1
|
Danielewicz N, Rosato F, Tomisch J, Gräber J, Wiltschi B, Striedner G, Römer W, Mairhofer J. Clickable Shiga Toxin B Subunit for Drug Delivery in Cancer Therapy. ACS OMEGA 2023; 8:15406-15421. [PMID: 37151527 PMCID: PMC10157870 DOI: 10.1021/acsomega.3c00667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/10/2023] [Indexed: 05/09/2023]
Abstract
In recent years, receptor-mediated drug delivery has gained major attention in the treatment of cancer. The pathogen-derived Shiga Toxin B subunit (STxB) can be used as a carrier that detects the tumor-associated glycosphingolipid globotriaosylceramide (Gb3) receptors. While drug conjugation via lysine or cysteine offers random drug attachment to carriers, click chemistry has the potential to improve the engineering of delivery systems as the site specificity can eliminate interference with the active binding site of tumor ligands. We present the production of recombinant STxB in its wild-type (STxBwt) version or incorporating the noncanonical amino acid azido lysine (STxBAzK). The STxBwt and STxBAzK were manufactured using a growth-decoupled Escherichia coli (E. coli)-based expression strain and analyzed via flow cytometry for Gb3 receptor recognition and specificity on two human colorectal adenocarcinoma cell lines-HT-29 and LS-174-characterized by high and low Gb3 abundance, respectively. Furthermore, STxBAzK was clicked to the antineoplastic agent monomethyl auristatin E (MMAE) and evaluated in cell-killing assays for its ability to deliver the drug to Gb3-expressing tumor cells. The STxBAzK-MMAE conjugate induced uptake and release of the MMAE drug in Gb3-positive tumor cells, reaching 94% of HT-29 cell elimination at 72 h post-treatment and low nanomolar doses while sparing LS-174 cells. STxBAzK is therefore presented as a well-functioning drug carrier, with a possible application in cancer therapy. This research demonstrates the feasibility of lectin carriers used in delivering drugs to tumor cells, with prospects for improved cancer therapy in terms of straightforward drug attachment and effective cancer cell elimination.
Collapse
Affiliation(s)
- Natalia Danielewicz
- enGenes
Biotech GmbH, Muthgasse
11, 1190 Vienna, Austria
- Department
of Biotechnology, University of Natural
Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
| | - Francesca Rosato
- Faculty
of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Signaling
Research Centers BIOSS and CIBSS, University
of Freiburg, Schänzlestraße
18, 79104 Freiburg, Germany
| | - Jana Tomisch
- Faculty
of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Signaling
Research Centers BIOSS and CIBSS, University
of Freiburg, Schänzlestraße
18, 79104 Freiburg, Germany
| | - Jonas Gräber
- Faculty
of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Signaling
Research Centers BIOSS and CIBSS, University
of Freiburg, Schänzlestraße
18, 79104 Freiburg, Germany
| | - Birgit Wiltschi
- Department
of Biotechnology, University of Natural
Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
- Austrian
Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria
| | - Gerald Striedner
- Department
of Biotechnology, University of Natural
Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
| | - Winfried Römer
- Faculty
of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Signaling
Research Centers BIOSS and CIBSS, University
of Freiburg, Schänzlestraße
18, 79104 Freiburg, Germany
- Freiburg
Institute for Advanced Studies (FRIAS), University of Freiburg, 79104 Freiburg, Germany
| | | |
Collapse
|
2
|
Keller T, Trinks N, Brand J, Trippmacher S, Stahlhut P, Albrecht K, Papastavrou G, Koepsell H, Sauer M, Groll J. Design of Nanohydrogels for Targeted Intracellular Drug Transport to the Trans-Golgi Network. Adv Healthc Mater 2023; 12:e2201794. [PMID: 36739269 PMCID: PMC11469190 DOI: 10.1002/adhm.202201794] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/27/2023] [Indexed: 02/06/2023]
Abstract
Nanohydrogels combine advantages of hydrogels and nanoparticles. In particular, they represent promising drug delivery systems. Nanogel synthesis by oxidative condensation of polyglycidol prepolymers, that are modified with thiol groups, results in crosslinking by disulfide bonds. Hereby, biomolecules like the antidiabetic peptide RS1-reg, derived from the regulatory protein RS1 of the Na+ -D-glucose cotransporter SGLT1, can be covalently bound by cysteine residues to the nanogel in a hydrophilic, stabilizing environment. After oral uptake, the acid-stable nanogels protect their loading during gastric passage from proteolytic degradation. Under alkaline conditions in small intestine the nanohydrogels become mucoadhesive, pass the intestinal mucosa and are taken up into small intestinal enterocytes by endocytosis. Using Caco-2 cells as a model for small intestinal enterocytes, by confocal laser scanning microscopy and structured illumination microscopy, the colocalization of fluorescent-labeled RS1-reg with markers of endosomes, lysosomes, and trans-Golgi-network after uptake with polyglycidol-based nanogels formed by precipitation polymerization is demonstrated. This indicates that RS1-reg follows the endosomal pathway. In the following, the design of bespoken nanohydrogels for specific targeting of RS1-reg to its site of action at the trans-Golgi network is described that might also represent a way of targeted transport for other drugs to their targets at the Golgi apparatus.
Collapse
Affiliation(s)
- Thorsten Keller
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and BiofabricationUniversity of WürzburgPleicherwall 297070WürzburgGermany
| | - Nora Trinks
- Department of Biotechnology and BiophysicsUniversity of WürzburgAm Hubland97074WürzburgGermany
| | - Jessica Brand
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and BiofabricationUniversity of WürzburgPleicherwall 297070WürzburgGermany
| | - Steffen Trippmacher
- Physical Chemistry IIUniversity of BayreuthUniversitätsstr. 3095440BayreuthGermany
| | - Philipp Stahlhut
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and BiofabricationUniversity of WürzburgPleicherwall 297070WürzburgGermany
| | - Krystyna Albrecht
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and BiofabricationUniversity of WürzburgPleicherwall 297070WürzburgGermany
| | - Georg Papastavrou
- Physical Chemistry IIUniversity of BayreuthUniversitätsstr. 3095440BayreuthGermany
| | - Hermann Koepsell
- Institute of Anatomy and Cell BiologyUniversity of WürzburgKoellikerstraße 697070WürzburgGermany
| | - Markus Sauer
- Department of Biotechnology and BiophysicsUniversity of WürzburgAm Hubland97074WürzburgGermany
| | - Jürgen Groll
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and BiofabricationUniversity of WürzburgPleicherwall 297070WürzburgGermany
| |
Collapse
|
3
|
Fungal antitumor protein D1 is internalized via endocytosis and inhibits non-small cell lung cancer proliferation through MAPK signaling pathway. Int J Biol Macromol 2023; 227:45-57. [PMID: 36521713 DOI: 10.1016/j.ijbiomac.2022.12.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/20/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Lung cancer has the highest mortality among cancer-related deaths worldwide. Among lung cancers, non-small cell lung cancer (NSCLC) is the most common histological type. In the previous research, we isolated a protein (D1) from Boletus bicolor that inhibits the proliferation of NSCLC cell lines. In this study, we elucidated the internalization mechanism and antitumor mechanism of protein D1 in A549 cells. Protein D1 has a strong inhibitory effect on A549 cells. It binds to secretory carrier membrane protein 3 on the A549 cell membrane and enters A549 cells by clathrin-mediated endocytosis. In vitro, protein D1 activates mitogen-activated protein kinase (MAPK) signaling pathway. JNK and p38MAPK are the biological targets for protein D1. In vivo, protein D1 inhibits the tumor growth of NSCLC xenografts by inducing apoptosis and inhibiting cell proliferation. Protein D1 alters the expression of genes related to apoptosis, cell cycle, and MAPK signaling pathway in tumor cells.
Collapse
|
4
|
Almehdar HA, Abd El-Baky N, Mattar EH, Albiheyri R, Bamagoos A, Aljaddawi A, Uversky VN, Redwan EM. Exploring the mechanisms by which camel lactoferrin can kill Salmonella enterica serovar typhimurium and Shigella sonnei. PeerJ 2023; 11:e14809. [PMID: 36743956 PMCID: PMC9893911 DOI: 10.7717/peerj.14809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/05/2023] [Indexed: 01/31/2023] Open
Abstract
There is a continuously increasing pressure associated with the appearance of Salmonella enterica Serovar typhimurium (S. typhimurium) and Shigella sonnei (S. sonnei) that have developed pathogenic multiple antibiotic resistance and the cost of cure and control of these enterobacteriaceae infections increases annually. The current report for first time demonstrated the distinguished antimicrobial action of camel lactoferrin (cLf) obtained from the milk of different clans of camel in Saudi Arabia against S. typhimurium and S. sonnei. These cLf subtypes showed comparable antimicrobial potential when tested against the two bacterial strains but were superior to either bovine (bLf) or human lactoferrin (hLf). The synergism between lactoferrins and antibiotics concerning their antibacterial efficacies against the two bacterial strains was evident. Exploring mechanisms by which camel lactoferrin can kill S. typhimurium and S. sonnei revealed that cLf affects bacterial protein profile. Besides, it interacts with bacterial lipopolysaccharides (LPS) and numerous membrane proteins of S. typhimurium and S. sonnei, with each bacterial strain possessing distinctive binding membrane proteins for lactoferrin. Furthermore, as evidenced by electron microscopy analysis, cLf induces extracellular and intracellular morphological changes in the test bacterial strains when used alone or in combination treatment with antibiotics. Lactoferrin and antibiotics combination strongly disrupts the integrity of the bacterial cells and their membranes. Therefore, cLf can kill S. typhimurium and S. sonnei by four different mechanisms, such as iron chelation, affecting some bacterial proteins, binding to bacterial LPS and membrane proteins, and impairing the integrity of the bacterial cells and their membranes.
Collapse
Affiliation(s)
- Hussein A. Almehdar
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nawal Abd El-Baky
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Ehab H. Mattar
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Raed Albiheyri
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Atif Bamagoos
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdullah Aljaddawi
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vladimir N. Uversky
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States of America
| | - Elrashdy M. Redwan
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia,Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| |
Collapse
|
5
|
Rasetti-Escargueil C, Avril A. Medical Countermeasures against Ricin Intoxication. Toxins (Basel) 2023; 15:toxins15020100. [PMID: 36828415 PMCID: PMC9966136 DOI: 10.3390/toxins15020100] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/14/2022] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Ricin toxin is a disulfide-linked glycoprotein (AB toxin) comprising one enzymatic A chain (RTA) and one cell-binding B chain (RTB) contained in the castor bean, a Ricinus species. Ricin inhibits peptide chain elongation via disruption of the binding between elongation factors and ribosomes, resulting in apoptosis, inflammation, oxidative stress, and DNA damage, in addition to the classically known rRNA damage. Ricin has been used in traditional medicine throughout the world since prehistoric times. Because ricin toxin is highly toxic and can be readily extracted from beans, it could be used as a bioweapon (CDC B-list). Due to its extreme lethality and potential use as a biological weapon, ricin toxin remains a global public health concern requiring specific countermeasures. Currently, no specific treatment for ricin intoxication is available. This review focuses on the drugs under development. In particular, some examples are reviewed to demonstrate the proof of concept of antibody-based therapy. Chemical inhibitors, small proteins, and vaccines can serve as alternatives to antibodies or may be used in combination with antibodies.
Collapse
Affiliation(s)
- Christine Rasetti-Escargueil
- Unité des Bactéries Anaérobies et Toxines, Institut Pasteur, 25 Avenue du Docteur Roux, 75015 Paris, France
- Correspondence:
| | - Arnaud Avril
- Unité Immunopathologies, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France
| |
Collapse
|
6
|
Abstract
This review focuses on nonlytic outer membrane vesicles (OMVs), a subtype of bacterial extracellular vesicles (BEVs) produced by Gram-negative organisms focusing on the mechanisms of their biogenesis, cargo, and function. Throughout, we highlight issues concerning the characterization of OMVs and distinguishing them from other types of BEVs. We also highlight the shortcomings of commonly used methodologies for the study of BEVs that impact the interpretation of their functionality and suggest solutions to standardize protocols for OMV studies.
Collapse
Affiliation(s)
| | - Simon R. Carding
- Quadram Institute Bioscience, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
7
|
Kempa J, O’Shea-Stone G, Moss CE, Peters T, Marcotte TK, Tripet B, Eilers B, Bothner B, Copié V, Pincus SH. Distinct Metabolic States Are Observed in Hypoglycemia Induced in Mice by Ricin Toxin or by Fasting. Toxins (Basel) 2022; 14:toxins14120815. [PMID: 36548712 PMCID: PMC9782143 DOI: 10.3390/toxins14120815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022] Open
Abstract
Hypoglycemia may be induced by a variety of physiologic and pathologic stimuli and can result in life-threatening consequences if untreated. However, hypoglycemia may also play a role in the purported health benefits of intermittent fasting and caloric restriction. Previously, we demonstrated that systemic administration of ricin toxin induced fatal hypoglycemia in mice. Here, we examine the metabolic landscape of the hypoglycemic state induced in the liver of mice by two different stimuli: systemic ricin administration and fasting. Each stimulus produced the same decrease in blood glucose and weight loss. The polar metabolome was studied using 1H NMR, quantifying 59 specific metabolites, and untargeted LC-MS on approximately 5000 features. Results were analyzed by multivariate analyses, using both principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA), to identify global metabolic patterns, and by univariate analyses (ANOVA) to assess individual metabolites. The results demonstrated that while there were some similarities in the responses to the two stimuli including decreased glucose, ADP, and glutathione, they elicited distinct metabolic states. The metabolite showing the greatest difference was O-phosphocholine, elevated in ricin-treated animals and known to be affected by the pro-inflammatory cytokine TNF-α. Another difference was the alternative fuel source utilized, with fasting-induced hypoglycemia primarily ketotic, while the response to ricin-induced hypoglycemia involves protein and amino acid catabolism.
Collapse
Affiliation(s)
- Jacob Kempa
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Galen O’Shea-Stone
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Corinne E. Moss
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Tami Peters
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Tamera K. Marcotte
- Animal Resources Center, Montana State University, Bozeman, MT 59717, USA
| | - Brian Tripet
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Brian Eilers
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Valérie Copié
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
- Correspondence: (V.C.); (S.H.P.)
| | - Seth H. Pincus
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
- Correspondence: (V.C.); (S.H.P.)
| |
Collapse
|
8
|
LRP1-Mediated Endocytosis May Be the Main Reason for the Difference in Cytotoxicity of Curcin and Curcin C on U2OS Osteosarcoma Cells. Toxins (Basel) 2022; 14:toxins14110771. [PMID: 36356021 PMCID: PMC9695959 DOI: 10.3390/toxins14110771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Curcin and Curcin C, both of the ribosome-inactivating proteins of Jatropha curcas, have apparent inhibitory effects on the proliferation of osteosarcoma cell line U20S. However, the inhibitory effect of the latter is 13-fold higher than that of Curcin. The mechanism responsible for the difference has not been studied. This work aimed to understand and verify whether there are differences in entry efficiency and pathway between them using specific endocytosis inhibitors, gene silencing, and labeling techniques such as fluorescein isothiocyanate (FITC) labeling. The study found that the internalization efficiency of Curcin C was twice that of Curcin for U2OS cells. More than one entering pathway was adopted by both of them. Curcin C can enter U2OS cells through clathrin-dependent endocytosis and macropinocytosis, but clathrin-dependent endocytosis was not an option for Curcin. The low-density lipoprotein receptor-related protein 1 (LRP1) was found to mediate clathrin-dependent endocytosis of Curcin C. After LRP1 silencing, there was no significant difference in the 50% inhibitory concentration (IC50) and endocytosis efficiency between Curcin and Curcin C on U2OS cells. These results indicate that LRP1-mediated endocytosis is specific to Curcin C, thus leading to higher U2OS endocytosis efficiency and cytotoxicity than Curcin.
Collapse
|
9
|
Abstract
AB toxins are protein virulence factors secreted by many bacterial pathogens, contributing to the pathogenicity of the cognate bacteria. AB toxins consist of two functionally distinct components: the enzymatic "A" component for pathogenicity and the receptor-binding "B" component for toxin delivery. Consistently, unlike other virulence factors such as effectors, AB toxins do not require additional systems to deliver them to the target host cells. Target host cells are located in the infection site and/or located distantly from infected host cells. The first part of this review discusses the structural and functional features of single-peptide and multiprotein AB toxins in the context of host-microbe interactions, using several well-characterized examples. The second part of this review discusses toxin neutralization strategies, as well as applications of AB toxins relevant to developing intervention strategies against diseases.
Collapse
Affiliation(s)
- Jeongmin Song
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
10
|
Peng J, Wu J, Shi N, Xu H, Luo L, Wang J, Li X, Xiao H, Feng J, Li X, Chai L, Qiao C. A Novel Humanized Anti-Abrin A Chain Antibody Inhibits Abrin Toxicity In Vitro and In Vivo. Front Immunol 2022; 13:831536. [PMID: 35185923 PMCID: PMC8855095 DOI: 10.3389/fimmu.2022.831536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
Abrin, a type-II ribosome inactivating protein from the seed of Abrus precatorius, is classified as a Category B bioterrorism warfare agent. Due to its high toxicity, ingestion by animals or humans will lead to death from multiple organ failure. Currently, no effective agents have been reported to treat abrin poisoning. In this study, a novel anti-abrin neutralizing antibody (S008) was humanized using computer-aided design, which possessed lower immunogenicity. Similar to the parent antibody, a mouse anti-abrin monoclonal antibody, S008 possessed high affinity and showed a protective effect against abrin both in vitro and in vivo, and protected mice that S008 was administered 6 hours after abrin. S008 was found that it did not inhibit entry of abrin into cells, suggesting an intracellular blockade capacity against the toxin. In conclusion, this work demonstrates that S008 is a high affinity anti-abrin antibody with both a neutralizing and protective effect and may be an excellent candidate for clinical treatment of abrin poisoning.
Collapse
Affiliation(s)
- Jingyi Peng
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
- State key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Jiaguo Wu
- State key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
- Department of Anatomy, School of Basic Medical Sciences of Dali University, Dali, China
| | - Ning Shi
- State key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Hua Xu
- State key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Longlong Luo
- State key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Jing Wang
- State key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Xinying Li
- State key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - He Xiao
- State key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Jiannan Feng
- State key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Xia Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Lihui Chai
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
- *Correspondence: Lihui Chai, ; Chunxia Qiao,
| | - Chunxia Qiao
- State key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
- School of Pharmacy, Henan University, Kaifeng, China
- *Correspondence: Lihui Chai, ; Chunxia Qiao,
| |
Collapse
|
11
|
The Cytotoxic Necrotizing Factors (CNFs)-A Family of Rho GTPase-Activating Bacterial Exotoxins. Toxins (Basel) 2021; 13:toxins13120901. [PMID: 34941738 PMCID: PMC8709095 DOI: 10.3390/toxins13120901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022] Open
Abstract
The cytotoxic necrotizing factors (CNFs) are a family of Rho GTPase-activating single-chain exotoxins that are produced by several Gram-negative pathogenic bacteria. Due to the pleiotropic activities of the targeted Rho GTPases, the CNFs trigger multiple signaling pathways and host cell processes with diverse functional consequences. They influence cytokinesis, tissue integrity, cell barriers, and cell death, as well as the induction of inflammatory and immune cell responses. This has an enormous influence on host-pathogen interactions and the severity of the infection. The present review provides a comprehensive insight into our current knowledge of the modular structure, cell entry mechanisms, and the mode of action of this class of toxins, and describes their influence on the cell, tissue/organ, and systems levels. In addition to their toxic functions, possibilities for their use as drug delivery tool and for therapeutic applications against important illnesses, including nervous system diseases and cancer, have also been identified and are discussed.
Collapse
|
12
|
Ricin B lectin-like proteins of the microsporidian Encephalitozoon cuniculi and Anncaliia algerae are involved in host-cell invasion. Parasitol Int 2021; 87:102518. [PMID: 34808329 DOI: 10.1016/j.parint.2021.102518] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/18/2021] [Accepted: 11/14/2021] [Indexed: 01/03/2023]
Abstract
Microsporidia are obligate intracellular pathogens capable of infecting a wide variety of hosts ranging from invertebrates to vertebrates. The infection process requires a step of prior adherence of Microsporidia to the surface of host cells. A few studies demonstrated the involvement of proteins containing a ricin-B lectin (RBL) domain in parasite infection. In this study Anncalia algerae and Encephalitozoon cuniculi genomes were screened by bioinformatic analysis to identify proteins with an extracellular prediction and possessing RBL-type carbohydrate-binding domains, being both potentially relevant factors contributing to host cell adherence. Three proteins named AaRBLL-1 and AaRBLL-2 from A. algerae and EcRBLL-1 from E. cuniculi, were selected and comparative analysis of sequences suggested their belonging to a multigenic family, with a conserved structural RBL domain despite a significant amino acid sequence divergence. The production of recombinant proteins and antibodies against the three proteins allowed their subcellular localization on the spore wall and/or the polar tube. Adherence inhibition assays based on pre-treatments with recombinant proteins or antibodies highlighted the significant decrease of the proliferation of both E. cuniculi and A. algerae, strongly suggesting that these proteins are involved in the infection process.
Collapse
|
13
|
Maltseva DV, Raigorodskaya MP, Zgoda VG, Tonevitsky EA, Knyazev EN. Intracellular Transport of Ribosome-Inactivating Proteins Depends on Annexin 13. DOKL BIOCHEM BIOPHYS 2020; 494:219-221. [PMID: 33119820 DOI: 10.1134/s1607672920040092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 11/23/2022]
Abstract
In the present study, we assessed the role of annexin 13 membrane-binding protein (ANXA13) in the intracellular transport of vesicles containing type II ribosome-inactivating proteins (RIP-IIs). A modified human intestinal epithelial cell line HT29 was used, in which the expression of ANXA13 was significantly reduced. The cytotoxic effect of ricin and viscumin was evaluated by modification of 28S ribosome RNA. The observed differences in the activity of toxins on the parental and modified HT29 lines indicate that ANXA13 plays a different role in the intracellular transport of vesicles containing the RIP-IIs.
Collapse
Affiliation(s)
- D V Maltseva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia. .,Scientific Research Center Bioclinicum, Moscow, Russia. .,Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow, Russia.
| | | | - V G Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| | - E A Tonevitsky
- Development Fund of the Mendeleev Valley Innovation Science and Technology Center, Moscow, Russia
| | - E N Knyazev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
14
|
Roles of the Tol-Pal system in the Type III secretion system and flagella-mediated virulence in enterohemorrhagic Escherichia coli. Sci Rep 2020; 10:15173. [PMID: 32968151 PMCID: PMC7511404 DOI: 10.1038/s41598-020-72412-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 08/31/2020] [Indexed: 11/19/2022] Open
Abstract
The Tol-Pal system is a protein complex that is highly conserved in many gram-negative bacteria. We show here that the Tol-Pal system is associated with the enteric pathogenesis of enterohemorrhagic E. coli (EHEC). Deletion of tolB, which is required for the Tol-Pal system decreased motility, secretion of the Type III secretion system proteins EspA/B, and the ability of bacteria to adhere to and to form attaching and effacing (A/E) lesions in host cells, but the expression level of LEE genes, including espA/B that encode Type III secretion system proteins were not affected. The Citrobacter rodentium, tolB mutant, that is traditionally used to estimate Type III secretion system associated virulence in mice did not cause lethality in mice while it induced anti-bacterial immunity. We also found that the pal mutant, which lacks activity of the Tol-Pal system, exhibited lower motility and EspA/B secretion than the wild-type parent. These combined results indicate that the Tol-Pal system contributes to the virulence of EHEC associated with the Type III secretion system and flagellar activity for infection at enteric sites. This finding provides evidence that the Tol-Pal system may be an effective target for the treatment of infectious diseases caused by pathogenic E. coli.
Collapse
|
15
|
Jiao Z, Ke Y, Li S, Su D, Gan C, Hu L, Zhao X, Gao B, Song Y, Zhou D, Qiu Y, Yang H. Pretreatment with Retro-2 protects cells from death caused by ricin toxin by retaining the capacity of protein synthesis. J Appl Toxicol 2020; 40:1440-1450. [PMID: 32474962 DOI: 10.1002/jat.3997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/14/2020] [Accepted: 04/19/2020] [Indexed: 12/21/2022]
Abstract
The current study explores the detoxification effect of Retro-2 on ricin toxin (RT) cytotoxicity, as well as the mechanisms underlying such effects, to provide a basis for follow-up clinical applications of Retro-2. The mouse-derived mononuclear/macrophage cell line, RAW264.7, was used to evaluate the detoxification effect of Retro-2 on RT by detecting cell viability, capacity for protein synthesis and the expression of cytokines, as well as endoplasmic reticulum stress (ERS)-related mRNA. The results indicated that many cells died when challenged with concentrations of RT ≥50ng/mL. The protein synthesis capacity of cells decreased when challenged with 200ng/mL RT for 2hours. Furthermore, the synthesis and release of many cytokines decreased, while the expression of cytokines or ERS-related mRNA increased when challenged with 200ng/mL of RT for 12 or more hours. However, cell viability, capacity for protein synthesis and release levels of many cytokines were higher, while the expression levels of cytokine, or ERS-related mRNA, were lower in cells pretreated with 20μm Retro-2 and challenged with RT, compared with those that had not been pretreated with Retro-2. In conclusion, Retro-2 retained the capacity for protein synthesis inhibited by RT, alleviated ERS induced by RT and increased the viability of cells challenged with RT. Retro-2 shows the potential for clinical applications.
Collapse
Affiliation(s)
- Zhouguang Jiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuehua Ke
- Center for Disease Control and Prevention of Chinese People's Liberation Army, Beijing, China
| | - Sha Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Duo Su
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Changjiao Gan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaodong Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Bo Gao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yefeng Qiu
- Laboratory Animal Center, Academy of Military Medical Science, Beijing, China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
16
|
Detection of Abrin-Like and Prepropulchellin-Like Toxin Genes and Transcripts Using Whole Genome Sequencing and Full-Length Transcript Sequencing of Abrus precatorius. Toxins (Basel) 2019; 11:toxins11120691. [PMID: 31775284 PMCID: PMC6950105 DOI: 10.3390/toxins11120691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 11/21/2022] Open
Abstract
The sequenced genome and the leaf transcriptome of a near relative of Abrus pulchellus and Abrus precatorius was analyzed to characterize the genetic basis of toxin gene expression. From the high-quality genome assembly, a total of 26 potential coding regions were identified that contain genes with abrin-like, pulchellin-like, and agglutinin-like homology, with full-length transcripts detected in leaf tissue for 9 of the 26 coding regions. All of the toxin-like genes were identified within only five isolated regions of the genome, with each region containing 1 to 16 gene variants within each genomic region (<1 Mbp). The Abrusprecatorius cultivar sequenced here contains genes which encode for proteins that are homologous to certain abrin and prepropulchellin genes previously identified, and we observed substantial diversity of genes and predicted gene products in Abrus precatorius and previously characterized toxins. This suggests diverse toxin repertoires within Abrus, potentially the results of rapid toxin evolution.
Collapse
|
17
|
Intracellular Transport and Cytotoxicity of the Protein Toxin Ricin. Toxins (Basel) 2019; 11:toxins11060350. [PMID: 31216687 PMCID: PMC6628406 DOI: 10.3390/toxins11060350] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/17/2022] Open
Abstract
Ricin can be isolated from the seeds of the castor bean plant (Ricinus communis). It belongs to the ribosome-inactivating protein (RIP) family of toxins classified as a bio-threat agent due to its high toxicity, stability and availability. Ricin is a typical A-B toxin consisting of a single enzymatic A subunit (RTA) and a binding B subunit (RTB) joined by a single disulfide bond. RTA possesses an RNA N-glycosidase activity; it cleaves ribosomal RNA leading to the inhibition of protein synthesis. However, the mechanism of ricin-mediated cell death is quite complex, as a growing number of studies demonstrate that the inhibition of protein synthesis is not always correlated with long term ricin toxicity. To exert its cytotoxic effect, ricin A-chain has to be transported to the cytosol of the host cell. This translocation is preceded by endocytic uptake of the toxin and retrograde traffic through the trans-Golgi network (TGN) and the endoplasmic reticulum (ER). In this article, we describe intracellular trafficking of ricin with particular emphasis on host cell factors that facilitate this transport and contribute to ricin cytotoxicity in mammalian and yeast cells. The current understanding of the mechanisms of ricin-mediated cell death is discussed as well. We also comment on recent reports presenting medical applications for ricin and progress associated with the development of vaccines against this toxin.
Collapse
|
18
|
Sakai R, Tanano K, Ono T, Kitano M, Iida Y, Nakano K, Jimbo M. Soritesidine, a Novel Proteinous Toxin from the Okinawan Marine Sponge Spongosorites sp. Mar Drugs 2019; 17:md17040216. [PMID: 30965587 PMCID: PMC6520796 DOI: 10.3390/md17040216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 12/15/2022] Open
Abstract
A novel protein, soritesidine (SOR) with potent toxicity was isolated from the marine sponge Spongosorites sp. SOR exhibited wide range of toxicities over various organisms and cells including brine shrimp (Artemia salina) larvae, sea hare (Aplysia kurodai) eggs, mice, and cultured mammalian cells. Toxicities of SOR were extraordinary potent. It killed mice at 5 ng/mouse after intracerebroventricular (i.c.v.) injection, and brine shrimp and at 0.34 µg/mL. Cytotoxicity for cultured mammalian cancer cell lines against HeLa and L1210 cells were determined to be 0.062 and 12.11 ng/mL, respectively. The SOR-containing fraction cleaved plasmid DNA in a metal ion dependent manner showing genotoxicity of SOR. Purified SOR exhibited molecular weight of 108.7 kDa in MALDI-TOF MS data and isoelectric point of approximately 4.5. N-terminal amino acid sequence up to the 25th residue was determined by Edman degradation. Internal amino acid sequences for fifteen peptides isolated from the enzyme digest of SOR were also determined. None of those amino acid sequences showed similarity to existing proteins, suggesting that SOR is a new proteinous toxin.
Collapse
Affiliation(s)
- Ryuichi Sakai
- Faculty and Graduate School of Fisheries Sciences, Hokkaido University, Sapporo, Hokkaido 060-0808, Japan.
| | - Kota Tanano
- School of Marine Bioscience, Kitasato University, Minato City, Tokyo 108-0072, Japan.
| | - Takumi Ono
- School of Marine Bioscience, Kitasato University, Minato City, Tokyo 108-0072, Japan.
| | - Masaya Kitano
- Faculty and Graduate School of Fisheries Sciences, Hokkaido University, Sapporo, Hokkaido 060-0808, Japan.
| | - Yusuke Iida
- Faculty and Graduate School of Fisheries Sciences, Hokkaido University, Sapporo, Hokkaido 060-0808, Japan.
| | - Koji Nakano
- Faculty and Graduate School of Fisheries Sciences, Hokkaido University, Sapporo, Hokkaido 060-0808, Japan.
| | - Mitsuru Jimbo
- School of Marine Bioscience, Kitasato University, Minato City, Tokyo 108-0072, Japan.
| |
Collapse
|
19
|
Narang J, Mishra A, Pilloton R, Vv A, Wadhwa S, Pundir CS, Khanuja M. Development of MoSe₂ Nano-Urchins as a Sensing Platform for a Selective Bio-Capturing of Escherichia. coli Shiga Toxin DNA. BIOSENSORS 2018; 8:E77. [PMID: 30110986 PMCID: PMC6163765 DOI: 10.3390/bios8030077] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/09/2018] [Accepted: 08/14/2018] [Indexed: 12/20/2022]
Abstract
The present study was aimed to develop "fluorine doped" tin oxide glass electrode with a MoSe2 nano-urchin based electrochemical biosensor for detection of Escherichia. coli Shiga toxin DNA. The study comprises two conductive electrodes, and the working electrodes were drop deposited using MoSe2 nano-urchin, and DNA sequences specific to Shiga toxin Escherichia. coli. Morphological characterizations were performed using Fourier transforms infrared spectrophotometer; X-ray diffraction technique and scanning electron microscopy. All measurements were done using methylene blue as an electrochemical indicator. The proposed electrochemical geno-sensor showed good linear detection range of 1 fM⁻100 μM with a low detection limit of 1 fM where the current response increased linearly with Escherichia. coli Shiga toxin dsDNA concentration with R2 = 0.99. Additionally, the real sample was spiked with the dsDNA that shows insignificant interference. The results revealed that the developed sensing platform significantly improved the sensitivity and can provide a promising platform for effective detection of biomolecules using minute samples due to its stability and sensitivity.
Collapse
Affiliation(s)
- Jagriti Narang
- Amity Institute of Nanotechnology, Amity University, Noida 201313, India.
| | - Annu Mishra
- Amity Institute of Nanotechnology, Amity University, Noida 201313, India.
| | - Roberto Pilloton
- CNR-IC, Area della Ricercadi RM1, Via Salaria km 29.3, Monterotondo, I-00015 Rome, Italy.
| | - Alekhya Vv
- Amity Institute of Nanotechnology, Amity University, Noida 201313, India.
| | - Shikha Wadhwa
- Amity Institute of Nanotechnology, Amity University, Noida 201313, India.
| | | | - Manika Khanuja
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia University, New Delhi 110025, India.
| |
Collapse
|
20
|
Cellular recovery from exposure to sub-optimal concentrations of AB toxins that inhibit protein synthesis. Sci Rep 2018; 8:2494. [PMID: 29410492 PMCID: PMC5802730 DOI: 10.1038/s41598-018-20861-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/25/2018] [Indexed: 01/31/2023] Open
Abstract
Ricin, Shiga toxin, exotoxin A, and diphtheria toxin are AB-type protein toxins that act within the host cytosol and kill the host cell through pathways involving the inhibition of protein synthesis. It is thought that a single molecule of cytosolic toxin is sufficient to kill the host cell. Intoxication is therefore viewed as an irreversible process. Using flow cytometry and a fluorescent reporter system to monitor protein synthesis, we show a single molecule of cytosolic toxin is not sufficient for complete inhibition of protein synthesis or cell death. Furthermore, cells can recover from intoxication: cells with a partial loss of protein synthesis will, upon removal of the toxin, increase the level of protein production and survive the toxin challenge. Thus, in contrast to the prevailing model, ongoing toxin delivery to the cytosol appears to be required for the death of cells exposed to sub-optimal toxin concentrations.
Collapse
|
21
|
Functionalized gold nanoparticles as affinity nanoprobes for multiple lectins. Colloids Surf B Biointerfaces 2018; 162:60-68. [DOI: 10.1016/j.colsurfb.2017.11.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/11/2017] [Accepted: 11/07/2017] [Indexed: 12/11/2022]
|
22
|
He X, Patfield S, Cheng LW, Stanker LH, Rasooly R, McKeon TA, Zhang Y, Brandon DL. Detection of Abrin Holotoxin Using Novel Monoclonal Antibodies. Toxins (Basel) 2017; 9:E386. [PMID: 29182545 PMCID: PMC5744106 DOI: 10.3390/toxins9120386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/09/2017] [Accepted: 11/23/2017] [Indexed: 01/17/2023] Open
Abstract
Abrin, a member of the ribosome-inactivating protein family, is produced by the Abrus precatorius plant. Having the potential to pose a severe threat to both human and animal health, abrin is classified as a Select Agent by the U.S. Department of Health and Human Services. However, an immunoassay that is specific for intact abrin holotoxin has not yet been reported. In this study, seven new monoclonal antibodies (mAbs), designated as Abrin-1 through Abrin-7 have been developed. Isotyping analyses indicate these mAbs have IgG1, IgG2a, or IgG2b heavy-chains and kappa light-chains. Western blot analyses identified two abrin A-chain specific mAbs, Abrin-1 and Abrin-2, and four B-chain specific mAbs (Abrin-3, -5, -6, and -7). A sandwich enzyme-linked immunosorbent assay (ELISA), capable of detecting a mixture of abrin isoforms and agglutinins was developed using B-chain specific Abrin-3 for capture and A-chain specific Abrin-2 as detector. The ELISA is highly sensitive and detects 1 ng/mL of the abrin holotoxin in phosphate-buffered saline, nonfat milk, and whole milk, significantly below concentrations that would pose a health concern for consumers. This ELISA also detects native abrin in plant extracts with a very low background signal. The new abrin mAbs and ELISA should be useful for detecting this potent toxin in the milk supply chain and other complex matrices.
Collapse
Affiliation(s)
- Xiaohua He
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710, USA.
| | - Stephanie Patfield
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710, USA.
| | - Luisa W Cheng
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710, USA.
| | - Larry H Stanker
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710, USA.
| | - Reuven Rasooly
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710, USA.
| | - Thomas A McKeon
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710, USA.
| | - Yuzhu Zhang
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710, USA.
| | - David L Brandon
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710, USA.
| |
Collapse
|
23
|
Methamphetamine Regulation of Firing Activity of Dopamine Neurons. J Neurosci 2017; 36:10376-10391. [PMID: 27707972 DOI: 10.1523/jneurosci.1392-16.2016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/18/2016] [Indexed: 12/14/2022] Open
Abstract
Methamphetamine (METH) is a substrate for the dopamine transporter that increases extracellular dopamine levels by competing with dopamine uptake and increasing reverse transport of dopamine via the transporter. METH has also been shown to alter the excitability of dopamine neurons. The mechanism of METH regulation of the intrinsic firing behaviors of dopamine neurons is less understood. Here we identified an unexpected and unique property of METH on the regulation of firing activity of mouse dopamine neurons. METH produced a transient augmentation of spontaneous spike activity of midbrain dopamine neurons that was followed by a progressive reduction of spontaneous spike activity. Inspection of action potential morphology revealed that METH increased the half-width and produced larger coefficients of variation of the interspike interval, suggesting that METH exposure affected the activity of voltage-dependent potassium channels in these neurons. Since METH has been shown to affect Ca2+ homeostasis, the unexpected findings that METH broadened the action potential and decreased the amplitude of afterhyperpolarization led us to ask whether METH alters the activity of Ca2+-activated potassium (BK) channels. First, we identified BK channels in dopamine neurons by their voltage dependence and their response to a BK channel blocker or opener. While METH suppressed the amplitude of BK channel-mediated unitary currents, the BK channel opener NS1619 attenuated the effects of METH on action potential broadening, afterhyperpolarization repression, and spontaneous spike activity reduction. Live-cell total internal reflection fluorescence microscopy, electrophysiology, and biochemical analysis suggest METH exposure decreased the activity of BK channels by decreasing BK-α subunit levels at the plasma membrane. SIGNIFICANCE STATEMENT Methamphetamine (METH) competes with dopamine uptake, increases dopamine efflux via the dopamine transporter, and affects the excitability of dopamine neurons. Here, we identified an unexpected property of METH on dopamine neuron firing activity. METH transiently increased the spontaneous spike activity of dopamine neurons followed by a progressive reduction of the spontaneous spike activity. METH broadened the action potentials, increased coefficients of variation of the interspike interval, and decreased the amplitude of afterhyperpolarization, which are consistent with changes in the activity of Ca2+-activated potassium (BK) channels. We found that METH decreased the activity of BK channels by stimulating BK-α subunit trafficking. Thus, METH modulation of dopamine neurotransmission and resulting behavioral responses is, in part, due to METH regulation of BK channel activity.
Collapse
|
24
|
Toxicity, membrane binding and uptake of the Sclerotinia sclerotiorum agglutinin (SSA) in different insect cell lines. In Vitro Cell Dev Biol Anim 2017; 53:691-698. [DOI: 10.1007/s11626-017-0176-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 06/06/2017] [Indexed: 12/18/2022]
|
25
|
Ailte I, Lingelem ABD, Kvalvaag AS, Kavaliauskiene S, Brech A, Koster G, Dommersnes PG, Bergan J, Skotland T, Sandvig K. Exogenous lysophospholipids with large head groups perturb clathrin-mediated endocytosis. Traffic 2017; 18:176-191. [PMID: 28067430 DOI: 10.1111/tra.12468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 12/12/2022]
Abstract
In this study, we have investigated how clathrin-dependent endocytosis is affected by exogenously added lysophospholipids (LPLs). Addition of LPLs with large head groups strongly inhibits transferrin (Tf) endocytosis in various cell lines, while LPLs with small head groups do not. Electron and total internal reflection fluorescence microscopy (EM and TIRF) reveal that treatment with lysophosphatidylinositol (LPI) with the fatty acyl group C18:0 leads to reduced numbers of invaginated clathrin-coated pits (CCPs) at the plasma membrane, fewer endocytic events per membrane area and increased lifetime of CCPs. Also, endocytosis of Tf becomes dependent on actin upon LPI treatment. Thus, our results demonstrate that one can regulate the kinetics and properties of clathrin-dependent endocytosis by addition of LPLs in a head group size- and fatty acyl-dependent manner. Furthermore, studies performed with optical tweezers show that less force is required to pull membrane tubules outwards from the plasma membrane when LPI is added to the cells. The results are in agreement with the notion that insertion of LPLs with large head groups creates a positive membrane curvature which might have a negative impact on events that require plasma membrane invagination, while it may facilitate membrane bending toward the cell exterior.
Collapse
Affiliation(s)
- Ieva Ailte
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Anne Berit D Lingelem
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Audun S Kvalvaag
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Simona Kavaliauskiene
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Andreas Brech
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Paul G Dommersnes
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jonas Bergan
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Tore Skotland
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kirsten Sandvig
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
26
|
Bagas CK, Scadding RL, Scadding CJ, Watling RJ, Roberts W, Ovenden SP. Trace isotope analysis of Ricinus communis seed core for provenance determination by laser ablation-ICP-MS. Forensic Sci Int 2017; 270:46-54. [DOI: 10.1016/j.forsciint.2016.11.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/06/2016] [Accepted: 11/19/2016] [Indexed: 11/28/2022]
|
27
|
Human mannose-binding lectin inhibitor prevents Shiga toxin-induced renal injury. Kidney Int 2016; 90:774-82. [PMID: 27378476 DOI: 10.1016/j.kint.2016.05.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/01/2016] [Accepted: 05/05/2016] [Indexed: 01/22/2023]
Abstract
Hemolytic uremic syndrome caused by Shiga toxin-producing Escherichia coli (STEC HUS) is a worldwide endemic problem, and its pathophysiology is not fully elucidated. Here we tested whether the mannose-binding lectin (MBL2), an initiating factor of lectin complement pathway activation, plays a crucial role in STEC HUS. Using novel human MBL2-expressing mice (MBL2 KI) that lack murine Mbls (MBL2(+/+)Mbl1(-/-)Mbl2(-/-)), a novel STEC HUS model consisted of an intraperitoneal injection with Shiga toxin-2 (Stx-2) with or without anti-MBL2 antibody (3F8, intraperitoneal). Stx-2 induced weight loss, anemia, and thrombocytopenia and increased serum creatinine, free serum hemoglobin, and cystatin C levels, but a significantly decreased glomerular filtration rate compared with control/sham mice. Immunohistochemical staining revealed renal C3d deposition and fibrin deposition in glomeruli in Stx-2-injected mice. Treatment with 3F8 completely inhibited serum MBL2 levels and significantly attenuated Stx-2 induced-renal injury, free serum hemoglobin levels, renal C3d, and fibrin deposition and preserved the glomerular filtration rate. Thus, MBL2 inhibition significantly protected against complement activation and renal injury induced by Stx-2. This novel mouse model can be used to study the role of complement, particularly lectin pathway-mediated complement activation, in Stx-2-induced renal injury.
Collapse
|
28
|
Genotype Cluster Analysis in Pathogenic Escherichia coli Isolates Producing Different CDT Types. J Pathog 2016; 2016:9237127. [PMID: 27042356 PMCID: PMC4794564 DOI: 10.1155/2016/9237127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/31/2016] [Accepted: 02/04/2016] [Indexed: 01/19/2023] Open
Abstract
Diarrheagenic and uropathogenic E. coli types are mainly characterized by the expression of distinctive bacterial virulent factors. stx1, stx2 (Shiga toxins), and cdt (cytolethal distending toxin) genes have been acquired by horizontal gene transfer. Some virulent genes such as espP (serine protease), etpD (part of secretion pathway), and katP (catalase-peroxidase), or sfpA gene (Sfp fimbriae), are on plasmids and the others like fliC (flagellin) and the fimH gene (fimbriae type-I) are located on chromosome. Genomic pathogenicity islands (PAIs) carry some virulent genes such as hly gene. To determine the existence of virulence genes in cdt clinical isolates, genes including stx1, stx2, cdt, hly, espP, katP, sfpA, etpD, fliC, and fimH were assessed by Polymerase Chain Reaction (PCR). The most prevalent isolates for etpD and katP genes were 85.7% in cdtII. katP gene was also observed 83.3% in cdtI. However, in 42.85% of cdtIII isolates, espP gene was the most detected. Moreover, hly gene was also the most prominent gene in cdtIII (71.42%). sfpA gene was observed in 66.6% of cdtV. stx1 gene was detected in 100% of cdtII, cdtIV, and cdtV types. Presence and pattern of virulence genes were considered among cdt positive isotypes and used for their clustering and profiling.
Collapse
|
29
|
Abstract
The Shiga toxins (Stxs), also known as Vero toxins and previously called Shiga-like toxins, are a family of potent protein synthesis inhibitors made by Shigella dysenteriae type 1 and some serogroups of Escherichia coli that cause bloody diarrhea in humans. Stxs act as virulence factors for both S. dysenteriae and E. coli and contribute to the disease process initiated by those organisms both directly and indirectly. A handful of methods exist for toxin purification, and the toxins can now even be purchased commercially. However, the Stxs are now classified as select agents, and specific rules govern the distribution of both the toxin and clones of the toxin. Toxin delivery into the host in S. dysenteriae type 1 is most likely aided by the invasiveness of that organism. Although the Stxs are made and produced by bacteria, they do not appear to act against either their host organism or other bacteria under normal circumstances, most likely because the A subunit is secreted from the cytoplasm as soon as it is synthesized and because the holotoxin cannot enter intact bacterial cells. The effectiveness of antibiotic therapy in patients infected with Stx-producing E. coli (STEC) such as O157:H7 as well as the potential risks of such treatment are areas of controversy. Several studies indicate that the course of the diarrhea stage of the disease is unaltered by antibiotic treatment. Several groups anticipate that a therapy that targets the Stxs is an important component of trying to alleviate disease caused by Stx-producing bacteria.
Collapse
|
30
|
Abstract
Viruses have evolved intricate mechanisms to gain entry into the host cell. Identification of host proteins that serve as viral receptors has enabled insights into virus particle internalization, host and tissue tropism, and viral pathogenesis. In this review we discuss the most commonly employed methods for virus receptor discovery, specifically highlighting the use of forward genetic screens in human haploid cells. The ability to generate true knockout alleles at high saturation provides a sensitive means to study virus-host interactions. To illustrate the power of such haploid genetic screens, we highlight the discovery of the lysosomal proteins NPC1 and LAMP1 as intracellular receptors for Ebola virus and Lassa virus, respectively. From these studies emerges the notion that receptor usage by these viruses is highly dynamic, involving a programmed switch from cell surface receptor to intracellular receptor. Broad application of genetic knockout approaches will chart functional landscapes of receptors and endocytic pathways hijacked by viruses.
Collapse
Affiliation(s)
- Sirika Pillay
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305; ,
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305; ,
| |
Collapse
|
31
|
Hirayama H, Hosomi A, Suzuki T. Physiological and molecular functions of the cytosolic peptide:N-glycanase. Semin Cell Dev Biol 2015; 41:110-20. [DOI: 10.1016/j.semcdb.2014.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/25/2014] [Accepted: 11/26/2014] [Indexed: 01/04/2023]
|
32
|
Iversen H, L' Abée-Lund TM, Aspholm M, Arnesen LPS, Lindbäck T. Commensal E. coli Stx2 lysogens produce high levels of phages after spontaneous prophage induction. Front Cell Infect Microbiol 2015; 5:5. [PMID: 25692100 PMCID: PMC4315091 DOI: 10.3389/fcimb.2015.00005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/12/2015] [Indexed: 12/22/2022] Open
Abstract
Enterohemorrhagic E. coli (EHEC) is a food-borne pathogen that causes disease ranging from uncomplicated diarrhea to life-threatening hemolytic uremic syndrome (HUS) and nervous system complications. Shiga toxin 2 (Stx2) is the major virulence factor of EHEC and is critical for development of HUS. The genes encoding Stx2 are carried by lambdoid bacteriophages and the toxin production is tightly linked to the production of phages during lytic cycle. It has previously been suggested that commensal E. coli could amplify the production of Stx2-phages and contribute to the severity of disease. In this study we examined the susceptibility of commensal E. coli strains to the Stx2-converting phage ϕ734, isolated from a highly virulent EHEC O103:H25 (NIPH-11060424). Among 38 commensal E. coli strains from healthy children below 5 years, 15 were lysogenized by the ϕ734 phage, whereas lytic infection was not observed. Three of the commensal E. coli ϕ734 lysogens were tested for stability, and appeared stable and retained the phage for at least 10 cultural passages. When induced to enter lytic cycle by H2O2 treatment, 8 out of 13 commensal lysogens produced more ϕ734 phages than NIPH-11060424. Strikingly, five of them even spontaneously (non-induced) produced higher levels of phage than the H2O2 induced NIPH-11060424. An especially high frequency of HUS (60%) was seen among children infected by NIPH-11060424 during the outbreak in 2006. Based on our findings, a high Stx2 production by commensal E. coli lysogens cannot be ruled out as a contributor to the high frequency of HUS during this outbreak.
Collapse
Affiliation(s)
- Hildegunn Iversen
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences Oslo, Norway
| | - Trine M L' Abée-Lund
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences Oslo, Norway
| | - Marina Aspholm
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences Oslo, Norway
| | - Lotte P S Arnesen
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences Oslo, Norway
| | - Toril Lindbäck
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences Oslo, Norway
| |
Collapse
|
33
|
Domashevskiy AV, Goss DJ. Pokeweed antiviral protein, a ribosome inactivating protein: activity, inhibition and prospects. Toxins (Basel) 2015; 7:274-98. [PMID: 25635465 PMCID: PMC4344624 DOI: 10.3390/toxins7020274] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/07/2015] [Accepted: 01/23/2015] [Indexed: 01/30/2023] Open
Abstract
Viruses employ an array of elaborate strategies to overcome plant defense mechanisms and must adapt to the requirements of the host translational systems. Pokeweed antiviral protein (PAP) from Phytolacca americana is a ribosome inactivating protein (RIP) and is an RNA N-glycosidase that removes specific purine residues from the sarcin/ricin (S/R) loop of large rRNA, arresting protein synthesis at the translocation step. PAP is thought to play an important role in the plant's defense mechanism against foreign pathogens. This review focuses on the structure, function, and the relationship of PAP to other RIPs, discusses molecular aspects of PAP antiviral activity, the novel inhibition of this plant toxin by a virus counteraction-a peptide linked to the viral genome (VPg), and possible applications of RIP-conjugated immunotoxins in cancer therapeutics.
Collapse
MESH Headings
- Animals
- Binding Sites
- Endoribonucleases/chemistry
- Fungal Proteins/chemistry
- Genome, Viral
- Humans
- Protein Isoforms
- RNA Caps/chemistry
- RNA Caps/genetics
- RNA Caps/metabolism
- RNA, Plant/chemistry
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Ribosome Inactivating Proteins, Type 1/chemistry
- Ribosome Inactivating Proteins, Type 1/genetics
- Ribosome Inactivating Proteins, Type 1/metabolism
- Ribosome Inactivating Proteins, Type 1/pharmacology
- Ribosomes/chemistry
- Ribosomes/metabolism
- Ricin/chemistry
Collapse
Affiliation(s)
- Artem V Domashevskiy
- John Jay College of Criminal Justice, Department of Sciences, City University of New York, 524 West 59th Street, New York, NY 10019, USA.
| | - Dixie J Goss
- Department of Chemistry, Hunter College, City University of New York and the Graduate Center, 695 Park Avenue, New York, NY 10065, USA.
| |
Collapse
|
34
|
Rahman UU, Sahar A, Khan MA. Recovery and utilization of effluents from meat processing industries. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.09.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Zhang J, Naslavsky N, Caplan S. EHDs meet the retromer: Complex regulation of retrograde transport. CELLULAR LOGISTICS 2014. [PMID: 23181199 PMCID: PMC3498075 DOI: 10.4161/cl.20582] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Retrograde trafficking mediates the transport of endocytic membranes from endosomes to the trans-Golgi network (TGN). Dysregulation of these pathways can result in multiple ailments, including late-onset Alzheimer disease. One of the key retrograde transport regulators, the retromer complex, is tightly controlled by many factors, including the C-terminal Eps15 homology domain (EHD) proteins. This mini-review focuses on recent findings and discusses the regulation of the retromer complex by EHD proteins and the novel EHD1 interaction partner, Rabankyrin-5 (Rank-5).
Collapse
Affiliation(s)
- Jing Zhang
- Department of Biochemistry and Molecular Biology and Eppley Cancer Center; University of Nebraska Medical Center; Omaha, NE USA
| | | | | |
Collapse
|
36
|
Lund FW, Jensen MLV, Christensen T, Nielsen GK, Heegaard CW, Wüstner D. SpatTrack: An Imaging Toolbox for Analysis of Vesicle Motility and Distribution in Living Cells. Traffic 2014; 15:1406-29. [DOI: 10.1111/tra.12228] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 01/01/2023]
Affiliation(s)
- Frederik W. Lund
- Department of Biochemistry and Molecular Biology; University of Southern Denmark; DK-5230 Odense M Denmark
- Department of Biochemistry; Weill Medical College of Cornell University; York Ave. 1300 10065 NY USA
| | - Maria Louise V. Jensen
- Department of Biochemistry and Molecular Biology; University of Southern Denmark; DK-5230 Odense M Denmark
| | - Tanja Christensen
- Department of Biochemistry and Molecular Biology; University of Southern Denmark; DK-5230 Odense M Denmark
| | - Gitte K. Nielsen
- Department of Biomedicine; University of Aarhus; DK-8000 Aarhus C. Denmark
| | - Christian W. Heegaard
- Department of Molecular Biology and Genetics; University of Aarhus; DK-8000 Aarhus C. Denmark
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology; University of Southern Denmark; DK-5230 Odense M Denmark
| |
Collapse
|
37
|
Marszalowicz GP, Snook AE, Magee MS, Merlino D, Lisa DBB, Waldman SA. GUCY2C lysosomotropic endocytosis delivers immunotoxin therapy to metastatic colorectal cancer. Oncotarget 2014; 5:9460-71. [PMID: 25294806 PMCID: PMC4253446 DOI: 10.18632/oncotarget.2455] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/07/2014] [Indexed: 02/06/2023] Open
Abstract
The emergence of targeted cancer therapy has been limited by the paucity of determinants which are tumor-specific and generally associated with disease, and have cell dynamics which effectively deploy cytotoxic payloads. Guanylyl cyclase C (GUCY2C) may be ideal for targeting because it is normally expressed only in insulated barrier compartments, including intestine and brain, but over-expressed by systemic metastatic colorectal tumors. Here, we reveal that GUCY2C rapidly internalizes from the cell surface to lysosomes in intestinal and colorectal cancer cells. Endocytosis is independent of ligand binding and receptor activation, and is mediated by clathrin. This mechanism suggests a design for immunotoxins comprising a GUCY2C-directed monoclonal antibody conjugated through a reducible disulfide linkage to ricin A chain, which is activated to a potent cytotoxin in lysosomes. Indeed, this immunotoxin specifically killed GUCY2C-expressing colorectal cancer cells in a lysosomal- and clathrin-dependent fashion. Moreover, this immunotoxin reduced pulmonary tumors>80% (p<0.001), and improved survival 25% (p<0.001), in mice with established colorectal cancer metastases. Further, therapeutic efficacy was achieved without histologic evidence of toxicity in normal tissues. These observations support GUCY2C-targeted immunotoxins as novel therapeutics for metastatic tumors originating in the GI tract, including colorectum, stomach, esophagus, and pancreas.
Collapse
Affiliation(s)
- Glen P. Marszalowicz
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Adam E. Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael S. Magee
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | - Dante Merlino
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Scott A. Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
38
|
Chen HY, Tran H, Foo LY, Sew TW, Loke WK. Development and validation of an ELISA kit for the detection of ricin toxins from biological specimens and environmental samples. Anal Bioanal Chem 2014; 406:5157-69. [DOI: 10.1007/s00216-014-7934-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/21/2014] [Accepted: 05/28/2014] [Indexed: 11/25/2022]
|
39
|
Impacts of the apoptosis inhibitor of macrophage (AIM) on obesity-associated inflammatory diseases. Semin Immunopathol 2013; 36:3-12. [PMID: 24281248 PMCID: PMC3912372 DOI: 10.1007/s00281-013-0405-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 10/23/2013] [Indexed: 12/13/2022]
Abstract
Obesity is associated with various metabolic and cardiovascular diseases caused by chronic, low-grade inflammation that is initially observed in obese adipose tissue. In addition, many etiological studies in humans have shown a strong correlation between obesity and inflammatory autoimmune diseases. In this review, we focus on the involvement of apoptosis inhibitor of macrophage (AIM), a macrophage-derived blood protein, in both types of immune response. Through differential mechanisms, AIM thereby plays key roles in the pathogenesis of atherosclerosis, metabolic diseases, and obesity-associated autoimmune diseases. Thus, the regulation of blood AIM levels or AIM function has the potential to serve as a next-generation therapy against these inflammatory diseases brought about by modern lifestyle.
Collapse
|
40
|
Alexander A, Ajazuddin, Khan J, Saraf S, Saraf S. Poly(ethylene glycol)-poly(lactic-co-glycolic acid) based thermosensitive injectable hydrogels for biomedical applications. J Control Release 2013; 172:715-29. [PMID: 24144918 DOI: 10.1016/j.jconrel.2013.10.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/02/2013] [Accepted: 10/04/2013] [Indexed: 01/17/2023]
Abstract
Stimuli triggered polymers provide a variety of applications related with the biomedical fields. Among various stimuli triggered mechanisms, thermoresponsive mechanisms have been extensively investigated, as they are relatively more convenient and effective stimuli for biomedical applications. In a contemporary approach for achieving the sustained action of proteins, peptides and bioactives, injectable depots and implants have always remained the thrust areas of research. In the same series, Poloxamer based thermogelling copolymers have their own limitations regarding biodegradability. Thus, there is a need to have an alternative biomaterial for the formulation of injectable hydrogel, which must remain biocompatible along with safety and efficacy. In the same context, poly(ethylene glycol) (PEG) based copolymers play a crucial role as a biomedical material for biomedical applications, because of their biocompatibility, biodegradability, thermosensitivity and easy controlled characters. This review stresses on the physicochemical property, stability and composition prospects of smart PEG/poly(lactic-co-glycolic acid) (PLGA) based thermoresponsive injectable hydrogels, recently utilized for biomedical applications. The manuscript also highlights the synthesis scheme and stability characteristics of these copolymers, which will surely help the researchers working in the same area. We have also emphasized the applied use of these smart copolymers along with their formulation problems, which could help in understanding the possible modifications related with these, to overcome their inherent associated limitations.
Collapse
Affiliation(s)
- Amit Alexander
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, C.G. 492010, India.
| | | | | | | | | |
Collapse
|
41
|
Arnold JW, Koudelka GB. The Trojan Horse of the microbiological arms race: phage-encoded toxins as a defence against eukaryotic predators. Environ Microbiol 2013; 16:454-66. [PMID: 23981100 DOI: 10.1111/1462-2920.12232] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/17/2013] [Accepted: 07/28/2013] [Indexed: 12/31/2022]
Abstract
Phage-encoded Shiga toxin (Stx) acts as a bacterial defence against the eukaryotic predator Tetrahymena. To function as an effective bacterial anti-predator defence, Stx must kill a broad spectrum of predators. Consistent with that assertion, we show here that bacterially encoded Stx efficiently kills the bacteriovore Acanthamoeba castellanii in co-culture. We also show that, in addition to Stx, the phage-encoded exotoxin, diphtheria toxin (Dtx) expressed by Corynebacterium diphtheriae also can function as part of an anti-predator strategy; it kills Acanthamoeba in co-culture. Interestingly, only exotoxins produced by bacteria internalized by the Acanthamoeba predator are cytolethal; the presence of purified Dtx or Stx in culture medium has no effect on predator viability. This finding is consistent with our results indicating that intoxication of Acanthamoeba by these exotoxins does not require a receptor. Thus bacteria, in the disguise of a food source, function as a 'Trojan Horse', carrying genes encoding an exotoxin into target organisms. This 'Trojan Horse' mechanism of exotoxin delivery into predator cells allows intoxication of predators that lack a cell surface receptor for the particular toxin, allowing bacteria-bearing exotoxins to kill a broader spectrum of predators, increasing the fitness of the otherwise 'defenceless' prey bacteria.
Collapse
Affiliation(s)
- Jason W Arnold
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | | |
Collapse
|
42
|
Gaston MA, Pellino CA, Weiss AA. Failure of manganese to protect from Shiga toxin. PLoS One 2013; 8:e69823. [PMID: 23875002 PMCID: PMC3713051 DOI: 10.1371/journal.pone.0069823] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/17/2013] [Indexed: 11/19/2022] Open
Abstract
Shiga toxin (Stx), the main virulence factor of Shiga toxin producing Escherichia coli, is a major public health threat, causing hemorrhagic colitis and hemolytic uremic syndrome. Currently, there are no approved therapeutics for these infections; however manganese has been reported to provide protection from the Stx1 variant isolated from Shigella dysenteriae (Stx1-S) both in vitro and in vivo. We investigated the efficacy of manganese protection from Stx1-S and the more potent Stx2a isoform, using experimental systems well-established for studying Stx: in vitro responses of Vero monkey kidney cells, and in vivo toxicity to CD-1 outbred mice. Manganese treatment at the reported therapeutic concentration was toxic to Vero cells in culture and to CD-1 mice. At lower manganese concentrations that were better tolerated, we observed no protection from Stx1-S or Stx2a toxicity. The ability of manganese to prevent the effects of Stx may be particular to certain cell lines, mouse strains, or may only be manifested at high, potentially toxic manganese concentrations.
Collapse
Affiliation(s)
- Marsha A. Gaston
- Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Christine A. Pellino
- Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Alison A. Weiss
- Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
43
|
Chia PZC, Gunn P, Gleeson PA. Cargo trafficking between endosomes and the trans-Golgi network. Histochem Cell Biol 2013; 140:307-15. [PMID: 23851467 DOI: 10.1007/s00418-013-1125-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2013] [Indexed: 01/03/2023]
Abstract
The retrograde membrane transport pathways from endosomes to the trans-Golgi network (TGN) are now recognized as critical intracellular pathways to recycle and shuttle a selective subgroup of membrane proteins, including sorting receptors, membrane-bound enzymes, transporters, as well as providing an avenue for the intracellular transport of various bacterial toxins. Multiple pathways from endosomes to the TGN have now been defined which differ between the cargo transported and the machinery used. Here, we review advances in these pathways and the requirement for TGN organization, and also discuss the development of unbiased analytical approaches to quantitatively track cargo that use these endosome-to-TGN pathways.
Collapse
Affiliation(s)
- Pei Zhi Cheryl Chia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | | | | |
Collapse
|
44
|
Ricin and Ricin-Containing Immunotoxins: Insights into Intracellular Transport and Mechanism of action in Vitro. Antibodies (Basel) 2013. [DOI: 10.3390/antib2020236] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
45
|
Meuth SG, Göbel K, Kanyshkova T, Ehling P, Ritter MA, Schwindt W, Bielaszewska M, Lebiedz P, Coulon P, Herrmann AM, Storck W, Kohmann D, Müthing J, Pavenstädt H, Kuhlmann T, Karch H, Peters G, Budde T, Wiendl H, Pape HC. Thalamic involvement in patients with neurologic impairment due to Shiga toxin 2. Ann Neurol 2013; 73:419-29. [PMID: 23424019 DOI: 10.1002/ana.23814] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 11/13/2012] [Accepted: 11/13/2012] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The outbreak of hemolytic-uremic syndrome and diarrhea caused by Shiga toxin-producing Escherichia coli O104:H4 in Germany during May to July 2011 involved severe and characteristic neurologic manifestations with a strong female preponderance. Owing to these observations, we designed a series of experimental studies to evaluate the underlying mechanism of action of this clinical picture. METHODS A magnetic resonance imaging and electroencephalographic study of patients was performed to evaluate the clinical picture in detail. Thereafter, combinations of different experimental settings, including electrophysiological and histological analyses, as well as calcium imaging in brain slices of rats, were conducted. RESULTS We report on 7 female patients with neurologic symptoms and signs including bilateral thalamic lesions and encephalopathic changes indicative of a predominant involvement of the thalamus. Experimental studies in rats revealed an enhanced expression of the Shiga toxin receptor globotriaosylceramide on thalamic neurons in female rats as compared to other brain regions in the same rats and to male animals. Incubation of brain slices with Shiga toxin 2 evoked a strong membrane depolarization and intracellular calcium accumulation in neurons, associated with neuronal apoptosis, predominantly in the thalamic area. INTERPRETATION These findings suggest that the direct cytotoxic effect of Shiga toxin 2 in the thalamus might contribute to the pathophysiology of neuronal complications in hemolytic-uremic syndrome.
Collapse
Affiliation(s)
- Sven G Meuth
- Institute of Physiology I, Department of Neurology, University Hospital Münster, Westphalian Wilhelms University, Münster, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Ricin is a highly toxic protein produced by the castor plant Ricinus communis. The toxin is relatively easy to isolate and can be used as a biological weapon. There is great interest in identifying effective inhibitors for ricin. In this study, we demonstrated by three independent assays that a component of reconstituted powdered milk has a high binding affinity to ricin. We discovered that milk can competitively bind to and reduce the amount of toxin available to asialofetuin type II, which is used as a model to study the binding of ricin to galactose cell-surface receptors. Milk also removes ricin bound to the microtiter plate. In parallel experiments, we demonstrated by activity assay and by immuno-PCR that milk can bind competitively to 1 ng/ml ricin, reducing the amount of toxin uptake by the cells, and thus inhibit the biological activity of ricin. The inhibitory effect of milk on ricin activity in Vero cells was at the same level as by anti-ricin antibodies. We also found that (a) milk did not inhibit ricin at concentrations of 10 or 100 ng/ml; (b) autoclaving 10 and 100 ng/ml ricin in DMEM at 121 °C for 30 min completely abolished activity; and (c) milk did not affect the activity of another ribosome inactivating protein, Shiga toxin type 2 (Stx2), produced by pathogenic Escherichia coli O157:H7. Unlike ricin, which is internalized into the cells via a galactose-binding site, Stx2 is internalized through the cell surface receptor glycolipid globotriasylceramides Gb3 and Gb4. These observations suggest that ricin toxicity may possibly be reduced at room temperature by a widely consumed natural liquid food.
Collapse
Affiliation(s)
- Reuven Rasooly
- Unit of Foodborne Contaminants, Agricultural Research Service, United States Department of Agriculture, Albany, California 94710, USA.
| | | | | |
Collapse
|
47
|
Attention deficit/hyperactivity disorder-derived coding variation in the dopamine transporter disrupts microdomain targeting and trafficking regulation. J Neurosci 2012; 32:5385-97. [PMID: 22514303 DOI: 10.1523/jneurosci.6033-11.2012] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Attention deficit/hyperactivity disorder (ADHD) is the most commonly diagnosed disorder of school-age children. Although genetic and brain-imaging studies suggest a contribution of altered dopamine (DA) signaling in ADHD, evidence of signaling perturbations contributing to risk is largely circumstantial. The presynaptic, cocaine- and amphetamine (AMPH)-sensitive DA transporter (DAT) constrains DA availability at presynaptic and postsynaptic receptors following vesicular release and is targeted by the most commonly prescribed ADHD therapeutics. Using polymorphism discovery approaches with an ADHD cohort, we identified a hDAT (human DAT) coding variant, R615C, located in the distal C terminus of the transporter, a region previously implicated in constitutive and regulated transporter trafficking. Here, we demonstrate that, whereas wild-type DAT proteins traffic in a highly regulated manner, DAT 615C proteins recycle constitutively and demonstrate insensitivity to the endocytic effects of AMPH and PKC (protein kinase C) activation. The disrupted regulation of DAT 615C parallels a redistribution of the transporter variant away from GM1 ganglioside- and flotillin1-enriched membranes, and is accompanied by altered CaMKII (calcium/calmodulin-dependent protein kinase II) and flotillin-1 interactions. Using C-terminal peptides derived from wild-type DAT and the R615C variant, we establish that the DAT 615C C terminus can act dominantly to preclude AMPH regulation of wild-type DAT. Mutagenesis of DAT C-terminal sequences suggests that phosphorylation of T613 may be important in sorting DAT between constitutive and regulated pathways. Together, our studies support a coupling of DAT microdomain localization with transporter regulation and provide evidence of perturbed DAT activity and DA signaling as a risk determinant for ADHD.
Collapse
|
48
|
Abstract
Shiga toxins and ricin are potent inhibitors of protein synthesis. In addition to causing inhibition of protein synthesis, these toxins activate proinflammatory signaling cascades that may contribute to the severe diseases associated with toxin exposure. Treatment of cells with Shiga toxins and ricin have been shown to activate a number of signaling pathways including those associated with the ribotoxic stress response, Nuclear factor kappa B activation, inflammasome activation, the unfolded protein response, mTOR signaling, hemostasis, and retrograde trafficking. In this chapter, we review our current understanding of these signaling pathways as they pertain to intoxication by Shiga toxins and ricin.
Collapse
|
49
|
Ivarsson ME, Leroux JC, Castagner B. Targeting bacterial toxins. Angew Chem Int Ed Engl 2012; 51:4024-45. [PMID: 22441768 DOI: 10.1002/anie.201104384] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/21/2011] [Indexed: 12/18/2022]
Abstract
Protein toxins constitute the main virulence factors of several species of bacteria and have proven to be attractive targets for drug development. Lead candidates that target bacterial toxins range from small molecules to polymeric binders, and act at each of the multiple steps in the process of toxin-mediated pathogenicity. Despite recent and significant advances in the field, a rationally designed drug that targets toxins has yet to reach the market. This Review presents the state of the art in bacterial toxin targeted drug development with a critical consideration of achieved breakthroughs and withstanding challenges. The discussion focuses on A-B-type protein toxins secreted by four species of bacteria, namely Clostridium difficile (toxins A and B), Vibrio cholerae (cholera toxin), enterohemorrhagic Escherichia coli (Shiga toxin), and Bacillus anthracis (anthrax toxin), which are the causative agents of diseases for which treatments need to be improved.
Collapse
Affiliation(s)
- Mattias E Ivarsson
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich, Wolfgang-Pauli-Strasse 10, Zurich, Switzerland
| | | | | |
Collapse
|
50
|
|