1
|
Arimbasseri AG, Shukla A, Pradhan AK, Bhargava P. Increased histone acetylation is the signature of repressed state on the genes transcribed by RNA polymerase III. Gene 2024; 893:147958. [PMID: 37923095 DOI: 10.1016/j.gene.2023.147958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Several covalent modifications are found associated with the transcriptionally active chromatin regions constituted by the genes transcribed by RNA polymerase (pol) II. Pol III-transcribed genes code for the small, stable RNA species, which participate in many cellular processes, essential for survival. Pol III transcription is repressed under most of the stress conditions by its negative regulator Maf1. We found that most of the histone acetylations increase with starvation-induced repression on several genes transcribed by the yeast pol III. On one of these genes, SNR6 (coding for the U6snRNA), a strongly positioned nucleosome in the gene upstream region plays regulatory role under repression. On this nucleosome, the changes in H3K9 and H3K14 acetylations show different dynamics. During repression, acetylation levels on H3K9 show steady increase whereas H3K14 acetylation increases with a peak at 40 min after which levels reduce. Both the levels settle by 2 hr to a level higher than the active state, which revert to normal levels with nutrient repletion. The increase in H3 acetylations is seen in the mutants reported to show reduced SNR6 transcription but not in the maf1Δ cells. This increase on a regulatory nucleosome may be part of the signaling mechanisms, which prepare cells for the stress-related quick repression as well as reactivation. The contrasting association of the histone acetylations with pol II and pol III transcription may be an important consideration to make in research studies focused on drug developments targeting histone modifications.
Collapse
Affiliation(s)
| | - Ashutosh Shukla
- Centre for Cellular and Molecular Biology, (Council of Scientific and Industrial Research), Uppal Road, Tarnaka, Hyderabad 500007, India
| | - Ashis Kumar Pradhan
- Centre for Cellular and Molecular Biology, (Council of Scientific and Industrial Research), Uppal Road, Tarnaka, Hyderabad 500007, India
| | - Purnima Bhargava
- Centre for Cellular and Molecular Biology, (Council of Scientific and Industrial Research), Uppal Road, Tarnaka, Hyderabad 500007, India.
| |
Collapse
|
2
|
Nucleosome Remodeling at the Yeast PHO8 and PHO84 Promoters without the Putatively Essential SWI/SNF Remodeler. Int J Mol Sci 2023; 24:ijms24054949. [PMID: 36902382 PMCID: PMC10003099 DOI: 10.3390/ijms24054949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 03/08/2023] Open
Abstract
Chromatin remodeling by ATP-dependent remodeling enzymes is crucial for all genomic processes, like transcription or replication. Eukaryotes harbor many remodeler types, and it is unclear why a given chromatin transition requires more or less stringently one or several remodelers. As a classical example, removal of budding yeast PHO8 and PHO84 promoter nucleosomes upon physiological gene induction by phosphate starvation essentially requires the SWI/SNF remodeling complex. This dependency on SWI/SNF may indicate specificity in remodeler recruitment, in recognition of nucleosomes as remodeling substrate or in remodeling outcome. By in vivo chromatin analyses of wild type and mutant yeast under various PHO regulon induction conditions, we found that overexpression of the remodeler-recruiting transactivator Pho4 allowed removal of PHO8 promoter nucleosomes without SWI/SNF. For PHO84 promoter nucleosome removal in the absence of SWI/SNF, an intranucleosomal Pho4 site, which likely altered the remodeling outcome via factor binding competition, was required in addition to such overexpression. Therefore, an essential remodeler requirement under physiological conditions need not reflect substrate specificity, but may reflect specific recruitment and/or remodeling outcomes.
Collapse
|
3
|
Novačić A, Menéndez D, Ljubas J, Barbarić S, Stutz F, Soudet J, Stuparević I. Antisense non-coding transcription represses the PHO5 model gene at the level of promoter chromatin structure. PLoS Genet 2022; 18:e1010432. [PMID: 36215302 PMCID: PMC9584416 DOI: 10.1371/journal.pgen.1010432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/20/2022] [Accepted: 09/15/2022] [Indexed: 11/09/2022] Open
Abstract
Pervasive transcription of eukaryotic genomes generates non-coding transcripts with regulatory potential. We examined the effects of non-coding antisense transcription on the regulation of expression of the yeast PHO5 gene, a paradigmatic case for gene regulation through promoter chromatin remodeling. A negative role for antisense transcription at the PHO5 gene locus was demonstrated by leveraging the level of overlapping antisense transcription through specific mutant backgrounds, expression from a strong promoter in cis, and use of the CRISPRi system. Furthermore, we showed that enhanced elongation of PHO5 antisense leads to a more repressive chromatin conformation at the PHO5 gene promoter, which is more slowly remodeled upon gene induction. The negative effect of antisense transcription on PHO5 gene transcription is mitigated upon inactivation of the histone deacetylase Rpd3, showing that PHO5 antisense RNA acts via histone deacetylation. This regulatory pathway leads to Rpd3-dependent decreased recruitment of the RSC chromatin remodeling complex to the PHO5 gene promoter upon induction of antisense transcription. Overall, the data in this work reveal an additional level in the complex regulatory mechanism of PHO5 gene expression by showing antisense transcription-mediated repression at the level of promoter chromatin structure remodeling.
Collapse
Affiliation(s)
- Ana Novačić
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Dario Menéndez
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
| | - Jurica Ljubas
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Slobodan Barbarić
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Françoise Stutz
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
| | - Julien Soudet
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
- * E-mail: (J.S.); (I.S.)
| | - Igor Stuparević
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
- * E-mail: (J.S.); (I.S.)
| |
Collapse
|
4
|
Shih CH, Fay J. Cis-regulatory variants affect gene expression dynamics in yeast. eLife 2021; 10:e68469. [PMID: 34369376 PMCID: PMC8367379 DOI: 10.7554/elife.68469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022] Open
Abstract
Evolution of cis-regulatory sequences depends on how they affect gene expression and motivates both the identification and prediction of cis-regulatory variants responsible for expression differences within and between species. While much progress has been made in relating cis-regulatory variants to expression levels, the timing of gene activation and repression may also be important to the evolution of cis-regulatory sequences. We investigated allele-specific expression (ASE) dynamics within and between Saccharomyces species during the diauxic shift and found appreciable cis-acting variation in gene expression dynamics. Within-species ASE is associated with intergenic variants, and ASE dynamics are more strongly associated with insertions and deletions than ASE levels. To refine these associations, we used a high-throughput reporter assay to test promoter regions and individual variants. Within the subset of regions that recapitulated endogenous expression, we identified and characterized cis-regulatory variants that affect expression dynamics. Between species, chimeric promoter regions generate novel patterns and indicate constraints on the evolution of gene expression dynamics. We conclude that changes in cis-regulatory sequences can tune gene expression dynamics and that the interplay between expression dynamics and other aspects of expression is relevant to the evolution of cis-regulatory sequences.
Collapse
Affiliation(s)
- Ching-Hua Shih
- Department of Biology, University of RochesterRochesterUnited States
| | - Justin Fay
- Department of Biology, University of RochesterRochesterUnited States
| |
Collapse
|
5
|
Wolff MR, Schmid A, Korber P, Gerland U. Effective dynamics of nucleosome configurations at the yeast PHO5 promoter. eLife 2021; 10:58394. [PMID: 33666171 PMCID: PMC8004102 DOI: 10.7554/elife.58394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
Chromatin dynamics are mediated by remodeling enzymes and play crucial roles in gene regulation, as established in a paradigmatic model, the Saccharomyces cerevisiae PHO5 promoter. However, effective nucleosome dynamics, that is, trajectories of promoter nucleosome configurations, remain elusive. Here, we infer such dynamics from the integration of published single-molecule data capturing multi-nucleosome configurations for repressed to fully active PHO5 promoter states with other existing histone turnover and new chromatin accessibility data. We devised and systematically investigated a new class of 'regulated on-off-slide' models simulating global and local nucleosome (dis)assembly and sliding. Only seven of 68,145 models agreed well with all data. All seven models involve sliding and the known central role of the N-2 nucleosome, but regulate promoter state transitions by modulating just one assembly rather than disassembly process. This is consistent with but challenges common interpretations of previous observations at the PHO5 promoter and suggests chromatin opening by binding competition.
Collapse
Affiliation(s)
| | - Andrea Schmid
- Molecular Biology Division, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Philipp Korber
- Molecular Biology Division, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Ulrich Gerland
- Department of Physics, Technical University of Munich, Garching, Germany
| |
Collapse
|
6
|
Strahl BD, Briggs SD. The SAGA continues: The rise of cis- and trans-histone crosstalk pathways. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194600. [PMID: 32645359 DOI: 10.1016/j.bbagrm.2020.194600] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 01/30/2023]
Abstract
Fueled by key technological innovations during the last several decades, chromatin-based research has greatly advanced our mechanistic understanding of how genes are regulated by epigenetic factors and their associated histone-modifying activities. Most notably, the landmark finding that linked histone acetylation by Gcn5 of the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex to gene activation ushered in a new area of chromatin research and a realization that histone-modifying activities have integral genome functions. This review will discuss past and recent studies that have shaped our understanding of how the histone-modifying activities of SAGA are regulated by, and modulate the outcomes of, other histone modifications during gene transcription. Because much of our understanding of SAGA was established with budding yeast, we will focus on yeast as a model. We discuss the actions of cis- and trans-histone crosstalk pathways that involve the histone acetyltransferase, deubiquitylase, and reader domains of SAGA. We conclude by considering unanswered questions about SAGA and related complexes.
Collapse
Affiliation(s)
- Brian D Strahl
- Department of Biochemistry and Biophysics, 120 Mason Farm Rd, University of North Carolina at Chapel Hill, NC 27599, USA.
| | - Scott D Briggs
- Department of Biochemistry and Purdue University Center for Cancer Research, Purdue University, Hansen Life Science Research Building, 201S, University Street, West Lafayette, IN 47907; USA.
| |
Collapse
|
7
|
Abstract
The efficiency of genome editing with CRISPR-Cas9 can vary widely at different targets and in different cells. Some of this variability may be due to the inherent quality of different guide RNAs, but it may also depend on the cellular context of the genomic target DNA. In this report, we demonstrate that targets bound by nucleosomes are cut much less efficiently than targets from which nucleosomes are absent or have been depleted. This information can inform target selection, particularly in cases where cells are quiescent or nucleosome mobility is limited. Genome editing with CRISPR-Cas nucleases has been applied successfully to a wide range of cells and organisms. There is, however, considerable variation in the efficiency of cleavage and outcomes at different genomic targets, even within the same cell type. Some of this variability is likely due to the inherent quality of the interaction between the guide RNA and the target sequence, but some may also reflect the relative accessibility of the target. We investigated the influence of chromatin structure, particularly the presence or absence of nucleosomes, on cleavage by the Streptococcus pyogenes Cas9 protein. At multiple target sequences in two promoters in the yeast genome, we find that Cas9 cleavage is strongly inhibited when the DNA target is within a nucleosome. This inhibition is relieved when nucleosomes are depleted. Remarkably, the same is not true of zinc-finger nucleases (ZFNs), which cleave equally well at nucleosome-occupied and nucleosome-depleted sites. These results have implications for the choice of specific targets for genome editing, both in research and in clinical and other practical applications.
Collapse
|
8
|
Woo H, Dam Ha S, Lee SB, Buratowski S, Kim T. Modulation of gene expression dynamics by co-transcriptional histone methylations. Exp Mol Med 2017; 49:e326. [PMID: 28450734 PMCID: PMC6130219 DOI: 10.1038/emm.2017.19] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 12/20/2016] [Indexed: 01/17/2023] Open
Abstract
Co-transcriptional methylations of histone H3 at lysines 4 and 36, highly conserved methyl marks from yeast to humans, have profound roles in regulation of histone acetylation. These modifications function to recruit and/or activate distinct histone acetyltransferases (HATs) or histone deacetylases (HDACs). Whereas H3K4me3 increases acetylation at promoters via multiple HATs, H3K4me2 targets Set3 HDAC to deacetylate histones in 5' transcribed regions. In 3' regions of genes, H3K36me2/3 facilitates deacetylation by Rpd3S HDAC and slows elongation. Despite their important functions in deacetylation, no strong effects on global gene expression have been seen under optimized or laboratory growth conditions. Instead, H3K4me2-Set3 HDAC and Set2-Rpd3S pathways primarily delay the kinetics of messenger RNA (mRNA) and long noncoding RNA (lncRNA) induction upon environmental changes. A majority of mRNA genes regulated by these pathways have an overlapping lncRNA transcription either from an upstream or an antisense promoter. Surprisingly, the distance between mRNA and lncRNA promoters seems to specify the repressive effects of the two pathways. Given that co-transcriptional methylations and acetylation have been linked to many cancers, studying their functions in a dynamic condition or during cancer progression will be much more important and help identify novel genes associated with cancers.
Collapse
Affiliation(s)
- Hyeonju Woo
- Department of Life Science, Ewha Womans University, Seoul, Korea
- The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - So Dam Ha
- Department of Life Science, Ewha Womans University, Seoul, Korea
- The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Sung Bae Lee
- Department of Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea
| | - Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - TaeSoo Kim
- Department of Life Science, Ewha Womans University, Seoul, Korea
- The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| |
Collapse
|
9
|
Sanz AB, García R, Rodríguez-Peña JM, Nombela C, Arroyo J. Cooperation between SAGA and SWI/SNF complexes is required for efficient transcriptional responses regulated by the yeast MAPK Slt2. Nucleic Acids Res 2016; 44:7159-72. [PMID: 27112564 PMCID: PMC5009723 DOI: 10.1093/nar/gkw324] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 04/12/2016] [Accepted: 04/14/2016] [Indexed: 12/21/2022] Open
Abstract
The transcriptional response of Saccharomyces cerevisiae to cell wall stress is mainly mediated by the cell wall integrity (CWI) pathway through the MAPK Slt2 and the transcription factor Rlm1. Once activated, Rlm1 interacts with the chromatin remodeling SWI/SNF complex which locally alters nucleosome positioning at the target promoters. Here we show that the SAGA complex plays along with the SWI/SNF complex an important role for eliciting both early induction and sustained gene expression upon stress. Gcn5 co-regulates together with Swi3 the majority of the CWI transcriptional program, except for a group of genes which are only dependent on the SWI/SNF complex. SAGA subunits are recruited to the promoter of CWI-responsive genes in a Slt2, Rlm1 and SWI/SNF-dependent manner. However, Gcn5 mediates acetylation and nucleosome eviction only at the promoters of the SAGA-dependent genes. This process is not essential for pre-initiation transcriptional complex assembly but rather increase the extent of the remodeling mediated by SWI/SNF. As a consequence, H3 eviction and Rlm1 recruitment is completely blocked in a swi3Δ gcn5Δ double mutant. Therefore, SAGA complex, through its histone acetylase activity, cooperates with the SWI/SNF complex for the mandatory nucleosome displacement required for full gene expression through the CWI pathway.
Collapse
Affiliation(s)
- Ana Belén Sanz
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, 28040 Madrid, Spain
| | - Raúl García
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, 28040 Madrid, Spain
| | - José Manuel Rodríguez-Peña
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, 28040 Madrid, Spain
| | - César Nombela
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, 28040 Madrid, Spain
| | - Javier Arroyo
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, 28040 Madrid, Spain
| |
Collapse
|
10
|
Temporal Progression of Pneumonic Plague in Blood of Nonhuman Primate: A Transcriptomic Analysis. PLoS One 2016; 11:e0151788. [PMID: 27003632 PMCID: PMC4803270 DOI: 10.1371/journal.pone.0151788] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 03/02/2016] [Indexed: 01/07/2023] Open
Abstract
Early identification of impending illness during widespread exposure to a pathogenic agent offers a potential means to initiate treatment during a timeframe when it would be most likely to be effective and has the potential to identify novel therapeutic strategies. The latter could be critical, especially as antibiotic resistance is becoming widespread. In order to examine pre-symptomatic illness, African green monkeys were challenged intranasally with aerosolized Yersinia pestis strain CO92 and blood samples were collected in short intervals from 45 m till 42 h post-exposure. Presenting one of the first genomic investigations of a NHP model challenged by pneumonic plague, whole genome analysis was annotated in silico and validated by qPCR assay. Transcriptomic profiles of blood showed early perturbation with the number of differentially expressed genes increasing until 24 h. By then, Y. pestis had paralyzed the host defense, as suggested by the functional analyses. Early activation of the apoptotic networks possibly facilitated the pathogen to overwhelm the defense mechanisms, despite the activation of the pro-inflammatory mechanism, toll-like receptors and microtubules at the port-of-entry. The overexpressed transcripts encoding an early pro-inflammatory response particularly manifested in active lymphocytes and ubiquitin networks were a potential deviation from the rodent models, which needs further verification. In summary, the present study recognized a pattern of Y. pestis pathogenesis potentially more applicable to the human system. Independent validation using the complementary omics approach with comprehensive evaluation of the organs, such as lungs which showed early bacterial infection, is essential.
Collapse
|
11
|
Moraga F, Aquea F. Composition of the SAGA complex in plants and its role in controlling gene expression in response to abiotic stresses. FRONTIERS IN PLANT SCIENCE 2015; 6:865. [PMID: 26528322 PMCID: PMC4604261 DOI: 10.3389/fpls.2015.00865] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/30/2015] [Indexed: 05/07/2023]
Abstract
Protein complexes involved in epigenetic regulation of transcription have evolved as molecular strategies to face environmental stress in plants. SAGA (Spt-Ada-Gcn5 Acetyltransferase) is a transcriptional co-activator complex that regulates numerous cellular processes through the coordination of multiple post-translational histone modifications, including acetylation, deubiquitination, and chromatin recognition. The diverse functions of the SAGA complex involve distinct modules that are highly conserved between yeast, flies, and mammals. In this review, the composition of the SAGA complex in plants is described and its role in gene expression regulation under stress conditions summarized. Some of these proteins are likely involved in the regulation of the inducible expression of genes under light, cold, drought, salt, and iron stress, although the functions of several of its components remain unknown.
Collapse
Affiliation(s)
- Felipe Moraga
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
| | - Felipe Aquea
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
- Center for Applied Ecology and SustainabilitySantiago, Chile
- *Correspondence: Felipe Aquea
| |
Collapse
|
12
|
Kuo HF, Chang TY, Chiang SF, Wang WD, Charng YY, Chiou TJ. Arabidopsis inositol pentakisphosphate 2-kinase, AtIPK1, is required for growth and modulates phosphate homeostasis at the transcriptional level. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:503-15. [PMID: 25155524 DOI: 10.1111/tpj.12650] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 05/07/2023]
Abstract
Inositol hexakisphosphate (IP6 ) provides a phosphorous reservoir in plant seeds; in addition, along with its biosynthesis intermediates and derivatives, IP6 also plays important roles in diverse developmental and physiological processes. Disruption of the Arabidopsis inositol pentakisphosphate 2-kinase coding gene AtIPK1 was previously shown to reduce IP6 content in vegetative tissues and affect phosphate (Pi) sensing. Here we show that AtIPK1 is required for sustaining plant growth, as null mutants are non-viable. An incomplete loss-of-function mutant, atipk1-1, exhibited disturbed Pi homeostasis and overaccumulated Pi as a consequence of increased Pi uptake activity and root-to-shoot Pi translocation. The atipk1-1 mutants also showed a Pi deficiency-like root system architecture with reduced primary root and enhanced lateral root growth. Transcriptome analysis indicated that a subset of Pi starvation-responsive genes was transcriptionally perturbed in the atipk1-1 mutants and the expression of multiple genes involved in Pi uptake, allocation, and remobilization was increased. Genetic and transcriptional analyses suggest that disturbance of Pi homeostasis caused by atipk1 mutation involved components in addition to PHR1(-like) transcription factors. Notably, the transcriptional increase of a number of Pi starvation-responsive genes in the atipk1-1 mutants is correlated with the reduction of histone variant H2A.Z occupation in chromatin. The myo-inositol-1-phosphate synthase mutants, atmips1 and atmips2 with comparable reduction in vegetative IP6 to that in the atipk1-1 mutants did not overaccumulate Pi, suggesting that Pi homeostasis modulated by AtIPK1 is not solely attributable to IP6 level. This study reveals that AtIPK1 has important roles in growth and Pi homeostasis.
Collapse
Affiliation(s)
- Hui-Fen Kuo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | | | | | | | | | | |
Collapse
|
13
|
Korber P, Barbaric S. The yeast PHO5 promoter: from single locus to systems biology of a paradigm for gene regulation through chromatin. Nucleic Acids Res 2014; 42:10888-902. [PMID: 25190457 PMCID: PMC4176169 DOI: 10.1093/nar/gku784] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Chromatin dynamics crucially contributes to gene regulation. Studies of the yeast PHO5 promoter were key to establish this nowadays accepted view and continuously provide mechanistic insight in chromatin remodeling and promoter regulation, both on single locus as well as on systems level. The PHO5 promoter is a context independent chromatin switch module where in the repressed state positioned nucleosomes occlude transcription factor sites such that nucleosome remodeling is a prerequisite for and not consequence of induced gene transcription. This massive chromatin transition from positioned nucleosomes to an extensive hypersensitive site, together with respective transitions at the co-regulated PHO8 and PHO84 promoters, became a prime model for dissecting how remodelers, histone modifiers and chaperones co-operate in nucleosome remodeling upon gene induction. This revealed a surprisingly complex cofactor network at the PHO5 promoter, including five remodeler ATPases (SWI/SNF, RSC, INO80, Isw1, Chd1), and demonstrated for the first time histone eviction in trans as remodeling mode in vivo. Recently, the PHO5 promoter and the whole PHO regulon were harnessed for quantitative analyses and computational modeling of remodeling, transcription factor binding and promoter input-output relations such that this rewarding single-locus model becomes a paradigm also for theoretical and systems approaches to gene regulatory networks.
Collapse
Affiliation(s)
- Philipp Korber
- Adolf-Butenandt-Institute, Molecular Biology, University of Munich, Munich 80336, Germany
| | - Slobodan Barbaric
- Faculty of Food Technology and Biotechnology, Laboratory of Biochemistry, University of Zagreb, Zagreb 10000, Croatia
| |
Collapse
|
14
|
Ansari SA, Paul E, Sommer S, Lieleg C, He Q, Daly AZ, Rode KA, Barber WT, Ellis LC, LaPorta E, Orzechowski AM, Taylor E, Reeb T, Wong J, Korber P, Morse RH. Mediator, TATA-binding protein, and RNA polymerase II contribute to low histone occupancy at active gene promoters in yeast. J Biol Chem 2014; 289:14981-95. [PMID: 24727477 DOI: 10.1074/jbc.m113.529354] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Transcription by RNA polymerase II (Pol II) in eukaryotes requires the Mediator complex, and often involves chromatin remodeling and histone eviction at active promoters. Here we address the role of Mediator in recruitment of the Swi/Snf chromatin remodeling complex and its role, along with components of the preinitiation complex (PIC), in histone eviction at inducible and constitutively active promoters in the budding yeast Saccharomyces cerevisiae. We show that recruitment of the Swi/Snf chromatin remodeling complex to the induced CHA1 promoter, as well as its association with several constitutively active promoters, depends on the Mediator complex but is independent of Mediator at the induced MET2 and MET6 genes. Although transcriptional activation and histone eviction at CHA1 depends on Swi/Snf, Swi/Snf recruitment is not sufficient for histone eviction at the induced CHA1 promoter. Loss of Swi/Snf activity does not affect histone occupancy of several constitutively active promoters; in contrast, higher histone occupancy is seen at these promoters in Mediator and PIC component mutants. We propose that an initial activator-dependent, nucleosome remodeling step allows PIC components to outcompete histones for occupancy of promoter sequences. We also observe reduced promoter association of Mediator and TATA-binding protein in a Pol II (rpb1-1) mutant, indicating mutually cooperative binding of these components of the transcription machinery and indicating that it is the PIC as a whole whose binding results in stable histone eviction.
Collapse
Affiliation(s)
- Suraiya A Ansari
- From the Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509
| | - Emily Paul
- From the Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509
| | - Sebastian Sommer
- the Adolf-Butenandt-Institut, Universität München, 80336 Munich, Germany
| | - Corinna Lieleg
- the Adolf-Butenandt-Institut, Universität München, 80336 Munich, Germany
| | - Qiye He
- From the Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509, the Department of Biomedical Science, University at Albany School of Public Health, Albany, New York 12201-0509, and
| | - Alexandre Z Daly
- From the Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509
| | - Kara A Rode
- From the Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509
| | - Wesley T Barber
- From the Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509
| | - Laura C Ellis
- From the Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509
| | - Erika LaPorta
- From the Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509, the Department of Biomedical Science, University at Albany School of Public Health, Albany, New York 12201-0509, and
| | - Amanda M Orzechowski
- From the Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509
| | - Emily Taylor
- From the Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509
| | - Tanner Reeb
- From the Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509
| | - Jason Wong
- From the Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509
| | - Philipp Korber
- the Adolf-Butenandt-Institut, Universität München, 80336 Munich, Germany
| | - Randall H Morse
- From the Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509, the Department of Biomedical Science, University at Albany School of Public Health, Albany, New York 12201-0509, and
| |
Collapse
|
15
|
Musladin S, Krietenstein N, Korber P, Barbaric S. The RSC chromatin remodeling complex has a crucial role in the complete remodeler set for yeast PHO5 promoter opening. Nucleic Acids Res 2014; 42:4270-82. [PMID: 24465003 PMCID: PMC3985623 DOI: 10.1093/nar/gkt1395] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although yeast PHO5 promoter chromatin opening is a founding model for chromatin remodeling, the complete set of involved remodelers remained unknown for a long time. The SWI/SNF and INO80 remodelers cooperate here, but nonessentially, and none of the many tested single or combined remodeler gene mutations could prevent PHO5 promoter opening. RSC, the most abundant and only remodeler essential for viability, was a controversial candidate for the unrecognized remodeling activity but unassessed in vivo. Now we show that remodels the structure of chromatin (RSC) is crucially involved in PHO5 promoter opening. Further, the isw1 chd1 double deletion also delayed chromatin remodeling. Strikingly, combined absence of RSC and Isw1/Chd1 or Snf2 abolished for the first time promoter opening on otherwise sufficient induction in vivo. Together with previous findings, we recognize now a surprisingly complex network of five remodelers (RSC, SWI/SNF, INO80, Isw1 and Chd1) from four subfamilies (SWI/SNF, INO80, ISWI and CHD) as involved in PHO5 promoter chromatin remodeling. This is likely the first described complete remodeler set for a physiological chromatin transition. RSC was hardly involved at the coregulated PHO8 or PHO84 promoters despite cofactor recruitment by the same transactivator and RSC’s presence at all three promoters. Therefore, promoter-specific chromatin rather than transactivators determine remodeler requirements.
Collapse
Affiliation(s)
- Sanja Musladin
- Laboratory of Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb 10000, Croatia and Molecular Biology, Adolf-Butenandt-Institut, University of Munich, Munich 80336, Germany
| | | | | | | |
Collapse
|
16
|
Weiner A, Chen HV, Liu CL, Rahat A, Klien A, Soares L, Gudipati M, Pfeffner J, Regev A, Buratowski S, Pleiss JA, Friedman N, Rando OJ. Systematic dissection of roles for chromatin regulators in a yeast stress response. PLoS Biol 2012; 10:e1001369. [PMID: 22912562 PMCID: PMC3416867 DOI: 10.1371/journal.pbio.1001369] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 06/20/2012] [Indexed: 01/05/2023] Open
Abstract
Systematic functional and mapping studies of histone modifications in yeast show that most chromatin regulators are more important for dynamic transcriptional reprogramming than for steady-state gene expression. Packaging of eukaryotic genomes into chromatin has wide-ranging effects on gene transcription. Curiously, it is commonly observed that deletion of a global chromatin regulator affects expression of only a limited subset of genes bound to or modified by the regulator in question. However, in many single-gene studies it has become clear that chromatin regulators often do not affect steady-state transcription, but instead are required for normal transcriptional reprogramming by environmental cues. We therefore have systematically investigated the effects of 83 histone mutants, and 119 gene deletion mutants, on induction/repression dynamics of 170 transcripts in response to diamide stress in yeast. Importantly, we find that chromatin regulators play far more pronounced roles during gene induction/repression than they do in steady-state expression. Furthermore, by jointly analyzing the substrates (histone mutants) and enzymes (chromatin modifier deletions) we identify specific interactions between histone modifications and their regulators. Combining these functional results with genome-wide mapping of several histone marks in the same time course, we systematically investigated the correspondence between histone modification occurrence and function. We followed up on one pathway, finding that Set1-dependent H3K4 methylation primarily acts as a gene repressor during multiple stresses, specifically at genes involved in ribosome biosynthesis. Set1-dependent repression of ribosomal genes occurs via distinct pathways for ribosomal protein genes and ribosomal biogenesis genes, which can be separated based on genetic requirements for repression and based on chromatin changes during gene repression. Together, our dynamic studies provide a rich resource for investigating chromatin regulation, and identify a significant role for the “activating” mark H3K4me3 in gene repression. Chromatin packaging of eukaryotic genomes has wideranging, yet poorly understood, effects on gene regulation. Curiously, many histone modifications occur on the majority of genes, yet their loss typically affects a small subset of those genes. Here, we examine gene expression defects in 200 chromatin-related mutants during a stress response, finding that chromatin regulators have far greater effects on the dynamics of gene expression than on the steady-state transcription. By grouping mutants according to their shared defects in the stress response, we systematically recover known chromatin-related complexes and pathways, and predict several novel pathways. Finally, by integrating genome-wide changes in the locations of five prominent histone modifications during the stress response with our functional data, we uncover a novel role for the “activating” histone modification H3K4me3 in gene repression. Surprisingly, H3K4 methylation appears to act in conjunction with H3S10 phosphorylation in the repression of ribosomal biosynthesis genes. Repression of ribosomal protein genes and ribosomal RNA maturation genes occur via distinct pathways. Our results show that steady-state studies miss a great deal of important chromatin biology, and identify a surprising role for H3K4 methylation in ribosomal gene repression in yeast.
Collapse
Affiliation(s)
- Assaf Weiner
- School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel
- Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Hsiuyi V. Chen
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Chih Long Liu
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ayelet Rahat
- School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel
- Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Avital Klien
- School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel
- Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Luis Soares
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mohanram Gudipati
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Jenna Pfeffner
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Stephen Buratowski
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jeffrey A. Pleiss
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Nir Friedman
- School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel
- Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
- * E-mail: (NF); (OJR)
| | - Oliver J. Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (NF); (OJR)
| |
Collapse
|
17
|
Abstract
Understanding the mechanisms by which chromatin structure controls eukaryotic transcription has been an intense area of investigation for the past 25 years. Many of the key discoveries that created the foundation for this field came from studies of Saccharomyces cerevisiae, including the discovery of the role of chromatin in transcriptional silencing, as well as the discovery of chromatin-remodeling factors and histone modification activities. Since that time, studies in yeast have continued to contribute in leading ways. This review article summarizes the large body of yeast studies in this field.
Collapse
|
18
|
Sun WJ, Zhou X, Zheng JH, Lu MD, Nie JY, Yang XJ, Zheng ZQ. Histone acetyltransferases and deacetylases: molecular and clinical implications to gastrointestinal carcinogenesis. Acta Biochim Biophys Sin (Shanghai) 2012; 44:80-91. [PMID: 22194016 DOI: 10.1093/abbs/gmr113] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Histone acetyltransferases and deacetylases are two groups of enzymes whose opposing activities govern the dynamic levels of reversible acetylation on specific lysine residues of histones and many other proteins. Gastrointestinal (GI) carcinogenesis is a major cause of morbidity and mortality worldwide. In addition to genetic and environmental factors, the role of epigenetic abnormalities such as aberrant histone acetylation has been recognized to be pivotal in regulating benign tumorigenesis and eventual malignant transformation. Here we provide an overview of histone acetylation, list the major groups of histone acetyltransferases and deacetylases, and cover in relatively more details the recent studies that suggest the links of these enzymes to GI carcinogenesis. As potential novel therapeutics for GI and other cancers, histone deacetylase inhibitors are also discussed.
Collapse
Affiliation(s)
- Wei-Jian Sun
- The 2nd Affiliated Hospital, Wenzhou Medical College, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Sansó M, Vargas-Pérez I, Quintales L, Antequera F, Ayté J, Hidalgo E. Gcn5 facilitates Pol II progression, rather than recruitment to nucleosome-depleted stress promoters, in Schizosaccharomyces pombe. Nucleic Acids Res 2011; 39:6369-79. [PMID: 21515633 PMCID: PMC3159446 DOI: 10.1093/nar/gkr255] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In the fission yeast, the MAP kinase Sty1 and the transcription factor Atf1 regulate up to 400 genes in response to environmental signals, and both proteins have been shown to bind to their promoters in a stress-dependent manner. In a genetic search, we have isolated the histone H3 acetyltransferase Gcn5, a component of the SAGA complex, as being essential for oxidative stress survival and activation of those genes. Upon stress, Gcn5 is recruited to promoters and coding sequences of stress genes in a Sty1- and Atf1-dependent manner, causing both an enhanced acetylation of histone H3 and nucleosome eviction. Unexpectedly, recruitment of RNA polymerase II (Pol II) is not impaired in Δgcn5 cells. We show here that stress genes display a 400-bp long nucleosome depleted region upstream of the transcription start site even prior to activation. Stress treatment does not alter promoter nucleosome architecture, but induces eviction of the downstream nucleosomes at stress genes, which is not observed in Δgcn5 cells. We conclude that, while Pol II is recruited to nucleosome-free stress promoters in a transcription factor dependent manner, Gcn5 mediates eviction of nucleosomes positioned downstream of promoters, allowing efficient Pol II progression along the genes.
Collapse
Affiliation(s)
- Miriam Sansó
- Departament de Ciències Experimentals i de la Salut, Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, E-08003 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Osipov SA, Preobrazhenskaya OV, Karpov VL. Chromatin structure and transcription regulation in Saccharomyces cerevisiae. Mol Biol 2010. [DOI: 10.1134/s0026893310060026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Li L, Zhu J, Tian J, Liu X, Feng C. A role for Gcn5 in cardiomyocyte differentiation of rat mesenchymal stem cells. Mol Cell Biochem 2010; 345:309-16. [PMID: 20835911 DOI: 10.1007/s11010-010-0586-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 08/28/2010] [Indexed: 01/28/2023]
Abstract
MSCs possess the capacity of self-renewal and potential of differentiation into various kinds of specialized tissue cells including myocardiocytes. From self-renewing to oriented differentiation, chromatin is remodeled into heritable states that allow activation or maintain the repression of regulatory genes, which means specific genes in self-renewing switched off and specific genes in oriented differentiation activated (Bernstein et al. Cell 125:315-326, 2006). These epigenetic states are established and controlled largely by specific patterns of histone posttranslational modifications, in particular, histone acetylation (Li Nat Rev Genet 3:662-673, 2002). In cardiomyocyte differentiation of rat MSCs, we focused on Gcn5, which linked a known transcriptional coactivator with catalytic histone acetyltransferase activity (Brownell et al. Cell 84:843-851, 1996). To clarify participatory in vivo role of Gcn5, using an RNA interference (RNAi) strategy employing shRNA to specifically knockdown Gcn5 expression in MSCs, we found that HAT activity altered dynamically depended on the inhibition of Gcn5 during MSCs differentiation. Chromatin immunoprecipitation (ChIP) assay showed the increased binding of acetyl histone H3 to the early cardiomyocyte-specific genes GATA4 and NKx2.5 promoters in cardiomyocyte differentiation of MSCs by 5-azacytidine inducing, whereas the decreased binding with lower Gcn5 expression. Cell ultrastructure analysis revealed that MSCs induced by 5-azacytidine possess morphological characteristics of cardiomyocyte cells. The shape of MSCs transfected by Gcn5 RNAi was similar to normal MSCs, but the chromatin showed heavy electron-density and a hard-packed structure. This intermediate state of chromatin may be an inactive part of MSCs differentiation. These results demonstrate that Gcn5, possessing acetyltransferase activity, is involved in regulating chromatin configuration around GATA4 and NKx2.5 in cardiomyocyte differentiation of rat MSCs by changing the level of histone acetylation. HAT activity depending on Gcn5 is important in differentiation of MSCs into cardiomyocytes as a consequence of the remodeling of the chromatin configuration caused by modification of histone H3.
Collapse
Affiliation(s)
- Li Li
- Department of Pediatrics, Peking University First Hospital, No. 1, Xi-An Men St., West District, 100034, Beijing, People's Republic of China.
| | | | | | | | | |
Collapse
|
22
|
Ertel F, Dirac-Svejstrup AB, Hertel CB, Blaschke D, Svejstrup JQ, Korber P. In vitro reconstitution of PHO5 promoter chromatin remodeling points to a role for activator-nucleosome competition in vivo. Mol Cell Biol 2010; 30:4060-76. [PMID: 20566699 PMCID: PMC2916437 DOI: 10.1128/mcb.01399-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 12/01/2009] [Accepted: 06/09/2010] [Indexed: 11/20/2022] Open
Abstract
The yeast PHO5 promoter is a classical model for studying the role of chromatin in gene regulation. To enable biochemical dissection of the mechanism leading to PHO5 activation, we reconstituted the process in vitro. Positioned nucleosomes corresponding to the repressed PHO5 promoter state were assembled using a yeast extract-based in vitro system. Addition of the transactivator Pho4 yielded an extensive DNase I-hypersensitive site resembling induced PHO5 promoter chromatin. Importantly, this remodeling was energy dependent. In contrast, little or no chromatin remodeling was detected at the PHO8 or PHO84 promoter in this in vitro system. Only the PHO5 promoter harbors a high-affinity intranucleosomal Pho4 binding site (UASp) where Pho4 binding can compete with nucleosome formation, prompting us to test the importance of such competition for chromatin remodeling by analysis of UASp mutants in vivo. Indeed, the intranucleosomal location of the UASp element was critical, but not essential, for complete remodeling at the PHO5 promoter in vivo. Further, binding of just the Gal4 DNA binding domain to an intranucleosomal site could increase PHO5 promoter opening. These data establish an auxiliary role for DNA binding competition between Pho4 and histones in PHO5 promoter chromatin remodeling in vivo.
Collapse
Affiliation(s)
- Franziska Ertel
- Adolf-Butenandt-Institut, University of Munich, Schillerstr. 44, 80336 Munich, Germany, Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | - A. Barbara Dirac-Svejstrup
- Adolf-Butenandt-Institut, University of Munich, Schillerstr. 44, 80336 Munich, Germany, Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | - Christina Bech Hertel
- Adolf-Butenandt-Institut, University of Munich, Schillerstr. 44, 80336 Munich, Germany, Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | - Dorothea Blaschke
- Adolf-Butenandt-Institut, University of Munich, Schillerstr. 44, 80336 Munich, Germany, Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | - Jesper Q. Svejstrup
- Adolf-Butenandt-Institut, University of Munich, Schillerstr. 44, 80336 Munich, Germany, Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | - Philipp Korber
- Adolf-Butenandt-Institut, University of Munich, Schillerstr. 44, 80336 Munich, Germany, Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| |
Collapse
|
23
|
Corepressor-directed preacetylation of histone H3 in promoter chromatin primes rapid transcriptional switching of cell-type-specific genes in yeast. Mol Cell Biol 2010; 30:3342-56. [PMID: 20439496 DOI: 10.1128/mcb.01450-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Switching between alternate states of gene transcription is fundamental to a multitude of cellular regulatory pathways, including those that govern differentiation. In spite of the progress in our understanding of such transitions in gene activity, a major unanswered question is how cells regulate the timing of these switches. Here, we have examined the kinetics of a transcriptional switch that accompanies the differentiation of yeast cells of one mating type into a distinct new cell type. We found that cell-type-specific genes silenced by the alpha2 repressor in the starting state are derepressed to establish the new mating-type-specific gene expression program coincident with the loss of alpha2 from promoters. This rapid derepression does not require the preloading of RNA polymerase II or a preinitiation complex but instead depends upon the Gcn5 histone acetyltransferase. Surprisingly, Gcn5-dependent acetylation of nucleosomes in the promoters of mating-type-specific genes requires the corepressor Ssn6-Tup1 even in the repressed state. Gcn5 partially acetylates the amino-terminal tails of histone H3 in repressed promoters, thereby priming them for rapid derepression upon loss of alpha2. Thus, Ssn6-Tup1 not only efficiently represses these target promoters but also functions to initiate derepression by creating a chromatin state poised for rapid activation.
Collapse
|
24
|
Zhang Q, Chakravarty S, Ghersi D, Zeng L, Plotnikov AN, Sanchez R, Zhou MM. Biochemical profiling of histone binding selectivity of the yeast bromodomain family. PLoS One 2010; 5:e8903. [PMID: 20126658 PMCID: PMC2811197 DOI: 10.1371/journal.pone.0008903] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 01/05/2010] [Indexed: 11/21/2022] Open
Abstract
Background It has been shown that molecular interactions between site-specific chemical modifications such as acetylation and methylation on DNA-packing histones and conserved structural modules present in transcriptional proteins are closely associated with chromatin structural changes and gene activation. Unlike methyl-lysine that can interact with different protein modules including chromodomains, Tudor and MBT domains, as well as PHD fingers, acetyl-lysine (Kac) is known thus far to be recognized only by bromodomains. While histone lysine acetylation plays a crucial role in regulation of chromatin-mediated gene transcription, a high degree of sequence variation of the acetyl-lysine binding site in the bromodomains has limited our understanding of histone binding selectivity of the bromodomain family. Here, we report a systematic family-wide analysis of 14 yeast bromodomains binding to 32 lysine-acetylated peptides derived from known major acetylation sites in four core histones that are conserved in eukaryotes. Methodology The histone binding selectivity of purified recombinant yeast bromodomains was assessed by using the native core histones in an overlay assay, as well as N-terminally biotinylated lysine-acetylated histone peptides spotted on streptavidin-coated nitrocellulose membrane in a dot blot assay. NMR binding analysis further validated the interactions between histones and selected bromodomain. Structural models of all yeast bromodomains were built using comparative modeling to provide insights into the molecular basis of their histone binding selectivity. Conclusions Our study reveals that while not all members of the bromodomain family are privileged to interact with acetylated-lysine, identifiable sequence features from those that bind histone emerge. These include an asparagine residue at the C-terminus of the third helix in the 4-helix bundle, negatively charged residues around the ZA loop, and preponderance of aromatic amino acid residues in the binding pocket. Further, while bromodomains exhibit selectivity for different sites in histones, individual interactions are of modest affinity. Finally, electrostatic interactions appear to be a primary determining factor that guides productive association between a bromodomain and a lysine-acetylated histone.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Suvobrata Chakravarty
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Dario Ghersi
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Lei Zeng
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Alexander N. Plotnikov
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Roberto Sanchez
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Ming-Ming Zhou
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
25
|
Song YH, Ahn SH. A Bre1-associated protein, large 1 (Lge1), promotes H2B ubiquitylation during the early stages of transcription elongation. J Biol Chem 2009; 285:2361-7. [PMID: 19923226 DOI: 10.1074/jbc.m109.039255] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Transcription activation has been proposed to require both ubiquitylation and deubiquitylation of histone H2B. Here, we show that Lge1 (Large 1) is found in a complex containing Rad6.Bre1 and that it controls the recruitment of Bre1, a ubiquitin ligase, and Ubp8, a deubiquitylase, to promote ubiquitylation during the early steps in elongation. Chromatin immunoprecipitation experiments showed that Lge1 associates with promoter and coding regions of actively transcribed genes in a transcription-dependent manner. Disruption of Lge1 abolished ubiquitylation of histone H2B on lysine 123 and H3 methylation on lysines 4 and 79 and resulted in significant sensitivity to 6-azauracil and mycophenolic acid. In particular, in Lge1-deficient cells, Bre1 recruitment was attenuated, whereas recruitment of Ubp8 was facilitated. These alterations were coincident with changes in the interaction between Bre1.Ubp8 and RNA polymerase II phosphorylated at serine 5 of the C-terminal domain. We propose that Lge1 has a novel function in disrupting the balance between the recruitment of Bre1 and Ubp8, thus promoting transcription elongation.
Collapse
Affiliation(s)
- Young-Ha Song
- Division of Molecular and Life Science, College of Science and Technology, Hanyang University, 1271 Sa 3-dong, Sangnok-gu, Ansan, Gyeonggi-do 426-791, Republic of Korea
| | | |
Collapse
|
26
|
Abstract
Eukaryotic DNA is packaged into a nucleoprotein structure known as chromatin, which is comprised of DNA, histones, and nonhistone proteins. Chromatin structure is highly dynamic, and can shift from a transcriptionally inactive state to an active form in response to intra- and extracellular signals. A major factor in chromatin architecture is the covalent modification of histones through the addition of chemical moieties, such as acetyl, methyl, ubiquitin, and phosphate groups. The acetylation of the amino-terminal tails of histones is a process that is highly conserved in eukaryotes, and was one of the earliest histone modifications characterized. Since its identification in 1964, a large body of evidence has accumulated demonstrating that histone acetylation plays an important role in transcription. Despite our ever-growing understanding of the nuclear processes involved in nucleosome acetylation, however, the exact biochemical mechanisms underlying the downstream effects of histone acetylation have yet to be fully elucidated. To date, histone acetylation has been proposed to function in 2 nonmutually exclusive manners: by directly altering chromatin structure, and by acting as a molecular tag for the recruitment of chromatin-modifying complexes. Here, we discuss recent research focusing on these 2 potential roles of histone acetylation and clarify what we actually know about the function of this modification.
Collapse
Affiliation(s)
- Jennifer K Choi
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BCV6T1Z3, Canada
| | | |
Collapse
|
27
|
Alejandro-Osorio AL, Huebert DJ, Porcaro DT, Sonntag ME, Nillasithanukroh S, Will JL, Gasch AP. The histone deacetylase Rpd3p is required for transient changes in genomic expression in response to stress. Genome Biol 2009; 10:R57. [PMID: 19470158 PMCID: PMC2718523 DOI: 10.1186/gb-2009-10-5-r57] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 05/13/2009] [Accepted: 05/26/2009] [Indexed: 12/20/2022] Open
Abstract
Chromatin-immunoprecipitation and computational analysis implicate Rpd3p as an important co-factor in the network of genes regulating the yeast environmental stress response. Background Yeast responding to stress activate a large gene expression program called the Environmental Stress Response that consists of approximately 600 repressed genes and approximately 300 induced genes. Numerous factors are implicated in regulating subsets of Environmental Stress Response genes; however, a complete picture of Environmental Stress Response regulation remains unclear. We investigated the role of the histone deacetylase Rpd3p, previously linked to the upstream regions of many Environmental Stress Response genes, in producing Environmental Stress Response gene expression changes in response to stress. Results We found that the Rpd3-Large complex is required for proper expression of both induced and repressed Environmental Stress Response genes under multiple stress conditions. Cells lacking RPD3 or the Rpd3-Large subunit PHO23 had a major defect in Environmental Stress Response initiation, particularly during the transient phase of expression immediately after stress exposure. Chromatin-immunoprecipitation showed a direct role for Rpd3-Large at representative genes; however, there were different effects on nucleosome occupancy and histone deacetylation at different promoters. Computational analysis implicated regulators that may act with Rpd3p at Environmental Stress Response genes. We provide genetic and biochemical evidence that Rpd3p is required for binding and action of the stress-activated transcription factor Msn2p, although the contribution of these factors differs for different genes. Conclusions Our results implicate Rpd3p as an important co-factor in the Environmental Stress Response regulatory network, and suggest the importance of histone modification in producing transient changes in gene expression triggered by stress.
Collapse
Affiliation(s)
- Adriana L Alejandro-Osorio
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, University Avenue, Madison, WI 53706, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Differential cofactor requirements for histone eviction from two nucleosomes at the yeast PHO84 promoter are determined by intrinsic nucleosome stability. Mol Cell Biol 2009; 29:2960-81. [PMID: 19307305 DOI: 10.1128/mcb.01054-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We showed previously that the strong PHO5 promoter is less dependent on chromatin cofactors than the weaker coregulated PHO8 promoter. In this study we asked if chromatin remodeling at the even stronger PHO84 promoter was correspondingly less cofactor dependent. The repressed PHO84 promoter showed a short hypersensitive region that was flanked upstream and downstream by a positioned nucleosome and contained two transactivator Pho4 sites. Promoter induction generated an extensive hypersensitive and histone-depleted region, yielding two more Pho4 sites accessible. This remodeling was strictly Pho4 dependent, strongly dependent on the remodelers Snf2 and Ino80 and on the histone acetyltransferase Gcn5, and more weakly on the acetyltransferase Rtt109. Importantly, remodeling of each of the two positioned nucleosomes required Snf2 and Ino80 to different degrees. Only remodeling of the upstream nucleosome was strictly dependent on Snf2. Further, remodeling of the upstream nucleosome was more dependent on Ino80 than remodeling of the downstream nucleosome. Both nucleosomes differed in their intrinsic stabilities as predicted in silico and measured in vitro. The causal relationship between the different nucleosome stabilities and the different cofactor requirements was shown by introducing destabilizing mutations in vivo. Therefore, chromatin cofactor requirements were determined by intrinsic nucleosome stabilities rather than correlated to promoter strength.
Collapse
|
29
|
Nap1 links transcription elongation, chromatin assembly, and messenger RNP complex biogenesis. Mol Cell Biol 2008; 28:2113-24. [PMID: 18227150 DOI: 10.1128/mcb.02136-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromatin remodeling is central to the regulation of transcription elongation. We demonstrate that the conserved Saccharomyces cerevisiae histone chaperone Nap1 associates with chromatin. We show that Nap1 regulates transcription of PHO5, and the increase in transcript level and the higher phosphatase activity plateau observed for Deltanap1 cells suggest that the net function of Nap1 is to facilitate nucleosome reassembly during transcription elongation. To further our understanding of histone chaperones in transcription elongation, we identified factors that regulate the function of Nap1 in this process. One factor investigated is an essential mRNA export and TREX complex component, Yra1. Nap1 interacts directly with Yra1 and genetically with other TREX complex components and the mRNA export factor Mex67. Additionally, we show that the recruitment of Nap1 to the coding region of actively transcribed genes is Yra1 dependent and that its recruitment to promoters is TREX complex independent. These observations suggest that Nap1 functions provide a new connection between transcription elongation, chromatin assembly, and messenger RNP complex biogenesis.
Collapse
|
30
|
Abstract
Histone acetylation regulates many cellular processes, and specific acetylation marks, either singly or in combination, produce distinct outcomes. For example, the acetylation pattern on newly synthesized histones is important for their assembly into nucleosomes by histone chaperones. Additionally, the degree of chromatin compaction and folding may be regulated by acetylation of histone H4 at lysine 16. Histone acetylation also regulates the formation of heterochromatin; deacetylation of H4 lysine 16 is important for spreading of heterochromatin components, whereas acetylation of this site serves as a barrier to this spreading. Finally, histone acetylation is critical for gene transcription, but recent results suggest that deacetylation of certain sites also plays an important role. There are many histone acetyltransferases (HATs) and deacetylases, with differing preferences for the various histone proteins and for specific sites on individual histones. Determining how these enzymes create distinct acetylation patterns and regulate the functional outcome is an important challenge.
Collapse
Affiliation(s)
- Mona D Shahbazian
- Department of Biological Chemistry, Geffen School of Medicine and the Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | | |
Collapse
|
31
|
Hoke SMT, Liang G, Mutiu AI, Genereaux J, Brandl CJ. C-terminal processing of yeast Spt7 occurs in the absence of functional SAGA complex. BMC BIOCHEMISTRY 2007; 8:16. [PMID: 17686179 PMCID: PMC1976419 DOI: 10.1186/1471-2091-8-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 08/08/2007] [Indexed: 12/03/2022]
Abstract
Background Spt7 is an integral component of the multi-subunit SAGA complex that is required for the expression of ~10% of yeast genes. Two forms of Spt7 have been identified, the second of which is truncated at its C-terminus and found in the SAGA-like (SLIK) complex. Results We have found that C-terminal processing of Spt7 to its SLIK form (Spt7SLIK) and to a distinct third form (Spt7Form3) occurs in the absence of the SAGA complex components Gcn5, Spt8, Ada1 and Spt20, the latter two of which are required for the integrity of the complex. In addition, N-terminally truncated derivatives of Spt7, including a derivative lacking the histone fold, are processed, indicating that the C-terminus of Spt7 is sufficient for processing and that processing does not require functional Spt7. Using galactose inducible Spt7 expression, we show that the three forms of Spt7 appear and disappear at approximately the same rate with full-length Spt7 not being chased into Spt7SLIK or Spt7Form3. Interestingly, reduced levels of Spt7SLIK and Spt7Form3 were observed in a strain lacking the SAGA component Ubp8, suggesting a regulatory role for Ubp8 in the truncation of Spt7. Conclusion We conclude that truncation of Spt7 occurs early in the biosynthesis of distinct Spt7 containing complexes rather than being a dynamic process linked to the action of the SAGA complex in transcriptional regulation.
Collapse
Affiliation(s)
- Stephen MT Hoke
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, N6A5C1, Canada
| | - Gaoyang Liang
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, N6A5C1, Canada
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, 27599-7295, USA
| | - A Irina Mutiu
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, N6A5C1, Canada
| | - Julie Genereaux
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, N6A5C1, Canada
| | - Christopher J Brandl
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, N6A5C1, Canada
| |
Collapse
|
32
|
Barbaric S, Luckenbach T, Schmid A, Blaschke D, Hörz W, Korber P. Redundancy of chromatin remodeling pathways for the induction of the yeast PHO5 promoter in vivo. J Biol Chem 2007; 282:27610-21. [PMID: 17631505 DOI: 10.1074/jbc.m700623200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Induction of the yeast PHO5 and PHO8 genes leads to a prominent chromatin transition at their promoter regions as a prerequisite for transcription activation. Although induction of PHO8 is strictly dependent on Snf2 and Gcn5, there is no chromatin remodeler identified so far that would be essential for the opening of PHO5 promoter chromatin. Nonetheless, the nonessential but significant involvement of cofactors can be identified if the chromatin opening kinetics are delayed in the respective mutants. Using this approach, we have tested individually all 15 viable Snf2 type ATPase deletion mutants for their effect on PHO5 promoter induction and opening. Only the absence of Snf2 and Ino80 showed a strong delay in chromatin remodeling kinetics. The snf2 ino80 double mutation had a synthetic kinetic effect but eventually still allowed strong PHO5 induction. The same was true for the snf2 gcn5 and ino80 gcn5 double mutants. This strongly suggests a complex network of redundant and mutually independent parallel pathways that lead to the remodeling of the PHO5 promoter. Further, chromatin remodeling kinetics at a transcriptionally inactive TATA box-mutated PHO5 promoter were affected neither under wild type conditions nor in the absence of Snf2 or Gcn5. This demonstrates the complete independence of promoter chromatin opening from downstream PHO5 transcription processes. Finally, the histone variant Htz1 has no prominent role for the kinetics of PHO5 promoter chromatin remodeling.
Collapse
|
33
|
Adkins MW, Williams SK, Linger J, Tyler JK. Chromatin disassembly from the PHO5 promoter is essential for the recruitment of the general transcription machinery and coactivators. Mol Cell Biol 2007; 27:6372-82. [PMID: 17620413 PMCID: PMC2099613 DOI: 10.1128/mcb.00981-07] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The disassembly of promoter nucleosomes appears to be a general property of highly transcribed eukaryotic genes. We have previously shown that the disassembly of chromatin from the promoters of the Saccharomyces cerevisiae PHO5 and PHO8 genes, mediated by the histone chaperone anti-silencing function 1 (Asf1), is essential for transcriptional activation upon phosphate depletion. This mechanism of transcriptional regulation is shared with the ADY2 and ADH2 genes upon glucose removal. Promoter chromatin disassembly by Asf1 is required for recruitment of TBP and RNA polymerase II, but not the Pho4 and Pho2 activators. Furthermore, accumulation of SWI/SNF and SAGA at the PHO5 promoter requires promoter chromatin disassembly. By contrast, the requirement for SWI/SNF and SAGA to facilitate Pho4 activator recruitment to the nucleosome-buried binding site in the PHO5 promoter occurs prior to chromatin disassembly and is distinct from the stable recruitment of SWI/SNF and SAGA that occurs after chromatin disassembly.
Collapse
Affiliation(s)
- Melissa W Adkins
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | | | | | | |
Collapse
|
34
|
Uhler JP, Hertel C, Svejstrup JQ. A role for noncoding transcription in activation of the yeast PHO5 gene. Proc Natl Acad Sci U S A 2007; 104:8011-6. [PMID: 17470801 PMCID: PMC1859995 DOI: 10.1073/pnas.0702431104] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Noncoding, or intergenic, transcription by RNA polymerase II (RNAPII) is remarkably widespread in eukaryotic organisms, but the effects of such transcription remain poorly understood. Here we show that noncoding transcription plays a role in activation, but not repression, of the Saccharomyces cerevisiae PHO5 gene. Histone eviction from the PHO5 promoter during activation occurs with normal kinetics even in the absence of the PHO5 TATA box, showing that transcription of the gene itself is not required for promoter remodeling. Nevertheless, we find that mutations that impair transcript elongation by RNAPII affect the kinetics of histone eviction from the PHO5 promoter. Most dramatically, inactivation of RNAPII itself abolishes eviction completely. Under repressing conditions, an approximately 2.4-kb noncoding exosome-degraded transcript is detected that originates near the PHO5 termination site and is transcribed in the antisense direction. Abrogation of this transcript delays chromatin remodeling and subsequent RNAPII recruitment to PHO5 upon activation. We propose that noncoding transcription through positioned nucleosomes can enhance chromatin plasticity so that chromatin remodeling and activation of traversed genes occur in a timely manner.
Collapse
Affiliation(s)
- Jay P. Uhler
- *Mechanisms of Transcription Laboratory, Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms EN6 3LD, United Kingdom; and
| | - Christina Hertel
- Institut für Physiologische Chemie, Universität München, Schillerstrasse 44, 80336 Munich, Germany
| | - Jesper Q. Svejstrup
- *Mechanisms of Transcription Laboratory, Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms EN6 3LD, United Kingdom; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
35
|
Govind CK, Zhang F, Qiu H, Hofmeyer K, Hinnebusch AG. Gcn5 Promotes Acetylation, Eviction, and Methylation of Nucleosomes in Transcribed Coding Regions. Mol Cell 2007; 25:31-42. [PMID: 17218269 DOI: 10.1016/j.molcel.2006.11.020] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 10/07/2006] [Accepted: 11/22/2006] [Indexed: 10/23/2022]
Abstract
We report that coactivator SAGA, containing the HAT Gcn5p, occupies the GAL1 and ARG1 coding sequences during transcriptional induction, dependent on PIC assembly and Ser5 phosphorylation of the Pol II CTD. Induction of GAL1 increases H3 acetylation per nucleosome in the ORF, dependent on SAGA integrity but not the alternative Gcn5p-HAT complex ADA. Unexpectedly, H3 acetylation in ARG1 coding sequences does not increase during induction due to the opposing activities of multiple HDAs associated with the ORF. Remarkably, inactivation of Gcn5p decreases nucleosome eviction from both GAL1 and a long ( approximately 8 kb) ORF transcribed from the GAL1 promoter. This is associated with reduced Pol II occupancy at the 3' end and decreased mRNA production, selectively, for the long ORF. Gcn5p also enhances H3-K4 trimethylation in the ARG1 ORF and bulk histones. Thus, Gcn5p, most likely in SAGA, stimulates modification and eviction of nucleosomes in transcribed coding sequences and promotes Pol II elongation.
Collapse
Affiliation(s)
- Chhabi K Govind
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
36
|
Hertel CB, Längst G, Hörz W, Korber P. Nucleosome stability at the yeast PHO5 and PHO8 promoters correlates with differential cofactor requirements for chromatin opening. Mol Cell Biol 2006; 25:10755-67. [PMID: 16314501 PMCID: PMC1316968 DOI: 10.1128/mcb.25.24.10755-10767.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The coregulated PHO5 and PHO8 genes in Saccharomyces cerevisiae provide typical examples for the role of chromatin in promoter regulation. It has been a long-standing question why the cofactors Snf2 and Gcn5 are essential for full induction of PHO8 but dispensable for opening of the PHO5 promoter. We show that this discrepancy may result from different stabilities of the two promoter chromatin structures. To test this hypothesis, we used our recently established yeast extract in vitro chromatin assembly system, which generates the characteristic PHO5 promoter chromatin. Here we show that this system also assembles the native PHO8 promoter nucleosome pattern. Remarkably, the positioning information for both native patterns is specific to the yeast extract. Salt gradient dialysis or Drosophila embryo extract does not support proper nucleosome positioning unless supplemented with yeast extract. By competitive assemblies in the yeast extract system we show that the PHO8 promoter has greater nucleosome positioning power and that the properly positioned nucleosomes are more stable than those at the PHO5 promoter. Thus we provide evidence for the correlation of inherently more stable chromatin with stricter cofactor requirements.
Collapse
|
37
|
Korber P, Barbaric S, Luckenbach T, Schmid A, Schermer UJ, Blaschke D, Hörz W. The histone chaperone Asf1 increases the rate of histone eviction at the yeast PHO5 and PHO8 promoters. J Biol Chem 2006; 281:5539-45. [PMID: 16407267 DOI: 10.1074/jbc.m513340200] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic gene expression starts off from a largely obstructive chromatin substrate that has to be rendered accessible by regulated mechanisms of chromatin remodeling. The yeast PHO5 promoter is a well known example for the contribution of positioned nucleosomes to gene repression and for extensive chromatin remodeling in the course of gene induction. Recently, the mechanism of this remodeling process was shown to lead to the disassembly of promoter nucleosomes and the eviction of the constituent histones in trans. This finding called for a histone acceptor in trans and thus made histone chaperones likely to be involved in this process. In this study we have shown that the histone chaperone Asf1 increases the rate of histone eviction at the PHO5 promoter. In the absence of Asf1 histone eviction is delayed, but the final outcome of the chromatin transition is not affected. The same is true for the coregulated PHO8 promoter where induction also leads to histone eviction and where the rate of histone loss is reduced in asf1 strains as well, although less severely. Importantly, the final extent of chromatin remodeling is not affected. We have also presented evidence that Asf1 and the SWI/SNF chromatin remodeling complex work in distinct parallel but functionally overlapping pathways, i.e. they both contribute toward the same outcome without being mutually strictly dependent.
Collapse
Affiliation(s)
- Philipp Korber
- Adolf-Butenandt-Institut, Universität München, Schillerstrasse 44, 80336 Münich, Germany.
| | | | | | | | | | | | | |
Collapse
|
38
|
Liu Y, Xu X, Singh-Rodriguez S, Zhao Y, Kuo MH. Histone H3 Ser10 phosphorylation-independent function of Snf1 and Reg1 proteins rescues a gcn5- mutant in HIS3 expression. Mol Cell Biol 2005; 25:10566-79. [PMID: 16287868 PMCID: PMC1291248 DOI: 10.1128/mcb.25.23.10566-10579.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gcn5 protein is a prototypical histone acetyltransferase that controls transcription of multiple yeast genes. To identify molecular functions that act downstream of or in parallel with Gcn5 protein, we screened for suppressors that rescue the transcriptional defects of HIS3 caused by a catalytically inactive mutant Gcn5, the E173H mutant. One bypass of Gcn5 requirement gene (BGR) suppressor was mapped to the REG1 locus that encodes a semidominant mutant truncated after amino acid 740. Reg1(1-740) protein does not rescue the complete knockout of GCN5, nor does it suppress other gcn5- defects, including the inability to utilize nonglucose carbon sources. Reg1(1-740) enhances HIS3 transcription while HIS3 promoter remains hypoacetylated, indicating that a noncatalytic function of Gcn5 is targeted by this suppressor protein. Reg1 protein is a major regulator of Snf1 kinase that phosphorylates Ser10 of histone H3. However, whereas Snf1 protein is important for HIS3 expression, replacing Ser10 of H3 with alanine or glutamate neither attenuates nor augments the BGR phenotypes. Overproduction of Snf1 protein also preferentially rescues the E173H allele. Biochemically, both Snf1 and Reg1(1-740) proteins copurify with Gcn5 protein. Snf1 can phosphorylate recombinant Gcn5 in vitro. Together, these data suggest that Reg1 and Snf1 proteins function in an H3 phosphorylation-independent pathway that also involves a noncatalytic role played by Gcn5 protein.
Collapse
Affiliation(s)
- Yang Liu
- 401 BCH Building, Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824.
| | | | | | | | | |
Collapse
|
39
|
Türkel S. Non-histone proteins Nhp6A and Nhp6B are required for the regulated expression of SUC2 gene of Saccharomyces cerevisiae. J Biosci Bioeng 2005; 98:9-13. [PMID: 16233659 DOI: 10.1016/s1389-1723(04)70235-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Accepted: 04/05/2004] [Indexed: 10/26/2022]
Abstract
Transcription of the SUC2 gene that encodes invertase enzyme is controlled by glucose repression and derepression mechanisms in Saccharomyces cerevisiae. Several regulatory factors such as Mig1p complex, Gcr1p, Hxk2p, nucleosomes, and the Snf1p kinase complex have been identified as the regulators of SUC2 transcription. The results presented in this study indicate that the non-histone proteins Nhp6A and Nhp6B were also required for the regulated expression of SUC2 gene. Expression of the SUC2 gene reduced to one-fiftieth-one-tenth in the Deltanhp6A Deltanhp6B double mutant strain depending on the growth conditions. Moreover, SUC2 expression and invertase synthesis became constitutive after long-term derepression, and decreased to a low level in Deltanhp6A Deltanhp6B double deletion mutant. A time course analysis of the invertase synthesis revealed that both the repression and derepression rates were very slow in the Deltanhp6A Deltanhp6B double mutant yeast. These results indicate that the architectural transcription factors Nhp6A and Nhp6B play a very critical role in the regulation of SUC2 gene expression.
Collapse
Affiliation(s)
- Sezai Türkel
- Department of Biology, Faculty of Arts and Sciences, Uludag University, 16059-Bursa, Turkey.
| |
Collapse
|
40
|
Abstract
The unambiguous identification of the direct targets of eukaryotic transcriptional activators has been a major challenge in the field. Recently, the authentic targets of several yeast and mammalian activators have been determined, and the results of these studies have important implications for our understanding of transcriptional activation mechanisms.
Collapse
Affiliation(s)
- Michael R Green
- Howard Hughes Medical Institute, Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| |
Collapse
|
41
|
Dhasarathy A, Kladde MP. Promoter occupancy is a major determinant of chromatin remodeling enzyme requirements. Mol Cell Biol 2005; 25:2698-707. [PMID: 15767675 PMCID: PMC1061642 DOI: 10.1128/mcb.25.7.2698-2707.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromatin creates transcriptional barriers that are overcome by coactivator activities such as histone acetylation by Gcn5 and ATP-dependent chromatin remodeling by SWI/SNF. Factors defining the differential coactivator requirements in the transactivation of various promoters remain elusive. Induction of the Saccharomyces cerevisiae PHO5 promoter does not require Gcn5 or SWI/SNF under fully inducing conditions of no phosphate. We show that PHO5 activation is highly dependent on both coactivators at intermediate phosphate concentrations, conditions that reduce the nuclear concentration of the Pho4 transactivator and severely diminish its association with PHO5 in the absence of Gcn5 or SWI/SNF. Conversely, physiological increases in Pho4 nuclear concentration and binding at PHO5 suppress the need for both Gcn5 and SWI/SNF, suggesting that coactivator redundancy is established at high Pho4 binding site occupancy. Consistent with this, we demonstrate, using chromatin immunoprecipitation, that Gcn5 and SWI/SNF are directly recruited to PHO5 and other strongly transcribed promoters, including GAL1-10, RPL19B, RPS22B, PYK1, and EFT2, which do not require either coactivator for expression. These results show that activator concentration and binding site occupancy play crucial roles in defining the extent to which transcription requires individual chromatin remodeling enzymes. In addition, Gcn5 and SWI/SNF associate with many more genomic targets than previously appreciated.
Collapse
Affiliation(s)
- Archana Dhasarathy
- Department of Biochemistry and Biophysics, 2128 TAMU, Texas A&M University, College Station, TX 77843-2128, USA
| | | |
Collapse
|
42
|
Huang S, O'Shea EK. A systematic high-throughput screen of a yeast deletion collection for mutants defective in PHO5 regulation. Genetics 2005; 169:1859-71. [PMID: 15695358 PMCID: PMC1360160 DOI: 10.1534/genetics.104.038695] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In response to phosphate limitation, Saccharomyces cerevisiae induces transcription of a set of genes important for survival. One of these genes is PHO5, which encodes a secreted acid phosphatase. A phosphate-responsive signal transduction pathway (the PHO pathway) mediates this response through three central components: a cyclin-dependent kinase (CDK), Pho85; a cyclin, Pho80; and a CDK inhibitor (CKI), Pho81. While signaling downstream of the Pho81/Pho80/Pho85 complex to PHO5 expression has been well characterized, little is known about factors acting upstream of these components. To identify missing factors involved in the PHO pathway, we carried out a high-throughput, quantitative enzymatic screen of a yeast deletion collection, searching for novel mutants defective in expression of PHO5. As a result of this study, we have identified at least nine genes that were previously not known to regulate PHO5 expression. The functional diversity of these genes suggests that the PHO pathway is networked with other important cellular signaling pathways. Among these genes, ADK1 and ADO1, encoding an adenylate kinase and an adenosine kinase, respectively, negatively regulate PHO5 expression and appear to function upstream of PHO81.
Collapse
Affiliation(s)
- Sidong Huang
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, 94143-2240, USA
| | | |
Collapse
|
43
|
Korber P, Luckenbach T, Blaschke D, Hörz W. Evidence for histone eviction in trans upon induction of the yeast PHO5 promoter. Mol Cell Biol 2004; 24:10965-74. [PMID: 15572697 PMCID: PMC533982 DOI: 10.1128/mcb.24.24.10965-10974.2004] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The yeast PHO5 promoter is a model system for the role of chromatin in eukaryotic gene regulation. Four positioned nucleosomes in the repressed state give way to an extended DNase I hypersensitive site upon induction. Recently this hypersensitive site was shown to be devoid of histone DNA contacts. This raises the mechanistic question of how histones are removed from the promoter. A displacement in trans or movement in cis, the latter according to the well established nucleosome sliding mechanism, are the major alternatives. In this study, we embedded the PHO5 promoter into the context of a small plasmid which severely restricts the space for nucleosome sliding along the DNA in cis. Such a construct would either preclude the chromatin transition upon induction altogether, were it to occur in cis, or gross changes in chromatin around the plasmid would be the consequence. We observed neither. Instead, promoter opening on the plasmid was indistinguishable from opening at the native chromosomal locus. This makes a sliding mechanism for the chromatin transition at the PHO5 promoter highly unlikely and points to histone eviction in trans.
Collapse
Affiliation(s)
- Philipp Korber
- Adolf-Butenandt-Institut, Universität München, Schillerstrasse 44, 80336 Munich, Germany.
| | | | | | | |
Collapse
|
44
|
Erkine AM. Activation domains of gene-specific transcription factors: are histones among their targets? Biochem Cell Biol 2004; 82:453-9. [PMID: 15284898 DOI: 10.1139/o04-036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation domains of promoter-specific transcription factors are critical entities involved in recruitment of multiple protein complexes to gene promoters. The activation domains often retain functionality when transferred between very diverse eukaryotic phyla, yet the amino acid sequences of activation domains do not bear any specific consensus or secondary structure. Activation domains function in the context of chromatin structure and are critical for chromatin remodeling, which is associated with transcription initiation. The mechanisms of direct and indirect recruitment of chromatin-remodeling and histone-modifying complexes, including mechanisms involving direct interactions between activation domains and histones, are discussed.Key words: activation domain, transcription, chromatin, nucleosome.
Collapse
Affiliation(s)
- Alexandre M Erkine
- Division of Basic Biomedical Sciences, University of South Dakota School of Medicine, Vermillion 57069, USA.
| |
Collapse
|
45
|
Adkins MW, Howar SR, Tyler JK. Chromatin disassembly mediated by the histone chaperone Asf1 is essential for transcriptional activation of the yeast PHO5 and PHO8 genes. Mol Cell 2004; 14:657-66. [PMID: 15175160 DOI: 10.1016/j.molcel.2004.05.016] [Citation(s) in RCA: 248] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 05/17/2004] [Accepted: 05/19/2004] [Indexed: 10/26/2022]
Abstract
Nucleosome loss from a promoter region has recently been described as a potential mechanism for transcriptional regulation. We investigated whether H3/H4 histone chaperones mediate the loss of nucleosomes from the promoter of the yeast PHO5 gene during transcriptional activation. We found that antisilencing function 1 (Asf1p) mediates nucleosome disassembly from the PHO5 promoter in vivo. We show that nucleosome disassembly also occurs at a second promoter, that of the PHO8 gene, during activation, and we demonstrate that this is also mediated by Asf1p. Furthermore, we show that nucleosome disassembly is essential for PHO5 and PHO8 activation. Contrary to the current dogma, we demonstrate that nucleosome disassembly is not required to enable binding of the Pho4p activator to its PHO5 UASp2 site in vivo. Finally, we show that nucleosomes are reassembled over the PHO5 promoter during repression. As such, nucleosome disassembly and reassembly are important mechanisms for transcriptional activation and repression, respectively.
Collapse
Affiliation(s)
- Melissa W Adkins
- Department of Biochemistry and Molecular Genetics, B121, School of Medicine, University of Colorado, 4200 East Ninth Avenue, Denver, CO 80262, USA
| | | | | |
Collapse
|
46
|
Martinez-Campa C, Politis P, Moreau JL, Kent N, Goodall J, Mellor J, Goding CR. Precise Nucleosome Positioning and the TATA Box Dictate Requirements for the Histone H4 Tail and the Bromodomain Factor Bdf1. Mol Cell 2004; 15:69-81. [PMID: 15225549 DOI: 10.1016/j.molcel.2004.05.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Revised: 04/02/2004] [Accepted: 04/28/2004] [Indexed: 11/24/2022]
Abstract
Acetylation of histone tails plays a key role in chromatin dynamics and is associated with the potential for gene expression. We show here that a 2-3 bp mispositioning of the nucleosome covering the TATA box at PHO5 induces a dependency on the acetylatable lysine residues of the histone H4 N-terminal region and on the TFIID-associated bromodomain factor Bdf1. This dependency arises either through fusion of the PHO5 promoter to a lacZ reporter or by mutation of the TATA box in the natural gene. The results suggest that promoters in which the TATA box is either absent or poorly accessible on the surface of a nucleosome may compensate by using Bdf1 bromodomains and acetylated H4 tails to anchor TFIID to the promoter during the initial stages of transcription activation. We propose that nucleosome positioning at the nucleotide level provides a subtle, but highly effective, mechanism for gene regulation.
Collapse
Affiliation(s)
- Carlos Martinez-Campa
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
47
|
Korber P, Hörz W. In vitro assembly of the characteristic chromatin organization at the yeast PHO5 promoter by a replication-independent extract system. J Biol Chem 2004; 279:35113-20. [PMID: 15192097 DOI: 10.1074/jbc.m405446200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An extensive set of analyses of the yeast PHO5 gene, mostly performed in vivo, has made this gene a model for the role of chromatin structure in gene regulation. In the repressed state, the PHO5 promoter shows a characteristic chromatin organization with four positioned nucleosomes and a short hypersensitive site. So far the basis for this nucleosome positioning has remained unresolved. We have therefore decided to complement the in vivo studies by an in vitro approach. As a first step, we have asked whether the characteristic PHO5 promoter chromatin structure depends on the cellular context including replication or higher order nuclear chromatin organization or whether it can be reconstituted in vitro in a cell-free system. To this end we have established an in vitro chromatin assembly system based on yeast extracts. It is capable of generating extensive regular nucleosomal arrays with physiological spacing. Assembly requires supplementation with exogenous histones and is dependent on energy leading to chromatin with dynamic properties due to ATP-dependent activities of the extract. Using the PHO5 promoter sequence as template in this replication independent system, we obtain a nucleosomal pattern over the PHO5 promoter region that is very similar to the in vivo pattern of the repressed state. This shows that the chromatin structure at the PHO5 promoter represents a self-organizing system in cell-free yeast extracts and provides a promising substrate for in vitro studies with a direct in vivo correlate.
Collapse
Affiliation(s)
- Philipp Korber
- Adolf-Butenandt-Institut, University of Munich, Schillerstrasse 44, 80336 Munich, Germany
| | | |
Collapse
|
48
|
Nourani A, Utley RT, Allard S, Côté J. Recruitment of the NuA4 complex poises the PHO5 promoter for chromatin remodeling and activation. EMBO J 2004; 23:2597-607. [PMID: 15175650 PMCID: PMC449761 DOI: 10.1038/sj.emboj.7600230] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2003] [Accepted: 04/15/2004] [Indexed: 01/08/2023] Open
Abstract
The remodeling of the promoter chromatin structure is a key event for the induction of the PHO5 gene. Two DNA-binding proteins Pho2 and Pho4 are critical for this step. We found that the NuA4 histone acetyltransferase complex is essential for PHO5 transcriptional induction without affecting Pho4 translocation upon phosphate starvation. Our data also indicate that NuA4 is critical for the chromatin remodeling event that occurs over the PHO5 promoter prior to activation. Using Chromatin IP analysis, we found that Esa1-dependent histone H4 acetylation at the PHO5 promoter correlates with specific recruitment of the NuA4 complex to this locus under repressing conditions. We demonstrate that the homeodomain transcriptional activator Pho2 is responsible for this recruitment in vivo and interacts directly with the NuA4 complex. Finally, we show that Pho4 is unable to bind the PHO5 promoter without prior action of NuA4. These results indicate that, before induction, NuA4 complex recruitment by Pho2 is an essential event that presets the PHO5 promoter for subsequent binding by Pho4, chromatin remodeling and transcription.
Collapse
Affiliation(s)
- Amine Nourani
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Canada
| | - Rhea T Utley
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Canada
| | - Stéphane Allard
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Canada
| | - Jacques Côté
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Canada
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), 9 McMahon Street, Quebec City, QC G1R 2J6 Canada. Tel: +1 418 525 4444; ext. 15545; Fax: +1 418 691 5439; E-mail:
| |
Collapse
|
49
|
Abstract
Noise, or random fluctuations, in gene expression may produce variability in cellular behavior. To measure the noise intrinsic to eukaryotic gene expression, we quantified the differences in expression of two alleles in a diploid cell. We found that such noise is gene-specific and not dependent on the regulatory pathway or absolute rate of expression. We propose a model in which the balance between promoter activation and transcription influences the variability in messenger RNA levels. To confirm the predictions of our model, we identified both cis- and trans-acting mutations that alter the noise of gene expression. These mutations suggest that noise is an evolvable trait that can be optimized to balance fidelity and diversity in eukaryotic gene expression.
Collapse
Affiliation(s)
- Jonathan M Raser
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California-San Francisco (UCSF), 600 16th Street, Room S472D, San Francisco, CA 94143-2240, USA
| | | |
Collapse
|
50
|
Reinke H, Hörz W. Anatomy of a hypersensitive site. ACTA ACUST UNITED AC 2004; 1677:24-9. [PMID: 15020042 DOI: 10.1016/j.bbaexp.2003.09.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2003] [Accepted: 09/10/2003] [Indexed: 01/09/2023]
Abstract
The 600-bp accessible region at the activated PHO5 promoter in S. cerevisiae has become a paradigm for hypersensitive sites. In this review, we summarize the various experimental strategies used to characterize chromatin at the active promoter and point out their virtues and their limitations. We describe the properties of chromatin at the active PHO5 promoter and what we currently know about the transition from the inactive to the active state. The implications for generating a hypersensitive region in chromatin are discussed.
Collapse
Affiliation(s)
- Hans Reinke
- Adolf-Butenandt-Institut, Molekularbiologie, Universität München, Schillerstr 44, D-80336 Munich, Germany
| | | |
Collapse
|