1
|
Wang S, Liu H, Yang P, Wang Z, Ye P, Xia J, Chen S. A role of inflammaging in aortic aneurysm: new insights from bioinformatics analysis. Front Immunol 2023; 14:1260688. [PMID: 37744379 PMCID: PMC10511768 DOI: 10.3389/fimmu.2023.1260688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Aortic aneurysms (AA) are prevalent worldwide with a notable absence of drug therapies. Thus, identifying potential drug targets is of utmost importance. AA often presents in the elderly, coupled with consistently raised serum inflammatory markers. Given that ageing and inflammation are pivotal processes linked to the evolution of AA, we have identified key genes involved in the inflammaging process of AA development through various bioinformatics methods, thereby providing potential molecular targets for further investigation. Methods The transcriptome data of AA was procured from the datasets GSE140947, GSE7084, and GSE47472, sourced from the NCBI GEO database, whilst gene data of ageing and inflammation were obtained from the GeneCards Database. To identify key genes, differentially expressed analysis using the "Limma" package and WGCNA were implemented. Protein-protein intersection (PPI) analysis and machine learning (ML) algorithms were employed for the screening of potential biomarkers, followed by an assessment of the diagnostic value. Following the acquisition of the hub inflammaging and AA-related differentially expressed genes (IADEGs), the TFs-mRNAs-miRNAs regulatory network was established. The CIBERSORT algorithm was utilized to investigate immune cell infiltration in AA. The correlation of hub IADEGs with infiltrating immunocytes was also evaluated. Lastly, wet laboratory experiments were carried out to confirm the expression of hub IADEGs. Results 342 and 715 AA-related DEGs (ADEGs) recognized from GSE140947 and GSE7084 datasets were procured by intersecting the results of "Limma" and WGCNA analyses. After 83 IADEGs were obtained, PPI analysis and ML algorithms pinpointed 7 and 5 hub IADEGs candidates respectively, and 6 of them demonstrated a high diagnostic value. Immune cell infiltration outcomes unveiled immune dysregulation in AA. In the wet laboratory experiments, 3 hub IADEGs, including BLNK, HLA-DRA, and HLA-DQB1, finally exhibited an expression trend in line with the bioinformatics analysis result. Discussion Our research identified three genes - BLNK, HLA-DRA, and HLA-DQB1- that play a significant role in promoting the development of AA through inflammaging, providing novel insights into the future understanding and therapeutic intervention of AA.
Collapse
Affiliation(s)
- Shilin Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peiwen Yang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiwen Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Ye
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
HIV-1 Nef Induces Hck/Lyn-Dependent Expansion of Myeloid-Derived Suppressor Cells Associated with Elevated Interleukin-17/G-CSF Levels. J Virol 2021; 95:e0047121. [PMID: 34106001 PMCID: PMC8354241 DOI: 10.1128/jvi.00471-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human immunodeficiency virus (HIV) or simian immunodeficiency virus (SIV) infection causes myelodysplasia, anemia, and accumulation of inflammatory monocytes (CD14+ CD16+) through largely unknown cellular and molecular pathways. The mouse cells thought to be equivalent to human CD14+ CD16+ cells are CD11b+ Gr1+ myeloid-derived suppressor cells (MDSC). We used HIV transgenic (Tg) mouse models to study MDSC, namely, CD4C/Nef Tg mice expressing nef in dendritic cells (DC), pDC, CD4+ T, and other mature and immature myeloid cells and CD11c/Nef Tg mice with a more restricted expression, mainly in DC and pDC. Both Tg strains showed expansion of granulocytic and CD11b+ Gr1low/int cells with MDSC characteristics. Fetal liver cell transplantation revealed that this expansion was stroma-independent and abrogated in mixed Tg/non-Tg 50% chimera. Tg bone marrow (BM) erythroid progenitors were decreased and myeloid precursors increased, suggesting an aberrant differentiation likely driving CD11b+ Gr1+ cell expansion, apparently cell autonomously in CD4C/Nef Tg mice and likely through a bystander effect in CD11c/Nef Tg mice. Hck was activated in Tg spleen, and Nef-mediated CD11b+ Gr1+ cell expansion was abrogated in Hck/Lyn-deficient Nef Tg mice, indicating a requirement of Hck/Lyn for this Nef function. IL-17 and granulocyte colony-stimulating factor (G-CSF) were elevated in Nef Tg mice. Increased G-CSF levels were normalized in Tg mice treated with anti-IL-17 antibodies. Therefore, Nef expression in myeloid precursors causes severe BM failure, apparently cell autonomously. More cell-restricted expression of Nef in DC and pDC appears sufficient to induce BM differentiation impairment, granulopoiesis, and expansion of MDSC at the expense of erythroid maturation, with IL-17→G-CSF as one likely bystander contributor. IMPORTANCE HIV-1 and SIV infection often lead to myelodysplasia, anemia, and accumulation of inflammatory monocytes (CD14+ CD16+), with the latter likely involved in neuroAIDS. We found that some transgenic (Tg) mouse models of AIDS also develop accumulation of mature and immature cells of the granulocytic lineage, decreased erythroid precursors, and expansion of MDSC (equivalent to human CD14+ CD16+ cells). We identified Nef as being responsible for these phenotypes, and its expression in mouse DC appears sufficient for their development through a bystander mechanism. Nef expression in myeloid progenitors may also favor myeloid cell expansion, likely in a cell-autonomous way. Hck/Lyn is required for the Nef-mediated accumulation of myeloid cells. Finally, we identified G-CSF under the control of IL-17 as one bystander mediator of MDSC expansion. Our findings provide a framework to determine whether the Nef>Hck/Lyn>IL-17>G-CSF pathway is involved in human AIDS and whether it represents a valid therapeutic target.
Collapse
|
3
|
Mathematical modeling and stochastic simulations suggest that low-affinity peptides can bisect MHC1-mediated export of high-affinity peptides into "early"- and "late"-phases. Heliyon 2021; 7:e07466. [PMID: 34286133 PMCID: PMC8278427 DOI: 10.1016/j.heliyon.2021.e07466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/23/2021] [Accepted: 06/29/2021] [Indexed: 02/01/2023] Open
Abstract
The peptide loading complex (PLC) is a multi-protein complex of the endoplasmic reticulum (ER) which optimizes major histocompatibility I (MHC1)-mediated export of intracellular high-affinity peptides. Whilst, the molecular biology of MHC1-mediated export is well supported by empirical data, the stoichiometry, kinetics and spatio-temporal profile of the participating molecular entities are a matter of considerable debate. Here, a low-affinity peptide-driven (LAPD)-model of MHC1-mediated high-affinity peptide export is formulated, implemented, analyzed and simulated. The model is parameterized in terms of the contribution of the shunt reaction to the concentration of exportable MHC1. Theoretical analyses and simulation studies of the model suggest that low-affinity peptides can bisect MHC1-mediated export of high-affinity peptides into time-dependent distinct “early”- and “late”-phases. The net exportable MHC1 (eM1β(t)) is a function of the retrograde (rM1β(t))- and anterograde (aM1β(t))-derived fractions. The “early”-phase is dominated by the contribution of the retrograde/recyclable (rM1β≈61%,aM1β≈39%) pathway to exportable MHC1, is characterized by Tapasin-mediated peptide-editing and is ATP-independent. The “late”-phase on the other hand, is characterized by de novo PLC-assembly, rapid disassembly and a significant contribution of the anterograde pathway to exportable MHC1 (rM1β≈21%,aM1β≈79%). The shunt reaction is rate limiting and may integrate peptide translocation with PLC-assembly/disassembly thereby, regulating peptide export under physiological and pathological (viral infections, dysplastic alterations) conditions.
Collapse
|
4
|
Álvaro-Benito M, Freund C. Revisiting nonclassical HLA II functions in antigen presentation: Peptide editing and its modulation. HLA 2020; 96:415-429. [PMID: 32767512 DOI: 10.1111/tan.14007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 01/08/2023]
Abstract
The nonclassical major histocompatibility complex of class II molecules (ncMHCII) HLA-DM (DM) and HLA-DO (DO) feature essential functions for the selection of the peptides that are displayed by classical MHCII proteins (MHCII) for CD4+ Th cell surveillance. Thus, although the binding groove of classical MHCII dictates the main features of the peptides displayed, ncMHCII function defines the preferential loading of peptides from specific cellular compartments and the extent to which they are presented. DM acts as a chaperone for classical MHCII molecules facilitating peptide exchange and thereby favoring the binding of peptide-MHCII complexes of high kinetic stability mostly in late endosomal compartments. DO on the other hand binds to DM blocking its peptide-editing function in B cells and thymic epithelial cells, limiting DM activity in these cellular subsets. DM and DO distinct expression patterns therefore define specific antigen presentation profiles that select unique peptide pools for each set of antigen presenting cell. We have come a long way understanding the mechanistic underpinnings of such distinct editing profiles and start to grasp the implications for ncMHCII biological function. DM acts as filter for the selection of immunodominant, pathogen-derived epitopes while DO blocks DM activity under certain physiological conditions to promote tolerance to self. Interestingly, recent findings have shown that the unexplored and neglected ncMHCII genetic diversity modulates retroviral infection in mouse, and affects human ncMHCII function. This review aims at highlighting the importance of ncMHCII function for CD4+ Th cell responses while integrating and evaluating what could be the impact of distinct editing profiles because of natural genetic variations.
Collapse
Affiliation(s)
- Miguel Álvaro-Benito
- Laboratory of Protein Biochemistry, Institute für Chemie und Biochemie, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Christian Freund
- Laboratory of Protein Biochemistry, Institute für Chemie und Biochemie, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
5
|
Poole E, Neves TC, Oliveira MT, Sinclair J, da Silva MCC. Human Cytomegalovirus Interleukin 10 Homologs: Facing the Immune System. Front Cell Infect Microbiol 2020; 10:245. [PMID: 32582563 PMCID: PMC7296156 DOI: 10.3389/fcimb.2020.00245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Human Cytomegalovirus (HCMV) can cause a variety of health disorders that can lead to death in immunocompromised individuals and neonates. The HCMV lifecycle comprises both a lytic (productive) and a latent (non-productive) phase. HCMV lytic infection occurs in a wide range of terminally differentiated cell types. HCMV latency has been less well-studied, but one characterized site of latency is in precursor cells of the myeloid lineage. All known viral genes are expressed during a lytic infection and a subset of these are also transcribed during latency. The UL111A gene which encodes the viral IL-10, a homolog of the human IL-10, is one of these genes. During infection, different transcript isoforms of UL111A are generated by alternative splicing. The most studied of the UL111A isoforms are cmvIL-10 (also termed the "A" transcript) and LAcmvIL-10 (also termed the "B" transcript), the latter being a well-characterized latency associated transcript. Both isoforms can downregulate MHC class II, however they differ in a number of other immunomodulatory properties, such as the ability to bind the IL10 receptor and induce signaling through STAT3. There are also a number of other isoforms which have been identified which are expressed by differential splicing during lytic infection termed C, D, E, F, and G, although these have been less extensively studied. HCMV uses the viral IL-10 proteins to manipulate the immune system during lytic and latent phases of infection. In this review, we will discuss the literature on the viral IL-10 transcripts identified to date, their encoded proteins and the structures of these proteins as well as the functional properties of all the different isoforms of viral IL-10.
Collapse
Affiliation(s)
- Emma Poole
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Tainan Cerqueira Neves
- Center for Natural and Humanities Sciences, Federal University of ABC (UFABC), São Bernardo do Campo, Brazil
| | - Martha Trindade Oliveira
- Center for Natural and Humanities Sciences, Federal University of ABC (UFABC), São Bernardo do Campo, Brazil
| | - John Sinclair
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
6
|
Álvaro-Benito M, Morrison E, Ebner F, Abualrous ET, Urbicht M, Wieczorek M, Freund C. Distinct editing functions of natural HLA-DM allotypes impact antigen presentation and CD4 + T cell activation. Cell Mol Immunol 2020; 17:133-142. [PMID: 30467419 PMCID: PMC7000412 DOI: 10.1038/s41423-018-0181-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/16/2018] [Indexed: 12/31/2022] Open
Abstract
Classical human leukocyte antigen (HLA) molecules of the major histocompatibility class II (MHCII) complex present peptides for the development, surveillance and activation of CD4+ T cells. The nonclassical MHCII-like protein HLA-DM (DM) catalyzes the exchange and loading of peptides onto MHCII molecules, thereby shaping MHCII immunopeptidomes. Natural variations of DM in both chains of the protein (DMA and DMB) have been hypothesized to impact peptide presentation, but no evidence for altered function has been reported. Here we define the presence of DM allotypes in human populations covered by the 1000 Genomes Project and probe their activity. The functional properties of several allotypes are investigated and show strong enhancement of peptide-induced T cell activation for a particular combination of DMA and DMB. Biochemical evidence suggests a broader pH activity profile for the new variant relative to that of the most commonly expressed DM allotype. Immunopeptidome analysis indicates that the compartmental activity of the new DM heterodimer extends beyond the late endosome and suggests that the natural variation of DM has profound effects on adaptive immunity when antigens bypass the canonical processing pathway.
Collapse
Affiliation(s)
- Miguel Álvaro-Benito
- Laboratory of Protein Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany.
| | - Eliot Morrison
- Laboratory of Protein Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Friederike Ebner
- Institut für Immunologie, Department of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany
| | - Esam T Abualrous
- Computational Molecular Biology Group, Institute for Mathematics, Freie Universität Berlin, Berlin, Germany
| | - Marie Urbicht
- Laboratory of Protein Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Marek Wieczorek
- Laboratory of Protein Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Christian Freund
- Laboratory of Protein Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany.
| |
Collapse
|
7
|
Alvaro-Benito M, Morrison E, Wieczorek M, Sticht J, Freund C. Human leukocyte Antigen-DM polymorphisms in autoimmune diseases. Open Biol 2017; 6:rsob.160165. [PMID: 27534821 PMCID: PMC5008016 DOI: 10.1098/rsob.160165] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 07/19/2016] [Indexed: 12/20/2022] Open
Abstract
Classical MHC class II (MHCII) proteins present peptides for CD4+ T-cell surveillance and are by far the most prominent risk factor for a number of autoimmune disorders. To date, many studies have shown that this link between particular MHCII alleles and disease depends on the MHCII's particular ability to bind and present certain peptides in specific physiological contexts. However, less attention has been paid to the non-classical MHCII molecule human leucocyte antigen-DM, which catalyses peptide exchange on classical MHCII proteins acting as a peptide editor. DM function impacts the presentation of both antigenic peptides in the periphery and key self-peptides during T-cell development in the thymus. In this way, DM activity directly influences the response to pathogens, as well as mechanisms of self-tolerance acquisition. While decreased DM editing of particular MHCII proteins has been proposed to be related to autoimmune disorders, no experimental evidence for different DM catalytic properties had been reported until recently. Biochemical and structural investigations, together with new animal models of loss of DM activity, have provided an attractive foundation for identifying different catalytic efficiencies for DM allotypes. Here, we revisit the current knowledge of DM function and discuss how DM function may impart autoimmunity at the organism level.
Collapse
Affiliation(s)
- Miguel Alvaro-Benito
- Protein Biochemistry Group, Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Eliot Morrison
- Protein Biochemistry Group, Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Marek Wieczorek
- Protein Biochemistry Group, Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Jana Sticht
- Protein Biochemistry Group, Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Christian Freund
- Protein Biochemistry Group, Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
8
|
Afridi S, Hoessli DC, Hameed MW. Mechanistic understanding and significance of small peptides interaction with MHC class II molecules for therapeutic applications. Immunol Rev 2017; 272:151-68. [PMID: 27319349 DOI: 10.1111/imr.12435] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Major histocompatibility complex (MHC) class II molecules are expressed by antigen-presenting cells and stimulate CD4(+) T cells, which initiate humoral immune responses. Over the past decade, interest has developed to therapeutically impact the peptides to be exposed to CD4(+) T cells. Structurally diverse small molecules have been discovered that act on the endogenous peptide exchanger HLA-DM by different mechanisms. Exogenously delivered peptides are highly susceptible to proteolytic cleavage in vivo; however, it is only when successfully incorporated into stable MHC II-peptide complexes that these peptides can induce an immune response. Many of the small molecules so far discovered have highlighted the molecular interactions mediating the formation of MHC II-peptide complexes. As potential drugs, these small molecules open new therapeutic approaches to modulate MHC II antigen presentation pathways and influence the quality and specificity of immune responses. This review briefly introduces how CD4(+) T cells recognize antigen when displayed by MHC class II molecules, as well as MHC class II-peptide-loading pathways, structural basis of peptide binding and stabilization of the peptide-MHC complexes. We discuss the concept of MHC-loading enhancers, how they could modulate immune responses and how these molecules have been identified. Finally, we suggest mechanisms whereby MHC-loading enhancers could act upon MHC class II molecules.
Collapse
Affiliation(s)
- Saifullah Afridi
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Daniel C Hoessli
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Muhammad Waqar Hameed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
9
|
Lotfi-Emran S, Ward BR, Le QT, Pozez AL, Manjili MH, Woodfolk JA, Schwartz LB. Human mast cells present antigen to autologous CD4 + T cells. J Allergy Clin Immunol 2017. [PMID: 28624612 DOI: 10.1016/j.jaci.2017.02.048] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Mast cells (MCs), the primary effector cell of the atopic response, participate in immune defense at host/environment interfaces, yet the mechanisms by which they interact with CD4+ T cells has been controversial. OBJECTIVE We used in situ-matured primary human MCs and matched CD4+ T cells to diligently assess the ability of MCs to act as antigen-presenting cells. METHODS We examined mature human skin-derived MCs using flow cytometry for expression of antigen-presenting molecules, for their ability to stimulate CD4+ T cells to express CD25 and proliferate when exposed to superantigen or to cytomegalovirus (CMV) antigen using matched T cells and MCs from CMV-seropositive or CMV-seronegative donors, and for antigen uptake. Subcellular localization of antigen, HLA molecules, and tryptase was analyzed by using structured illumination microscopy. RESULTS Our data show that IFN-γ induces HLA class II, HLA-DM, CD80, and CD40 expression on MCs, whereas MCs take up soluble and particulate antigens in an IFN-γ-independent manner. IFN-γ-primed MCs guide activation of T cells by Staphylococcus aureus superantigen and, when preincubated with CMV antigens, induce a recall CD4+ TH1 proliferation response only in CMV-seropositive donors. MCs co-opt their secretory granules for antigen processing and presentation. Consequently, MC degranulation increases surface delivery of HLA class II/peptide, further enhancing stimulation of T-cell proliferation. CONCLUSIONS IFN-γ primes human MCs to activate T cells through superantigen and to present CMV antigen to TH1 cells, co-opting MC secretory granules for antigen processing and presentation and creating a feed-forward loop of T-cell-MC cross-activation.
Collapse
Affiliation(s)
- Sahar Lotfi-Emran
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Va
| | - Brant R Ward
- Division of Rheumatology, Allergy and Immunology, Virginia Commonwealth University, Richmond, Va
| | - Quang T Le
- Division of Rheumatology, Allergy and Immunology, Virginia Commonwealth University, Richmond, Va
| | - Andrea L Pozez
- Division of Plastic and Reconstructive Surgery, Virginia Commonwealth University, Richmond, Va
| | - Masoud H Manjili
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Va; Massey Cancer Center, Virginia Commonwealth University, Richmond, Va
| | - Judith A Woodfolk
- Division of Asthma, Allergy, and Immunology, University of Virginia, Charlottesville, Va
| | - Lawrence B Schwartz
- Division of Rheumatology, Allergy and Immunology, Virginia Commonwealth University, Richmond, Va.
| |
Collapse
|
10
|
Sordé L, Spindeldreher S, Palmer E, Karle A. Tregitopes and impaired antigen presentation: Drivers of the immunomodulatory effects of IVIg? IMMUNITY INFLAMMATION AND DISEASE 2017; 5:400-415. [PMID: 28560793 PMCID: PMC5691310 DOI: 10.1002/iid3.167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/29/2017] [Accepted: 04/03/2017] [Indexed: 01/15/2023]
Abstract
Introduction Although intravenous immunoglobulin (IVIg) is commonly used in the clinic to treat various autoimmune and severe inflammatory diseases, the mode of action is not fully elucidated. This work investigates two proposed mechanisms: (1) the potential role of regulatory T‐cell epitopes (Tregitopes) from the constant domain of IgG in the immunosuppressive function of IVIg; and (2) a potential impact of IVIg on the ability of antigen presenting cells (APCs) to present peptides. Methods and Results Investigation of the HLA class II peptide repertoire from IVIg‐loaded dendritic cells (DCs) via MHC‐associated peptide proteomics (MAPPs) revealed that numerous IgG‐derived peptides were strongly presented along the antibody sequence. Surprisingly, Tregitopes 167 and 289 did not show efficient natural presentation although they both bound to HLA class II when directly loaded as “naked” peptides on human DCs. In addition, both Tregitopes could not reproduce the inhibitory effect of IVIg in a human in vitro T‐cell proliferation assay as well as in vivo in mice. MAPPs data demonstrate that presentation of peptides from several antigens remained unchanged even when competed with high doses of IVIg, in both human and mouse. Conclusion These data suggest that the effects mediated by IVIg are not caused by Tregitopes nor by impaired antigen presentation.
Collapse
Affiliation(s)
- Laetitia Sordé
- Novartis Pharma AG, Integrated Biologics Profiling Unit, Immunogenicity Risk Assessment, Basel, Switzerland
| | | | - Ed Palmer
- Department of Biomedicine, University Hospital Basel, Transplantation Immunology and Nephrology, Basel, Switzerland
| | - Anette Karle
- Novartis Pharma AG, Integrated Biologics Profiling Unit, Immunogenicity Risk Assessment, Basel, Switzerland
| |
Collapse
|
11
|
Rosskopf S, Jutz S, Neunkirchner A, Candia MR, Jahn-Schmid B, Bohle B, Pickl WF, Steinberger P. Creation of an engineered APC system to explore and optimize the presentation of immunodominant peptides of major allergens. Sci Rep 2016; 6:31580. [PMID: 27539532 PMCID: PMC4990899 DOI: 10.1038/srep31580] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/26/2016] [Indexed: 01/08/2023] Open
Abstract
We have generated engineered APC to present immunodominant peptides derived from the major aero-allergens of birch and mugwort pollen, Bet v 1142-153 and Art v 125-36, respectively. Jurkat-based T cell reporter lines expressing the cognate allergen-specific T cell receptors were used to read out the presentation of allergenic peptides on the engineered APC. Different modalities of peptide loading and presentation on MHC class II molecules were compared. Upon exogenous loading with allergenic peptides, the engineered APC elicited a dose-dependent response in the reporter T cells and the presence of chemical loading enhancers strongly increased reporter activation. Invariant chain-based MHC class II targeting strategies of endogenously expressed peptides resulted in stronger activation of the reporters than exogenous loading. Moreover, we used Bet v 1 as model allergen to study the ability of K562 cells to present antigenic peptides derived from whole proteins either taken up or endogenously expressed as LAMP-1 fusion protein. In both cases the ability of these cells to process and present peptides derived from whole proteins critically depended on the expression of HLA-DM. We have identified strategies to achieve efficient presentation of allergenic peptides on engineered APC and demonstrate their use to stimulate T cells from allergic individuals.
Collapse
Affiliation(s)
- Sandra Rosskopf
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sabrina Jutz
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Alina Neunkirchner
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Martín R Candia
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Beatrice Jahn-Schmid
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Barbara Bohle
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Winfried F Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Falconer J, Mahida R, Venkatesh D, Pearson J, Robinson JH. Unconventional T-cell recognition of an arthritogenic epitope of proteoglycan aggrecan released from degrading cartilage. Immunology 2015; 147:389-98. [PMID: 26581676 DOI: 10.1111/imm.12557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 11/29/2022] Open
Abstract
It has been proposed that peptide epitopes bind to MHC class II molecules to form distinct structural conformers of the same MHC II-peptide complex termed type A and type B, and that the two conformers of the same peptide-MHC II complex are recognized by distinct CD4 T cells, termed type A and type B T cells. Both types recognize short synthetic peptides but only type A recognize endosomally processed intact antigen. Type B T cells that recognize self peptides from exogenously degraded proteins have been shown to escape negative selection during thymic development and so have the potential to contribute to the pathogenesis of autoimmunity. We generated and characterized mouse CD4 T cells specific for an arthritogenic epitope of the candidate joint autoantigen proteoglycan aggrecan. Cloned T-cell hybridomas specific for a synthetic peptide containing the aggrecan epitope showed two distinct response patterns based on whether they could recognize processed intact aggrecan. Fine mapping demonstrated that both types of T-cell recognized the same core epitope. The results are consistent with the generation of aggrecan-specific type A and type B T cells. Type B T cells were activated by supernatants released from degrading cartilage, indicating the presence of antigenic extracellular peptides or fragments of aggrecan. Type B T cells could play a role in the pathogenesis of proteoglycan-induced arthritis in mice, a model for rheumatoid arthritis, by recognizing extracellular peptides or protein fragments of joint autoantigens released by inflamed cartilage.
Collapse
Affiliation(s)
- Jane Falconer
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Rahul Mahida
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Divya Venkatesh
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Jeffrey Pearson
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - John H Robinson
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
13
|
Yuseff MI, Pierobon P, Reversat A, Lennon-Duménil AM. How B cells capture, process and present antigens: a crucial role for cell polarity. Nat Rev Immunol 2013; 13:475-86. [PMID: 23797063 DOI: 10.1038/nri3469] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
B cells are key components of the adaptive immune response. Their differentiation into either specific memory B cells or antibody-secreting plasma cells is a consequence of activation steps that involve the processing and presentation of antigens. The engagement of B cell receptors by surface-tethered antigens leads to the formation of an immunological synapse that coordinates cell signalling events and that promotes antigen uptake for presentation on MHC class II molecules. In this Review, we discuss membrane trafficking and the associated molecular mechanisms that are involved in antigen extraction and processing at the B cell synapse, and we highlight how B cells use cell polarity to coordinate the complex events that ultimately lead to efficient humoral responses.
Collapse
|
14
|
Feng ML, Liu RZ, Shen T, Zhao YL, Zhu ZY, Liu DZ. Analysis of HLA-DM polymorphisms in the Chinese Han population. ACTA ACUST UNITED AC 2012; 79:157-64. [PMID: 22309257 DOI: 10.1111/j.1399-0039.2012.01838.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Non-classical human leukocyte antigen (HLA)-DM plays an important and unique role in the processing and presentation of exogenous antigens. Polymorphisms of certain genes and frequency of alleles in populations may indicate susceptibility to certain diseases. In this study, the analysis of HLA-DMA and HLA-DMB gene polymorphisms and haplotypes in the Chinese Han population was conducted to obtain population genetic data. HLA-DM typing has been performed previously by other groups by polymerase chain reaction (PCR)-restriction fragment length polymorphism and PCR-sequence-specific oligonucleotide probe techniques. In this study, we established a TaqMan PCR typing method as an alternative to these techniques to survey the frequency of DMA and DMB alleles in the population. Genotyping was conducted in 1000 unrelated individuals of Han nationality in South and North China using TaqMan PCR typing. Four different DMA alleles and six different DMB alleles were detected. All loci met the Hardy-Weinberg equilibrium principle that both allele and genotype frequencies in a population remain constant. We found that the DMA*01:01 (69.35%) and DMB*01:01 (52.5%) alleles were more frequent in Chinese Hans. Analysis of the haplotypes for two loci of DMA and DMB showed that a highly significant positive linkage disequilibrium (LD) presented for DMA*01:01-DMB*01:02, DMA*01:01-DMB*01:03, DMA*01:01-DMB*01:04, DMA*01:02-DMB*01:01, DMA*01:02-DMB*01:05, DMA*01:03-DMB*01:07, and DMA*01:04-DMB*01:01 haplotypes. Analysis of haplotypes for four loci associated with antigen processing (DMA-DMB-TAP1-TAP2) showed a highly significant LD in DMA*01:01-DMB*01:04-TAP1*02:01:01-TAP2*01:02, DMA*01: 02-DMB*01:05-TAP1*01:01-TAP2*01:01, and DMA*01:01-DMB*01:03-TAP1* 04:01-TAP2*01:01 haplotypes. The comparison between the Chinese Han population and non-Chinese populations showed that no significant differences were found at the HLA-DMA locus in the Chinese Han population compared with people of German nationality, whereas significant differences presented when compared with Turkish, American Caucasian, Japanese, French, and Italian nationalities. However, at the HLA-DMB locus, highly significant differences presented in the Chinese Han population compared with Germans and Italians. This study lays the foundations for further disease association analyses.
Collapse
Affiliation(s)
- M L Feng
- Shanghai Blood Center, Shanghai, China
| | | | | | | | | | | |
Collapse
|
15
|
Pezeshki AM, Côté MH, Azar GA, Routy JP, Boulassel MR, Thibodeau J. Forced expression of HLA-DM at the surface of dendritic cells increases loading of synthetic peptides on MHC class II molecules and modulates T cell responses. THE JOURNAL OF IMMUNOLOGY 2011; 187:74-81. [PMID: 21622867 DOI: 10.4049/jimmunol.1002747] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adoptive transfer of autologous dendritic cells (DCs) loaded with tumor-associated CD4 and CD8 T cell epitopes represents a promising avenue for the immunotherapy of cancer. In an effort to increase the loading of therapeutic synthetic peptides on MHC II molecules, we used a mutant of HLA-DM (DMY) devoid of its lysosomal sorting motif and that accumulates at the cell surface. Transfection of DMY into HLA-DR(+) cells resulted in increased loading of the exogenously supplied HA(307-318) peptide, as well as increased stimulation of HA-specific T cells. Also, on transduction in mouse and human DCs, DMY increased loading of HEL(48-61) and of the tumor Ag-derived gp100(174-190) peptides, respectively. Interestingly, expression of DMY at the surface of APCs favored Th1 differentiation over Th2. Finally, we found that DMY(-) and DMY(+) mouse APCs differentially stimulated T cell hybridomas sensitive to the fine conformation of peptide-MHC II complexes. Taken together, our results suggest that the overexpression of HLA-DMY at the plasma membrane of DCs may improve quantitatively, but also qualitatively, the presentation of CD4 T cell epitopes in cellular vaccine therapies for cancer.
Collapse
Affiliation(s)
- Abdul Mohammad Pezeshki
- Laboratoire d'Immunologie Moléculaire, Département de Microbiologie et Immunologie, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Franceschi C, Collignon A, Isnardon D, Benkoel L, Vérine A, Silvy F, Bernard JP, Lombardo D, Beraud E, Olive D, Mas E. A novel tumor-associated pancreatic glycoprotein is internalized by human dendritic cells and induces their maturation. THE JOURNAL OF IMMUNOLOGY 2011; 186:4067-77. [PMID: 21346236 DOI: 10.4049/jimmunol.1000408] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aberrant glycosylation or overexpression of cell-surface glycosylated tumor-associated Ags (TAA) distinguish neoplastic from normal cells. Interactions of TAA MUC1 and HER2/neu with dendritic cells (DC) preclude efficient processing, which impairs immune responses. It is thus important to define the mechanisms of interactions between DC and glycosylated TAA and their trafficking and processing for further T cell activation. In this work, we study interactions between DC and the oncofetal fucose-rich glycovariants of bile salt-dependent lipase (BSDL), expressed in pancreatic cancer tissues and referred to as pathological BSDL carrying the fucosylated J28 glycotope (pBSDL-J28) because it is characterized by the mAb J28. The expression of pBSDL-J28 was assessed by immunohistochemistry and quantified by confocal microscopy. Nontumoral pancreatic tissues and cells do not express pBSDL-J28. Using multidisciplinary approaches and functional studies, we provide the first evidence, to our knowledge, that this tumoral glycoprotein is rapidly internalized by human DC through macropinocytosis and endocytosis via mannose receptors and then transported to late endosomes for processing. Interestingly, pBSDL-J28 per se induced DC maturation with increased expression of costimulatory and CD83 molecules associated with cytokine secretion (IL-8 and IL-6). Surprisingly, DC retained their full ability to internalize Ags, making this maturation atypical. Finally, the allogeneic pBSDL-J28-treated DC stimulated lymphocyte proliferation. Besides, pulsing DC with pBSDL-J28 C-terminal glycopolypeptide and maturation with CD40L triggered CD4(+) and CD8(+) T cell proliferation. Therefore, interactions of pBSDL-J28, expressed on tumoral pancreatic tissue, with DC may lead to adequate Ag trafficking and processing and result in T cell activation.
Collapse
Affiliation(s)
- Cécile Franceschi
- INSERM Unité Mixte de Recherche 911, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, F-13005 Marseille, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Porter KA, Kelley LN, Nekorchuk MD, Jones JH, Hahn AB, de Noronha CMC, Harton JA, Duus KM. CIITA enhances HIV-1 attachment to CD4+ T cells leading to enhanced infection and cell depletion. THE JOURNAL OF IMMUNOLOGY 2010; 185:6480-8. [PMID: 21041720 DOI: 10.4049/jimmunol.1000830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Activated CD4(+) T cells are more susceptible to HIV infection than resting T cells; the reason for this remains unresolved. Induction of CIITA and subsequent expression of the MHC class II isotype HLA-DR are hallmarks of CD4(+) T cell activation; therefore, we investigated the role of CIITA expression in T cells during HIV infection. CIITA-expressing SupT1 cells display enhanced virion attachment in a gp160/CD4-dependent manner, which results in increased HIV infection, virus release, and T cell depletion. Although increased attachment and infection of T cells correlated with HLA-DR surface expression, Ab blocking, transient expression of HLA-DR without CIITA, and short hairpin RNA knockdown demonstrate that HLA-DR does not directly enhance susceptibility of CIITA-expressing cells to HIV infection. Further analysis of the remaining MHC class II isotypes, HLA-DP and HLA-DQ, MHC class I isotypes, HLA-A, HLA-B, and HLA-C, and the class II Ag presentation genes, invariant chain and HLA-DM, demonstrate that these proteins likely do not contribute to CIITA enhancement of HIV infection. Finally, we demonstrate that in activated primary CD4(+) T cells as HLA-DR/CIITA expression increases there is a corresponding increase in virion attachment. Overall, this work suggests that induction of CIITA expression upon CD4(+) T cell activation contributes to enhanced attachment, infection, virus release, and cell death through an undefined CIITA transcription product that may serve as a new antiviral target.
Collapse
Affiliation(s)
- Kristen A Porter
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
van den Hoorn T, Neefjes J. Activated pDCs: open to new antigen-presentation possibilities. Nat Immunol 2008; 9:1208-10. [PMID: 18936779 DOI: 10.1038/ni1108-1208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Muixí L, Alvarez I, Jaraquemada D. Peptides presented in vivo by HLA-DR in thyroid autoimmunity. Adv Immunol 2008; 99:165-209. [PMID: 19117535 DOI: 10.1016/s0065-2776(08)00606-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The association of the major histocompatibility complex (MHC) genes with autoimmune diseases together with the ectopic expression of class II molecules by epithelial cells of the target tissue gives to these molecules a central role in the pathogenesis of the disease, in its regulation and in the persistence of the immune response in situ. HLA-DR molecules expressed by thyroid follicular cells in thyroid autoimmune diseases are compact molecules stably associated with peptides. The nature of these peptides is of vital importance in the understanding of the disease, since these MHC-II-peptide complexes are going to be recognized by both effector and regulatory T cells in situ. In this chapter, we review the current state of the analysis of naturally processed peptides presented by MHC class II molecules in the context of autoimmunity and we discuss our data of natural HLA-DR ligands eluted from Graves' disease affected thyroid glands, from where autoantigen-derived peptides have been identified.
Collapse
Affiliation(s)
- Laia Muixí
- Immunology Unit, Institut de Biotechnologia i Biomedicina, Universitat Autònoma de Barcelona, Campus de Bellaterra, Barcelona, Spain
| | | | | |
Collapse
|
20
|
Moss CX, Tree TI, Watts C. Reconstruction of a pathway of antigen processing and class II MHC peptide capture. EMBO J 2007; 26:2137-47. [PMID: 17396153 PMCID: PMC1852786 DOI: 10.1038/sj.emboj.7601660] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Accepted: 02/26/2007] [Indexed: 11/10/2022] Open
Abstract
Endocytosed antigens are proteolytically processed and small amounts of peptides captured by class II MHC molecules. The details of antigen proteolysis, peptide capture and how destruction of T-cell epitopes is avoided are incompletely understood. Using the tetanus toxin antigen, we show that the introduction of 3-6 cleavage sites is sufficient to trigger a partially unfolded conformation able to bind to class II MHC molecules. The known locations of T-cell epitopes and protease cleavage sites predict that large domains of processed antigen (8-35 kDa) are captured under these conditions. Remarkably, when antigen is bound to the B-cell antigen receptor (BCR), processing can trigger a concerted 'hand-over' reaction whereby BCR-associated processed antigen is captured by neighbouring class II MHC molecules. Early capture of minimally processed antigen and confinement of the processing and class II MHC loading reaction to the membrane plane may improve the likelihood of T-cell epitope survival in the class II MHC pathway and may help explain the reciprocal relationships observed between B- and T-cell epitopes in many protein antigens and autoantigens.
Collapse
Affiliation(s)
- Catherine X Moss
- Division of Cell Biology & Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Timothy I Tree
- Department of Immunobiology, King's College London, Guy's King's & St Thomas' School of Medicine, London, UK
| | - Colin Watts
- Division of Cell Biology & Immunology, School of Life Sciences, University of Dundee, Dundee, UK
- Division of Cell Biology and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK. Tel.: +44 1382 384233; Fax: +44 1382 385783; E-mail:
| |
Collapse
|
21
|
von Delwig A, Musson JA, Shim HK, Lee JJ, Walker N, Harding CV, Williamson ED, Robinson JH. Distribution of productive antigen-processing activity for MHC class II presentation in macrophages. Scand J Immunol 2005; 62:243-50. [PMID: 16179011 DOI: 10.1111/j.1365-3083.2005.01664.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We demonstrated that an epitope from the recombinant protective antigen (rPA) of Bacillus anthracis was presented by mature major histocompatibility complex class II (MHC-II) molecules, whereas an epitope from the recombinant virulent (rV) antigen of Yersinia pestis was presented by newly synthesized MHC-II. We addressed which endosomal compartments were involved in the antigen processing of each epitope. Bone-marrow-derived macrophages were subjected to subcellular fractionation; fractions were analysed for the expression of endosomal markers and used as a source of enzyme activity for the processing of rPA and rV antigens. The rPA epitope was productively processed by dense lysosomal fractions and light membrane fractions expressing early endosomal markers Rab5 and early endosomal antigen-1 as well as markers of antigen-presenting compartments (MHC-II, DM, DO and Ii chain). In contrast, the rV epitope was productively processed only by dense fractions with lysosomal activity. No productive antigen-processing activity was associated with fractions of intermediate density expressing Rab7 and Rab9, characteristic of late endosomes. The data suggest that endosomal compartments expressing Rab5 guanosine triphosphatase can productively process protein antigens for presentation by mature MHC class II molecules.
Collapse
Affiliation(s)
- A von Delwig
- Musculoskeletal Research Group, Clinical Medical Sciences, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne, UK.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Röhn TA, Schadendorf D, Sun Y, Nguyen XD, Roeder D, Langen H, Vogt AB, Kropshofer H. Melanoma cell necrosis facilitates transfer of specific sets of antigens onto MHC class II molecules of dendritic cells. Eur J Immunol 2005; 35:2826-39. [PMID: 16163671 DOI: 10.1002/eji.200526299] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Vaccine strategies that target dendritic cells (DC) in order to elicit immunity against tumors are the subject of intense research. For the induction and maintenance of anti-tumor immunity, CD4+ helper T cells are often required, which need to see appropriate MHC class II-peptide complexes on DC. So far, it remained widely unclear what type of tumor cells can feed the MHC class II processing pathway of DC with what type of antigens. Here, we report that peptide loading onto MHC class II molecules of myeloid DC is facilitated by melanoma cells undergoing necrotic rather than apoptotic cell death. Importantly, the set of MHC class II-associated peptides induced by necrotic tumor cells differed from those found upon engagement of apoptotic tumor cells. This may be due to the fact that only necrotic cells liberated heat shock proteins, which bind tumor-derived peptides and thereby may promote processing by DC. The potential of DC to activate T cells was kinetically controlled through their antigen receptivity: CD4+ T cells were easily stimulated upon encountering antigen early in DC maturation, whereas antigen capture at later maturation stages favored activation of CD8+ T cells. These findings may aid in designing future vaccination strategies and in identifying novel tumor-specific helper T cell antigens.
Collapse
Affiliation(s)
- Till A Röhn
- Basel Institute for Immunology, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Paschen A, Song M, Osen W, Nguyen XD, Mueller-Berghaus J, Fink D, Daniel N, Donzeau M, Nagel W, Kropshofer H, Schadendorf D. Detection of Spontaneous CD4+ T-Cell Responses in Melanoma Patients against a Tyrosinase-Related Protein-2–Derived Epitope Identified in HLA-DRB1*0301 Transgenic Mice. Clin Cancer Res 2005; 11:5241-7. [PMID: 16033842 DOI: 10.1158/1078-0432.ccr-05-0170] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The frequently expressed differentiation antigen tyrosinase-related protein-2 (TRP-2) has repeatedly been described as a target of spontaneous cytotoxic T-cell responses in melanoma patients, suggesting that it might be an ideal candidate antigen for T cell-based immunotherapy. As a prerequisite for immunization, T-cell epitopes have to be identified. Whereas a number of HLA class I-presented TRP-2-derived epitopes are known, information about HLA class II-presented antigenic ligands recognized by CD4+ T helper (Th) cells is limited. EXPERIMENTAL DESIGN The search for TRP-2-derived Th epitopes was carried out by competitive in vitro peptide binding studies with predicted HLA-DRB1*0301 ligands in combination with peptide and protein immunizations of HLA-DRB1*0301 transgenic mice. In vivo selected candidate epitopes were subsequently verified for their immunogenicity in human T-cell cultures. RESULTS This strategy led to the characterization of TRP-2(60-74) as an HLA-DRB1*0301-restricted Th epitope. Importantly, TRP-2(60-74)-reactive human CD4+ Th cell lines, specifically recognizing target cells loaded with recombinant TRP-2 protein, could be established by repeated peptide stimulation of peripheral blood lymphocytes from several HLA-DRB1*03+ melanoma patients. Even short-term peptide stimulation of patients' peripheral blood lymphocytes showed the presence of TRP-2(60-74)-reactive T cells, suggesting that these T cells were already activated in vivo. CONCLUSION Peptide TRP-2(60-74) might be a useful tool for the improvement of immunotherapy and immune monitoring of melanoma patients.
Collapse
Affiliation(s)
- Annette Paschen
- Skin Cancer Unit of the German Cancer Research Center Heidelberg, University Hospital Mannheim, Mannheim, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Marsman M, Jordens I, Griekspoor A, Neefjes J. Chaperoning antigen presentation by MHC class II molecules and their role in oncogenesis. Adv Cancer Res 2005; 93:129-58. [PMID: 15797446 DOI: 10.1016/s0065-230x(05)93004-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Tumor vaccine development aimed at stimulating the cellular immune response focuses mainly on MHC class I molecules. This is not surprising since most tumors do not express MHC class II or CD1 molecules. Nevertheless, the most successful targets for cancer immunotherapy, leukemia and melanoma, often do express MHC class II molecules, which leaves no obvious reason to ignore MHC class II molecules as a mediator in anticancer immune therapy. We review the current state of knowledge on the process of MHC class II-restricted antigen presentation and subsequently discuss the consequences of MHC class II expression on tumor surveillance and the induction of an efficient MHC class II mediated antitumor response in vivo and after vaccination.
Collapse
Affiliation(s)
- Marije Marsman
- Division of Tumor Biology, The Netherlands Cancer Institute, Amsterdam
| | | | | | | |
Collapse
|
25
|
Dieckmann D, Schultz ES, Ring B, Chames P, Held G, Hoogenboom HR, Schuler G. Optimizing the exogenous antigen loading of monocyte-derived dendritic cells. Int Immunol 2005; 17:621-35. [PMID: 15824067 DOI: 10.1093/intimm/dxh243] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Dendritic cell (DC) vaccination, i.e. the adoptive transfer of antigen-loaded DC, is still at an early stage and requires standardization. In this study, we investigated the exogenous loading of monocyte-derived DCs with HLA class I- and II-restricted peptides, as despite widespread use, little effort has been put into its pre-clinical validation. We found that only mature DCs (m-DC) but not immature DCs (im-DC) could be sufficiently loaded with exogenous class I-restricted peptides and were by far superior in expanding CD8(+) primary (Melan-A.A2 peptide-specific) and recall [Influenza matrix peptide (IMP) A2-specific] T cell responses. Primary stimulation with peptide-loaded im-DCs even down-regulated antigen-specific T cell responses. Our results indicate that stimulation with m-DCs is superior in terms of quantity and quality compared with im-DCs, supporting their preferred use in clinical DC trials. Loading of m-DCs with high (10 microM) concentrations generated clearly more Melan-A effectors than loading with 1 or 0.1 microM without any negative effect on the quality (affinity) of the resulting T cells. In contrast to the findings with the Melan-A peptide loading with 10 microM IMP was counter-productive, induced apoptosis and yielded fewer specific T cells of inferior affinity as compared with loading with 1 or 0.1 microM. In sharp contrast to the situation for HLA class I, much higher levels and longer half-lives of peptide-HLA class II complexes were obtainable upon loading of im-DCs with exogenous peptide, but m-DCs were functionally preferable to induce T(h)1 responses in vitro. Another surprising finding was that, while presentation to T cells upon simultaneous loading of several peptides with highly varying affinities and competing for the same class I or II molecule was possible, in priming experiments peptide competition clearly inhibited T cell induction. Although peptides will obviously vary in their individual properties, our study clearly points to some important principles that should be taken into account.
Collapse
Affiliation(s)
- Detlef Dieckmann
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany.
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
The conversion of exogenous and endogenous proteins into immunogenic peptides recognized by T lymphocytes involves a series of proteolytic and other enzymatic events culminating in the formation of peptides bound to MHC class I or class II molecules. Although the biochemistry of these events has been studied in detail, only in the past few years has similar information begun to emerge describing the cellular context in which these events take place. This review thus concentrates on the properties of antigen-presenting cells, especially those aspects of their overall organization, regulation, and intracellular transport that both facilitate and modulate the processing of protein antigens. Emphasis is placed on dendritic cells and the specializations that help account for their marked efficiency at antigen processing and presentation both in vitro and, importantly, in vivo. How dendritic cells handle antigens is likely to be as important a determinant of immunogenicity and tolerance as is the nature of the antigens themselves.
Collapse
Affiliation(s)
- E Sergio Trombetta
- Department of Cell Biology and Section of Immunobiology, Ludwig Institute for Cancer Research, Yale University School of Medicine, New Haven, Connecticut 06520-8002, USA.
| | | |
Collapse
|
27
|
von Delwig A, Musson JA, Gray J, McKie N, Robinson JH. Major histocompatibility class II molecules prevent destructive processing of exogenous peptides at the cell surface of macrophages for presentation to CD4 T cells. Immunology 2005; 114:194-203. [PMID: 15667564 PMCID: PMC1782074 DOI: 10.1111/j.1365-2567.2004.02085.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We studied factors affecting major histocompatibility complex class II (MHC-II)-restricted presentation of exogenous peptides at the surface of macrophages. We have previously shown that peptide presentation is modulated by surface-associated proteolytic enzymes, and in this report the role of the binding of MHC-II molecules in preventing proteolysis of exogenous synthetic peptides was addressed. Two peptides containing CD4 T-cell epitopes were incubated with fixed macrophages expressing binding and non-binding MHC-II, and supernatants were analysed by high-performance liquid chromatography and mass spectrometry to monitor peptide degradation. The proportion of full-length peptides that were degraded and the number of peptide fragments increased when non-binding macrophages were used, leading to reduction in peptide presentation. When MHC-II molecules expressed on the surface of fixed macrophages were blocked with monoclonal antibody and incubated with peptides and the supernatants were transferred to fixed macrophages, a significant reduction in peptide presentation was observed. Peptide presentation was up-regulated at pH 5.5 compared to neutral pH, and the latter was found to be the pH optimum of the proteolytic activity of the surface enzymes involved in the degradation of exogenous peptides and proteins. The data suggest that MHC-II alleles that bind peptides protect them from degradation at the antigen-presenting cell surface for presentation to CD4 T cells and we argue that this mechanism could be particularly pronounced at sites of inflammation.
Collapse
Affiliation(s)
- Alexei von Delwig
- Musculoskeletal Research Group, School of Clinical Medical Sciences, University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom.
| | | | | | | | | |
Collapse
|
28
|
Van den Steen PE, Grillet B, Opdenakker G. Gelatinase B Participates in Collagen II Degradation and Releases Glycosylated Remnant Epitopes in Rheumatoid Arthritis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 564:45-55. [PMID: 16400806 DOI: 10.1007/0-387-25515-x_10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- P E Van den Steen
- Laboratory of Immunobiology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | | | | |
Collapse
|
29
|
Ishri RK, Menzies S, Hersey P, Halliday GM. Rapid downregulation of antigen processing enzymes in ex vivo generated human monocyte derived dendritic cells occur endogenously in extended cultures. Immunol Cell Biol 2004; 82:239-46. [PMID: 15186253 DOI: 10.1046/j.1440-1711.2004.01237.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dendritic cells, the most potent antigen presenting cells, have been shown in murine models to induce immune responses against many antigens. Their role in the initiation of antitumour immunity has received enormous attention. Their ability to process and present antigen is dependent on their state of maturation. This study examines the activity of human monocyte-derived dendritic cells at two different time points and the corresponding changes in the proteolytic enzyme activity. Dendritic cells were produced from peripheral blood mononuclear cells of normal volunteers. Plastic adherent cells were cultured for 5 or 7 days with recombinant human (rh)GM-CSF and rhIL-4. Flow cytometry showed that day 5 dendritic cells (DC) were less mature than day 7 DC as indicated by the expression of CD1a, CD11c, CD14, CD80, CD83, CD86 and MHC-II. Proteolytic activity of the enzymes cathepsin C and cathepsin G and phagocytosis of particulate antigens also showed significant differences between d5 dendritic cells and d7 dendritic cells. Allogeneic costimulatory activity of d7 dendritic cells was also significantly increased. Induction of immunity requires active presentation of antigens by antigen processing cells on their MHC-I and/or MHC-II molecules. Study of peptide carriers and peptide precursor molecules showed a significant decrease in CLIP levels in the day 7 DC, suggesting their decreased ability to process antigens but no difference in their ability to load MHC-II molecules. These findings indicate that the length of time in culture, in the absence of exogenous maturation - inducing stimuli affects dendritic cell maturation. Intracellular enzymatic activities of dendritic cells also changed rapidly with small changes in phenotype.
Collapse
Affiliation(s)
- R K Ishri
- Dermatology Laboratories, Melanoma and Skin Cancer Research Institute, Royal Prince Alfred Hospital, University of Sydney, NSW, Australia
| | | | | | | |
Collapse
|
30
|
Abstract
HLA-DO (H2-O in mice) is a nonpolymorphic transmembrane alphabeta heterodimer encoded in the class II region of the major histocompatibility complex (MHC). It is expressed selectively in B lymphocytes and thymic medullary epithelial cells. DO forms a stable complex with the peptide-loading catalyst HLA-DM in the endoplasmic reticulum (ER); in the absence of DM, DO is unstable. During intracellular transport and distribution in the endosomal compartments, the ratio of DO to DM changes. In primary B cells, only approx 50% of DM molecules are associated with DO. DO appears to regulate the peptide-loading function of DM in the MHC class II antigen-presentation pathway. Although certain discrepancies are present, results from most studies indicate that DO (as well as H2-O) inhibits DM (H2-M) function; this inhibition is pH-dependent. As a consequence, DO restrains presentation of exogenous antigens delivered through nonreceptor-mediated mechanisms; in addition, DO alters the peptide repertoire that is associated with cell-surface class II molecules. The biological function of DO remains obscure, partially because of the lack of striking phenotypes in the H2-O knockout mice. Results from recent studies indicate that DO expression in B cells is dynamic, and highly regulated during B-cell development and B-cell activation, suggesting that the physiological role of DO is to tailor the antigen presentation function of the B-lineage cells to meet their primary function at each stage of B-cell development and maturation. Further investigations are needed in this direction.
Collapse
Affiliation(s)
- Xinjian Chen
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, 1639 Pierce Drive, Atlanta, GA 30322, USA.
| | | |
Collapse
|
31
|
Ninio J, Amigorena S. How B cells and dendritic cells may cooperate in antigen purification. J Theor Biol 2004; 231:309-17. [PMID: 15501464 DOI: 10.1016/j.jtbi.2004.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Revised: 06/25/2004] [Accepted: 06/29/2004] [Indexed: 11/28/2022]
Abstract
The specificity of the immunological responses is achieved through the cooperation of three classes of cells: B and T lymphocytes, and dendritic cells (DCs). A critical, intensely studied interaction is that between DCs and T cells, during which the DC presents MHC-bound antigenic fragments to the T cell receptor (TCR). There has been recent excitement about the possibility of increasing the signal-to-noise ratio in the detection of cognate antigen-TCR couples, by the use of kinetic proofreading mechanisms. We examine here the signal-to-noise problem in a broader perspective, and in particular, address the question of possible "antigen purification" mechanisms, prior to their presentation to the T cells. Ways in which the DCs might concentrate, purify and preserve their load of captured antigens are considered: (i) If antigens can be transferred from one DC to another, in such a way that the richer a DC in antigen, the more it captures antigens from other DCs, the antigens may end up concentrated in a small subset of DCs, (ii) antigen purification may be achieved through recycling interactions between DCs and B cells. A DC would transmit to a B cell antigen mixtures, and the DC would recapture only the antigens which can bind to the B cell's antibodies and (iii) dendrites, when they are present, may play an essential role in recapturing the antigens that were used in interactions of DCs with T cells, B cells, or other DCs, thereby reducing antigen losses. More generally, we provide a personal interpretation of cell-to-cell antigen transfers, in terms of a strategy in which there is a progressive emergence, through multiple interactions, of subsets of cells of each type better and better prepared for the subsequent rounds of interactions.
Collapse
Affiliation(s)
- Jacques Ninio
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris cedex 05, France.
| | | |
Collapse
|
32
|
Raftery MJ, Wieland D, Gronewald S, Kraus AA, Giese T, Schönrich G. Shaping phenotype, function, and survival of dendritic cells by cytomegalovirus-encoded IL-10. THE JOURNAL OF IMMUNOLOGY 2004; 173:3383-91. [PMID: 15322202 DOI: 10.4049/jimmunol.173.5.3383] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human dendritic cells (DCs) are essential for the antiviral immune response and represent a strategically important target for immune evasion of viruses, including human CMV (HCMV). Recently, HCMV has been discovered to encode a unique IL-10 homologue (cmvIL-10). In this study we investigated the capacity of cmvIL-10 to shape phenotype, function, and survival of DCs. For comparison we included human IL-10 and another IL-10 homologue encoded by EBV, which does not directly target DCs. Interestingly, cmvIL-10 strongly activated STAT3 in immature DCs despite its low sequence identity with human IL-10. For most molecules cmvIL-10 blocked LPS-induced surface up-regulation, confirming its role as an inhibitor of maturation. However, a small number of molecules on LPS-treated DCs including IDO, a proposed tolerogenic molecule, showed a different behavior and were up-regulated in response to cmvIL-10. Intriguingly, the expression of C-type lectin DC-specific ICAM-grabbing nonintegrin, a receptor for HCMV infection found exclusively on DCs, was also enhanced by cmvIL-10. This phenotypic change was mirrored by the efficiency of HCMV infection. Moreover, DCs stimulated with LPS and simultaneously treated with cmvIL-10 retained the function of immature DCs. Finally, cmvIL-10 increased apoptosis associated with DC maturation by blocking up-regulation of the antiapoptotic long form cellular FLIP. Taken together, these findings show potential mechanisms by which cmvIL-10 could assist HCMV to infect DCs and to impair DC function and survival.
Collapse
|
33
|
Muntasell A, Carrascal M, Alvarez I, Serradell L, van Veelen P, Verreck FAW, Koning F, Abian J, Jaraquemada D. Dissection of the HLA-DR4 peptide repertoire in endocrine epithelial cells: strong influence of invariant chain and HLA-DM expression on the nature of ligands. THE JOURNAL OF IMMUNOLOGY 2004; 173:1085-93. [PMID: 15240697 DOI: 10.4049/jimmunol.173.2.1085] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Class II MHC (MHC II) expression is restricted to professional APCs and thymic epithelium but it also occurs in the epithelial cells of autoimmune organs which are the unique targets of the CD4 autoreactive T cells in endocrine autoimmune diseases. This specificity is presumably conditioned by an epithelium-specific peptide repertoire associated to MHC II at the cell surface. MHC II expression and function is dependent on the action of two main chaperones, invariant chain (Ii) and DM, whose expression is coregulated with MHC II. However, there is limited information about the in vivo expression levels of these molecules and uncoordinated expression has been demonstrated in class II-positive epithelial cells that may influence the MHC-associated peptide repertoires and the outcome of the autoimmune response. We have examined the pool of peptides associated to DR4 molecules expressed by a neuroendocrine epithelial cell and the consequences of Ii and DM coexpression. The RINm5F rat insulinoma cell line was transfected with HLA-DRB1*0401, Ii, and DM molecules in four different combinations: RIN-DR4, -DR4Ii, -DR4DM, and -DR4IiDM. The analysis of the peptide repertoire and the identification of the DR4 naturally processed ligands in each transfected cell were achieved by mass spectrometry. The results demonstrate that 1) the expression of Ii and DM affected the DR4 peptide repertoires by producing important variations in their content and in the origin of peptides; 2) these restrictions affected the stability and sequence of the peptides of each repertoire; and 3) Ii and DM had both independent and coordinate effects on these repertoires.
Collapse
Affiliation(s)
- Aura Muntasell
- Immunology Unit and Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Campus de Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Perrin-Cocon LA, Villiers CL, Salamero J, Gabert F, Marche PN. B cell receptors and complement receptors target the antigen to distinct intracellular compartments. THE JOURNAL OF IMMUNOLOGY 2004; 172:3564-72. [PMID: 15004157 DOI: 10.4049/jimmunol.172.6.3564] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The processing of exogenous Ags is an essential step for the generation of immunogenic peptides that will be presented to T cells. This processing relies on the efficient intracellular targeting of Ags, because it depends on the content of the compartments in which Ags are delivered in APCs. Opsonization of Ags by the complement component C3 strongly enhances their presentation by B cells and increases their immunogenicity in vivo. To investigate the role of C3 in the targeting of Ags, we compared the intracellular traffic of proteins internalized by complement receptor (CR) and B cell receptor (BCR) in B lymphocytes. Whereas both receptors are able to induce efficient Ag presentation, their intracellular pathways are different. CR ligand is delivered to compartments containing MHC class II molecules (MHC-II) but devoid of transferrin receptor and Lamp-2, whereas BCR rapidly targets its ligand toward Lamp-2-positive, late endosomal MHC-II-enriched compartments through intracellular vesicles containing transferrin receptor. CR and BCR are delivered to distinct endocytic pathways, and the kinetic evolution of the protein content of these pathways is very different. Both types of compartments contain MHC-II, but CR-targeted compartments receive less neosynthesized MHC-II than do BCR-targeted compartments. The targeting induced by CR toward compartments that are distinct from BCR-targeted compartments probably participates in C3 modulation of Ag presentation.
Collapse
Affiliation(s)
- Laure A Perrin-Cocon
- Laboratoire d'Immunochimie, Département de Réponse et Dynamique Cellulaires, Commissariat à l'Energie Atomique, Institut National de la Santé et de la Recherche Médicale, Unité 548, Université Joseph Fourier, Grenoble, France
| | | | | | | | | |
Collapse
|
35
|
Gogolák P, Réthi B, Hajas G, Rajnavölgyi E. Targeting dendritic cells for priming cellular immune responses. J Mol Recognit 2004; 16:299-317. [PMID: 14523943 DOI: 10.1002/jmr.650] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The cardinal role of dendritic cells (DC) in priming adaptive immunity and in orchestrating immune responses against all classes of pathogens and also against tumors is well established. Their unique potential both to maintain self-tolerance and to initiate protective immune responses against foreign and/or dangerous structures is based on the functional diversity and flexibility of these cells. Tissue DC lining antigenic portals such as mucosal surfaces and the skin are specialized to take up a wide array of compounds including proteins, lipids, carbohydrates, glycoproteins, glycolipids and oligonucleotides, particles carrying such structures and apoptotic or necrotic cells. This process is facilitated by specialized receptors with high endocytic capacity, which provides potential targets for delivering designed molecules. The best route for targeting B- and/or T cell epitopes, however, is still the subject of intense investigation. Immature DC, which reside in various tissues, can be activated by pathogens, stress and inflammation or modified metabolic products, which induce mobilization of cells to draining lymph nodes where they act as highly potent professional antigen presenting cells. This is brought about by the ability to present their accumulated intracellular content for both CD4+ helper (Th) and CD8+ cytotoxic/cytolytic T lymphocytes (Tc/CTL). Engulfed proteins are processed intracellularly and their peptide fragments are transported to the cell surface in the context of major histocompatibility complex encoded class I and II molecules for presentation to Th cells and CTLs, respectively. The T cell priming capacity of DC, however, depends not only on antigen presentation but also on other features of DC. Human monocyte-derived DC provide an excellent tool to study the internalizing, antigen-presenting and T cell-activating functions of DC at their immature and activated differentiation states. These biological activities of DC, however, are highly dependent on their migratory potential from the peripheral non-lymphoid tissues to the lymph nodes, on the expression of adhesion molecules, which support the interaction of DC with T lymphocytes, and the cytokines secreted by DC, which polarize immune responses to Th1-mediated cellular or Th2-mediated antibody responses. These results altogether demonstrate that monocyte-derived DC are useful candidates for in vitro or in vivo targeting of antigens to induce efficient adaptive immune responses against pathogens and also against tumors.
Collapse
Affiliation(s)
- Péter Gogolák
- Institute of Immunology, Faculty of Medicine, University of Debrecen, 98 Nagyerdei Blvd, Debrecen H-4012, Hungary
| | | | | | | |
Collapse
|
36
|
Banga JP, Moore JK, Duhindan N, Madec AM, van Endert PM, Orgiazzi J, Endl J. Modulation of antigen presentation by autoreactive B cell clones specific for GAD65 from a type I diabetic patient. Clin Exp Immunol 2004; 135:74-84. [PMID: 14678267 PMCID: PMC1808922 DOI: 10.1111/j.1365-2249.2004.02343.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We used a GAD65-specific human B-T cell line cognate system in vitro to investigate the modulation of GAD65 presentation by autoantibody, assessed in a proliferation assay. Generally, if the T cell determinant overlaps or resides within the antibody epitope, effects of presentation are blunted while if they are distant can lead to potent presentation. For three different autoreactive B-T cell line cognate pairs, the modulation of GAD65 presentation followed the mode of overlapping or distant epitopes with resultant potent or undetectable presentation. However, other cognate pairs elicited variability in this pattern of presentation. Notably, one B cell line, DPC, whose antibody epitope did not overlap with the T cell determinants, was consistently poor in presenting GAD65. Using the fluorescent dye Alexa Fluor 647 conjugated to GAD65 to study receptor-mediated antigen endocytosis showed that all the antigen-specific B cell clones were efficient in intracellular accumulation of the antigen. Additionally, multicolour immunofluorescence microscopy showed that the internalized GAD65/surface IgG complexes were rapidly targeted to a perinuclear compartment in all GAD-specific B cell clones. This analysis also demonstrated that HLA-DM expression was reduced strongly in DPC compared to the stimulatory B cell clones. Thus the capability of antigen-specific B cells to capture and present antigen to human T cell lines is dependent on the spatial relationship of B and T cell epitopes as well other factors which contribute to the efficiency of presentation.
Collapse
Affiliation(s)
- J P Banga
- Guy's, King's and St Thomas' School of Medicine, London, UK.
| | | | | | | | | | | | | |
Collapse
|
37
|
Tüdos E, Fiser A, Simon A, Dosztányi Z, Fuxreiter M, Magyar C, Simon I. Noncovalent Cross-links in Context with Other Structural and Functional Elements of Proteins. ACTA ACUST UNITED AC 2004; 44:347-51. [PMID: 15032510 DOI: 10.1021/ci030409i] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteins are heteropolymers with evolutionary selected native sequences of residues. These native sequences code for unique and stable 3D structures indispensable for biochemical activity and for proteolysis resistance, the latter which guarantees an appropriate lifetime for the protein in the protease rich cellular environment. Cross-links between residues close in space but far in the primary structure are required to maintain the folded structure of proteins. Some of these cross-links are covalent, most frequently disulfide bonds, but the majority of the cross-links are sets of cooperative noncovalent long-range interactions. In this paper we focus on special clusters of noncovalent long-range interactions: the Stabilization Centers (SCs). The relation between the SCs and secondary structural elements as well as the relation between SCs and functionally important regions of proteins are presented to show a detailed picture of these clusters, which are believed to be primarily responsible for major aspects of protein stability.
Collapse
Affiliation(s)
- Eva Tüdos
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 7, H-1518 Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
38
|
Alfonso C, Williams GS, Han JO, Westberg JA, Winqvist O, Karlsson L. Analysis of H2-O influence on antigen presentation by B cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:2331-7. [PMID: 12928379 DOI: 10.4049/jimmunol.171.5.2331] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
HLA-DM (DM; in mouse H2-DM) promotes the exchange of MHC class II-associated peptides, resulting in the accumulation of stable MHC class II-peptide complexes. In naive (but not germinal center) B cells, a large part of DM is tightly associated with HLA-DO (DO; in mouse H2-O), but the functional consequence of this association for Ag presentation is debated. Here, we have extended previous studies by examining the presentation of multiple epitopes after Ag internalization by fluid phase endocytosis or receptor-mediated uptake by membrane Ig (mIg) receptors. We find that the effects of H2-O are more complex than previously appreciated; thus, while only minor influences on Ag presentation could be detected after fluid phase uptake, many epitopes were substantially affected after mIg-mediated uptake. Unexpectedly, the presentation of different epitopes was found to be enhanced, diminished, or unaffected in the absence of H2-O, depending on the specificity of the mIg used for Ag internalization. Interestingly, epitopes from the same Ag did not necessarily show the same H2-O dependency. This finding suggests that H2-O may control the repertoire of peptides presented by B cells depending on the mIg-Ag interaction. The absence of DO/H2-O from germinal center B cells suggests that this control may be released during B cell maturation.
Collapse
Affiliation(s)
- Christopher Alfonso
- Johnson & Johnson Pharmaceutical Research and Development, 3210 Merryfield Row, San Diego, CA 92121, USA
| | | | | | | | | | | |
Collapse
|
39
|
Lich JD, Jayne JA, Zhou D, Elliott JF, Blum JS. Editing of an immunodominant epitope of glutamate decarboxylase by HLA-DM. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:853-9. [PMID: 12847254 DOI: 10.4049/jimmunol.171.2.853] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
HLA-DM stabilizes peptide-receptive class II alphabeta dimers and facilitates the capture of high affinity peptides, thus influencing the peptide repertoire presented by class II molecules. Variations in DM levels may therefore have a profound effect on the antigenic focus of T cell-mediated immune responses. Specifically, DM expression may influence susceptibility and resistance to autoimmune diseases. In this study the role of DM in HLA-DR4-restricted presentation of an insulin-dependent diabetes mellitus autoantigen, glutamate decarboxylase (GAD), was tested. Presentation of immunodominant GAD epitope 273-285 was regulated by endogenous DM levels in human B lymphoblasts. T cell responses to exogenous GAD as well as an endogenous cytoplasmic form of this Ag were significantly diminished with increasing cellular expression of DM. Epitope editing by DM was observed only using Ag and not small synthetic peptides, suggesting that this process occurred within endosomes. Results with cytoplasmic GAD also indicated that peptides from this compartment intersect class II proteins in endocytic vesicles where DM editing was facilitated. Changes in DM levels within APC may therefore influence the presentation of autoantigens and the development of autoimmune disorders such as type I diabetes.
Collapse
Affiliation(s)
- John D Lich
- Department of Microbiology and Immunology and Walther Oncology Center, Indiana University School of Medicine, and Walther Cancer Institute, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
40
|
Setterblad N, Roucard C, Bocaccio C, Abastado JP, Charron D, Mooney N. Composition of MHC class II-enriched lipid microdomains is modified during maturation of primary dendritic cells. J Leukoc Biol 2003; 74:40-8. [PMID: 12832441 DOI: 10.1189/jlb.0103045] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells (DCs) are the most potent antigen presenting cells. Major histocompatibility complex (MHC) class II molecule expression changes with maturation; immature DCs concentrate MHC class II molecules intracellularly, whereas maturation increases surface expression of MHC class II and costimulatory molecules to optimize antigen presentation. Signal transduction via MHC class II molecules localized in lipid microdomains has been described in B lymphocytes and in the THP-1 monocyte cell line. We have characterized MHC class II molecules throughout human DC maturation with particular attention to their localization in lipid-rich microdomains. Only immature DCs expressed empty MHC class II molecules, and maturation increased the level of peptide-bound heterodimers. Ligand binding to surface human leukocyte antigen (HLA)-DR induced rapid internalization in immature DCs. The proportion of cell-surface detergent-insoluble glycosphingolipid-enriched microdomain-clustered HLA-DR was higher in immature DCs despite the higher surface expression of HLA-DR in mature DCs. Constituents of HLA-DR containing microdomains included the src kinase Lyn and the cytoskeletal protein tubulin in immature DCs. Maturation modified the composition of the HLA-DR-containing microdomains to include protein kinase C (PKC)-delta, Lyn, and the cytoskeletal protein actin, accompanied by the loss of tubulin. Signaling via HLA-DR redistributed HLA-DR and -DM and PKC-delta as well as enriching the actin content of mature DC microdomains. The increased expression of HLA-DR as a result of DC maturation was therefore accompanied by modification of the spatial organization of HLA-DR. Such regulation could contribute to the distinct responses induced by ligand binding to MHC class II molecules in immature versus mature DCs.
Collapse
Affiliation(s)
- Niclas Setterblad
- INSERM U396 and. IDM (Immuno-Designed Molecules), Institut Biomédical des Cordeliers, Paris, France
| | | | | | | | | | | |
Collapse
|
41
|
Belmares MP, Busch R, Wucherpfennig KW, McConnell HM, Mellins ED. Structural factors contributing to DM susceptibility of MHC class II/peptide complexes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:5109-17. [PMID: 12391227 DOI: 10.4049/jimmunol.169.9.5109] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Peptide loading of MHC class II (MHCII) molecules is assisted by HLA-DM, which releases invariant chain peptides from newly synthesized MHCII and edits the peptide repertoire. Determinants of susceptibility of peptide/MHCII complexes to DM remain controversial, however. Here we have measured peptide dissociation in the presence and the absence of DM for 36 different complexes of varying intrinsic stability. We found large variations in DM susceptibility for different complexes using either soluble or full-length HLA-DM. The DM effect was significantly less for unstable complexes than for stable ones, although this correlation was modest. Peptide sequence- and allele-dependent interactions along the entire length of the Ag binding groove influenced DM susceptibility. We also observed differences in DM susceptibility during peptide association. Thus, the peptide repertoire displayed to CD4(+) T cells is the result of a mechanistically complicated editing process and cannot be simply predicted from the intrinsic stability of the complexes in the absence of DM.
Collapse
|
42
|
Vogt AB, Spindeldreher S, Kropshofer H. Clustering of MHC-peptide complexes prior to their engagement in the immunological synapse: lipid raft and tetraspan microdomains. Immunol Rev 2002; 189:136-51. [PMID: 12445271 DOI: 10.1034/j.1600-065x.2002.18912.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Protein reorganization at the interface of a T cell and an antigen-presenting cell (APC) plays an important role in T cell activation. Imaging techniques reveal that reorganization of particular receptor-ligand pairs gives rise to an intercellular junction, termed the immunological synapse. In this synapse antigenic peptides associated with major histocompatibility complex (MHC) molecules form multimolecular arrays on the APC side, engaging an equivalent number of clustered T cell receptors (TCRs) on the T cell. The accumulation of MHC molecules carrying cognate peptide in the APC-T cell interface was thought to depend on the specificity and presence of TCRs. Recent evidence, however, suggests that the APC is equipped to preorganize MHC-peptide complexes in the absence of T cells. To this end, MHC molecules become incorporated into two types of membrane microdomains: (i) cholesterol- and glycosphingolipid-enriched domains, denoted lipid rafts, that preconcentrate MHC class II molecules; and (ii) microdomains made up of tetraspan proteins, such as CD9, CD63, CD81 or CD82, that mediate enrichment of MHC class II molecules loaded with a select set of peptides. It follows that the integrity, composition and dynamics of these microdomains are candidate determinants favoring activation or silencing of T cells.
Collapse
Affiliation(s)
- Anne B Vogt
- Roche Center for Medical Genomics, F. Hoffmann-La Roche, Ltd, Basel, Switzerland
| | | | | |
Collapse
|
43
|
Van den Steen PE, Proost P, Grillet B, Brand DD, Kang AH, Van Damme J, Opdenakker G. Cleavage of denatured natural collagen type II by neutrophil gelatinase B reveals enzyme specificity, post-translational modifications in the substrate, and the formation of remnant epitopes in rheumatoid arthritis. FASEB J 2002; 16:379-89. [PMID: 11874987 DOI: 10.1096/fj.01-0688com] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
During acute inflammation, leukocytes release proteolytic enzymes including matrix metalloproteinases (MMPs), but the physiopathological mechanisms and consequences of this process are not yet fully understood. Neutrophils, the predominant leukocyte type, produce neutrophil collagenase (MMP-8) and gelatinase B (MMP-9) but not the tissue inhibitors of MMPs. After stimulation, these cells also activate MMPs chemically. In arthritic diseases, neutrophils undergo great chemoattraction to the synovium, are activated by interleukin-8, and are stimulated to release gelatinase B in vivo. Production levels and net activities of gelatinase B were found to be absent in degenerative osteoarthritis but significantly increased in rheumatoid arthritis. The cleavage sites in cartilage type II collagen by gelatinase B were determined by a combination of reverse phase high-performance liquid chromatography, Edman degradation, and mass spectrometry analysis. The analysis revealed the site specificity of proline and lysine hydroxylations and O-linked glycosylation, the cleavage specificities by gelatinase B, and the preferential absence and presence of post-translational modifications at P2' and P5', respectively. Furthermore, gelatinase B leaves the immunodominant peptides intact, which are known from studies with (autoreactive) T cells. Lysine hydroxylation was detected at a critical position for T-cell activation. These data lend support to the thesis that extracellular proteolysis and other post-translational modifications of antigenic peptides may be critical in the establishment and perpetuation of autoimmune processes.
Collapse
Affiliation(s)
- Philippe E Van den Steen
- Rega Institute for Medical Research, Laboratory of Molecular Immunology, University of Leuven, 3000 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Processing exogenous and endogenous proteins for presentation by major histocompatibility complex (MHC) molecules to T cells is the defining function of antigen-presenting cells (APC) as major regulatory cells in the acquired immune response. MHC class II-restricted antigen presentation to CD4 T cells is achieved by an essentially common pathway that is subject to variation with regard to the location and extent of degradation of protein antigens and the site of peptide binding to MHC class II molecules. These subtle variations reveal a surprising flexibility in the ways a diverse peptide repertoire is displayed on the APC surface. This diversity may have profound consequences for the induction of immunity to infection and tumours, as well as autoimmunity and tolerance.
Collapse
Affiliation(s)
- John H Robinson
- Department of Microbiology and Immunology, The Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, UK.
| | | |
Collapse
|
45
|
Simon A, Simon I, Rajnavölgyi E. Modeling MHC class II molecules and their bound peptides as expressed at the cell surface. Mol Immunol 2002; 38:681-7. [PMID: 11858823 DOI: 10.1016/s0161-5890(01)00103-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A detailed insight to the structure of a given major histocompatibility complex (MHC)-peptide complex can strongly support and also improve the analysis of the peptide binding capabilities of the MHC molecule and the characterization of the developing T cell response. The number of MHC class II-peptide crystal structures is limited, therefore constructing and analyzing computer models can serve as efficient complementary tools when someone deals with experimentally determined binding and/or functional data. Commercial programs are available for modeling protein and protein-protein complexes, in general. However, more accurate results can be obtained if the parameters are directly optimized to a given complex, especially in the case of special proteins as MHC class II, an integral membrane protein, whose functional parts behave like regular globular proteins. Here, we present the optimization of an approach used for modeling MHC class II molecules complexed with various peptides fitting into the binding groove and several ways to analyze them with the help of experimental data.
Collapse
Affiliation(s)
- A Simon
- Institute of Enzymology, Hungarian Academy of Sciences, P.O. Box 7, H-1518 Budapest, Hungary.
| | | | | |
Collapse
|
46
|
Brocke P, Garbi N, Momburg F, Hämmerling GJ. HLA-DM, HLA-DO and tapasin: functional similarities and differences. Curr Opin Immunol 2002; 14:22-9. [PMID: 11790529 DOI: 10.1016/s0952-7915(01)00294-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In both the MHC class II and class I pathways of antigen presentation, accessory molecules influence formation of MHC-peptide complexes. In the MHC class II pathway, DM functions in the loading and editing of peptides; recent work demonstrated that it is acting not only in late endosomal compartments but also in recycling compartments and on the surface of B cells and immature dendritic cells. DM activity is modulated by another accessory molecule, DO, but this modulation is mainly operative in B cells, where it may lead to preferential activation of B cells producing high-affinity antibodies. In the MHC class I pathway of antigen presentation, recent in vivo experiments with knockout mice confirmed the role of tapasin in antigen presentation and indicate that it acts as a peptide editor and as a chaperone for TAP and the MHC class I heavy chain. In the class I loading complex, calreticulin and the thiol-dependent oxidoreductase ER60/ERp57 appear to support the function of tapasin in an as-yet-unknown fashion. The picture emerges that DM and tapasin have analogous functions in shaping the peptide repertoire presented by the respective MHC class II and class I molecules.
Collapse
Affiliation(s)
- Pascale Brocke
- DKFZ Deutsches Krebsforschungszentrum, German Cancer Research Center, Molecular Immunology, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
| | | | | | | |
Collapse
|
47
|
Falk K, Lau JM, Santambrogio L, Esteban VM, Puentes F, Rotzschke O, Strominger JL. Ligand exchange of major histocompatibility complex class II proteins is triggered by H-bond donor groups of small molecules. J Biol Chem 2002; 277:2709-15. [PMID: 11602608 DOI: 10.1074/jbc.m109098200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hydrogen bonds (H-bonds) are crucial for the stability of the peptide-major histocompatibility complex (MHC) complex. In particular, the H-bonds formed between the peptide ligand and the MHC class II binding site appear to have a great influence on the half-life of the complex. Here we show that functional groups with the capacity to disrupt hydrogen bonds (e.g. -OH) can efficiently catalyze ligand exchange reactions on HLA-DR molecules. In conjunction with simple carrier molecules (such as propyl or benzyl residues), they trigger the release of low affinity ligands, which permits the rapid binding of peptides with higher affinity. Similar to HLA-DM, these compounds are able to influence the MHC class II ligand repertoire. In contrast to HLA-DM, however, these simple small molecules are still active at neutral pH. Under physiological conditions, they increase the number of "peptide-receptive" MHC class II molecules and facilitate exogenous peptide loading of dendritic cells. The drastic acceleration of the ligand exchange on these antigen presenting cells suggests that, in general, availability of H-bond donors in the extracellular milieu controls the rate of MHC class II ligand exchange reactions on the cell surface. These molecules may therefore be extremely useful for the loading of antigens onto dendritic cells for therapeutic purposes.
Collapse
Affiliation(s)
- Kirsten Falk
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Kropshofer H, Spindeldreher S, Röhn TA, Platania N, Grygar C, Daniel N, Wölpl A, Langen H, Horejsi V, Vogt AB. Tetraspan microdomains distinct from lipid rafts enrich select peptide-MHC class II complexes. Nat Immunol 2002; 3:61-8. [PMID: 11743588 DOI: 10.1038/ni750] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Complexes of peptide and major histocompatibility complex (MHC) class II are expressed on the surface of antigen-presenting cells but their molecular organization is unknown. Here we show that subsets of MHC class II molecules localize to membrane microdomains together with tetraspan proteins, the peptide editor HLA-DM and the costimulator CD86. Tetraspan microdomains differ from other membrane areas such as lipid rafts, as they enrich MHC class II molecules carrying a selected set of peptide antigens. Antigen-presenting cells deficient in tetraspan microdomains have a reduced capacity to activate CD4+ T cells. Thus, the organization of uniformly loaded peptide-MHC class II complexes in tetraspan domains may be a very early event that determines both the composition of the immunological synapse and the quality of the subsequent T helper cell response.
Collapse
MESH Headings
- Amino Acid Sequence
- Antibodies, Monoclonal/immunology
- Antigen Presentation
- Antigens/immunology
- Antigens, CD/immunology
- Antigens, Differentiation, B-Lymphocyte/immunology
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- B7-2 Antigen
- CD4-Positive T-Lymphocytes/immunology
- Cell Communication
- Cell Compartmentation
- Cell Line, Transformed
- Cyclodextrins/pharmacology
- Endosomes/metabolism
- HLA-D Antigens/immunology
- HLA-DP Antigens/immunology
- HLA-DR Antigens/immunology
- Histocompatibility Antigens Class II/immunology
- Humans
- Hybridomas/immunology
- Lipopolysaccharides/pharmacology
- Lymphocyte Activation
- Lysosomes/metabolism
- Macromolecular Substances
- Membrane Glycoproteins/immunology
- Membrane Microdomains/drug effects
- Membrane Microdomains/immunology
- Membrane Proteins/analysis
- Microscopy, Confocal
- Molecular Sequence Data
- Peptide Fragments/immunology
- Receptors, Antigen, T-Cell/immunology
- Saponins/pharmacology
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- beta-Cyclodextrins
Collapse
Affiliation(s)
- H Kropshofer
- Basel Institute for Immunology, 4005 Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Patil NS, Pashine A, Belmares MP, Liu W, Kaneshiro B, Rabinowitz J, McConnell H, Mellins ED. Rheumatoid arthritis (RA)-associated HLA-DR alleles form less stable complexes with class II-associated invariant chain peptide than non-RA-associated HLA-DR alleles. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:7157-68. [PMID: 11739539 DOI: 10.4049/jimmunol.167.12.7157] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Certain HLA-DR alleles confer strong susceptibility to the autoimmune disease rheumatoid arthritis (RA). We compared RA-associated alleles, HLA-DR*0401, HLA-DR*0404, and HLA-DR*0405, with closely related, non-RA-associated alleles, HLA-DR*0402 and HLA-DR*0403, to determine whether they differ in their interactions with the class II chaperone, invariant chain (Ii). Ii binds to class II molecules in the endoplasmic reticulum, inhibits binding of other ligands, and directs class II-Ii complexes to endosomes, where Ii is degraded to class II-associated Ii peptide (CLIP). To evaluate the interaction of Ii and CLIP with these DR4 alleles, we introduced HLA-DR*0401, *0402, and *0404 alleles into a human B cell line that lacked endogenous HLA-DR or HLA-DM molecules. In a similar experiment, we introduced HLA-DR*0403 and *0405 into an HLA-DM-expressing B cell line, 8.1.6, and its DM-negative derivative, 9.5.3. Surface abundance of DR4-CLIP peptide complexes and their susceptibility to SDS-induced denaturation suggested that the different DR4-CLIP complexes had different stabilities. Pulse-chase experiments showed CLIP dissociated more rapidly from RA-associated DR molecules in B cell lines. In vitro assays using soluble rDR4 molecules showed that DR-CLIP complexes of DR*0401 and DR*0404 were less stable than complexes of DR*0402. Using CLIP peptide variants, we mapped the reduced CLIP interaction of RA-associated alleles to the shared epitope region. The reduced interaction of RA-associated HLA-DR4 molecules with CLIP may contribute to the pathophysiology of autoimmunity in RA.
Collapse
Affiliation(s)
- N S Patil
- Department of Pediatrics, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA.
| | | | | | | | | | | | | | | |
Collapse
|