky
- Laboratory for Development, Differentiation, and Cancer, Department of Obstetrics and Gynecology, The University of Tennessee Graduate School of Medicine, Knoxville, TN 37920, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Fabbrizio E, El Messaoudi S, Polanowska J, Paul C, Cook JR, Lee JH, Negre V, Rousset M, Pestka S, Le Cam A, Sardet C. Negative regulation of transcription by the type II arginine methyltransferase PRMT5. EMBO Rep 2002; 3:641-5. [PMID: 12101096 PMCID: PMC1084190 DOI: 10.1093/embo-reports/kvf136] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have identified previously a repressor element in the transcription start site region of the cyclin E1 promoter that periodically associates with an atypical, high molecular weight E2F complex, termed CERC. Purification of native CERC reveals the presence of the type II arginine methyltransferase PRMT5, which can mono- or symetrically dimethylate arginine residues in proteins. Chromatin immunoprecipitations (ChIPs) show that PRMT5 is associated specifically with the transcription start site region of the cyclin E1 promoter. ChIP analyses also show that this correlates with the presence on the same promoter region of arginine-methylated proteins including histone H4, an in vitro substrate of PRMT5. Consistent with its presence within the repressor complex, forced expression of PRMT5 negatively affects cyclin E1 promoter activity and cellular proliferation, effects that require its methyltransferase activity. These data provide the first direct experimental evidence that a type II arginine methylase is involved in the control of transcription and proliferation.
Collapse
Affiliation(s)
- Eric Fabbrizio
- Institut de Génétique Moleculaire, Montpellier cedex 5, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Chabouté ME, Clément B, Philipps G. S phase and meristem-specific expression of the tobacco RNR1b gene is mediated by an E2F element located in the 5' leader sequence. J Biol Chem 2002; 277:17845-51. [PMID: 11884409 DOI: 10.1074/jbc.m200959200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RB/E2F pathway is involved in the control of the G(1)/S transition of the eukaryotic cell cycle where various S phase genes are activated by specific E2F factors. Ribonucleotide reductase (RNR) plays an essential role in the DNA synthesis pathway. Earlier studies showed that there are at least two RNR1 genes (RNR1a and RNR1b) and one RNR2 gene in tobacco. In synchronized tobacco BY2 cells, RNR1b gene expression is at its highest level in S phase. To investigate transcriptional regulation of the RNR1b gene, its promoter region was cloned and sequenced. Unlike its animal counterparts, the tobacco RNR1b promoter contains a consensus E2F-binding site. Surprisingly, this site is found in the leader sequence of the gene. We show here by gel shift analysis and antibody competition that one nuclear complex specifically binds this motif, and an E2F factor is part of this complex. Using reporter gene analysis, tobacco RNR1b promoter activity was detected during S phase in synchronized cells and in plant meristematic tissues. Mutation of the E2F element substantially reduced both activities. For the first time in plants, a single E2F motif found in the leader sequence plays an important role in the meristem and S phase-specific expression of the tobacco RNR1b gene.
Collapse
Affiliation(s)
- Marie-Edith Chabouté
- Institut de Biologie Moléculaire des Plantes du CNRS, Université Louis Pasteur, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France.
| | | | | |
Collapse
|
48
|
Abstract
Cell cycle duration and phase transition times are not fixed, even within homogeneous cell populations growing under optimal environmental conditions. We investigate G(1) phase variability from the molecular point of view and propose a mathematical approach to model the protein interactions regulating the transition from the G(1) phase to the phase of DNA synthesis. The mathematical model has some connections with flow cytometry experimental data.
Collapse
Affiliation(s)
- G Chiorino
- Biomathematics Unit, Laboratory of Cancer Pharmacogenomics, Edo Tempia Foundation-SENDO, via Malta 3, 13900 Biella, Italy.
| | | |
Collapse
|
49
|
Yao YL, Xu B, Song YG, Zhang WD. Overexpression of cyclin E in Mongolian gerbil with Helicobacter pylori- induced gastric precancerosis. World J Gastroenterol 2002; 8:60-3. [PMID: 11833072 PMCID: PMC4656627 DOI: 10.3748/wjg.v8.i1.60] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore dysregulation of cyclin E in malignancies, and to further investigate the role of cyclin E in Helicobacter pylori (H. pylori)-induced gastric precancerosis.
METHODS: Four-week-old specific pathogen-free male Mongolian gerbils were employed in the study. 0.5 mL 1 × 108 cfu·L-1 suspension of H. pylori NTCC11637 in Brucella broth was inoculated orally into each of 20 Mongolian gerbils, and a further 20 gerbils were inoculated with Brucella broth as controls. 10 of the infected gerbils and 10 of the non-infected control gerbils were sacrificed at 25, 45 wk after infection. The expression of cyclin E was analyzed by RT-PCR and immunohistochemical studies with monoclonal antibody to cyclin E in Mongolian gerbil of H. pylori-induced gastric precancerosis.
RESULTS: H. pylori was constantly detected in all infected animals throughout the study. At 25 wk after infection of H. pylori. ulcers were observed in the antral and body of stomach (n = 6). Histological examination showed that all animals developed severe inflammation and multifocal lymphoid follicles appeared in the lamina propria and submucosa of gastric antrum. At 45 wk after infection of H. pylori, severe atrophic gastritis (n = 10). intestinal metaplasia (n = 8) and dysplasia (n = 6) could be observed. Cyclin E mRNA levels were significantly more at 25 wk after infection of H. pylori (1.27 ± 0.26), and at 45 wk after infection of H. pylori ( 1.82 ± 0.39) than control-animals (0.59 ± 0.20,P < 0.01); cyclin E mRNA levels were evaluated by 2.2-fold at 25 wk (P < 0.01) and 3.1-fold at 45 wk (P < 0.01) precancerosis induced by H. pylori, when compared with control gastric epithelium of Mongolian gerbil. Immunohistochemical staining revealed exclusive nuclear staining of cyclin E. Furthermore, there was a sequential increase in cyclin E positive cells from normal epithelium to precancerosis.
CONCLUSION: Overexpression of cyclin E occurs relatively early in gastric tumorigenesis in this model.
Collapse
Affiliation(s)
- Yong-Li Yao
- Institute of Gastrointestinal Diseases, Nanfang Hospital, First Military Medical University, Guangzhou 510515, Guangdong Province, China.
| | | | | | | |
Collapse
|
50
|
Morrison AJ, Sardet C, Herrera RE. Retinoblastoma protein transcriptional repression through histone deacetylation of a single nucleosome. Mol Cell Biol 2002; 22:856-65. [PMID: 11784861 PMCID: PMC133558 DOI: 10.1128/mcb.22.3.856-865.2002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2001] [Revised: 10/11/2001] [Accepted: 10/16/2001] [Indexed: 01/26/2023] Open
Abstract
The retinoblastoma protein, pRb, controls transcription through recruitment of histone deacetylase to particular E2F-responsive genes. We determined the acetylation level of individual nucleosomes present in the cyclin E promoter of RB(+/+) and RB(-/-) mouse embryo fibroblasts. We also determined the effects of pRb on nucleosomal conformation by examining the thiol reactivity of histone H3 of individual nucleosomes. We found that pRb represses the cyclin E promoter through histone deacetylation of a single nucleosome, to which it and histone deacetylase 1 bind. In addition, the conformation of this nucleosome is modulated by pRb-directed histone deacetylase activity. Thus, the repressive role of pRb in cyclin E transcription and therefore cell cycle progression can be mapped to its control of the acetylation status and conformation of a single nucleosome.
Collapse
Affiliation(s)
- Ashby J Morrison
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|