1
|
Mukai T. Bioinformatic Prediction of an tRNA Sec Gene Nested inside an Elongation Factor SelB Gene in Alphaproteobacteria. Int J Mol Sci 2021; 22:4605. [PMID: 33925673 PMCID: PMC8124441 DOI: 10.3390/ijms22094605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/16/2021] [Accepted: 04/25/2021] [Indexed: 12/02/2022] Open
Abstract
In bacteria, selenocysteine (Sec) is incorporated into proteins via the recoding of a particular codon, the UGA stop codon in most cases. Sec-tRNASec is delivered to the ribosome by the Sec-dedicated elongation factor SelB that also recognizes a Sec-insertion sequence element following the codon on the mRNA. Since the excess of SelB may lead to sequestration of Sec-tRNASec under selenium deficiency or oxidative stress, the expression levels of SelB and tRNASec should be regulated. In this bioinformatic study, I analyzed the Rhizobiales SelB species because they were annotated to have a non-canonical C-terminal extension. I found that the open reading frame (ORF) of diverse Alphaproteobacteria selB genes includes an entire tRNASec sequence (selC) and overlaps with the start codon of the downstream ORF. A remnant tRNASec sequence was found in the Sinorhizobium melilotiselB genes whose products have a shorter C-terminal extension. Similar overlapping traits were found in Gammaproteobacteria and Nitrospirae. I hypothesized that once the tRNASec moiety is folded and processed, the expression of the full-length SelB may be repressed. This is the first report on a nested tRNA gene inside a protein ORF in bacteria.
Collapse
Affiliation(s)
- Takahito Mukai
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
2
|
Chiaruttini C, Guillier M. On the role of mRNA secondary structure in bacterial translation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1579. [PMID: 31760691 DOI: 10.1002/wrna.1579] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 11/07/2022]
Abstract
Messenger RNA (mRNA) is no longer considered as a mere informational molecule whose sole function is to convey the genetic information specified by DNA to the ribosome. Beyond this primary function, mRNA also contains additional instructions that influence the way and the extent to which this message is translated by the ribosome into protein(s). Indeed, owing to its intrinsic propensity to quickly and dynamically fold and form higher order structures, mRNA exhibits a second layer of structural information specified by the sequence itself. Besides influencing transcription and mRNA stability, this additional information also affects translation, and more precisely the frequency of translation initiation, the choice of open reading frame by recoding, the elongation speed, and the folding of the nascent protein. Many studies in bacteria have shown that mRNA secondary structure participates to the rapid adaptation of these versatile organisms to changing environmental conditions by efficiently tuning translation in response to diverse signals, such as the presence of ligands, regulatory proteins, or small RNAs. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems Translation > Translation Regulation.
Collapse
|
3
|
Serrão VHB, Silva IR, da Silva MTA, Scortecci JF, de Freitas Fernandes A, Thiemann OH. The unique tRNASec and its role in selenocysteine biosynthesis. Amino Acids 2018; 50:1145-1167. [DOI: 10.1007/s00726-018-2595-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/26/2018] [Indexed: 12/26/2022]
|
4
|
On elongation factor eEFSec, its role and mechanism during selenium incorporation into nascent selenoproteins. Biochim Biophys Acta Gen Subj 2018; 1862:2463-2472. [PMID: 29555379 DOI: 10.1016/j.bbagen.2018.03.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/28/2018] [Accepted: 03/12/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND Selenium, an essential dietary micronutrient, is incorporated into proteins as the amino acid selenocysteine (Sec) in response to in-frame UGA codons. Complex machinery ensures accurate recoding of Sec codons in higher organisms. A specialized elongation factor eEFSec is central to the process. SCOPE OF REVIEW Selenoprotein synthesis relies on selenocysteinyl-tRNASec (Sec-tRNASec), selenocysteine inserting sequence (SECIS) and other selenoprotein mRNA elements, an in-trans SECIS binding protein 2 (SBP2) protein factor, and eEFSec. The exact mechanisms of discrete steps of the Sec UGA recoding are not well understood. However, recent studies on mammalian model systems have revealed the first insights into these mechanisms. Herein, we summarize the current knowledge about the structure and role of mammalian eEFSec. MAJOR CONCLUSIONS eEFSec folds into a chalice-like structure resembling that of the archaeal and bacterial orthologues SelB and the initiation protein factor IF2/eIF5B. The three N-terminal domains harbor major functional sites and adopt an EF-Tu-like fold. The C-terminal domain 4 binds to Sec-tRNASec and SBP2, senses distinct binding domains, and modulates the GTPase activity. Remarkably, GTP hydrolysis does not induce a canonical conformational change in eEFSec, but instead promotes a slight ratchet of domains 1 and 2 and a lever-like movement of domain 4, which may be critical for the release of Sec-tRNASec on the ribosome. GENERAL SIGNIFICANCE Based on current findings, a non-canonical mechanism for elongation of selenoprotein synthesis at the Sec UGA codon is proposed. Although incomplete, our understanding of this fundamental biological process is significantly improved, and it is being harnessed for biomedical and synthetic biology initiatives. This article is part of a Special Issue entitled "Selenium research" in celebration of 200 years of selenium discovery, edited by Dr. Elias Arnér and Dr. Regina Brigelius-Flohe.
Collapse
|
5
|
Chen YF, Lin HC, Chuang KN, Lin CH, Yen HCS, Yeang CH. A quantitative model for the rate-limiting process of UGA alternative assignments to stop and selenocysteine codons. PLoS Comput Biol 2017; 13:e1005367. [PMID: 28178267 PMCID: PMC5323020 DOI: 10.1371/journal.pcbi.1005367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 02/23/2017] [Accepted: 01/18/2017] [Indexed: 12/20/2022] Open
Abstract
Ambiguity in genetic codes exists in cases where certain stop codons are alternatively used to encode non-canonical amino acids. In selenoprotein transcripts, the UGA codon may either represent a translation termination signal or a selenocysteine (Sec) codon. Translating UGA to Sec requires selenium and specialized Sec incorporation machinery such as the interaction between the SECIS element and SBP2 protein, but how these factors quantitatively affect alternative assignments of UGA has not been fully investigated. We developed a model simulating the UGA decoding process. Our model is based on the following assumptions: (1) charged Sec-specific tRNAs (Sec-tRNASec) and release factors compete for a UGA site, (2) Sec-tRNASec abundance is limited by the concentrations of selenium and Sec-specific tRNA (tRNASec) precursors, and (3) all synthesis reactions follow first-order kinetics. We demonstrated that this model captured two prominent characteristics observed from experimental data. First, UGA to Sec decoding increases with elevated selenium availability, but saturates under high selenium supply. Second, the efficiency of Sec incorporation is reduced with increasing selenoprotein synthesis. We measured the expressions of four selenoprotein constructs and estimated their model parameters. Their inferred Sec incorporation efficiencies did not correlate well with their SECIS-SBP2 binding affinities, suggesting the existence of additional factors determining the hierarchy of selenoprotein synthesis under selenium deficiency. This model provides a framework to systematically study the interplay of factors affecting the dual definitions of a genetic codon. The “code book” of protein translation maps 43 = 64 triplets of RNA sequences (codons) into 20 canonical amino acids and the stop signal. This code book is universal in almost all organisms on earth. Selenoproteins consist of selenium-containing amino acids–selenocysteines (Sec)–that are not among the 20 canonical amino acids. The cells “borrow” a stop codon UGA to translate selenocysteines. Since UGA maps to two possible outcomes, the translation machinery can synthesize both full-length selenoproteins (when UGA encodes selenocysteine) and truncated peptide chains (when UGA encodes translational termination). Despite extensive study about selenoprotein synthesis mechanisms, a quantitative model for how cells allocate resources to synthesize each species is yet to appear. We propose a quantitative model that can explain the dependency of experimental observables such as protein stability and Sec incorporation efficiency by various factors such as selenium concentration and mRNA levels. Saturation of those quantities implies the existence of limiting factors such as mRNA transcripts and Sec-specific tRNAs. The match between model simulations and experimental data suggests that the cellular decision making of synthesizing the two species of proteins may follow simple first-order kinetics.
Collapse
Affiliation(s)
- Yen-Fu Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Hsiu-Chuan Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Kai-Neng Chuang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Chih-Hsu Lin
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Hsueh-Chi S. Yen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
- * E-mail: (HCSY); (CHY)
| | - Chen-Hsiang Yeang
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
- * E-mail: (HCSY); (CHY)
| |
Collapse
|
6
|
Abstract
About 50 years ago, research on the biological function of the element selenium was initiated by the report of J. Pinsent that generation of formate dehydrogenase activity by Escherichia coli requires the presence of both selenite and molybdate in the growth medium. In nature, selenium is predominantly associated with sulfur minerals, the Se/S ratios of which vary widely depending on the geological formation. Because of the chemical similarity between the two elements, selenium can intrude into the sulfur pathway at high Se/S ratios and can be statistically incorporated into polypeptides. The central macromolecule for the synthesis and incorporation of selenocysteine is a specialized tRNA, designated tRNASec. It is the product of the selC (previously fdhC) gene. tRNASec fulfils a multitude of functions, which are based on its unique structural properties, compared to canonical elongator RNAs. tRNASec possesses the discriminator base G73 and the identity elements of serine-specific tRNA isoacceptors. The conversion of seryl-tRNASec into selenocysteyl-tRNASec is catalyzed by selenocysteine synthase, the product of the selA gene (previously the fdhA locus, which was later shown to harbor two genes, selA and selB). The crucial element for the regulation is a putative secondary structure at the 5' end of the untranslated region of the selAB mRNA. The generation and analysis of transcriptional and translational reporter gene fusions of selA and selB yield an expression pattern identical to that obtained by measuring the actual amounts of SelA and SelB proteins.
Collapse
|
7
|
Ling J, O'Donoghue P, Söll D. Genetic code flexibility in microorganisms: novel mechanisms and impact on physiology. Nat Rev Microbiol 2015; 13:707-721. [PMID: 26411296 DOI: 10.1038/nrmicro3568] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The genetic code, initially thought to be universal and immutable, is now known to contain many variations, including biased codon usage, codon reassignment, ambiguous decoding and recoding. As a result of recent advances in the areas of genome sequencing, biochemistry, bioinformatics and structural biology, our understanding of genetic code flexibility has advanced substantially in the past decade. In this Review, we highlight the prevalence, evolution and mechanistic basis of genetic code variations in microorganisms, and we discuss how this flexibility of the genetic code affects microbial physiology.
Collapse
Affiliation(s)
- Jiqiang Ling
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Patrick O'Donoghue
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada.,Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA.,Department of Chemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| |
Collapse
|
8
|
Kotini SB, Peske F, Rodnina MV. Partitioning between recoding and termination at a stop codon-selenocysteine insertion sequence. Nucleic Acids Res 2015; 43:6426-38. [PMID: 26040702 PMCID: PMC4513850 DOI: 10.1093/nar/gkv558] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/14/2015] [Accepted: 05/17/2015] [Indexed: 11/13/2022] Open
Abstract
Selenocysteine (Sec) is inserted into proteins by recoding a UGA stop codon followed by a selenocysteine insertion sequence (SECIS). UGA recoding by the Sec machinery is believed to be very inefficient owing to RF2-mediated termination at UGA. Here we show that recoding efficiency in vivo is 30-40% independently of the cell growth rate. Efficient recoding requires sufficient selenium concentrations in the medium. RF2 is an unexpectedly poor competitor of Sec. We recapitulate the major characteristics of SECIS-dependent UGA recoding in vitro using a fragment of fdhF-mRNA encoding a natural bacterial selenoprotein. Only 40% of actively translating ribosomes that reach the UGA codon insert Sec, even in the absence of RF2, suggesting that the capacity to insert Sec into proteins is inherently limited. RF2 does not compete with the Sec incorporation machinery; rather, it terminates translation on those ribosomes that failed to incorporate Sec. The data suggest a model in which early recruitment of Sec-tRNA(Sec)-SelB-GTP to the SECIS blocks the access of RF2 to the stop codon, thereby prioritizing recoding over termination at Sec-dedicated stop codons.
Collapse
Affiliation(s)
- Suresh Babu Kotini
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany
| | - Frank Peske
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany
| |
Collapse
|
9
|
Thyer R, Robotham SA, Brodbelt JS, Ellington AD. Evolving tRNA(Sec) for efficient canonical incorporation of selenocysteine. J Am Chem Soc 2014; 137:46-9. [PMID: 25521771 DOI: 10.1021/ja510695g] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial selenocysteine incorporation occurs in response to opal stop codons and is dependent on the presence of a selenocysteine insertion sequence (SECIS) element, which recruits the selenocysteine specific elongation factor and tRNA(Sec) needed to reassign the UGA codon. The SECIS element is a stem-loop RNA structure immediately following the UGA codon and forms part of the coding sequence in bacterial selenoproteins. Although the site specific incorporation of selenocysteine is of great interest for protein engineering, the sequence constraints imposed by the adjoining SECIS element severely limit its use. We have evolved an E. coli tRNA(Sec) that is compatible with the canonical translation machinery and can suppress amber stop codons to incorporate selenocysteine with high efficiency. This evolved tRNA(Sec) allows the production of new recombinant selenoproteins containing structural motifs such as selenyl-sulfhydryl and diselenide bonds.
Collapse
Affiliation(s)
- Ross Thyer
- Institute for Cellular and Molecular Biology, University of Texas at Austin , Austin, Texas 78712, United States
| | | | | | | |
Collapse
|
10
|
Bröcker MJ, Ho JML, Church GM, Söll D, O'Donoghue P. Recoding the genetic code with selenocysteine. Angew Chem Int Ed Engl 2014; 53:319-23. [PMID: 24511637 DOI: 10.1002/anie.201308584] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Selenocysteine (Sec) is naturally incorporated into proteins by recoding the stop codon UGA. Sec is not hardwired to UGA, as the Sec insertion machinery was found to be able to site-specifically incorporate Sec directed by 58 of the 64 codons. For 15 sense codons, complete conversion of the codon meaning from canonical amino acid (AA) to Sec was observed along with a tenfold increase in selenoprotein yield compared to Sec insertion at the three stop codons. This high-fidelity sense-codon recoding mechanism was demonstrated for Escherichia coli formate dehydrogenase and recombinant human thioredoxin reductase and confirmed by independent biochemical and biophysical methods. Although Sec insertion at UGA is known to compete against protein termination, it is surprising that the Sec machinery has the ability to outcompete abundant aminoacyl-tRNAs in decoding sense codons. The findings have implications for the process of translation and the information storage capacity of the biological cell.
Collapse
|
11
|
Bröcker MJ, Ho JML, Church GM, Söll D, O'Donoghue P. Umkodierung des genetischen Codes mit Selenocystein. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201308584] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Xu J, Croitoru V, Rutishauser D, Cheng Q, Arnér ESJ. Wobble decoding by the Escherichia coli selenocysteine insertion machinery. Nucleic Acids Res 2013; 41:9800-11. [PMID: 23982514 PMCID: PMC3834832 DOI: 10.1093/nar/gkt764] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Selenoprotein expression in Escherichia coli redefines specific single UGA codons from translational termination to selenocysteine (Sec) insertion. This process requires the presence of a Sec Insertion Sequence (SECIS) in the mRNA, which forms a secondary structure that binds a unique Sec-specific elongation factor that catalyzes Sec insertion at the predefined UGA instead of release factor 2-mediated termination. During overproduction of recombinant selenoproteins, this process nonetheless typically results in expression of UGA-truncated products together with the production of recombinant selenoproteins. Here, we found that premature termination can be fully avoided through a SECIS-dependent Sec-mediated suppression of UGG, thereby yielding either tryptophan or Sec insertion without detectable premature truncation. The yield of recombinant selenoprotein produced with this method approached that obtained with a classical UGA codon for Sec insertion. Sec-mediated suppression of UGG thus provides a novel method for selenoprotein production, as here demonstrated with rat thioredoxin reductase. The results also reveal that the E. coli selenoprotein synthesis machinery has the inherent capability to promote wobble decoding.
Collapse
Affiliation(s)
- Jianqiang Xu
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden and Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Proteomics Karolinska (PK/KI), Karolinska Institutet, Stockholm SE-171 77, Sweden
| | | | | | | | | |
Collapse
|
13
|
Effects of combinatorial expression of selA, selB and selC genes on the efficiency of selenocysteine incorporation in Escherichia coli. Chem Res Chin Univ 2013. [DOI: 10.1007/s40242-013-2250-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Thyer R, Filipovska A, Rackham O. Engineered rRNA Enhances the Efficiency of Selenocysteine Incorporation during Translation. J Am Chem Soc 2012; 135:2-5. [DOI: 10.1021/ja3069177] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ross Thyer
- Western
Australian Institute for Medical Research and
Centre for Medical Research, The University of Western Australia, Australia
| | - Aleksandra Filipovska
- Western
Australian Institute for Medical Research and
Centre for Medical Research, The University of Western Australia, Australia
| | - Oliver Rackham
- Western
Australian Institute for Medical Research and
Centre for Medical Research, The University of Western Australia, Australia
| |
Collapse
|
15
|
Abstract
Despite the fact that the genetic code is known to vary between organisms in rare cases, it is believed that in the lifetime of a single cell the code is stable. We found Acetohalobium arabaticum cells grown on pyruvate genetically encode 20 amino acids, but in the presence of trimethylamine (TMA), A. arabaticum dynamically expands its genetic code to 21 amino acids including pyrrolysine (Pyl). A. arabaticum is the only known organism that modulates the size of its genetic code in response to its environment and energy source. The gene cassette pylTSBCD, required to biosynthesize and genetically encode UAG codons as Pyl, is present in the genomes of 24 anaerobic archaea and bacteria. Unlike archaeal Pyl-decoding organisms that constitutively encode Pyl, we observed that A. arabaticum controls Pyl encoding by down-regulating transcription of the entire Pyl operon under growth conditions lacking TMA, to the point where no detectable Pyl-tRNA(Pyl) is made in vivo. Pyl-decoding archaea adapted to an expanded genetic code by minimizing TAG codon frequency to typically ~5% of ORFs, whereas Pyl-decoding bacteria (~20% of ORFs contain in-frame TAGs) regulate Pyl-tRNA(Pyl) formation and translation of UAG by transcriptional deactivation of genes in the Pyl operon. We further demonstrate that Pyl encoding occurs in a bacterium that naturally encodes the Pyl operon, and identified Pyl residues by mass spectrometry in A. arabaticum proteins including two methylamine methyltransferases.
Collapse
|
16
|
Lukashenko NP. Expanding genetic code: Amino acids 21 and 22, selenocysteine and pyrrolysine. RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410080016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Young DJ, Edgar CD, Poole ES, Tate WP. The codon specificity of eubacterial release factors is determined by the sequence and size of the recognition loop. RNA (NEW YORK, N.Y.) 2010; 16:1623-33. [PMID: 20584893 PMCID: PMC2905760 DOI: 10.1261/rna.2117010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The two codon-specific eubacterial release factors (RF1: UAA/UAG and RF2: UAA/UGA) have specific tripeptide motifs (PXT/SPF) within an exposed recognition loop shown in recent structures to interact with stop codons during protein synthesis termination. The motifs have been inferred to be critical for codon specificity, but this study shows that they are insufficient to determine specificity alone. Swapping the motifs or the entire loop between factors resulted in a loss of codon recognition rather than a switch of codon specificity. From a study of chimeric eubacterial RF1/RF2 recognition loops and an atypical shorter variant in Caenorhabditis elegans mitochondrial RF1 that lacks the classical tripeptide motif PXT, key determinants throughout the whole loop have been defined. It reveals that more than one configuration of the recognition loop based on specific sequence and size can achieve the same desired codon specificity. This study has provided unexpected insight into why a combination of the two factors is necessary in eubacteria to exclude recognition of UGG as stop.
Collapse
Affiliation(s)
- David J Young
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | | | | | | |
Collapse
|
18
|
Young DJ, Edgar CD, Murphy J, Fredebohm J, Poole ES, Tate WP. Bioinformatic, structural, and functional analyses support release factor-like MTRF1 as a protein able to decode nonstandard stop codons beginning with adenine in vertebrate mitochondria. RNA (NEW YORK, N.Y.) 2010; 16:1146-55. [PMID: 20421313 PMCID: PMC2874167 DOI: 10.1261/rna.1970310] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Vertebrate mitochondria use stop codons UAA and UAG decoded by the release factor (RF) MTRF1L and two reassigned arginine codons, AGA and AGG. A second highly conserved RF-like factor, MTRF1, which evolved from a gene duplication of an ancestral mitochondrial RF1 and not a RF2, is a good candidate for recognizing the nonstandard codons. MTRF1 differs from other RFs by having insertions in the two external loops important for stop codon recognition (tip of helix alpha5 and recognition loop) and by having key substitutions that are involved in stop codon interactions in eubacterial RF/ribosome structures. These changes may allow recognition of the larger purine base in the first position of AGA/G and, uniquely for RFs, only of G at position 2. In contrast, residues that support A and G recognition in the third position in RF1 are conserved as would be required for recognition of AGA and AGG. Since an assay with vertebrate mitochondrial ribosomes has not been established, we modified Escherichia coli RF1 at the helix alpha5 and recognition loop regions to mimic MTRF1. There was loss of peptidyl-tRNA hydrolysis activity with standard stop codons beginning with U (e.g., UAG), but a gain of activity with codons beginning with A (AAG in particular). A lower level of activity with AGA could be enhanced by solvent modification. These observations imply that MTRF1 has the characteristics to recognize A as the first base of a stop codon as would be required to decode the nonstandard codons AGA and AGG.
Collapse
Affiliation(s)
- David J Young
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | | | | | | | | | | |
Collapse
|
19
|
Yoshizawa S, Böck A. The many levels of control on bacterial selenoprotein synthesis. Biochim Biophys Acta Gen Subj 2009; 1790:1404-14. [DOI: 10.1016/j.bbagen.2009.03.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 03/04/2009] [Accepted: 03/05/2009] [Indexed: 11/28/2022]
|
20
|
Rengby O, Cheng Q, Vahter M, Jörnvall H, Arnér ESJ. Highly active dimeric and low-activity tetrameric forms of selenium-containing rat thioredoxin reductase 1. Free Radic Biol Med 2009; 46:893-904. [PMID: 19146949 DOI: 10.1016/j.freeradbiomed.2008.12.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 12/16/2008] [Accepted: 12/18/2008] [Indexed: 10/21/2022]
Abstract
Mammalian thioredoxin reductase 1 (TrxR1) is a selenoprotein that contains a selenocysteine (Sec) residue at the penultimate C-terminal position. When rat TrxR1 is expressed recombinantly in Escherichia coli, partial truncation at the Sec-encoding UGA gives rise to additional protein species that lack Sec. Phenylarsine oxide (PAO) Sepharose can subsequently be used to enrich the Sec-containing protein and yield activity corresponding to that of native enzyme. Herein we extensively purified recombinant rat TrxR1 over PAO Sepharose, which gave an enzyme with about 53 U/mg specific activity. Surprisingly, only about 65% of the subunits of this TrxR1 preparation contained Sec, whereas about 35% were protein products derived from UGA truncation. Further analyses revealed a theoretical maximal specific activity of 70-80 U/mg for the homodimeric enzyme with full Sec content, i.e., significantly higher than that reported for native TrxR1. We also discovered the formation of highly stable noncovalently linked tetrameric forms of TrxR1, having full FAD content but about half the specific activity in relation to the selenium content compared to the dimeric protein. The characterization of these different forms of recombinant TrxR1 revealed that inherent turnover capacity of the enzyme must be revised, that multimeric states of the protein may be formed, and that the yield of bacterial selenoprotein production may be lower than earlier reported. The biological significance of the hitherto unsurpassed high specific activity of the enzyme involves the capacity to support a higher turnover in vivo than previously believed. The tetrameric forms of the protein could represent hitherto unknown regulatory states of the enzyme.
Collapse
Affiliation(s)
- Olle Rengby
- Division of Biochemistry, Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
21
|
Factors and selenocysteine insertion sequence requirements for the synthesis of selenoproteins from a gram-positive anaerobe in Escherichia coli. Appl Environ Microbiol 2007; 74:1385-93. [PMID: 18165360 DOI: 10.1128/aem.02238-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Selenoprotein synthesis in Escherichia coli strictly depends on the presence of a specific selenocysteine insertion sequence (SECIS) following the selenocysteine-encoding UGA codon of the respective mRNA. It is recognized by the selenocysteine-specific elongation factor SelB, leading to cotranslational insertion of selenocysteine into the nascent polypeptide chain. The synthesis of three different selenoproteins from the gram-positive anaerobe Eubacterium acidaminophilum in E. coli was studied. Incorporation of (75)Se into glycine reductase protein B (GrdB1), the peroxiredoxin PrxU, and selenophosphate synthetase (SelD1) was negligible in an E. coli wild-type strain and was fully absent in an E. coli SelB mutant. Selenoprotein synthesis, however, was strongly increased if selB and selC (tRNA(Sec)) from E. acidaminophilum were coexpressed. Putative secondary structures downstream of the UGA codons did not show any sequence similarity to each other or to the E. coli SECIS element. However, mutations in these structures strongly reduced the amount of (75)Se-labeled protein, indicating that they indeed act as SECIS elements. UGA readthrough mediated by the three different SECIS elements was further analyzed using gst-lacZ translational fusions. In the presence of selB and selC from E. acidaminophilum, UGA readthrough was 36 to 64% compared to the respective cysteine-encoding UGC variant. UGA readthrough of SECIS elements present in Desulfomicrobium baculatum (hydV), Treponema denticola (selD), and Campylobacter jejuni (selW-like gene) was also considerably enhanced in the presence of E. acidaminophilum selB and selC. This indicates recognition of these SECIS elements and might open new perspectives for heterologous selenoprotein synthesis in E. coli.
Collapse
|
22
|
Johansson L, Gafvelin G, Arnér ESJ. Selenocysteine in proteins-properties and biotechnological use. Biochim Biophys Acta Gen Subj 2005; 1726:1-13. [PMID: 15967579 DOI: 10.1016/j.bbagen.2005.05.010] [Citation(s) in RCA: 223] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 05/04/2005] [Accepted: 05/07/2005] [Indexed: 01/11/2023]
Abstract
Selenocysteine (Sec), the 21st amino acid, exists naturally in all kingdoms of life as the defining entity of selenoproteins. Sec is a cysteine (Cys) residue analogue with a selenium-containing selenol group in place of the sulfur-containing thiol group in Cys. The selenium atom gives Sec quite different properties from Cys. The most obvious difference is the lower pK(a) of Sec, and Sec is also a stronger nucleophile than Cys. Proteins naturally containing Sec are often enzymes, employing the reactivity of the Sec residue during the catalytic cycle and therefore Sec is normally essential for their catalytic efficiencies. Other unique features of Sec, not shared by any of the other 20 common amino acids, derive from the atomic weight and chemical properties of selenium and the particular occurrence and properties of its stable and radioactive isotopes. Sec is, moreover, incorporated into proteins by an expansion of the genetic code as the translation of selenoproteins involves the decoding of a UGA codon, otherwise being a termination codon. In this review, we will describe the different unique properties of Sec and we will discuss the prerequisites for selenoprotein production as well as the possible use of Sec introduction into proteins for biotechnological applications. These include residue-specific radiolabeling with gamma or positron emitters, the use of Sec as a reactive handle for electophilic probes introducing fluorescence or other peptide conjugates, as the basis for affinity purification of recombinant proteins, the trapping of folding intermediates, improved phasing in X-ray crystallography, introduction of 77Se for NMR spectroscopy, or, finally, the analysis or tailoring of enzymatic reactions involving thiol or oxidoreductase (redox) selenolate chemistry.
Collapse
Affiliation(s)
- Linda Johansson
- Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
23
|
Das G, Dineshkumar TK, Thanedar S, Varshney U. Acquisition of a stable mutation in metY allows efficient initiation from an amber codon in Escherichia coli. Microbiology (Reading) 2005; 151:1741-1750. [PMID: 15941983 DOI: 10.1099/mic.0.27915-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Escherichia colistrains harbouring elongator tRNAs that insert amino acids in response to a termination codon during elongation have been generated for various applications. Additionally, it was shown that expression of an initiator tRNA containing a CUA anticodon from a multicopy plasmid inE. coliresulted in initiation from an amber codon. Even though the initiation-based system remedies toxicity-related drawbacks, its usefulness has remained limited for want of a strain with a chromosomally encoded initiator tRNA ‘suppressor’.E. coliK strains possess four initiator tRNA genes: themetZ,metWandmetVgenes, located at a single locus, encode tRNA1fMet, and a distantly locatedmetYgene encodes a variant, tRNA2fMet. In this study, a stable strain ofE. coliK-12 that affords efficient initiation from an amber initiation codon was isolated. Genetic analysis revealed that themetYgene in this strain acquired mutations to encode tRNA2fMetwith a CUA anticodon (a U35A36 mutation). The acquisition of the mutations depended on the presence of a plasmid-borne copy of the mutantmetYandrecA+host background. The mutations were observed when the plasmid-borne gene encoded tRNA2fMet(U35A36) with additional changes in the acceptor stem (G72; G72G73) but not in the anticodon stem (U29C30A31/U35A36/ψ39G40A41). The usefulness of this strain, and a possible role for multiple tRNA1fMetgenes inE. coliin safeguarding their intactness, are discussed.
Collapse
Affiliation(s)
- Gautam Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - T K Dineshkumar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Swapna Thanedar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
24
|
Foster CB. Selenoproteins and the metabolic features of the archaeal ancestor of eukaryotes. Mol Biol Evol 2004; 22:383-6. [PMID: 15483329 DOI: 10.1093/molbev/msi007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In all three branches of life, some organisms incorporate the rare amino acid selenocysteine. Selenoproteins are relevant to the controversy over the metabolic features of the archaeal ancestor of eukaryotes because among archaea, several known selenoproteins are involved in methanogenesis and autotrophic growth. Although the eukaryotic selenocysteine-specific translation apparatus and at least one selenoprotein appear to be of archaeal origin, selenoproteins have not been identified among sulfur-metabolizing crenarchaeotes. In this regard, both the phylogeny and function of archaeal selenoproteins are consistent with the argument that the archaeal ancestor was a methanogen. Selenium, however, is abundant in sulfur-rich environments, and some anaerobic bacteria reduce sulfur and have selenoproteins similar to those in archaea. As additional archaeal sequence data becomes available, it will be important to determine whether selenoproteins are present in nonmethanogenic archaea, especially the sulfur-metabolizing crenarchaeotes.
Collapse
|
25
|
Rengby O, Johansson L, Carlson LA, Serini E, Vlamis-Gardikas A, Kårsnäs P, Arnér ESJ. Assessment of production conditions for efficient use of Escherichia coli in high-yield heterologous recombinant selenoprotein synthesis. Appl Environ Microbiol 2004; 70:5159-67. [PMID: 15345395 PMCID: PMC520894 DOI: 10.1128/aem.70.9.5159-5167.2004] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Accepted: 05/13/2004] [Indexed: 11/20/2022] Open
Abstract
The production of heterologous selenoproteins in Escherichia coli necessitates the design of a secondary structure in the mRNA forming a selenocysteine insertion sequence (SECIS) element compatible with SelB, the elongation factor for selenocysteine insertion at a predefined UGA codon. SelB competes with release factor 2 (RF2) catalyzing translational termination at UGA. Stoichiometry between mRNA, the SelB elongation factor, and RF2 is thereby important, whereas other expression conditions affecting the yield of recombinant selenoproteins have been poorly assessed. Here we expressed the rat selenoprotein thioredoxin reductase, with titrated levels of the selenoprotein mRNA under diverse growth conditions, with or without cotransformation of the accessory bacterial selA, selB, and selC genes. Titration of the selenoprotein mRNA with a pBAD promoter was performed in both TOP10 and BW27783 cells, which unexpectedly could not improve yield or specific activity compared to that achieved in our prior studies. Guided by principal component analysis, we instead discovered that the most efficient bacterial selenoprotein production conditions were obtained with the high-transcription T7lac-driven pET vector system in presence of the selA, selB, and selC genes, with induction of production at late exponential phase. About 40 mg of rat thioredoxin reductase with 50% selenocysteine content could thereby be produced per liter bacterial culture. These findings clearly illustrate the ability of E. coli to upregulate the selenocysteine incorporation machinery on demand and that this is furthermore strongly augmented in late exponential phase. This study also demonstrates that E. coli can indeed be utilized as cell factories for highly efficient production of heterologous selenoproteins such as rat thioredoxin reductase.
Collapse
Affiliation(s)
- Olle Rengby
- Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Reprogrammed genetic decoding signals in mRNAs productively overwrite the normal decoding rules of translation. These "recoding" signals are associated with sites of programmed ribosomal frameshifting, hopping, termination codon suppression, and the incorporation of the unusual amino acids selenocysteine and pyrrolysine. This review summarizes current knowledge of the structure and function of recoding signals in cellular genes, the biological importance of recoding in gene regulation, and ways to identify new recoded genes.
Collapse
Affiliation(s)
- Olivier Namy
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, United Kingdom.
| | | | | | | |
Collapse
|
27
|
Abstract
Selenium is an essential trace element that is incorporated into proteins as selenocysteine (Sec), the twenty-first amino acid. Sec is encoded by a UGA codon in the selenoprotein mRNA. The decoding of UGA as Sec requires the reprogramming of translation because UGA is normally read as a stop codon. The translation of selenoprotein mRNAs requires cis-acting sequences in the mRNA and novel trans-acting factors dedicated to Sec incorporation. Selenoprotein synthesis in vivo is highly selenium-dependent, and there is a hierarchy of selenoprotein expression in mammals when selenium is limiting. This review describes emerging themes from studies on the mechanism, kinetics, and efficiency of Sec insertion in prokaryotes. Recent developments that provide mechanistic insight into how the eukaryotic ribosome distinguishes between UGA/Sec and UGA/stop codons are discussed. The efficiency and regulation of mammalian selenoprotein synthesis are considered in the context of current models for Sec insertion.
Collapse
Affiliation(s)
- Donna M Driscoll
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | |
Collapse
|
28
|
Gurvich OL, Baranov PV, Zhou J, Hammer AW, Gesteland RF, Atkins JF. Sequences that direct significant levels of frameshifting are frequent in coding regions of Escherichia coli. EMBO J 2003; 22:5941-50. [PMID: 14592990 PMCID: PMC275418 DOI: 10.1093/emboj/cdg561] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2003] [Revised: 08/27/2003] [Accepted: 09/12/2003] [Indexed: 11/14/2022] Open
Abstract
It is generally believed that significant ribosomal frameshifting during translation does not occur without a functional purpose. The distribution of two frameshift-prone sequences, A_AAA_AAG and CCC_TGA, in coding regions of Escherichia coli has been analyzed. Although a moderate level of selection against the first sequence is evident, 68 genes contain A_AAA_AAG and 19 contain CCC_TGA. The majority of those tested in their genomic context showed >1% frameshifting. Comparative sequence analysis was employed to assess a potential biological role for frameshifting in decoding these genes. Two new candidates, in pheL and ydaY, for utilized frameshifting have been identified in addition to those previously known in dnaX and nine insertion sequence elements. For the majority of the shift-prone sequences no functional role can be attributed to them, and the frameshifting is likely erroneous. However, none of frameshift sequences is in the 306 most highly expressed genes. The unexpected conclusion is that moderate frameshifting during expression of at least some other genes is not sufficiently harmful for cells to trigger strong negative evolutionary pressure.
Collapse
Affiliation(s)
- Olga L Gurvich
- Department of Human Genetics, University of Utah, 15N 2030E Salt Lake City, UT 84112-5330, USA
| | | | | | | | | | | |
Collapse
|