1
|
Sohn EJ, Goralsky JA, Shay JW, Min J. The Molecular Mechanisms and Therapeutic Prospects of Alternative Lengthening of Telomeres (ALT). Cancers (Basel) 2023; 15:cancers15071945. [PMID: 37046606 PMCID: PMC10093677 DOI: 10.3390/cancers15071945] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
As detailed by the end replication problem, the linear ends of a cell's chromosomes, known as telomeres, shorten with each successive round of replication until a cell enters into a state of growth arrest referred to as senescence. To maintain their immortal proliferation capacity, cancer cells must employ a telomere maintenance mechanism, such as telomerase activation or the Alternative Lengthening of Telomeres pathway (ALT). With only 10-15% of cancers utilizing the ALT mechanism, progress towards understanding its molecular components and associated hallmarks has only recently been made. This review analyzes the advances towards understanding the ALT pathway by: (1) detailing the mechanisms associated with engaging the ALT pathway as well as (2) identifying potential therapeutic targets of ALT that may lead to novel cancer therapeutic treatments. Collectively, these studies indicate that the ALT molecular mechanisms involve at least two distinct pathways induced by replication stress and damage at telomeres. We suggest exploiting tumor dependency on ALT is a promising field of study because it suggests new approaches to ALT-specific therapies for cancers with poorer prognosis. While substantial progress has been made in the ALT research field, additional progress will be required to realize these advances into clinical practices to treat ALT cancers and improve patient prognoses.
Collapse
Affiliation(s)
- Eric J Sohn
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Julia A Goralsky
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | - Jaewon Min
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
2
|
Ali H, Unar A, Zubair M, Dil S, Ullah F, Khan I, Hussain A, Shi Q. In silico analysis of a novel pathogenic variant c.7G > A in C14orf39 gene identified by WES in a Pakistani family with azoospermia. Mol Genet Genomics 2022; 297:719-730. [PMID: 35305148 DOI: 10.1007/s00438-022-01876-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/20/2022] [Indexed: 11/25/2022]
Abstract
Infertility is a multifactorial disorder that affects approximately 12% of couples of childbearing ages worldwide. Few studies have been conducted to understand the genetic causes of infertility in depth. The synaptonemal complex (SC), which is essential for the progression of meiosis, is a conserved tripartite structure that binds homologous chromosomes together and is thus required for fertility. This study investigated genetic causes of infertility in a Pakistani consanguineous family containing two patients suffering from non-obstructive azoospermia (NOA). We performed whole-exome sequencing, followed by Sanger sequencing, and identified a novel pathogenic variant (c.7G > A [p.D3N]) in the SC coding gene C14orf39, which was recessively co-segregated with NOA. In silico analysis revealed that charges on wild-type residues were lost, which may result in loss of interactions with other molecules and residues, and a reduction in protein stability occurred, which was caused by the p.D3N mutation. The novel variant generated the mutant protein C14ORF39D3N, and homozygous mutations in C14orf39 resulted in NOA. The transcriptome profile of C14ORF39 shows that it is specifically expressed in early brain development, which suggests that research in this area is required to study other functions of C14ORF39 in addition to its role in the germline. This research highlights the conserved role of C14orf39/SIX6OS1 in assembly of the SC and its indispensable role in facilitating genetic diagnosis in patients with infertility, which may enable the development of future treatments.
Collapse
Affiliation(s)
- Haider Ali
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, 230027, China
| | - Ahsanullah Unar
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, 230027, China
| | - Muhammad Zubair
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, 230027, China
| | - Sobia Dil
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, 230027, China
| | - Farman Ullah
- Center of Biotechnology and Microbiology, University of Swat, Swat, 19120, Pakistan
| | - Ihsan Khan
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, 230027, China
| | - Ansar Hussain
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, 230027, China
| | - Qinghua Shi
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
3
|
Gaurav S, Ranjan R, Kuldeep J, Dhiman K, Mahapatra PP, Ashish, Siddiqi MI, Ahmed S. The N-terminus region of Drp1, a Rint1 family protein is essential for cell survival and its interaction with Rad50 protein in fission yeast S.pombe. Biochim Biophys Acta Gen Subj 2020; 1865:129739. [PMID: 32956753 DOI: 10.1016/j.bbagen.2020.129739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Defects in DNA repair pathway can lead to double-strand breaks leading to genomic instability. Earlier we have shown that S.pombe Drp1, a Rint1/Tip1 family protein is required for the recovery from DNA damage. METHODS Various truncations of Drp1 protein were constructed and their role in DNA damage response and interaction with Rad50 protein has been studied by co-immunoprecipitation and pull-down assays. RESULTS The structural and functional analysis of Drp1 protein revealed that the N-terminus region of Drp1 is indispensable for the survival. The C-terminus truncation mutants, drp1C1Δ and drp1C2Δ exhibit temperature sensitive phenotype and are hypersensitive against DNA damaging agents with elevated level of Rad52-YFP foci at non-permissive temperature indicating the impairment for DNA damage repair pathway. The essential N-terminus region of Drp1 interacts with the C-terminus region of Rad50 and might be involved in influencing the MRN/X function. Small-angle X-ray (SAXS) analysis revealed three-domain like shapes in Drp1 protein while the C-terminus region of Rad50 exhibit unusual bulges. Computational docking studies revealed the amino acid residues at the C-terminus region of Rad50 that are involved in the interaction with the residues present at the N-terminal region of Drp1 indicating the importance of the N-terminal region of Drp1 protein. CONCLUSIONS We have identified the region of Drp1 and Rad50 proteins that are involved in the interaction and their role in the DNA damage response pathway has been analyzed. GENERAL SIGNIFICANCE The functional and structural aspects of fission yeast Drp1 protein and its interaction with Rad50 have been elucidated.
Collapse
Affiliation(s)
- Sachin Gaurav
- Molecular and Structural Biology Division, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Rajeev Ranjan
- Molecular and Structural Biology Division, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Jitendra Kuldeep
- Molecular and Structural Biology Division, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Kanika Dhiman
- Molecular and Structural Biology Division, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Pinaki Prasad Mahapatra
- Molecular and Structural Biology Division, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Ashish
- Molecular and Structural Biology Division, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Mohammad Imran Siddiqi
- Molecular and Structural Biology Division, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Shakil Ahmed
- Molecular and Structural Biology Division, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.
| |
Collapse
|
4
|
Boeckemeier L, Kraehenbuehl R, Keszthelyi A, Gasasira MU, Vernon EG, Beardmore R, Vågbø CB, Chaplin D, Gollins S, Krokan HE, Lambert SAE, Paizs B, Hartsuiker E. Mre11 exonuclease activity removes the chain-terminating nucleoside analog gemcitabine from the nascent strand during DNA replication. SCIENCE ADVANCES 2020; 6:eaaz4126. [PMID: 32523988 PMCID: PMC7259961 DOI: 10.1126/sciadv.aaz4126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
The Mre11 nuclease is involved in early responses to DNA damage, often mediated by its role in DNA end processing. MRE11 mutations and aberrant expression are associated with carcinogenesis and cancer treatment outcomes. While, in recent years, progress has been made in understanding the role of Mre11 nuclease activities in DNA double-strand break repair, their role during replication has remained elusive. The nucleoside analog gemcitabine, widely used in cancer therapy, acts as a replication chain terminator; for a cell to survive treatment, gemcitabine needs to be removed from replicating DNA. Activities responsible for this removal have, so far, not been identified. We show that Mre11 3' to 5' exonuclease activity removes gemcitabine from nascent DNA during replication. This contributes to replication progression and gemcitabine resistance. We thus uncovered a replication-supporting role for Mre11 exonuclease activity, which is distinct from its previously reported detrimental role in uncontrolled resection in recombination-deficient cells.
Collapse
Affiliation(s)
- L. Boeckemeier
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - R. Kraehenbuehl
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - A. Keszthelyi
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - M. U. Gasasira
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - E. G. Vernon
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - R. Beardmore
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - C. B. Vågbø
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - D. Chaplin
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - S. Gollins
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - H. E. Krokan
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - S. A. E. Lambert
- Institut Curie, Paris-Saclay University, UMR3348, F-91450 Orsay, France
| | - B. Paizs
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - E. Hartsuiker
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| |
Collapse
|
5
|
Padjasek M, Kocyła A, Kluska K, Kerber O, Tran JB, Krężel A. Structural zinc binding sites shaped for greater works: Structure-function relations in classical zinc finger, hook and clasp domains. J Inorg Biochem 2020; 204:110955. [DOI: 10.1016/j.jinorgbio.2019.110955] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/08/2019] [Accepted: 12/01/2019] [Indexed: 12/12/2022]
|
6
|
Tatebe H, Lim CT, Konno H, Shiozaki K, Shinohara A, Uchihashi T, Furukohri A. Rad50 zinc hook functions as a constitutive dimerization module interchangeable with SMC hinge. Nat Commun 2020; 11:370. [PMID: 31953386 PMCID: PMC6969161 DOI: 10.1038/s41467-019-14025-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 12/10/2019] [Indexed: 01/11/2023] Open
Abstract
The human Mre11/Rad50 complex is one of the key factors in genome maintenance pathways. Previous nanoscale imaging by atomic force microscopy (AFM) showed that the ring-like structure of the human Mre11/Rad50 complex transiently opens at the zinc hook of Rad50. However, imaging of the human Mre11/Rad50 complex by high-speed AFM shows that the Rad50 coiled-coil arms are consistently bridged by the dimerized hooks while the Mre11/Rad50 ring opens by disconnecting the head domains; resembling other SMC proteins such as cohesin or condensin. These architectural features are conserved in the yeast and bacterial Mre11/Rad50 complexes. Yeast strains harboring the chimeric Mre11/Rad50 complex containing the SMC hinge of bacterial condensin MukB instead of the RAD50 hook properly functions in DNA repair. We propose that the basic role of the Rad50 hook is similar to that of the SMC hinge, which serves as rather stable dimerization interface.
Collapse
Affiliation(s)
- Hisashi Tatebe
- Nara Institute of Science and Technology, Graduate School of Biological Sciences, Ikoma, Nara, 630-0192, Japan
| | - Chew Theng Lim
- Nara Institute of Science and Technology, Graduate School of Biological Sciences, Ikoma, Nara, 630-0192, Japan
| | - Hiroki Konno
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Kazuhiro Shiozaki
- Nara Institute of Science and Technology, Graduate School of Biological Sciences, Ikoma, Nara, 630-0192, Japan
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, 95616, USA
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Takayuki Uchihashi
- Department of Physics, Nagoya University, Nagoya, 464-8602, Japan.
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan.
| | - Asako Furukohri
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
7
|
Schizosaccharomyces pombe Assays to Study Mitotic Recombination Outcomes. Genes (Basel) 2020; 11:genes11010079. [PMID: 31936815 PMCID: PMC7016768 DOI: 10.3390/genes11010079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 01/16/2023] Open
Abstract
The fission yeast—Schizosaccharomyces pombe—has emerged as a powerful tractable system for studying DNA damage repair. Over the last few decades, several powerful in vivo genetic assays have been developed to study outcomes of mitotic recombination, the major repair mechanism of DNA double strand breaks and stalled or collapsed DNA replication forks. These assays have significantly increased our understanding of the molecular mechanisms underlying the DNA damage response pathways. Here, we review the assays that have been developed in fission yeast to study mitotic recombination.
Collapse
|
8
|
Lovejoy CA, Takai K, Huh MS, Picketts DJ, de Lange T. ATRX affects the repair of telomeric DSBs by promoting cohesion and a DAXX-dependent activity. PLoS Biol 2020; 18:e3000594. [PMID: 31895940 PMCID: PMC6959610 DOI: 10.1371/journal.pbio.3000594] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/14/2020] [Accepted: 12/19/2019] [Indexed: 12/20/2022] Open
Abstract
Alpha thalassemia/mental retardation syndrome X-linked chromatin remodeler (ATRX), a DAXX (death domain-associated protein) interacting protein, is often lost in cells using the alternative lengthening of telomeres (ALT) pathway, but it is not known how ATRX loss leads to ALT. We report that ATRX deletion from mouse cells altered the repair of telomeric double-strand breaks (DSBs) and induced ALT-like phenotypes, including ALT-associated promyelocytic leukemia (PML) bodies (APBs), telomere sister chromatid exchanges (T-SCEs), and extrachromosomal telomeric signals (ECTSs). Mechanistically, we show that ATRX affects telomeric DSB repair by promoting cohesion of sister telomeres and that loss of ATRX in ALT cells results in diminished telomere cohesion. In addition, we document a role for DAXX in the repair of telomeric DSBs. Removal of telomeric cohesion in combination with DAXX deficiency recapitulates all telomeric DSB repair phenotypes associated with ATRX loss. The data reveal that ATRX has an effect on telomeric DSB repair and that this role involves both telomere cohesion and a DAXX-dependent pathway.
Collapse
Affiliation(s)
- Courtney A. Lovejoy
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York, United States of America
| | - Kaori Takai
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York, United States of America
| | - Michael S. Huh
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - David J. Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
9
|
Hardy J, Dai D, Ait Saada A, Teixeira-Silva A, Dupoiron L, Mojallali F, Fréon K, Ochsenbein F, Hartmann B, Lambert S. Histone deposition promotes recombination-dependent replication at arrested forks. PLoS Genet 2019; 15:e1008441. [PMID: 31584934 PMCID: PMC6795475 DOI: 10.1371/journal.pgen.1008441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/16/2019] [Accepted: 09/20/2019] [Indexed: 11/18/2022] Open
Abstract
Replication stress poses a serious threat to genome stability. Recombination-Dependent-Replication (RDR) promotes DNA synthesis resumption from arrested forks. Despite the identification of chromatin restoration pathways after DNA repair, crosstalk coupling RDR and chromatin assembly is largely unexplored. The fission yeast Chromatin Assembly Factor-1, CAF-1, is known to promote RDR. Here, we addressed the contribution of histone deposition to RDR. We expressed a mutated histone, H3-H113D, to genetically alter replication-dependent chromatin assembly by destabilizing (H3-H4)2 tetramer. We established that DNA synthesis-dependent histone deposition, by CAF-1 and Asf1, promotes RDR by preventing Rqh1-mediated disassembly of joint-molecules. The recombination factor Rad52 promotes CAF-1 binding to sites of recombination-dependent DNA synthesis, indicating that histone deposition occurs downstream Rad52. Histone deposition and Rqh1 activity act synergistically to promote cell resistance to camptothecin, a topoisomerase I inhibitor that induces replication stress. Moreover, histone deposition favors non conservative recombination events occurring spontaneously in the absence of Rqh1, indicating that the stabilization of joint-molecules by histone deposition also occurs independently of Rqh1 activity. These results indicate that histone deposition plays an active role in promoting RDR, a benefit counterbalanced by stabilizing at-risk joint-molecules for genome stability.
Collapse
Affiliation(s)
- Julien Hardy
- Institut Curie, PSL Research University, UMR3348, Orsay, France.,University Paris Sud, Paris-Saclay University, UMR3348, Orsay, France.,CNRS, UMR3348, Orsay France
| | - Dingli Dai
- Institut Curie, PSL Research University, UMR3348, Orsay, France.,University Paris Sud, Paris-Saclay University, UMR3348, Orsay, France.,CNRS, UMR3348, Orsay France
| | - Anissia Ait Saada
- Institut Curie, PSL Research University, UMR3348, Orsay, France.,University Paris Sud, Paris-Saclay University, UMR3348, Orsay, France.,CNRS, UMR3348, Orsay France
| | - Ana Teixeira-Silva
- Institut Curie, PSL Research University, UMR3348, Orsay, France.,University Paris Sud, Paris-Saclay University, UMR3348, Orsay, France.,CNRS, UMR3348, Orsay France
| | - Louise Dupoiron
- Institut Curie, PSL Research University, UMR3348, Orsay, France.,University Paris Sud, Paris-Saclay University, UMR3348, Orsay, France.,CNRS, UMR3348, Orsay France
| | - Fatemeh Mojallali
- Institut Curie, PSL Research University, UMR3348, Orsay, France.,University Paris Sud, Paris-Saclay University, UMR3348, Orsay, France.,CNRS, UMR3348, Orsay France
| | - Karine Fréon
- Institut Curie, PSL Research University, UMR3348, Orsay, France.,University Paris Sud, Paris-Saclay University, UMR3348, Orsay, France.,CNRS, UMR3348, Orsay France
| | - Francoise Ochsenbein
- CEA, DRF, SB2SM, Laboratoire de Biologie Structurale et Radiobiologie, Gif-sur-Yvette, France
| | - Brigitte Hartmann
- Laboratoire de Biologie et Pharmacologie Appliquée (LBPA) UMR 8113, CNRS / ENS de Cachan, Cachan cedex, France
| | - Sarah Lambert
- Institut Curie, PSL Research University, UMR3348, Orsay, France.,University Paris Sud, Paris-Saclay University, UMR3348, Orsay, France.,CNRS, UMR3348, Orsay France
| |
Collapse
|
10
|
Zhurinsky J, Salas-Pino S, Iglesias-Romero AB, Torres-Mendez A, Knapp B, Flor-Parra I, Wang J, Bao K, Jia S, Chang F, Daga RR. Effects of the microtubule nucleator Mto1 on chromosomal movement, DNA repair, and sister chromatid cohesion in fission yeast. Mol Biol Cell 2019; 30:2695-2708. [PMID: 31483748 PMCID: PMC6761766 DOI: 10.1091/mbc.e19-05-0301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/27/2019] [Accepted: 08/30/2019] [Indexed: 11/11/2022] Open
Abstract
Although the function of microtubules (MTs) in chromosomal segregation during mitosis is well characterized, much less is known about the role of MTs in chromosomal functions during interphase. In the fission yeast Schizosaccharomyces pombe, dynamic cytoplasmic MT bundles move chromosomes in an oscillatory manner during interphase via linkages through the nuclear envelope (NE) at the spindle pole body (SPB) and other sites. Mto1 is a cytoplasmic factor that mediates the nucleation and attachment of cytoplasmic MTs to the nucleus. Here, we test the function of these cytoplasmic MTs and Mto1 on DNA repair and recombination during interphase. We find that mto1Δ cells exhibit defects in DNA repair and homologous recombination (HR) and abnormal DNA repair factory dynamics. In these cells, sister chromatids are not properly paired, and binding of Rad21 cohesin subunit along chromosomal arms is reduced. Our findings suggest a model in which cytoplasmic MTs and Mto1 facilitate efficient DNA repair and HR by promoting dynamic chromosomal organization and cohesion in the nucleus.
Collapse
Affiliation(s)
- Jacob Zhurinsky
- Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, Seville 41013, Spain
| | - Silvia Salas-Pino
- Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, Seville 41013, Spain
| | - Ana B. Iglesias-Romero
- Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, Seville 41013, Spain
| | - Antonio Torres-Mendez
- Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, Seville 41013, Spain
| | - Benjamin Knapp
- Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, Seville 41013, Spain
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | - Ignacio Flor-Parra
- Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, Seville 41013, Spain
| | - Jiyong Wang
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
| | - Kehan Bao
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
| | - Songtao Jia
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
| | - Fred Chang
- Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, Seville 41013, Spain
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | - Rafael R. Daga
- Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, Seville 41013, Spain
| |
Collapse
|
11
|
Barnum KJ, Nguyen YT, O'Connell MJ. XPG-related nucleases are hierarchically recruited for double-stranded rDNA break resection. J Biol Chem 2019; 294:7632-7643. [PMID: 30885940 DOI: 10.1074/jbc.ra118.005415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 03/11/2019] [Indexed: 12/11/2022] Open
Abstract
dsDNA breaks (DSBs) are resected in a 5'→3' direction, generating single-stranded DNA (ssDNA). This promotes DNA repair by homologous recombination and also assembly of signaling complexes that activate the DNA damage checkpoint effector kinase Chk1. In fission yeast (Schizosaccharomyces pombe), genetic screens have previously uncovered a family of three xeroderma pigmentosum G (XPG)-related nucleases (XRNs), known as Ast1, Exo1, and Rad2. Collectively, these XRNs are recruited to a euchromatic DSB and are required for ssDNA production and end resection across the genome. Here, we studied why there are three related but distinct XRN enzymes that are all conserved across a range of species, including humans, whereas all other DSB response proteins are present as single species. Using S. pombe as a model, ChIP and DSB resection analysis assays, and highly efficient I-PpoI-induced DSBs in the 28S rDNA gene, we observed a hierarchy of recruitment for each XRN, with a progressive compensatory recruitment of the other XRNs as the responding enzymes are deleted. Importantly, we found that this hierarchy reflects the requirement for different XRNs to effect efficient DSB resection in the rDNA, demonstrating that the presence of three XRN enzymes is not a simple division of labor. Furthermore, we uncovered a specificity of XRN function with regard to the direction of transcription. We conclude that the DSB-resection machinery is complex, is nonuniform across the genome, and has built-in fail-safe mechanisms, features that are in keeping with the highly pathological nature of DSB lesions.
Collapse
Affiliation(s)
- Kevin J Barnum
- From the Department of Oncological Sciences and.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Y Tram Nguyen
- From the Department of Oncological Sciences and.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Matthew J O'Connell
- From the Department of Oncological Sciences and .,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| |
Collapse
|
12
|
Oh J, Symington LS. Role of the Mre11 Complex in Preserving Genome Integrity. Genes (Basel) 2018; 9:E589. [PMID: 30501098 PMCID: PMC6315862 DOI: 10.3390/genes9120589] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022] Open
Abstract
DNA double-strand breaks (DSBs) are hazardous lesions that threaten genome integrity and cell survival. The DNA damage response (DDR) safeguards the genome by sensing DSBs, halting cell cycle progression and promoting repair through either non-homologous end joining (NHEJ) or homologous recombination (HR). The Mre11-Rad50-Xrs2/Nbs1 (MRX/N) complex is central to the DDR through its structural, enzymatic, and signaling roles. The complex tethers DNA ends, activates the Tel1/ATM kinase, resolves protein-bound or hairpin-capped DNA ends, and maintains telomere homeostasis. In addition to its role at DSBs, MRX/N associates with unperturbed replication forks, as well as stalled replication forks, to ensure complete DNA synthesis and to prevent chromosome rearrangements. Here, we summarize the significant progress made in characterizing the MRX/N complex and its various activities in chromosome metabolism.
Collapse
Affiliation(s)
- Julyun Oh
- Biological Sciences Program, Columbia University, New York, NY 10027, USA.
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
13
|
Pathways and Mechanisms that Prevent Genome Instability in Saccharomyces cerevisiae. Genetics 2017; 206:1187-1225. [PMID: 28684602 PMCID: PMC5500125 DOI: 10.1534/genetics.112.145805] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/26/2017] [Indexed: 12/13/2022] Open
Abstract
Genome rearrangements result in mutations that underlie many human diseases, and ongoing genome instability likely contributes to the development of many cancers. The tools for studying genome instability in mammalian cells are limited, whereas model organisms such as Saccharomyces cerevisiae are more amenable to these studies. Here, we discuss the many genetic assays developed to measure the rate of occurrence of Gross Chromosomal Rearrangements (called GCRs) in S. cerevisiae. These genetic assays have been used to identify many types of GCRs, including translocations, interstitial deletions, and broken chromosomes healed by de novo telomere addition, and have identified genes that act in the suppression and formation of GCRs. Insights from these studies have contributed to the understanding of pathways and mechanisms that suppress genome instability and how these pathways cooperate with each other. Integrated models for the formation and suppression of GCRs are discussed.
Collapse
|
14
|
Schizosaccharomyces pombe MutSα and MutLα Maintain Stability of Tetra-Nucleotide Repeats and Msh3 of Hepta-Nucleotide Repeats. G3-GENES GENOMES GENETICS 2017; 7:1463-1473. [PMID: 28341698 PMCID: PMC5427490 DOI: 10.1534/g3.117.040816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Defective mismatch repair (MMR) in humans is associated with colon cancer and instability of microsatellites, that is, DNA sequences with one or several nucleotides repeated. Key factors of eukaryotic MMR are the heterodimers MutSα (Msh2-Msh6), which recognizes base-base mismatches and unpaired nucleotides in DNA, and MutLα (Mlh1-Pms1), which facilitates downstream steps. In addition, MutSβ (Msh2-Msh3) recognizes DNA loops of various sizes, although our previous data and the data presented here suggest that Msh3 of Schizosaccharomyces pombe does not play a role in MMR. To test microsatellite stability in S. pombe and hence DNA loop repair, we have inserted tetra-, penta-, and hepta-nucleotide repeats in the ade6 gene and determined their Ade+ reversion rates and spectra in wild type and various mutants. Our data indicate that loops with four unpaired nucleotides in the nascent and the template strand are the upper limit of MutSα- and MutLα-mediated MMR in S. pombe Stability of hepta-nucleotide repeats requires Msh3 and Exo1 in MMR-independent processes as well as the DNA repair proteins Rad50, Rad51, and Rad2FEN1 Most strikingly, mutation rates in the double mutants msh3 exo1 and msh3 rad51 were decreased when compared to respective single mutants, indicating that Msh3 prevents error prone processes carried out by Exo1 and Rad51. We conclude that Msh3 has no obvious function in MMR in S. pombe, but contributes to DNA repeat stability in MMR-independent processes.
Collapse
|
15
|
Seeber A, Hegnauer AM, Hustedt N, Deshpande I, Poli J, Eglinger J, Pasero P, Gut H, Shinohara M, Hopfner KP, Shimada K, Gasser SM. RPA Mediates Recruitment of MRX to Forks and Double-Strand Breaks to Hold Sister Chromatids Together. Mol Cell 2016; 64:951-966. [PMID: 27889450 DOI: 10.1016/j.molcel.2016.10.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/29/2016] [Accepted: 10/21/2016] [Indexed: 10/20/2022]
Abstract
The Mre11-Rad50-Xrs2 (MRX) complex is related to SMC complexes that form rings capable of holding two distinct DNA strands together. MRX functions at stalled replication forks and double-strand breaks (DSBs). A mutation in the N-terminal OB fold of the 70 kDa subunit of yeast replication protein A, rfa1-t11, abrogates MRX recruitment to both types of DNA damage. The rfa1 mutation is functionally epistatic with loss of any of the MRX subunits for survival of replication fork stress or DSB recovery, although it does not compromise end-resection. High-resolution imaging shows that either the rfa1-t11 or the rad50Δ mutation lets stalled replication forks collapse and allows the separation not only of opposing ends but of sister chromatids at breaks. Given that cohesin loss does not provoke visible sister separation as long as the RPA-MRX contacts are intact, we conclude that MRX also serves as a structural linchpin holding sister chromatids together at breaks.
Collapse
Affiliation(s)
- Andrew Seeber
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Faculty of Natural Sciences, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Anna Maria Hegnauer
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Nicole Hustedt
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Ishan Deshpande
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Faculty of Natural Sciences, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Jérôme Poli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Jan Eglinger
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Philippe Pasero
- Institute of Human Genetics, CNRS UPR 1142, 34090 Montpellier, France
| | - Heinz Gut
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Miki Shinohara
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | | | - Kenji Shimada
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Faculty of Natural Sciences, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
16
|
Gómez-H L, Felipe-Medina N, Sánchez-Martín M, Davies OR, Ramos I, García-Tuñón I, de Rooij DG, Dereli I, Tóth A, Barbero JL, Benavente R, Llano E, Pendas AM. C14ORF39/SIX6OS1 is a constituent of the synaptonemal complex and is essential for mouse fertility. Nat Commun 2016; 7:13298. [PMID: 27796301 PMCID: PMC5095591 DOI: 10.1038/ncomms13298] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/19/2016] [Indexed: 11/16/2022] Open
Abstract
Meiotic recombination generates crossovers between homologous chromosomes that are essential for genome haploidization. The synaptonemal complex is a ‘zipper'-like protein assembly that synapses homologue pairs together and provides the structural framework for processing recombination sites into crossovers. Humans show individual differences in the number of crossovers generated across the genome. Recently, an anonymous gene variant in C14ORF39/SIX6OS1 was identified that influences the recombination rate in humans. Here we show that C14ORF39/SIX6OS1 encodes a component of the central element of the synaptonemal complex. Yeast two-hybrid analysis reveals that SIX6OS1 interacts with the well-established protein synaptonemal complex central element 1 (SYCE1). Mice lacking SIX6OS1 are defective in chromosome synapsis at meiotic prophase I, which provokes an arrest at the pachytene-like stage and results in infertility. In accordance with its role as a modifier of the human recombination rate, SIX6OS1 is essential for the appropriate processing of intermediate recombination nodules before crossover formation. The synaptonemal complex is a meiosis-specific proteinaceous structure that supports homologous chromosome pairs during meiosis. Here, the authors show that SIX6OS1 (of previously unknown function) is part of the synaptonemal complex central element and upon deletion in mice, causes defective chromosome synapsis and infertility.
Collapse
Affiliation(s)
- Laura Gómez-H
- Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), 37007 Salamanca, Spain
| | - Natalia Felipe-Medina
- Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), 37007 Salamanca, Spain
| | - Manuel Sánchez-Martín
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain.,Transgenic Facility, Nucleus platform, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Owen R Davies
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Isabel Ramos
- Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), 37007 Salamanca, Spain
| | - Ignacio García-Tuñón
- Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), 37007 Salamanca, Spain
| | - Dirk G de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3584CM Utrecht, The Netherlands
| | - Ihsan Dereli
- Institute of Physiological Chemistry, Medical Faculty of TU Dresden, Fiedlerstrasse 42, 01307 Dresden, Germany
| | - Attila Tóth
- Institute of Physiological Chemistry, Medical Faculty of TU Dresden, Fiedlerstrasse 42, 01307 Dresden, Germany
| | - José Luis Barbero
- Departamento de Biología Celular y Molecular, Centro de Investigaciones Biológicas (CSIC), Madrid 28040, Spain
| | - Ricardo Benavente
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, D-97074 Würzburg, Germany
| | - Elena Llano
- Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), 37007 Salamanca, Spain.,Departamento de Fisiología y Farmacología, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Alberto M Pendas
- Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), 37007 Salamanca, Spain
| |
Collapse
|
17
|
Ranatunga NS, Forsburg SL. Characterization of a Novel MMS-Sensitive Allele of Schizosaccharomyces pombe mcm4. G3 (BETHESDA, MD.) 2016; 6:3049-3063. [PMID: 27473316 PMCID: PMC5068930 DOI: 10.1534/g3.116.033571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/20/2016] [Indexed: 12/17/2022]
Abstract
The minichromosome maintenance (MCM) complex is the conserved helicase motor of the eukaryotic replication fork. Mutations in the Mcm4 subunit are associated with replication stress and double strand breaks in multiple systems. In this work, we characterize a new temperature-sensitive allele of Schizosaccharomyces pombe mcm4+ Uniquely among known mcm4 alleles, this mutation causes sensitivity to the alkylation damaging agent methyl methanesulfonate (MMS). Even in the absence of treatment or temperature shift, mcm4-c106 cells show increased repair foci of RPA and Rad52, and require the damage checkpoint for viability, indicating genome stress. The mcm4-c106 mutant is synthetically lethal with mutations disrupting fork protection complex (FPC) proteins Swi1 and Swi3. Surprisingly, we found that the deletion of rif1+ suppressed the MMS-sensitive phenotype without affecting temperature sensitivity. Together, these data suggest that mcm4-c106 destabilizes replisome structure.
Collapse
Affiliation(s)
- Nimna S Ranatunga
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089
| | - Susan L Forsburg
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
18
|
Ma W, Schubert V, Martis MM, Hause G, Liu Z, Shen Y, Conrad U, Shi W, Scholz U, Taudien S, Cheng Z, Houben A. The distribution of α-kleisin during meiosis in the holocentromeric plant Luzula elegans. Chromosome Res 2016; 24:393-405. [PMID: 27294972 DOI: 10.1007/s10577-016-9529-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/03/2016] [Accepted: 05/05/2016] [Indexed: 11/25/2022]
Abstract
Holocentric chromosomes occur in a number of independent eukaryotic lineages, and they form holokinetic kinetochores along the entire poleward chromatid surfaces. Due to this alternative chromosome structure, Luzula elegans sister chromatids segregate already in anaphase I followed by the segregation of the homologues in anaphase II. However, not yet known is the localization and dynamics of cohesin and the structure of the synaptonemal complex (SC) during meiosis. We show here that the α-kleisin subunit of cohesin localizes at the centromeres of both mitotic and meiotic metaphase chromosomes and that it, thus, may contribute to assemble the centromere in L. elegans. This localization and the formation of a tripartite SC structure indicate that the prophase I behaviour of L. elegans is similar as in monocentric species.
Collapse
Affiliation(s)
- Wei Ma
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany
| | - Mihaela Maria Martis
- Institute of Bioinformatics and Systems Biology/Munich Information Center for Protein Sequences, Helmholtz Center Munich, German Research Center for Environmental Health, 85764, Neuherberg, Germany
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Bioinformatics Infrastructure for Life Sciences, Linköping University, 558185, Linköping, Sweden
| | - Gerd Hause
- Biocenter, Microscopy Unit, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120, Halle, Germany
| | - Zhaojun Liu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany
| | - Yi Shen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Udo Conrad
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany
| | - Wenqing Shi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany
| | - Stefan Taudien
- Leibniz Institute on Aging-Fritz-Lipmann-Institut e.V. (FLI), Beutenbergstraße 11, 07745, Jena, Germany
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany.
| |
Collapse
|
19
|
Rybaczek D. Hydroxyurea-induced replication stress causes poly(ADP-ribose) polymerase-2 accumulation and changes its intranuclear location in root meristems of Vicia faba. JOURNAL OF PLANT PHYSIOLOGY 2016; 198:89-102. [PMID: 27155387 DOI: 10.1016/j.jplph.2016.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 06/05/2023]
Abstract
Replication stress induced by 24 and 48h exposure to 2.5mM hydroxyurea (HU) increased the activity of poly(ADP-ribose) polymerase-2 (PARP-2; EC 2.4.2.30) in root meristem cells of Vicia faba. An increase in the number of PARP-2 foci was accompanied by their delocalization from peripheral areas to the interior of the nucleus. Our results indicate that the increase in PARP-2 was connected with an increase in S139-phosphorylated H2AX histones. The findings suggest the possible role of PARP-2 in replication stress. We also confirm that the intranuclear location of PARP-2 depends on the duration of HU-induced replication stress, confirming the role of PARP-2 as an indicator of stress intensity. Finally, we conclude that the more intense the HU-mediated replication stress, the greater the probability of PARP-2 activation or H2AXS139 phosphorylation, but also the greater the chance of increasing the efficiency of repair processes and a return to normal cell cycle progression.
Collapse
Affiliation(s)
- Dorota Rybaczek
- Department of Cytophysiology, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90236 Łódź, Poland.
| |
Collapse
|
20
|
Fission yeast Drp1 is an essential protein required for recovery from DNA damage and chromosome segregation. DNA Repair (Amst) 2014; 24:98-106. [DOI: 10.1016/j.dnarep.2014.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/08/2014] [Accepted: 09/16/2014] [Indexed: 11/24/2022]
|
21
|
Rybaczek D. Ultrastructural changes associated with the induction of premature chromosome condensation in Vicia faba root meristem cells. PLANT CELL REPORTS 2014; 33:1547-1564. [PMID: 24898011 PMCID: PMC4133037 DOI: 10.1007/s00299-014-1637-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/15/2014] [Accepted: 05/19/2014] [Indexed: 06/03/2023]
Abstract
PCC induction is regulated by several signaling pathways, and all observed effects associated with PCC induction are strongly dependent on the mechanism of action of each PCC inducer used. Electron microscopic observations of cells with symptoms of premature chromosome condensation (PCC) showed that the interphase chromatin and mitotic chromosomes differed with respect to a chemical compound inducing PCC. Induction of this process under the influence of hydroxyurea and caffeine as well as hydroxyurea and sodium metavanadate led to a slight decrease in interphase chromatin condensation and the formation of chromosomes with a considerably loosened structure in comparison with the control. Incubation in the mixture of hydroxyurea and 2-aminopurine brought about clear chromatin dispersion in interphase and very strong mitotic chromosome condensation. Electron microscopic examinations also revealed the characteristic features of the structural organization of cytoplasm of Vicia faba root meristems, which seemed to be dependent on the type of the PCC inducer used. The presence of the following was observed: (i) large plastids filled with starch grains (caffeine), (ii) mitochondria and plastids of electron dense matrix with dilated invaginations of their internal membranes (2-aminopurine), and (iii) large mitochondria of electron clear matrix and plastids containing protein crystals in their interior (sodium metavanadate). Moreover, since caffeine causes either the most effective loosening of chromatin fibrils (within the prematurely condensed chromosomes) or induction of starch formation (in the plastids surrounding the nuclei), this may be a proof that demonstrates the existence of a link between physical accessibility to chromatin and the effectiveness of cellular signaling (e.g., phosphothreonine-connected).
Collapse
Affiliation(s)
- Dorota Rybaczek
- Department of Cytophysiology, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Lodz, Poland,
| |
Collapse
|
22
|
Roset R, Inagaki A, Hohl M, Brenet F, Lafrance-Vanasse J, Lange J, Scandura JM, Tainer JA, Keeney S, Petrini JH. The Rad50 hook domain regulates DNA damage signaling and tumorigenesis. Genes Dev 2014; 28:451-62. [PMID: 24532689 PMCID: PMC3950343 DOI: 10.1101/gad.236745.113] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 01/16/2014] [Indexed: 01/25/2023]
Abstract
The Mre11 complex (Mre11, Rad50, and Nbs1) is a central component of the DNA damage response (DDR), governing both double-strand break repair and DDR signaling. Rad50 contains a highly conserved Zn(2+)-dependent homodimerization interface, the Rad50 hook domain. Mutations that inactivate the hook domain produce a null phenotype. In this study, we analyzed mutants with reduced hook domain function in an effort to stratify hook-dependent Mre11 complex functions. One of these alleles, Rad50(46), conferred reduced Zn(2+) affinity and dimerization efficiency. Homozygous Rad50(46/46) mutations were lethal in mice. However, in the presence of wild-type Rad50, Rad50(46) exerted a dominant gain-of-function phenotype associated with chronic DDR signaling. At the organismal level, Rad50(+/46) exhibited hydrocephalus, liver tumorigenesis, and defects in primitive hematopoietic and gametogenic cells. These outcomes were dependent on ATM, as all phenotypes were mitigated in Rad50(+/46) Atm(+/-) mice. These data reveal that the murine Rad50 hook domain strongly influences Mre11 complex-dependent DDR signaling, tissue homeostasis, and tumorigenesis.
Collapse
Affiliation(s)
- Ramon Roset
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | - Akiko Inagaki
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | - Marcel Hohl
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | - Fabienne Brenet
- Department of Medicine, Laboratory of Molecular Hematopoiesis, Weill-Cornell Medical College, New York, New York 10065, USA
| | - Julien Lafrance-Vanasse
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Julian Lange
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | - Joseph M. Scandura
- Department of Medicine, Laboratory of Molecular Hematopoiesis, Weill-Cornell Medical College, New York, New York 10065, USA
| | - John A. Tainer
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
- Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
- Weill Graduate School of Medical Sciences, Cornell University, New York, New York 10021, USA
| | - John H.J. Petrini
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
- Weill Graduate School of Medical Sciences, Cornell University, New York, New York 10021, USA
| |
Collapse
|
23
|
Muñoz-Galván S, López-Saavedra A, Jackson SP, Huertas P, Cortés-Ledesma F, Aguilera A. Competing roles of DNA end resection and non-homologous end joining functions in the repair of replication-born double-strand breaks by sister-chromatid recombination. Nucleic Acids Res 2012; 41:1669-83. [PMID: 23254329 PMCID: PMC3561951 DOI: 10.1093/nar/gks1274] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
While regulating the choice between homologous recombination and non-homologous end joining (NHEJ) as mechanisms of double-strand break (DSB) repair is exerted at several steps, the key step is DNA end resection, which in Saccharomyces cerevisiae is controlled by the MRX complex and the Sgs1 DNA helicase or the Sae2 and Exo1 nucleases. To assay the role of DNA resection in sister-chromatid recombination (SCR) as the major repair mechanism of spontaneous DSBs, we used a circular minichromosome system for the repair of replication-born DSBs by SCR in yeast. We provide evidence that MRX, particularly its Mre11 nuclease activity, and Sae2 are required for SCR-mediated repair of DSBs. The phenotype of nuclease-deficient MRX mutants is suppressed by ablation of Yku70 or overexpression of Exo1, suggesting a competition between NHEJ and resection factors for DNA ends arising during replication. In addition, we observe partially redundant roles for Sgs1 and Exo1 in SCR, with a more prominent role for Sgs1. Using human U2OS cells, we also show that the competitive nature of these reactions is likely evolutionarily conserved. These results further our understanding of the role of DNA resection in repair of replication-born DSBs revealing unanticipated differences between these events and repair of enzymatically induced DSBs.
Collapse
Affiliation(s)
- Sandra Muñoz-Galván
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC, Av. Américo Vespucio s/n, 41092 Seville, Spain
| | | | | | | | | | | |
Collapse
|
24
|
The cohesin subunit RAD21L functions in meiotic synapsis and exhibits sexual dimorphism in fertility. EMBO J 2011; 30:3091-105. [PMID: 21743440 DOI: 10.1038/emboj.2011.222] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/16/2011] [Indexed: 01/20/2023] Open
Abstract
The cohesin complex is a ring-shaped proteinaceous structure that entraps the two sister chromatids after replication until the onset of anaphase when the ring is opened by proteolytic cleavage of its α-kleisin subunit (RAD21 at mitosis and REC8 at meiosis) by separase. RAD21L is a recently identified α-kleisin that is present from fish to mammals and biochemically interacts with the cohesin subunits SMC1, SMC3 and STAG3. RAD21L localizes along the axial elements of the synaptonemal complex of mouse meiocytes. However, its existence as a bona fide cohesin and its functional role awaits in vivo validation. Here, we show that male mice lacking RAD21L are defective in full synapsis of homologous chromosomes at meiotic prophase I, which provokes an arrest at zygotene and leads to total azoospermia and consequently infertility. In contrast, RAD21L-deficient females are fertile but develop an age-dependent sterility. Thus, our results provide in vivo evidence that RAD21L is essential for male fertility and in females for the maintenance of fertility during natural aging.
Collapse
|
25
|
Abstract
The maintenance of genome stability depends on the DNA damage response (DDR), which is a functional network comprising signal transduction, cell cycle regulation and DNA repair. The metabolism of DNA double-strand breaks governed by the DDR is important for preventing genomic alterations and sporadic cancers, and hereditary defects in this response cause debilitating human pathologies, including developmental defects and cancer. The MRE11 complex, composed of the meiotic recombination 11 (MRE11), RAD50 and Nijmegen breakage syndrome 1 (NBS1; also known as nibrin) proteins is central to the DDR, and recent insights into its structure and function have been gained from in vitro structural analysis and studies of animal models in which the DDR response is deficient.
Collapse
Affiliation(s)
- Travis H Stracker
- Institute for Research in Biomedicine Barcelona, C/ Baldiri Reixac 10, 08028 Barcelona, Spain.
| | | |
Collapse
|
26
|
Latypov V, Rothenberg M, Lorenz A, Octobre G, Csutak O, Lehmann E, Loidl J, Kohli J. Roles of Hop1 and Mek1 in meiotic chromosome pairing and recombination partner choice in Schizosaccharomyces pombe. Mol Cell Biol 2010; 30:1570-81. [PMID: 20123974 PMCID: PMC2838064 DOI: 10.1128/mcb.00919-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 08/26/2009] [Accepted: 01/19/2010] [Indexed: 11/20/2022] Open
Abstract
Synaptonemal complex (SC) proteins Hop1 and Mek1 have been proposed to promote homologous recombination in meiosis of Saccharomyces cerevisiae by establishment of a barrier against sister chromatid recombination. Therefore, it is interesting to know whether the homologous proteins play a similar role in Schizosaccharomyces pombe. Unequal sister chromatid recombination (USCR) was found to be increased in hop1 and mek1 single and double deletion mutants in assays for intrachromosomal recombination (ICR). Meiotic intergenic (crossover) and intragenic (conversion) recombination between homologous chromosomes was reduced. Double-strand break (DSB) levels were also lowered. Notably, deletion of hop1 restored DSB repair in rad50S meiosis. This may indicate altered DSB repair kinetics in hop1 and mek1 deletion strains. A hypothesis is advanced proposing transient inhibition of DSB processing by Hop1 and Mek1 and thus providing more time for repair by interaction with the homologous chromosome. Loss of Hop1 and Mek1 would then result in faster repair and more interaction with the sister chromatid. Thus, in S. pombe meiosis, where an excess of sister Holliday junction over homologous Holliday junction formation has been demonstrated, Hop1 and Mek1 possibly enhance homolog interactions to ensure wild-type level of crossover formation rather than inhibiting sister chromatid interactions.
Collapse
Affiliation(s)
- Vitaly Latypov
- Institute of Cell Biology, University of Berne, CH-3012 Berne, Switzerland, Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
| | - Maja Rothenberg
- Institute of Cell Biology, University of Berne, CH-3012 Berne, Switzerland, Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
| | - Alexander Lorenz
- Institute of Cell Biology, University of Berne, CH-3012 Berne, Switzerland, Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
| | - Guillaume Octobre
- Institute of Cell Biology, University of Berne, CH-3012 Berne, Switzerland, Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
| | - Ortansa Csutak
- Institute of Cell Biology, University of Berne, CH-3012 Berne, Switzerland, Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
| | - Elisabeth Lehmann
- Institute of Cell Biology, University of Berne, CH-3012 Berne, Switzerland, Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
| | - Josef Loidl
- Institute of Cell Biology, University of Berne, CH-3012 Berne, Switzerland, Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
| | - Jürg Kohli
- Institute of Cell Biology, University of Berne, CH-3012 Berne, Switzerland, Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
27
|
Røe OD, Anderssen E, Sandeck H, Christensen T, Larsson E, Lundgren S. Malignant pleural mesothelioma: genome-wide expression patterns reflecting general resistance mechanisms and a proposal of novel targets. Lung Cancer 2010; 67:57-68. [PMID: 19380173 DOI: 10.1016/j.lungcan.2009.03.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 01/12/2009] [Accepted: 03/17/2009] [Indexed: 10/20/2022]
Abstract
Malignant pleural mesothelioma is an asbestos-related multi-resistant tumour with increasing incidence worldwide. Well-characterized snap-frozen normal parietal, visceral pleura and mesothelioma samples were analysed with Affymetrix Human Genome U133 Plus 2.0 GeneChip oligoarray of 38500 genes. We discovered a close relation between gene profile and resistance towards topoisomerase poisons, alkylating agents, antitubulines, antifolates, platinum compounds and radiation therapy. Target genes of chemo- (e.g. TOP2A, BIRC5/Survivin and proteasome) and radiotherapy (e.g. BRCA2, FANCA, FANCD2, CCNB1 and RAD50) were significantly overexpressed. The Fanconi anemia/BRCA2 pathway, responsible for homologous recombination DNA repair appears as a key pathway in both chemo- and radio-resistance of mesothelioma. Leukocyte trans-endothelial migration gene down-regulation could partly explain resistance against immunological therapies. Gene expression features found in other resistant cancer types related to DNA repair and replication are shared by mesothelioma and could represent general features of tumour resistance. Targeted suppression of some of those key genes and pathways combined with chemotherapy or radiation could improve the outcome of mesothelioma therapy. We propose CHEK1, RAD21, FANCD2 and RAN as new co-targets for mesothelioma treatment. The pro-angiogenic AGGF1 mRNA and protein was highly overexpressed in all tumours and may serve as a target for anti-angiogenic treatment. Overexpression of NQO1 may render mesothelioma sensitive to the novel compound beta-Lapachone.
Collapse
|
28
|
The fission yeast Rad32(Mre11)-Rad50-Nbs1 complex acts both upstream and downstream of checkpoint signaling in the S-phase DNA damage checkpoint. Genetics 2010; 184:887-97. [PMID: 20065069 DOI: 10.1534/genetics.109.113019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Mre11-Rad50-Nbs1 (MRN) heterotrimer plays various and complex roles in DNA damage repair and checkpoint signaling. Its role in activating Ataxia-Telangiectasia Mutated (ATM), the central checkpoint kinase in the metazoan double-strand break response, has been well studied. However, its function in the checkpoint independent of ATM activation, as well as functions that are completely checkpoint independent, are less well understood. In fission yeast, DNA damage checkpoint signaling requires Rad3, the homolog of the ATR (ATM and Rad3-related) kinase, not Tel1, the ATM homolog, allowing us to dissect MRN's ATM-independent S-phase DNA damage checkpoint roles from its role in ATM activation. We find that MRN is involved in Rad3 (ATR)-dependent checkpoint signaling in S phase, but not G2, suggesting that MRN is involved in ATR activation through its role in replication fork metabolism. In addition, we define a role for MRN in the S-phase DNA damage checkpoint-dependent slowing of replication that is independent of its role in checkpoint signaling. Genetic interactions between MRN and Rhp51, the fission yeast Rad51 homolog, lead us to suggest that MRN participates in checkpoint-dependent replication slowing through negative regulation of recombination.
Collapse
|
29
|
Abstract
Double-strand breaks (DSBs) are deleterious DNA lesions and if left unrepaired result in severe genomic instability. Cells use two main pathways to repair DSBs: homologous recombination (HR) or non-homologous end joining (NHEJ) depending on the phase of the cell cycle and the nature of the DSB ends. A key step where pathway choice is exerted is in the 'licensing' of 5'-3' resection of the ends to produce recombinogenic 3' single-stranded tails. These tails are substrate for binding by Rad51 to initiate pairing and strand invasion with homologous duplex DNA. Moreover, the single-stranded DNA generated after end processing is important to activate the DNA damage response. The mechanism of end processing is the focus of this review and we will describe recent findings that shed light on this important initiating step for HR. The conserved MRX/MRN complex appears to be a major regulator of DNA end processing. Sae2/CtIP functions with the MRX complex, either to activate the Mre11 nuclease or via the intrinsic endonuclease, in an initial step to trim the DSB ends. In a second step, redundant systems remove long tracts of DNA to reveal extensive 3' single-stranded tails. One system is dependent on the helicase Sgs1 and the nuclease Dna2, and the other on the 5'-3' exonuclease Exo1.
Collapse
Affiliation(s)
- Eleni P Mimitou
- Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, NY 10032, United States
| | | |
Collapse
|
30
|
Deshpande GP, Hayles J, Hoe KL, Kim DU, Park HO, Hartsuiker E. Screening a genome-wide S. pombe deletion library identifies novel genes and pathways involved in genome stability maintenance. DNA Repair (Amst) 2009; 8:672-9. [PMID: 19264558 DOI: 10.1016/j.dnarep.2009.01.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 01/19/2009] [Accepted: 01/20/2009] [Indexed: 11/27/2022]
Abstract
The maintenance of genome stability is essential for an organism to avoid cell death and cancer. Based on screens for mutant sensitivity against DNA damaging agents a large number of DNA repair and DNA damage checkpoint genes have previously been identified in genetically amenable model organisms. These screens have however not been exhaustive and various genes have been, and remain to be, identified by other means. We therefore screened a genome-wide Schizosaccharomyces pombe deletion library for mutants sensitive against various DNA damaging agents. Screening the library on different concentrations of these genotoxins allowed us to assign a semi-quantitative score to each mutant expressing the degree of sensitivity. We isolated a total of 229 mutants which show sensitivity to one or more of the DNA damaging agents used. This set of mutants was significantly enriched for processes involved in DNA replication, DNA repair, DNA damage checkpoint, response to UV, mating type switching, telomere length maintenance and meiosis, and also for processes involved in the establishment and maintenance of chromatin architecture (notably members of the SAGA complex), transcription (members of the CCR4-Not complex) and microtubule related processes (members of the DASH complex). We also identified 23 sensitive mutants which had previously been classified as "sequence orphan" or as "conserved hypothetical". Among these, we identified genes showing extensive homology to CtIP, Stra13, Ybp1/Ybp2, Human Fragile X mental retardation interacting protein NUFIP1, and Aprataxin. The identification of these homologues will provide a basis for the further characterisation of the role of these conserved proteins in the genetically amenable model organism S. pombe.
Collapse
Affiliation(s)
- Gaurang P Deshpande
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | | | | | | | | | | |
Collapse
|
31
|
Porter-Goff ME, Rhind N. The role of MRN in the S-phase DNA damage checkpoint is independent of its Ctp1-dependent roles in double-strand break repair and checkpoint signaling. Mol Biol Cell 2009; 20:2096-107. [PMID: 19211838 DOI: 10.1091/mbc.e08-09-0986] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Mre11-Rad50-Nbs1 (MRN) complex has many biological functions: processing of double-strand breaks in meiosis, homologous recombination, telomere maintenance, S-phase checkpoint, and genome stability during replication. In the S-phase DNA damage checkpoint, MRN acts both in activation of checkpoint signaling and downstream of the checkpoint kinases to slow DNA replication. Mechanistically, MRN, along with its cofactor Ctp1, is involved in 5' resection to create single-stranded DNA that is required for both signaling and homologous recombination. However, it is unclear whether resection is essential for all of the cellular functions of MRN. To dissect the various roles of MRN, we performed a structure-function analysis of nuclease dead alleles and potential separation-of-function alleles analogous to those found in the human disease ataxia telangiectasia-like disorder, which is caused by mutations in Mre11. We find that several alleles of rad32 (the fission yeast homologue of mre11), along with ctp1Delta, are defective in double-strand break repair and most other functions of the complex, but they maintain an intact S phase DNA damage checkpoint. Thus, the MRN S-phase checkpoint role is separate from its Ctp1- and resection-dependent role in double-strand break repair. This observation leads us to conclude that other functions of MRN, possibly its role in replication fork metabolism, are required for S-phase DNA damage checkpoint function.
Collapse
Affiliation(s)
- Mary E Porter-Goff
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
32
|
Ctp1CtIP and Rad32Mre11 nuclease activity are required for Rec12Spo11 removal, but Rec12Spo11 removal is dispensable for other MRN-dependent meiotic functions. Mol Cell Biol 2009; 29:1671-81. [PMID: 19139281 DOI: 10.1128/mcb.01182-08] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The evolutionarily conserved Mre11/Rad50/Nbs1 (MRN) complex is involved in various aspects of meiosis. Whereas available evidence suggests that the Mre11 nuclease activity might be responsible for Spo11 removal in Saccharomyces cerevisiae, this has not been confirmed experimentally. This study demonstrates for the first time that Mre11 (Schizosaccharomyces pombe Rad32(Mre11)) nuclease activity is required for the removal of Rec12(Spo11). Furthermore, we show that the CtIP homologue Ctp1 is required for Rec12(Spo11) removal, confirming functional conservation between Ctp1(CtIP) and the more distantly related Sae2 protein from Saccharomyces cerevisiae. Finally, we show that the MRN complex is required for meiotic recombination, chromatin remodeling at the ade6-M26 recombination hot spot, and formation of linear elements (which are the equivalent of the synaptonemal complex found in other eukaryotes) but that all of these functions are proficient in a rad50S mutant, which is deficient for Rec12(Spo11) removal. These observations suggest that the conserved role of the MRN complex in these meiotic functions is independent of Rec12(Spo11) removal.
Collapse
|
33
|
Coprinus cinereus rad50 mutants reveal an essential structural role for Rad50 in axial element and synaptonemal complex formation, homolog pairing and meiotic recombination. Genetics 2008; 180:1889-907. [PMID: 18940790 DOI: 10.1534/genetics.108.092775] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Mre11/Rad50/Nbs1 (MRN) complex is required for eukaryotic DNA double-strand break (DSB) repair and meiotic recombination. We cloned the Coprinus cinereus rad50 gene and showed that it corresponds to the complementation group previously named rad12, identified mutations in 15 rad50 alleles, and mapped two of the mutations onto molecular models of Rad50 structure. We found that C. cinereus rad50 and mre11 mutants arrest in meiosis and that this arrest is Spo11 dependent. In addition, some rad50 alleles form inducible, Spo11-dependent Rad51 foci and therefore must be forming meiotic DSBs. Thus, we think it likely that arrest in both mre11-1 and the collection of rad50 mutants is the result of unrepaired or improperly processed DSBs in the genome and that Rad50 and Mre11 are dispensable in C. cinereus for DSB formation, but required for appropriate DSB processing. We found that the ability of rad50 mutant strains to form Rad51 foci correlates with their ability to promote synaptonemal complex formation and with levels of stable meiotic pairing and that partial pairing, recombination initiation, and synapsis occur in the absence of wild-type Rad50 catalytic domains. Examination of single- and double-mutant strains showed that a spo11 mutation that prevents DSB formation enhances axial element (AE) formation for rad50-4, an allele predicted to encode a protein with intact hook region and hook-proximal coiled coils, but not for rad50-1, an allele predicted to encode a severely truncated protein, or for rad50-5, which encodes a protein whose hook-proximal coiled-coil region is disrupted. Therefore, Rad50 has an essential structural role in the formation of AEs, separate from the DSB-processing activity of the MRN complex.
Collapse
|
34
|
Khasanov FK, Salakhova AF, Khasanova OS, Grishchuk AL, Chepurnaja OV, Korolev VG, Kohli J, Bashkirov VI. Genetic analysis reveals different roles of Schizosaccharomyces pombe sfr1/dds20 in meiotic and mitotic DNA recombination and repair. Curr Genet 2008; 54:197-211. [PMID: 18769921 DOI: 10.1007/s00294-008-0212-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 08/15/2008] [Indexed: 11/26/2022]
Abstract
DNA double-strand break (DSB) repair mediated by the Rad51 pathway of homologous recombination is conserved in eukaryotes. In yeast, Rad51 paralogs, Saccharomyces cerevisiae Rad55-Rad57 and Schizosaccharomyces pombe Rhp55-Rhp57, are mediators of Rad51 nucleoprotein formation. The recently discovered S. pombe Sfr1/Dds20 protein has been shown to interact with Rad51 and to operate in the Rad51-dependent DSB repair pathway in parallel to the paralog-mediated pathway. Here we show that Sfr1 is a nuclear protein and acts downstream of Rad50 in DSB processing. sfr1Delta is epistatic to rad18 (-) and rad60 (-), and Sfr1 is a high-copy suppressor of the replication and repair defects of a rad60 mutant. Sfr1 functions in a Cds1-independent UV damage tolerance mechanism. In contrast to mitotic recombination, meiotic recombination is significantly reduced in sfr1Delta strains. Our data indicate that Sfr1 acts in DSB repair mainly outside of S-phase, and is required for wild-type levels of meiotic recombination. We suggest that Sfr1 acts early in recombination and has a specific role in Rad51 filament assembly, distinct from that of the Rad51 paralogs.
Collapse
Affiliation(s)
- Fuat K Khasanov
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|
35
|
McNairn AJ, Gerton JL. The chromosome glue gets a little stickier. Trends Genet 2008; 24:382-9. [PMID: 18602182 DOI: 10.1016/j.tig.2008.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 06/05/2008] [Accepted: 06/05/2008] [Indexed: 12/25/2022]
Abstract
Since their discovery, the cohesin proteins have been intensely studied in multiple model systems to determine the mechanism of chromosome cohesion. Recent studies have demonstrated that cohesin is much more than a molecular glue that holds chromosomes together in mitosis. Indeed, cohesin performs critical roles in gene regulation, possibly through the formation of higher-order chromatin structure. Moreover, this newly appreciated role is necessary for proper development in metazoan species, with mutations in the cohesin pathway resulting in human developmental disorders.
Collapse
Affiliation(s)
- Adrian J McNairn
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | |
Collapse
|
36
|
The Rad52 homologs Rad22 and Rti1 of Schizosaccharomyces pombe are not essential for meiotic interhomolog recombination, but are required for meiotic intrachromosomal recombination and mating-type-related DNA repair. Genetics 2008; 178:2399-412. [PMID: 18430957 DOI: 10.1534/genetics.107.085696] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proteins of the RAD52 epistasis group play an essential role in repair of some types of DNA damage and genetic recombination. In Schizosaccharomyces pombe, Rad22 (a Rad52 ortholog) has been shown to be as necessary for repair and recombination events during vegetative growth as its Saccharomyces cerevisiae counterpart. This finding contrasts with previous reports where, due to suppressor mutations in the fbh1 gene, rad22 mutants did not display a severe defect. We have analyzed the roles of Rad22 and Rti1, another Rad52 homolog, during meiotic recombination and meiosis in general. Both proteins play an important role in spore viability. During meiotic prophase I, they partially colocalize and partially localize to Rad51 foci and linear elements. Genetic analysis showed that meiotic interchromosomal crossover and conversion events were unexpectedly not much affected by deletion of either or both genes. A strong decrease of intrachromosomal recombination assayed by a gene duplication construct was observed. Therefore, we propose that the most important function of Rad22 and Rti1 in S. pombe meiosis is repair of double-strand breaks with involvement of the sister chromatids. In addition, a novel mating-type-related repair function of Rad22 specific to meiosis and spore germination is described.
Collapse
|
37
|
Molecular characterization of the role of the Schizosaccharomyces pombe nip1+/ctp1+ gene in DNA double-strand break repair in association with the Mre11-Rad50-Nbs1 complex. Mol Cell Biol 2008; 28:3639-51. [PMID: 18378696 DOI: 10.1128/mcb.01828-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Schizosaccharomyces pombe nip1(+)/ctp1(+) gene was previously identified as an slr (synthetically lethal with rad2) mutant. Epistasis analysis indicated that Nip1/Ctp1 functions in Rhp51-dependent recombinational repair, together with the Rad32 (spMre11)-Rad50-Nbs1 complex, which plays important roles in the early steps of DNA double-strand break repair. Nip1/Ctp1 was phosphorylated in asynchronous, exponentially growing cells and further phosphorylated in response to bleomycin treatment. Overproduction of Nip1/Ctp1 suppressed the DNA repair defect of an nbs1-s10 mutant, which carries a mutation in the FHA phosphopeptide-binding domain of Nbs1, but not of an nbs1 null mutant. Meiotic DNA double-strand breaks accumulated in the nip1/ctp1 mutant. The DNA repair phenotypes and epistasis relationships of nip1/ctp1 are very similar to those of the Saccharomyces cerevisiae sae2/com1 mutant, suggesting that Nip1/Ctp1 is a functional homologue of Sae2/Com1, although the sequence similarity between the proteins is limited to the C-terminal region containing the RHR motif. We found that the RxxL and CxxC motifs are conserved in Schizosaccharomyces species and in vertebrate CtIP, originally identified as a cofactor of the transcriptional corepressor CtBP. However, these two motifs are not found in other fungi, including Saccharomyces and Aspergillus species. We propose that Nip1/Ctp1 is a functional counterpart of Sae2/Com1 and CtIP.
Collapse
|
38
|
Limbo O, Chahwan C, Yamada Y, de Bruin RAM, Wittenberg C, Russell P. Ctp1 is a cell-cycle-regulated protein that functions with Mre11 complex to control double-strand break repair by homologous recombination. Mol Cell 2008; 28:134-46. [PMID: 17936710 DOI: 10.1016/j.molcel.2007.09.009] [Citation(s) in RCA: 256] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 08/30/2007] [Accepted: 09/21/2007] [Indexed: 11/26/2022]
Abstract
The Mre11-Rad50-Nbs1 (MRN) complex is a primary sensor of DNA double-strand breaks (DSBs). Upon recruitment to DSBs, it plays a critical role in catalyzing 5' --> 3' single-strand resection that is required for repair by homologous recombination (HR). Unknown mechanisms repress HR in G1 phase of the cell cycle during which nonhomologous end-joining (NHEJ) is the favored mode of DSB repair. Here we describe fission yeast Ctp1, so-named because it shares conserved domains with the mammalian tumor suppressor CtIP. Ctp1 is recruited to DSBs where it is essential for repair by HR. Ctp1 is required for efficient formation of RPA-coated single-strand DNA adjacent to DSBs, indicating that it functions with the MRN complex in 5' --> 3' resection. Transcription of ctp1(+) is periodic during the cell cycle, with the onset of its expression coinciding with the start of DNA replication. These data suggest that regulation of Ctp1 underlies cell-cycle control of HR.
Collapse
Affiliation(s)
- Oliver Limbo
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
39
|
Telomere lengthening early in development. Nat Cell Biol 2007; 9:1436-41. [PMID: 17982445 DOI: 10.1038/ncb1664] [Citation(s) in RCA: 278] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 09/24/2007] [Indexed: 12/11/2022]
Abstract
Stem cells and cancer cells maintain telomere length mostly through telomerase. Telomerase activity is high in male germ line and stem cells, but is low or absent in mature oocytes and cleavage stage embryos, and then high again in blastocysts. How early embryos reset telomere length remains poorly understood. Here, we show that oocytes actually have shorter telomeres than somatic cells, but their telomeres lengthen remarkably during early cleavage development. Moreover, parthenogenetically activated oocytes also lengthen their telomeres, thus the capacity to elongate telomeres must reside within oocytes themselves. Notably, telomeres also elongate in the early cleavage embryos of telomerase-null mice, demonstrating that telomerase is unlikely to be responsible for the abrupt lengthening of telomeres in these cells. Coincident with telomere lengthening, extensive telomere sister-chromatid exchange (T-SCE) and colocalization of the DNA recombination proteins Rad50 and TRF1 were observed in early cleavage embryos. Both T-SCE and DNA recombination proteins decrease in blastocyst stage embryos, whereas telomerase activity increases and telomeres elongate only slowly. We suggest that telomeres lengthen during the early cleavage cycles following fertilization through a recombination-based mechanism, and that from the blastocyst stage onwards, telomerase only maintains the telomere length established by this alternative mechanism.
Collapse
|
40
|
Wu Y, Xiao S, Zhu XD. MRE11-RAD50-NBS1 and ATM function as co-mediators of TRF1 in telomere length control. Nat Struct Mol Biol 2007; 14:832-40. [PMID: 17694070 DOI: 10.1038/nsmb1286] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 07/03/2007] [Indexed: 01/21/2023]
Abstract
Human telomeres are associated with ATM and the protein complex consisting of MRE11, RAD50 and NBS1 (MRN), which are central to maintaining genomic stability. Here we show that when targeted to telomeres, wild-type RAD50 downregulates telomeric association of TRF1, a negative regulator of telomere maintenance. TRF1 binding to telomeres is upregulated in cells deficient in NBS1 or under ATM inhibition. The TRF1 association with telomeres induced by ATM inhibition is abrogated in cells lacking MRE11 or NBS1, suggesting that MRN and ATM function in the same pathway controlling TRF1 binding to telomeres. The ability of TRF1 to interact with telomeric DNA in vitro is impaired by ATM-mediated phosphorylation. We propose that MRN is required for TRF1 phosphorylation by ATM and that such phosphorylation results in the release of TRF1 from telomeres, promoting telomerase access to the ends of telomeres.
Collapse
Affiliation(s)
- Yili Wu
- Department of Biology, LSB438 McMaster University, 1280 Main St. West, Hamilton, Ontario, Canada L8S4K1
| | | | | |
Collapse
|
41
|
Decottignies A. Microhomology-mediated end joining in fission yeast is repressed by pku70 and relies on genes involved in homologous recombination. Genetics 2007; 176:1403-15. [PMID: 17483423 PMCID: PMC1931558 DOI: 10.1534/genetics.107.071621] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Two DNA repair pathways are known to mediate DNA double-strand-break (DSB) repair: homologous recombination (HR) and nonhomologous end joining (NHEJ). In addition, a nonconservative backup pathway showing extensive nucleotide loss and relying on microhomologies at repair junctions was identified in NHEJ-deficient cells from a variety of organisms and found to be involved in chromosomal translocations. Here, an extrachromosomal assay was used to characterize this microhomology-mediated end-joining (MMEJ) mechanism in fission yeast. MMEJ was found to require at least five homologous nucleotides and its efficiency was decreased by the presence of nonhomologous nucleotides either within the overlapping sequences or at DSB ends. Exo1 exonuclease and Rad22, a Rad52 homolog, were required for repair, suggesting that MMEJ is related to the single-strand-annealing (SSA) pathway of HR. In addition, MMEJ-dependent repair of DSBs with discontinuous microhomologies was strictly dependent on Pol4, a PolX DNA polymerase. Although not strictly required, Msh2 and Pms1 mismatch repair proteins affected the pattern of MMEJ repair. Strikingly, Pku70 inhibited MMEJ and increased the minimal homology length required for efficient MMEJ. Overall, this study strongly suggests that MMEJ does not define a distinct DSB repair mechanism but reflects "micro-SSA."
Collapse
Affiliation(s)
- Anabelle Decottignies
- Cellular Genetics, Christian de Duve Institute of Cellular Pathology, Catholic University of Louvain, 1200 Brussels, Belgium.
| |
Collapse
|
42
|
Riha K, Heacock ML, Shippen DE. The role of the nonhomologous end-joining DNA double-strand break repair pathway in telomere biology. Annu Rev Genet 2007; 40:237-77. [PMID: 16822175 DOI: 10.1146/annurev.genet.39.110304.095755] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Double-strand breaks are a cataclysmic threat to genome integrity. In higher eukaryotes the predominant recourse is the nonhomologous end-joining (NHEJ) double-strand break repair pathway. NHEJ is a versatile mechanism employing the Ku heterodimer, ligase IV/XRCC4 and a host of other proteins that juxtapose two free DNA ends for ligation. A critical function of telomeres is their ability to distinguish the ends of linear chromosomes from double-strand breaks, and avoid NHEJ. Telomeres accomplish this feat by forming a unique higher order nucleoprotein structure. Paradoxically, key components of NHEJ associate with normal telomeres and are required for proper length regulation and end protection. Here we review the biochemical mechanism of NHEJ in double-strand break repair, and in the response to dysfunctional telomeres. We discuss the ways in which NHEJ proteins contribute to telomere biology, and highlight how the NHEJ machinery and the telomere complex are evolving to maintain genome stability.
Collapse
Affiliation(s)
- Karel Riha
- Gregor Mendel Institute of Plant Molecular Biology, Austrian Academy of Sciences, A-1030 Vienna, Austria.
| | | | | |
Collapse
|
43
|
Raji H, Hartsuiker E. Double-strand break repair and homologous recombination in Schizosaccharomyces pombe. Yeast 2007; 23:963-76. [PMID: 17072889 DOI: 10.1002/yea.1414] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The study of double-strand break repair and homologous recombination in Saccharomyces cerevisiae meiosis has provided important information about the mechanisms involved. However, it has become clear that the resulting recombination models are only partially applicable to repair in mitotic cells, where crossover formation is suppressed. In recent years our understanding of double-strand break repair and homologous recombination in Schizosaccharomyces pombe has increased significantly, and the identification of novel pathways and genes with homologues in higher eukaryotes has increased its value as a model organism for double-strand break repair. In this review we will focus on the involvement of homologous recombination and repair in different aspects of genome stability in Sz. pombe meiosis, replication and telomere maintenance. We will also discuss anti-recombination pathways (that suppress crossover formation), non-homologous end-joining, single-strand annealing and factors that influence the choice and prevalence of the different repair pathways in Sz. pombe.
Collapse
Affiliation(s)
- Hayatu Raji
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | | |
Collapse
|
44
|
Salakhova AF, Bashkirov VI, Khasanov FK. Dds20 operates in Cds1-independent mechanism of tolerance to UV-induced DNA damage in Schizosaccharomyces pombe cells. RUSS J GENET+ 2007. [DOI: 10.1134/s1022795407030167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Xhemalce B, Riising EM, Baumann P, Dejean A, Arcangioli B, Seeler JS. Role of SUMO in the dynamics of telomere maintenance in fission yeast. Proc Natl Acad Sci U S A 2007; 104:893-8. [PMID: 17209013 PMCID: PMC1783410 DOI: 10.1073/pnas.0605442104] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The sheltering of chromosome ends from illegitimate DNA repair reactions and telomere length homeostasis are critical for preserving genomic integrity. Growing evidence implicates covalent protein modification by SUMO (small ubiquitin-like modifier) (sumoylation) in the regulation of numerous DNA transactions, including DNA repair and transcription, as well as heterochromatin formation and maintenance. We have recently shown that fission yeast Pli1p is a SUMO E3 ligase and that pli1 mutants, which are impaired for global sumoylation, are viable, but exhibit de-regulated homologous recombination and marked defects in chromosome segregation and centromeric silencing, as well as a consistent increase in telomere length. In this work, we explore the mechanisms underlying sumoylation-dependent telomere maintenance. We show that Pli1p, but not the related Nse2p, is the principal SUMO E3 ligase enzyme involved. Using both a pli1 mutation and a physiological "knockdown" of sumoylation, achieved by inducible expression of a dominant negative form of the conjugating enzyme Ubc9p, we further show that telomere lengthening induced by lack of sumoylation is not due to unscheduled telomere-telomere recombination. Instead, sumoylation increases telomerase activity, therefore suggesting that this modification controls the activity of a positive or negative regulator of telomerase.
Collapse
|
46
|
Marchetti MA, Weinberger M, Murakami Y, Burhans WC, Huberman JA. Production of reactive oxygen species in response to replication stress and inappropriate mitosis in fission yeast. J Cell Sci 2006; 119:124-31. [PMID: 16371652 PMCID: PMC1582148 DOI: 10.1242/jcs.02703] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Previous studies have indicated that replication stress can trigger apoptosis-like cell death, accompanied (where tested) by production of reactive oxygen species (ROS), in mammalian cells and budding yeast (Saccharomyces cerevisiae). In mammalian cells, inappropriate entry into mitosis also leads to cell death. Here, we report similar responses in fission yeast (Schizosaccharomyces pombe). We used ROS- and death-specific fluorescent stains to measure the effects of mutations in replication initiation and checkpoint genes in fission yeast on the frequencies of ROS production and cell death. We found that certain mutant alleles of each of the four tested replication initiation genes caused elevated ROS and cell death. Where tested, these effects were not enhanced by checkpoint-gene mutations. Instead, when cells competent for replication but defective in both the replication and damage checkpoints were treated with hydroxyurea, which slows replication fork movement, the frequencies of ROS production and cell death were greatly increased. This was a consequence of elevated CDK activity, which permitted inappropriate entry into mitosis. Thus, studies in fission yeast are likely to prove helpful in understanding the pathways that lead from replication stress and inappropriate mitosis to cell death in mammalian cells.
Collapse
Affiliation(s)
| | - Martin Weinberger
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | - Yota Murakami
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Shogoinkawahara-machi, Sakyo-ku, Kyoto 606-8507, Japan
| | - William C Burhans
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA
- Authors for correspondence (e-mail: , )
| | - Joel A Huberman
- Department of Cancer Genetics and
- Authors for correspondence (e-mail: , )
| |
Collapse
|
47
|
Vannier JB, Depeiges A, White C, Gallego ME. Two roles for Rad50 in telomere maintenance. EMBO J 2006; 25:4577-85. [PMID: 16990794 PMCID: PMC1589983 DOI: 10.1038/sj.emboj.7601345] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 08/21/2006] [Indexed: 11/08/2022] Open
Abstract
We describe two roles for the Rad50 protein in telomere maintenance and the protection of chromosome ends. Using fluorescence in situ hybridisation (FISH) and fibre-FISH analyses, we show that absence of AtRad50 protein leads to rapid shortening of a subpopulation of chromosome ends and subsequently chromosome-end fusions lacking telomeric repeats. In the absence of telomerase, mutation of atrad50 has a synergistic effect on the number of chromosome end fusions. Surprisingly, this 'deprotection' of the shortened telomeres does not result in increased exonucleolytic degradation, but in a higher proportion of anaphase bridges containing telomeric repeats in atrad50/tert plants, compared to tert mutant plants. Absence of AtRad50 thus facilitates the action of recombination on these shortened telomeres. We propose that this protective role of Rad50 protein on shortened telomeres results from its action in constraining recombination to sister chromatids and thus avoiding end-to-end interactions.
Collapse
Affiliation(s)
| | - Annie Depeiges
- UMR 6547 CNRS/Université Blaise Pascal, Aubière cedex, France
| | - Charles White
- UMR 6547 CNRS/Université Blaise Pascal, Aubière cedex, France
| | - Maria Eugenia Gallego
- UMR 6547 CNRS/Université Blaise Pascal, Aubière cedex, France
- UMR 6547 CNRS/Université Blaise Pascal, 24, avenue des Landais, 63177 Aubière cedex, France. Tel.: +33 473 407 978; Fax: +33 473 407 777; E-mail:
| |
Collapse
|
48
|
Vagin DA, Khasanov FK, Bashkirov VI. The role of recombinational repair proteins in mating type switching in fission yeast cells. RUSS J GENET+ 2006. [DOI: 10.1134/s1022795406040041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Andreassen PR, Ho GPH, D'Andrea AD. DNA damage responses and their many interactions with the replication fork. Carcinogenesis 2006; 27:883-92. [PMID: 16490739 DOI: 10.1093/carcin/bgi319] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The cellular response to DNA damage is composed of cell cycle checkpoint and DNA repair mechanisms that serve to ensure proper replication of the genome prior to cell division. The function of the DNA damage response during DNA replication in S-phase is critical to this process. Recent evidence has suggested a number of interrelationships of DNA replication and cellular DNA damage responses. These include S-phase checkpoints which suppress replication initiation or elongation in response to DNA damage. Also, many components of the DNA damage response are required either for the stabilization of, or for restarting, stalled replication forks. Further, translesion synthesis permits DNA replication to proceed in the presence of DNA damage and can be coordinated with subsequent repair by homologous recombination (HR). Finally, cohesion of sister chromatids is established coincident with DNA replication and is required for subsequent DNA repair by homologous recombination. Here we review these processes, all of which occur at, or are related to, the advancing replication fork. We speculate that these multiple interdependencies of DNA replication and DNA damage responses integrate the many steps necessary to ensure accurate duplication of the genome.
Collapse
Affiliation(s)
- Paul R Andreassen
- Division of Experimental Hematology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| | | | | |
Collapse
|
50
|
de Vries FAT, Zonneveld JBM, van Duijn-Goedhart A, Roodbergen M, Boei J, van Buul PPW, Essers J, van Steeg H, van Zeeland AA, van Benthem J, Pastink A. Inactivation of RAD52 aggravates RAD54 defects in mice but not in Schizosaccharomyces pombe. DNA Repair (Amst) 2005; 4:1121-8. [PMID: 16009599 DOI: 10.1016/j.dnarep.2005.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 05/12/2005] [Accepted: 06/02/2005] [Indexed: 01/09/2023]
Abstract
RAD52 and RAD54 genes from Saccharomyces cerevisiae are required for double-strand break repair through homologous recombination and show epistatic interactions i.e., single and double mutant strains are equally sensitive to DNA damaging agents. In here we combined mutations in RAD52 and RAD54 homologs in Schizosaccharomyces pombe and mice. The analysis of mutant strains in S. pombe demonstrated nearly identical sensitivities of rhp54, rad22A and rad22B double and triple mutants to X-rays, cis-diamminedichloroplatinum and hydroxyurea. In this respect, the fission yeast homologs of RAD54 and RAD52 closely resemble their counterparts in S. cerevisiae. To verify if inactivation of RAD52 affects the DNA damage sensitivities of RAD54 deficient mice, several endpoints were studied in double mutant mice and in bone marrow cells derived from these animals. Haemopoietic depression in bone marrow and the formation of micronuclei after in vivo exposure to mitomycine C (MMC) was not increased in either single or double mutant mice in comparison to wildtype animals. The induction of sister chromatid exchanges in splenocytes was slightly reduced in the RAD54 mutant. A similar reduction was detected in the double mutant. However, a deficiency of RAD52 exacerbates the MMC survival of RAD54 mutant mice and also has a distinct effect on the survival of bone marrow cells after exposure to ionizing radiation. These findings may be explained by additive defects in HR in the double mutant but may also indicate a more prominent role for single-strand annealing in the absence of Rad54.
Collapse
Affiliation(s)
- Femke A T de Vries
- Department of Toxicogenetics, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|