1
|
Feng Z, Liu S, Su M, Song C, Lin C, Zhao F, Li Y, Zeng X, Zhu Y, Hou Y, Ren C, Zhang H, Yi P, Ji Y, Wang C, Li H, Ma M, Luo L, Li L. TANGO6 regulates cell proliferation via COPI vesicle-mediated RPB2 nuclear entry. Nat Commun 2024; 15:2371. [PMID: 38490996 PMCID: PMC10943085 DOI: 10.1038/s41467-024-46720-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
Coat protein complex I (COPI) vesicles mediate the retrograde transfer of cargo between Golgi cisternae and from the Golgi to the endoplasmic reticulum (ER). However, their roles in the cell cycle and proliferation are unclear. This study shows that TANGO6 associates with COPI vesicles via two transmembrane domains. The TANGO6 N- and C-terminal cytoplasmic fragments capture RNA polymerase II subunit B (RPB) 2 in the cis-Golgi during the G1 phase. COPI-docked TANGO6 carries RPB2 to the ER and then to the nucleus. Functional disruption of TANGO6 hinders the nuclear entry of RPB2, which accumulates in the cytoplasm, causing cell cycle arrest in the G1 phase. The conditional depletion or overexpression of TANGO6 in mouse hematopoietic stem cells results in compromised or expanded hematopoiesis. Our study results demonstrate that COPI vesicle-associated TANGO6 plays a role in the regulation of cell cycle progression by directing the nuclear transfer of RPB2, making it a potential target for promoting or arresting cell expansion.
Collapse
Affiliation(s)
- Zhi Feng
- Research center of Stem cells and Ageing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China
| | - Shengnan Liu
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, 400715, PR China
| | - Ming Su
- Research center of Stem cells and Ageing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China
| | - Chunyu Song
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, 400715, PR China
| | - Chenyu Lin
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, 400715, PR China
| | - Fangying Zhao
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, 400715, PR China
| | - Yang Li
- Research center of Stem cells and Ageing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China
| | - Xianyan Zeng
- Institute of Life Sciences, Laboratory of Developmental Biology, Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yong Zhu
- Institute of Life Sciences, Laboratory of Developmental Biology, Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yu Hou
- Institute of Life Sciences, Laboratory of Developmental Biology, Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, 400016, PR China
| | - Chunguang Ren
- Institute of Life Sciences, Laboratory of Developmental Biology, Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, 400016, PR China
| | - Huan Zhang
- Institute of Life Sciences, Laboratory of Developmental Biology, Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, 400016, PR China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, PR China
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease; Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 211166, PR China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150076, Heilongjiang, PR China
| | - Chao Wang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, PR China
| | - Hongtao Li
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, 400715, PR China
| | - Ming Ma
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, 400715, PR China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, 400715, PR China.
| | - Li Li
- Research center of Stem cells and Ageing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China.
| |
Collapse
|
2
|
Łukasik P, Załuski M, Gutowska I. Cyclin-Dependent Kinases (CDK) and Their Role in Diseases Development-Review. Int J Mol Sci 2021; 22:ijms22062935. [PMID: 33805800 PMCID: PMC7998717 DOI: 10.3390/ijms22062935] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) are involved in many crucial processes, such as cell cycle and transcription, as well as communication, metabolism, and apoptosis. The kinases are organized in a pathway to ensure that, during cell division, each cell accurately replicates its DNA, and ensure its segregation equally between the two daughter cells. Deregulation of any of the stages of the cell cycle or transcription leads to apoptosis but, if uncorrected, can result in a series of diseases, such as cancer, neurodegenerative diseases (Alzheimer’s or Parkinson’s disease), and stroke. This review presents the current state of knowledge about the characteristics of cyclin-dependent kinases as potential pharmacological targets.
Collapse
Affiliation(s)
- Paweł Łukasik
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Michał Załuski
- Department of Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
- Correspondence:
| |
Collapse
|
3
|
Tomkinson AE, Naila T, Khattri Bhandari S. Altered DNA ligase activity in human disease. Mutagenesis 2021; 35:51-60. [PMID: 31630206 DOI: 10.1093/mutage/gez026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/09/2019] [Indexed: 12/18/2022] Open
Abstract
The joining of interruptions in the phosphodiester backbone of DNA is critical to maintain genome stability. These breaks, which are generated as part of normal DNA transactions, such as DNA replication, V(D)J recombination and meiotic recombination as well as directly by DNA damage or due to DNA damage removal, are ultimately sealed by one of three human DNA ligases. DNA ligases I, III and IV each function in the nucleus whereas DNA ligase III is the sole enzyme in mitochondria. While the identification of specific protein partners and the phenotypes caused either by genetic or chemical inactivation have provided insights into the cellular functions of the DNA ligases and evidence for significant functional overlap in nuclear DNA replication and repair, different results have been obtained with mouse and human cells, indicating species-specific differences in the relative contributions of the DNA ligases. Inherited mutations in the human LIG1 and LIG4 genes that result in the generation of polypeptides with partial activity have been identified as the causative factors in rare DNA ligase deficiency syndromes that share a common clinical symptom, immunodeficiency. In the case of DNA ligase IV, the immunodeficiency is due to a defect in V(D)J recombination whereas the cause of the immunodeficiency due to DNA ligase I deficiency is not known. Overexpression of each of the DNA ligases has been observed in cancers. For DNA ligase I, this reflects increased proliferation. Elevated levels of DNA ligase III indicate an increased dependence on an alternative non-homologous end-joining pathway for the repair of DNA double-strand breaks whereas elevated level of DNA ligase IV confer radioresistance due to increased repair of DNA double-strand breaks by the major non-homologous end-joining pathway. Efforts to determine the potential of DNA ligase inhibitors as cancer therapeutics are on-going in preclinical cancer models.
Collapse
Affiliation(s)
- Alan E Tomkinson
- Departments of Internal Medicine and Molecular Genetics and Microbiology, and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - Tasmin Naila
- Departments of Internal Medicine and Molecular Genetics and Microbiology, and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - Seema Khattri Bhandari
- Departments of Internal Medicine and Molecular Genetics and Microbiology, and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
4
|
Song X, Zhang M, Dai E, Luo Y. Molecular targets of curcumin in breast cancer (Review). Mol Med Rep 2018; 19:23-29. [PMID: 30483727 DOI: 10.3892/mmr.2018.9665] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 10/25/2018] [Indexed: 11/06/2022] Open
Abstract
Curcumin (diferuloylmethane), an orange‑yellow component of turmeric or curry powder, is a polyphenol natural product isolated from the rhizome of Curcuma longa. For centuries, curcumin has been used in medicinal preparations and as a food colorant. In recent years, extensive in vitro and in vivo studies have suggested that curcumin possesses activity against cancer, viral infection, arthritis, amyloid aggregation, oxidation and inflammation. Curcumin exerts anticancer effects primarily by activating apoptotic pathways in cancer cells and inhibiting pro‑cancer processes, including inflammation, angiogenesis and metastasis. Curcumin targets numerous signaling pathways associated with cancer therapy, including pathways mediated by p53, Ras, phosphatidylinositol‑3‑kinase, protein kinase B, Wnt‑β catenin and mammalian target of rapamycin. Clinical studies have demonstrated that curcumin alone or combined with other drugs exhibits promising anticancer activity in patients with breast cancer without adverse effects. In the present review, the chemistry and bioavailability of curcumin and its molecular targets in breast cancer are discussed. Future research directions are discussed to further understand this promising natural product.
Collapse
Affiliation(s)
- Xinqiang Song
- Department of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, P.R. China
| | - Mu Zhang
- Hospital Attached to Xinyang Normal University, Xinyang, Henan 464000, P.R. China
| | - Erqin Dai
- Hospital Attached to Xinyang Normal University, Xinyang, Henan 464000, P.R. China
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Institutes of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, P.R. China
| |
Collapse
|
5
|
Zhang Z, Li J, Jiang X, Yang L, Lei L, Cai D, Zhang H, Chen H. GLP-1 ameliorates the proliferation activity of INS-1 cells inhibited by intermittent high glucose concentrations through the regulation of cyclins. Mol Med Rep 2014; 10:683-8. [PMID: 24859892 DOI: 10.3892/mmr.2014.2265] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 03/10/2014] [Indexed: 11/06/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) and its analog exendin (EX)-4 have been considered to promote β-cell growth and expansion. In the present, study we investigated the effect of GLP-1 on proliferative activity and cell cycle regulation in the pancreatic insulin-secreting β-cell line, INS-1, treated with intermittent high glucose. INS-1 cells were treated with normal glucose (5.5 mmol/l), constant high glucose (30 mmol/l) and intermittent high glucose (rotation/24 h in 5.5 or 30 mmol/l) in the presence or absence of GLP-1 (100 nmol/l) for seven days. Proliferative activity, cell cycle and the expression of cyclin D1, p21, p27 and Skp2 were examined. INS-1 treated with intermittent high glucose and GLP-1 demonstrated a significant increase in proliferation activity (1.45±0.12; P<0.01) and decreased cell proportion in G0/G1 phase (49.73±4.04%, P<0.01) compared with those without GLP-1. Furthermore, the expression levels of cyclin D1 and Skp2 were increased, while the expression of p27 and p21 were significantly reduced. Similar results were identified in those treated with constant high glucose and GLP-1. These results suggest that GLP-1 may ease the G0/G1 cell cycle arrest of INS-1 cells induced by intermittent high glucose by upregulating the expression of cyclin D1 and Skp2, downregulating the expression of p21 and p27, and finally promoting the cell cycle progression and proliferation activity.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Jing Li
- Department of Endocrinology, Nanshan Affiliated Hospital of Guangdong Medical College, Shenzhen, Guangdong, P.R. China
| | - Xinkui Jiang
- Function Department of Nanshan Maternal and Child's Hospital, Shenzhen, Guangdong, P.R. China
| | - Lei Yang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Lei Lei
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Dehong Cai
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Hua Zhang
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Hong Chen
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
6
|
Abstract
Multiple DNA ligation events are required to join the Okazaki fragments generated during lagging strand DNA synthesis. In eukaryotes, this is primarily carried out by members of the DNA ligase I family. The C-terminal catalytic region of these enzymes is composed of three domains: a DNA binding domain, an adenylation domain and an OB-fold domain. In the absence of DNA, these domains adopt an extended structure but transition into a compact ring structure when they engage a DNA nick, with each of the domains contacting the DNA. The non-catalytic N-terminal region of eukaryotic DNA ligase I is responsible for the specific participation of these enzymes in DNA replication. This proline-rich unstructured region contains the nuclear localization signal and a PCNA interaction motif that is critical for localization to replication foci and efficient joining of Okazaki fragments. DNA ligase I initially engages the PCNA trimer via this interaction motif which is located at the extreme N-terminus of this flexible region. It is likely that this facilitates an additional interaction between the DNA binding domain and the PCNA ring. The similar size and shape of the rings formed by the PCNA trimer and the DNA ligase I catalytic region when it engages a DNA nick suggest that these proteins interact to form a double-ring structure during the joining of Okazaki fragments. DNA ligase I also interacts with replication factor C, the factor that loads the PCNA trimeric ring onto DNA. This interaction, which is regulated by phosphorylation of the non-catalytic N-terminus of DNA ligase I, also appears to be critical for DNA replication.
Collapse
Affiliation(s)
- Timothy R L Howes
- Biomedical Sciences Graduate Program, University of New Mexico, Cancer Research Facility MSC08 4640, 1 University of New Mexico, Albuquerque, NM, 87131-0001, USA,
| | | |
Collapse
|
7
|
[Length of cell cycle in neural development]. YI CHUAN = HEREDITAS 2011; 33:1185-90. [PMID: 22120073 DOI: 10.3724/sp.j.1005.2011.01185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neural development of mammals generates a series of morphological and functional alterations in neural precursors. The precursors change the length of cell cycle in the process. Importantly, the changes are related to cell fate determination. Cellular and environmental factors have been elucidated including cyclin complex, notch signal pathway, proneural gene target proteins, microtubule and motor proteins. In the cell-cycle length hypothesis, cell cycle length could influence the accumulation of cell fate determinants in precursors, which decides the final cell fate of daughter cells. This study summarizes recent advances in the field.
Collapse
|
8
|
Tschen SI, Georgia S, Dhawan S, Bhushan A. Skp2 is required for incretin hormone-mediated β-cell proliferation. Mol Endocrinol 2011; 25:2134-43. [PMID: 21980072 DOI: 10.1210/me.2011-1119] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The glucoincretin hormone glucagon-like peptide-1 (GLP-1) and its analog exendin-4 (Ex-4) promote β-cell growth and expansion. Here we report an essential role for Skp2, a substrate recognition component of SCF (Skp, Cullin, F-box) ubiquitin ligase, in promoting glucoincretin-induced β-cell proliferation by regulating the cellular abundance of p27. In vitro, GLP-1 treatment increases Skp2 levels, which accelerates p27 degradation, whereas in vivo, loss of Skp2 prevents glucoincretin-induced β-cell proliferation. Using inhibitors of phosphatidylinositol 3-kinase and Irs2 silencing RNA, we also show that the effects of GLP-1 in facilitating Skp2-dependent p27 degradation are mediated via the Irs2-phosphatidylinositol-3 kinase pathway. Finally, we show that down-regulation of p27 occurs in islets from aged mice and humans, although in these islets, age-dependent accumulation of p16(Ink4a) prevent glucoincretin-induced β-cell proliferation; however, ductal cell proliferation is maintained. Taken together, these data highlight a critical role for Skp2 in glucoincretin-induced β-cell proliferation.
Collapse
Affiliation(s)
- Shuen-Ing Tschen
- Department of Medicine, University of California, Los Angeles, Los Angeles, California 90095-7073, USA
| | | | | | | |
Collapse
|
9
|
Lan MY, Chen CL, Lin KT, Lee SA, Yang WLR, Hsu CN, Wu JC, Ho CY, Lin JC, Huang CYF. From NPC therapeutic target identification to potential treatment strategy. Mol Cancer Ther 2010; 9:2511-23. [PMID: 20716640 DOI: 10.1158/1535-7163.mct-09-0966] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is relatively rare in Western countries but is a common cancer in southern Asia. Many differentially expressed genes have been linked to NPC; however, how to prioritize therapeutic targets and potential drugs from unsorted gene lists remains largely unknown. We first collected 558 upregulated and 993 downregulated NPC genes from published microarray data and the primary literatures. We then postulated that conversion of gene signatures into the protein-protein interaction network and analyzing the network topologically could provide insight into key regulators involved in tumorigenesis of NPC. Of particular interest was the presence of cliques, called fully connected subgraphs, in the inferred NPC networks. These clique-based hubs, connecting with more than three queries and ranked higher than other nodes in the NPC protein-protein interaction network, were further narrowed down by pathway analysis to retrieve 24 upregulated and 6 downregulated bottleneck genes for predicting NPC carcinogenesis. Moreover, additional oncogenes, tumor suppressor genes, genes involved in protein complexes, and genes obtained after functional profiling were merged with the bottleneck genes to form the final gene signature of 38 upregulated and 10 downregulated genes. We used the initial and final NPC gene signatures to query the Connectivity Map, respectively, and found that target reduction through our pipeline could efficiently uncover potential drugs with cytotoxicity to NPC cancer cells. An integrative Web site (http://140.109.23.188:8080/NPC) was established to facilitate future NPC research. This in silico approach, from target prioritization to potential drugs identification, might be an effective method for various cancer researches.
Collapse
Affiliation(s)
- Ming-Ying Lan
- Department of Otolaryngology, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Boruc J, Mylle E, Duda M, De Clercq R, Rombauts S, Geelen D, Hilson P, Inzé D, Van Damme D, Russinova E. Systematic localization of the Arabidopsis core cell cycle proteins reveals novel cell division complexes. PLANT PHYSIOLOGY 2010; 152:553-65. [PMID: 20018602 PMCID: PMC2815867 DOI: 10.1104/pp.109.148643] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 12/08/2009] [Indexed: 05/18/2023]
Abstract
Cell division depends on the correct localization of the cyclin-dependent kinases that are regulated by phosphorylation, cyclin proteolysis, and protein-protein interactions. Although immunological assays can define cell cycle protein abundance and localization, they are not suitable for detecting the dynamic rearrangements of molecular components during cell division. Here, we applied an in vivo approach to trace the subcellular localization of 60 Arabidopsis (Arabidopsis thaliana) core cell cycle proteins fused to green fluorescent proteins during cell division in tobacco (Nicotiana tabacum) and Arabidopsis. Several cell cycle proteins showed a dynamic association with mitotic structures, such as condensed chromosomes and the preprophase band in both species, suggesting a strong conservation of targeting mechanisms. Furthermore, colocalized proteins were shown to bind in vivo, strengthening their localization-function connection. Thus, we identified unknown spatiotemporal territories where functional cell cycle protein interactions are most likely to occur.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Eugenia Russinova
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B–9052 Ghent, Belgium (J.B., E.M., M.D., R.D.C., S.R., P.H., D.I., D.V.D., E.R.); Department of Plant Biotechnology and Genetics, Ghent University, B–9052 Ghent, Belgium (J.B., E.M., M.D., R.D.C., S.R., P.H., D.I., D.V.D., E.R.); and Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, B–9000 Ghent, Belgium (D.G.)
| |
Collapse
|
11
|
Kim CS, Moon IS, Park JH, Shin WC, Chun HS, Lee SY, Kook JK, Kim HJ, Park JC, Endou H, Kanai Y, Lee BK, Kim DK. Inhibition of L-Type Amino Acid Transporter Modulates the Expression of Cell Cycle Regulatory Factors in KB Oral Cancer Cells. Biol Pharm Bull 2010; 33:1117-21. [DOI: 10.1248/bpb.33.1117] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Chun Sung Kim
- Department of Oralbiochemistry, Chosun University School of Dentistry
| | - In-Sung Moon
- Oral Biology Research Institute, Chosun University School of Dentistry
| | - Ju-Hyun Park
- Oral Biology Research Institute, Chosun University School of Dentistry
| | - Woo-Cheol Shin
- Oral Biology Research Institute, Chosun University School of Dentistry
| | - Hong Sung Chun
- Department of Biotechnology (BK21 Program), Chosun University
| | - Sook-Young Lee
- Research Center for Oral Disease Regulation of the Aged, Chosun University School of Dentistry
| | - Joong-Ki Kook
- Department of Oralbiochemistry, Chosun University School of Dentistry
| | - Heung-Joong Kim
- Oral Biology Research Institute, Chosun University School of Dentistry
| | - Joo-Cheol Park
- Department of Oral Histology and Developmental Biology, Seoul National University School of Dentistry
| | - Hitoshi Endou
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine
| | - Yoshikatsu Kanai
- Department of Pharmacology, Osaka University Graduate School of Medicine
| | | | - Do Kyung Kim
- Oral Biology Research Institute, Chosun University School of Dentistry
| |
Collapse
|
12
|
Prystowsky MB, Adomako A, Smith RV, Kawachi N, McKimpson W, Atadja P, Chen Q, Schlecht NF, Parish JL, Childs G, Belbin TJ. The histone deacetylase inhibitor LBH589 inhibits expression of mitotic genes causing G2/M arrest and cell death in head and neck squamous cell carcinoma cell lines. J Pathol 2009; 218:467-77. [PMID: 19402126 DOI: 10.1002/path.2554] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Head and neck squamous cell carcinoma represents a complex set of neoplasms arising in diverse anatomical locations. The site and stage of the cancer determine whether patients will be treated with single or multi-modality therapy. The HDAC inhibitor LBH589 is effective in treating some haematological neoplasms and shows promise for certain epithelial neoplasms. As with other human cancer cell lines, LBH589 causes up-regulation of p21, G2/M cell cycle arrest, and cell death of human HNSCC cell lines, as measured using flow cytometry and cDNA microarrays. Global RNA expression studies following treatment of the HNSCC cell line FaDu with LBH589 reveal down-regulation of genes required for chromosome congression and segregation (SMC2L1), sister chromatid cohesion (DDX11), and kinetochore structure (CENP-A, CENP-F, and CENP-M); these LBH589-induced changes in gene expression coupled with the down-regulation of MYC and BIRC5 (survivin) provide a plausible explanation for the early mitotic arrest and cell death observed. When LBH589-induced changes in gene expression were compared with gene expression profiles of 41 primary HNSCC samples, many of the genes that were down-regulated by LBH589 showed increased expression in primary HNSCC, suggesting that some patients with HNSCC may respond to treatment with LBH589.
Collapse
Affiliation(s)
- Michael B Prystowsky
- Department of Pathology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Geyeregger R, Shehata M, Zeyda M, Kiefer FW, Stuhlmeier KM, Porpaczy E, Zlabinger GJ, Jäger U, Stulnig TM. Liver X receptors interfere with cytokine-induced proliferation and cell survival in normal and leukemic lymphocytes. J Leukoc Biol 2009; 86:1039-48. [PMID: 19671841 DOI: 10.1189/jlb.1008663] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Liver X receptors (LXRs) are nuclear receptors regulating lipid and cholesterol metabolism. Recent data indicate an additional role of LXR in immunity by controlling dendritic cell and T-cell function and in breast and prostate cancer cells. Here, we show that LXR activation interferes with IL-2 and IL-7-induced proliferation and cell cycle progression of human T-cell blasts mainly through inhibited phosphorylation of the retinoblastoma protein and decreased expression of the cell cycle protein cyclin B. Comparable results were obtained with IL-2-dependent chronic lymphoblastic leukemia (CLL) T cells. Furthermore, we show for B-CLL cells that LXR are functionally active and inhibit expression of survival genes bcl-2 and MMP-9, and significantly reduce cell viability, suggesting an interference of LXR with cytokine-dependent CLL cell survival. In conclusion, our data reveal LXR as a potent modulator of cytokine-dependent proliferation and survival of normal and malignant T and B lymphocytes. This novel LXR action could find clinical application in immunosuppressive and antileukemic therapies.
Collapse
Affiliation(s)
- René Geyeregger
- Department of Internal Medicine III, Medical University of Vienna, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Specific function of phosphoinositide 3-kinase beta in the control of DNA replication. Proc Natl Acad Sci U S A 2009; 106:7525-30. [PMID: 19416922 DOI: 10.1073/pnas.0812000106] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Class I(A) phosphoinositide 3-kinase (PI3K) are enzymes comprised of a p85 regulatory and a p110 catalytic subunit that induce formation of 3-polyphosphoinositides, which activate numerous downstream targets. PI3K controls cell division. Of the 2 ubiquitous PI3K isoforms, alpha has selective action in cell growth and cell cycle entry, but no specific function in cell division has been described for beta. We report here a unique function for PI3Kbeta in the control of DNA replication. PI3Kbeta regulated DNA replication through kinase-dependent and kinase-independent mechanisms. PI3Kbeta was found in the nucleus, where it associated PKB. Modulation of PI3Kbeta activity altered the DNA replication rate by controlling proliferating cell nuclear antigen (PCNA) binding to chromatin and to DNA polymerase delta. PI3Kbeta exerted this action by regulating the nuclear activation of PKB in S phase, and in turn phosphorylation of PCNA negative regulator p21(Cip). Also, p110beta associated with PCNA and controlled PCNA loading onto chromatin in a kinase-independent manner. These results show a selective function of PI3Kbeta in the control of DNA replication.
Collapse
|
15
|
Phosphoinositide 3-kinases p110alpha and p110beta regulate cell cycle entry, exhibiting distinct activation kinetics in G1 phase. Mol Cell Biol 2008; 28:2803-14. [PMID: 18285463 DOI: 10.1128/mcb.01786-07] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Phosphoinositide 3-kinase (PI3K) is an early signaling molecule that regulates cell growth and cell cycle entry. PI3K is activated immediately after growth factor receptor stimulation (at the G(0)/G(1) transition) and again in late G(1). The two ubiquitous PI3K isoforms (p110alpha and p110beta) are essential during embryonic development and are thought to control cell division. Nonetheless, it is presently unknown at which point each is activated during the cell cycle and whether or not they both control S-phase entry. We found that p110alpha was activated first in G(0)/G(1), followed by a minor p110beta activity peak. In late G(1), p110alpha activation preceded that of p110beta, which showed the maximum activity at this time. p110beta activation required Ras activity, whereas p110alpha was first activated by tyrosine kinases and then further induced by active Ras. Interference with p110alpha and -beta activity diminished the activation of downstream effectors with different kinetics, with a selective action of p110alpha in blocking early G(1) events. We show that inhibition of either p110alpha or p110beta reduced cell cycle entry. These results reveal that PI3Kalpha and -beta present distinct activation requirements and kinetics in G(1) phase, with a selective action of PI3Kalpha at the G(0)/G(1) phase transition. Nevertheless, PI3Kalpha and -beta both regulate S-phase entry.
Collapse
|
16
|
Song W, Levin DS, Varkey J, Post S, Bermudez VP, Hurwitz J, Tomkinson AE. A Conserved Physical and Functional Interaction between the Cell Cycle Checkpoint Clamp Loader and DNA Ligase I of Eukaryotes. J Biol Chem 2007; 282:22721-30. [PMID: 17561505 DOI: 10.1074/jbc.m703774200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA ligase I joins Okazaki fragments during DNA replication and completes certain excision repair pathways. The participation of DNA ligase I in these transactions is directed by physical and functional interactions with proliferating cell nuclear antigen, a DNA sliding clamp, and, replication factor C (RFC), the clamp loader. Here we show that DNA ligase I also interacts with the hRad17 subunit of the hRad17-RFC cell cycle checkpoint clamp loader, and with each of the subunits of its DNA sliding clamp, the heterotrimeric hRad9-hRad1-hHus1 complex. In contrast to the inhibitory effect of RFC, hRad17-RFC stimulates joining by DNA ligase I. Similar results were obtained with the homologous Saccharomyces cerevisiae proteins indicating that the interaction between the replicative DNA ligase and checkpoint clamp is conserved in eukaryotes. Notably, we show that hRad17 preferentially interacts with and specifically stimulates dephosphorylated DNA ligase I. Moreover, there is an increased association between DNA ligase I and hRad17 in S phase following DNA damage and replication blockage that occurs concomitantly with DNA damage-induced dephosphorylation of chromatin-associated DNA ligase I. Thus, our results suggest that the in vivo interaction between DNA ligase I and the checkpoint clamp loader is regulated by post-translational modification of DNA ligase I.
Collapse
Affiliation(s)
- Wei Song
- Molecular Medicine Graduate Program, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Parlanti E, Locatelli G, Maga G, Dogliotti E. Human base excision repair complex is physically associated to DNA replication and cell cycle regulatory proteins. Nucleic Acids Res 2007; 35:1569-77. [PMID: 17289756 PMCID: PMC1865045 DOI: 10.1093/nar/gkl1159] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
It has been hypothesized that a replication associated repair pathway operates on base damage and single strand breaks (SSB) at replication forks. In this study, we present the isolation from the nuclei of human cycling cells of a multiprotein complex containing most of the essential components of base excision repair (BER)/SSBR, including APE1, UNG2, XRCC1 and POLβ, DNA PK, replicative POLα, δ and ɛ, DNA ligase 1 and cell cycle regulatory protein cyclin A. Co-immunoprecipitation revealed that in this complex DNA repair proteins are physically associated to cyclin A and to DNA replication proteins including MCM7. This complex is endowed with DNA polymerase and protein kinase activity and is able to perform BER of uracil and AP sites. This finding suggests that a preassembled DNA repair machinery is constitutively active in cycling cells and is ready to be recruited at base damage and breaks occurring at replication forks.
Collapse
Affiliation(s)
- Eleonora Parlanti
- Department of Environment and Primary Prevention, Section of Molecular Epidemiology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy and DNA Enzymology and Molecular Virology, Istituto di Genetica Molecolare, IGM-CNR, National Research Council, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Giada Locatelli
- Department of Environment and Primary Prevention, Section of Molecular Epidemiology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy and DNA Enzymology and Molecular Virology, Istituto di Genetica Molecolare, IGM-CNR, National Research Council, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Giovanni Maga
- Department of Environment and Primary Prevention, Section of Molecular Epidemiology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy and DNA Enzymology and Molecular Virology, Istituto di Genetica Molecolare, IGM-CNR, National Research Council, Via Abbiategrasso 207, 27100 Pavia, Italy
- *To whom correspondence should be addressed. (+39) 0382546354(+39) 0382422286
| | - Eugenia Dogliotti
- Department of Environment and Primary Prevention, Section of Molecular Epidemiology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy and DNA Enzymology and Molecular Virology, Istituto di Genetica Molecolare, IGM-CNR, National Research Council, Via Abbiategrasso 207, 27100 Pavia, Italy
| |
Collapse
|
18
|
Abstract
Replication of nuclear DNA in eukaryotes presents a tremendous challenge, not only due to the size and complexity of the genome, but also because of the time constraint imposed by a limited duration of S phase during which the entire genome has to be duplicated accurately and only once per cell division cycle. A challenge of this magnitude can only be met by the close coupling of DNA precursor synthesis to replication. Prokaryotic systems provide evidence for multienzyme and multiprotein complexes involved in DNA precursor synthesis and DNA replication. In addition, fractionation of nuclear proteins from proliferating mammalian cells shows co-sedimentation of enzymes involved in DNA replication with those required for synthesis of deoxynucleoside triphosphates (dNTPs). Such complexes can be isolated only from cells that are in S phase, but not from cells in G(0)/G(1) phases of cell cycle. The kinetics of deoxynucleotide metabolism supporting DNA replication in intact and permeabilized cells reveals close coupling and allosteric interaction between the enzymes of dNTP synthesis and DNA replication. These interactions contribute to channeling and compartmentation of deoxynucleotides in the microvicinity of DNA replication. A multienzyme and multiprotein megacomplex with these unique properties is called "replitase." In this article, we summarize some of the relevant evidence to date that supports the concept of replitase in mammalian cells, which originated from the observations in Dr. Pardee's laboratory. In addition, we show that androgen receptor (AR), which plays a critical role in proliferation and viability of prostate cancer cells, is associated with replitase, and that identification of constituents of replitase in androgen-dependent versus androgen-independent prostate cancer cells may provide insights into androgen-regulated events that control proliferation of prostate cancer cells and potentially offer an effective strategy for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Shalini Murthy
- Vattikuti Urology Institute, Henry Ford Health System, One Ford Place 2D, Detroit, MI 48202, USA
| | | |
Collapse
|
19
|
Canela N, Orzáez M, Fucho R, Mateo F, Gutierrez R, Pineda-Lucena A, Bachs O, Pérez-Payá E. Identification of an hexapeptide that binds to a surface pocket in cyclin A and inhibits the catalytic activity of the complex cyclin-dependent kinase 2-cyclin A. J Biol Chem 2006; 281:35942-53. [PMID: 17001081 DOI: 10.1074/jbc.m603511200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The protein-protein complexes formed between different cyclins and cyclin-dependent kinases (CDKs) are central to cell cycle regulation. These complexes represent interesting points of chemical intervention for the development of antineoplastic molecules. Here we describe the identification of an all d-amino acid hexapeptide, termed NBI1, that inhibits the kinase activity of the cyclin-dependent kinase 2 (cdk2)-cyclin A complex through selective binding to cyclin A. The mechanism of inhibition is non-competitive for ATP and non-competitive for protein substrates. In contrast to the existing CDKs peptide inhibitors, the hexapeptide NBI1 interferes with the formation of the cdk2-cyclin A complex. Furthermore, a cell-permeable derivative of NBI1 induces apoptosis and inhibits proliferation of tumor cell lines. Thus, the NBI1-binding site on cyclin A may represent a new target site for the selective inhibition of activity cdk2-cyclin A complex.
Collapse
Affiliation(s)
- Núria Canela
- Departament de Biologia Cellular i Anatomia Patològica, Facultat de Medicina, University of Barcelona, E-08036 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Gao N, Kramer L, Rahmani M, Dent P, Grant S. The Three-Substituted Indolinone Cyclin-Dependent Kinase 2 Inhibitor 3-[1-(3H-Imidazol-4-yl)-meth-(Z)-ylidene]-5-methoxy-1,3-dihydro-indol-2-one (SU9516) Kills Human Leukemia Cells via Down-Regulation of Mcl-1 through a Transcriptional Mechanism. Mol Pharmacol 2006; 70:645-55. [PMID: 16672643 DOI: 10.1124/mol.106.024505] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mechanisms of lethality of the three-substituted indolinone and putatively selective cyclin-dependent kinase (CDK)2 inhibitor 3-[1-(3H-imidazol-4-yl)-meth-(Z)-ylidene]-5-methoxy-1,3-dihydro-indol-2-one (SU9516) were examined in human leukemia cells. Exposure of U937 and other leukemia cells to SU9516 concentrations > or =5 microM rapidly (i.e., within 4 h) induced cytochrome c release, Bax mitochondrial translocation, and apoptosis in association with pronounced down-regulation of the antiapoptotic protein Mcl-1. These effects were associated with inhibition of phosphorylation of the carboxyl-terminal domain (CTD) of RNA polymerase (Pol) II on serine 2 but not serine 5. Reverse transcription-polymerase chain reaction analysis revealed pronounced down-regulation of Mcl-1 mRNA levels in SU9516-treated cells. Similar results were obtained in Jurkat and HL-60 leukemia cells. Furthermore, cotreatment with the proteasome inhibitor N-benzoyloxycarbonyl (Z)-Leu-Leu-leucinal (MG132) blocked SU9516-mediated Mcl-1 down-regulation, implicating proteasomal degradation in diminished expression of this protein. Ectopic expression of Mcl-1 largely blocked SU9516-induced cytochrome c release, Bax translocation, and apoptosis, whereas knockdown of Mcl-1 by small interfering RNA potentiated SU9516 lethality, confirming the functional contribution of Mcl-1 down-regulation to SU9516-induced cell death. It is noteworthy that SU9516 treatment resulted in a marked increase in reactive oxygen species production, which was diminished, along with cell death, by the free radical scavenger N-acetylcysteine (NAC). We were surprised to find that NAC blocked SU9516-mediated inhibition of RNA Pol II CTD phosphorylation on serine 2, reductions in Mcl-1 mRNA levels, and Mcl-1 down-regulation. Together, these findings suggest that SU9516 kills leukemic cells through inhibition of RNA Pol II CTD phosphorylation in association with oxidative damage and down-regulation of Mcl-1 at the transcriptional level, culminating in mitochondrial injury and cell death.
Collapse
Affiliation(s)
- Ning Gao
- Division of Hematology/Oncology, MCV Station Box 230, Virginia Commonwealth University/Medical College of Virginia, Richmond, VA 23298, USA
| | | | | | | | | |
Collapse
|
21
|
Enders GH, Maude SL. Traffic safety for the cell: influence of cyclin-dependent kinase activity on genomic stability. Gene 2006; 371:1-6. [PMID: 16458456 DOI: 10.1016/j.gene.2005.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 11/10/2005] [Accepted: 11/12/2005] [Indexed: 01/20/2023]
Abstract
Genomic instability has long been considered a key factor in tumorigenesis. Recent evidence suggests that DNA damage may be widespread in early pre-neoplastic states, with deregulation of cyclin-dependent kinase (Cdk) activity a driving force. Increased Cdk activity may critically reduce licensing of origins of DNA replication, drive re-replication, or mediate overexpression of checkpoint proteins, inducing deleterious cell cycle delay. Conversely, inhibition of Cdk activity may compromise replication efficiency, expression of checkpoint proteins, or activation of DNA repair proteins. These vital functions point to the impact of Cdk activity on the stability of the genome. Insight into these pathways may improve our understanding of tumorigenesis and lead to more rational cancer therapies.
Collapse
Affiliation(s)
- Greg H Enders
- Department of Medicine, Gastroenterology Division, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104-6140, USA.
| | | |
Collapse
|
22
|
Miccoli L, Frouin I, Novac O, Di Paola D, Harper F, Zannis-Hadjopoulos M, Maga G, Biard DSF, Angulo JF. The human stress-activated protein kin17 belongs to the multiprotein DNA replication complex and associates in vivo with mammalian replication origins. Mol Cell Biol 2005; 25:3814-30. [PMID: 15831485 PMCID: PMC1084281 DOI: 10.1128/mcb.25.9.3814-3830.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The human stress-activated protein kin17 accumulates in the nuclei of proliferating cells with predominant colocalization with sites of active DNA replication. The distribution of kin17 protein is in equilibrium between chromatin-DNA and the nuclear matrix. An increased association with nonchromatin nuclear structure is observed in S-phase cells. We demonstrated here that kin17 protein strongly associates in vivo with DNA fragments containing replication origins in both human HeLa and monkey CV-1 cells. This association was 10-fold higher than that observed with nonorigin control DNA fragments in exponentially growing cells. In addition, the association of kin17 protein to DNA fragments containing replication origins was also analyzed as a function of the cell cycle. High binding of kin17 protein was found at the G(1)/S border and throughout the S phase and was negligible in both G(0) and M phases. Specific monoclonal antibodies against kin17 protein induced a threefold inhibition of in vitro DNA replication of a plasmid containing a minimal replication origin that could be partially restored by the addition of recombinant kin17 protein. Immunoelectron microscopy confirmed the colocalization of kin17 protein with replication proteins like RPA, PCNA, and DNA polymerase alpha. A two-step chromatographic fractionation of nuclear extracts from HeLa cells revealed that kin17 protein localized in vivo in distinct protein complexes of high molecular weight. We found that kin17 protein purified within an approximately 600-kDa protein complex able to support in vitro DNA replication by means of two different biochemical methods designed to isolate replication complexes. In addition, the reduced in vitro DNA replication activity of the multiprotein replication complex after immunodepletion for kin17 protein highlighted for a direct role in DNA replication at the origins.
Collapse
Affiliation(s)
- Laurent Miccoli
- Commissariat à l'Energie Atomique, Centre de Fontenay-aux-Roses, LGR/DRR/DSV, BP6, 92265 Fontenay-aux-Roses Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Xie B, Li H, Wang Q, Xie S, Rahmeh A, Dai W, Lee MYWT. Further Characterization of Human DNA Polymerase δ Interacting Protein 38. J Biol Chem 2005; 280:22375-84. [PMID: 15811854 DOI: 10.1074/jbc.m414597200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polymerase delta interacting protein 38 (PDIP38) was identified as a human DNA polymerase (pol) delta interacting protein through a direct interaction with p50, the small subunit of human pol delta. PDIP38 was also found to interact with proliferating cell nuclear antigen, which suggested that it might play a role in vivo in the processes of DNA replication and DNA repair in the nucleus. In order to characterize further this novel protein, we have examined its subcellular localization by the use of immunochemical and cellular fractionation techniques. These studies show that PDIP38 is a novel mitochondrial protein and is localized mainly to the mitochondria. PDIP38 was shown to possess a functional mitochondrial targeting sequence that is located within the first 35 N-terminal amino acid residues. The mature PDIP38 protein is about 50 amino acid residues smaller than the full-length precursor PDIP38 protein, consistent with it being processed by cleavage of the mitochondrial targeting sequence during entry into the mitochondria. His-tagged mature PDIP38 inhibited pol delta activity in vitro and interacted with human papillomavirus 16 E7 oncoprotein, suggesting that PDIP38 might play a role in the pol delta-mediated viral DNA replication. Although the localization of PDIP38 to the mitochondria suggests that it serves functions within the mitochondria, we cannot eliminate the possibility that it may be involved in pol delta-mediated DNA replication or DNA repair under certain conditions such as viral infection.
Collapse
Affiliation(s)
- Bin Xie
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Lidonnici MR, Rossi R, Paixão S, Mendoza-Maldonado R, Paolinelli R, Arcangeli C, Giacca M, Biamonti G, Montecucco A. Subnuclear distribution of the largest subunit of the human origin recognition complex during the cell cycle. J Cell Sci 2004; 117:5221-31. [PMID: 15454574 DOI: 10.1242/jcs.01405] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In eukaryotes, initiation of DNA replication requires the activity of the origin recognition complex (ORC). The largest subunit of this complex, Orc1p, has a critical role in this activity. Here we have studied the subnuclear distribution of the overexpressed human Orc1p during the cell cycle. Orc1p is progressively degraded during S-phase according to a spatio-temporal program and it never colocalizes with replication factories. Orc1p is resynthesized in G1. In early G1, the protein is distributed throughout the cell nucleus, but successively it preferentially associates with heterochromatin. This association requires a functional ATP binding site and a protein region partially overlapping the bromo-adjacent homology domain at the N-terminus of Orc1p. The same N-terminal region mediates the in vitro interaction with heterochromatin protein 1 (HP1). Fluorescence resonance energy transfer (FRET) experiments demonstrate the interaction of human Orc1p and HP1 in vivo. Our data suggest a role of HP1 in the recruitment but not in the stable association of Orc1p with heterochromatin. Indeed, the subnuclear distribution of Orc1p is not affected by treatments that trigger the dispersal of HP1.
Collapse
|
25
|
Ballabeni A, Melixetian M, Zamponi R, Masiero L, Marinoni F, Helin K. Human geminin promotes pre-RC formation and DNA replication by stabilizing CDT1 in mitosis. EMBO J 2004; 23:3122-32. [PMID: 15257290 PMCID: PMC514931 DOI: 10.1038/sj.emboj.7600314] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Accepted: 06/16/2004] [Indexed: 12/19/2022] Open
Abstract
Geminin is an unstable inhibitor of DNA replication that negatively regulates the licensing factor CDT1 and inhibits pre-replicative complex (pre-RC) formation in Xenopus egg extracts. Here we describe a novel function of Geminin. We demonstrate that human Geminin protects CDT1 from proteasome-mediated degradation by inhibiting its ubiquitination. In particular, Geminin ensures basal levels of CDT1 during S phase and its accumulation during mitosis. Consistently, inhibition of Geminin synthesis during M phase leads to impairment of pre-RC formation and DNA replication during the following cell cycle. Moreover, we show that inhibition of CDK1 during mitosis, and not Geminin depletion, is sufficient for premature formation of pre-RCs, indicating that CDK activity is the major mitotic inhibitor of licensing in human cells. Taken together with recent data from our laboratory, our results demonstrate that Geminin is both a negative and positive regulator of pre-RC formation in human cells, playing a positive role in allowing CDT1 accumulation in G2-M, and preventing relicensing of origins in S-G2.
Collapse
Affiliation(s)
- Andrea Ballabeni
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Marina Melixetian
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Raffaella Zamponi
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Laura Masiero
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Federica Marinoni
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Kristian Helin
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
- Biotech Research & Innovation Centre, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Fruebjergvej 3, 2100 Copenhagen, Denmark. Tel.: +45 39 17 96 66; Fax: +45 39 17 96 69; E-mail:
| |
Collapse
|
26
|
Shen WH, Jackson ST, Broussard SR, McCusker RH, Strle K, Freund GG, Johnson RW, Dantzer R, Kelley KW. IL-1β Suppresses Prolonged Akt Activation and Expression of E2F-1 and Cyclin A in Breast Cancer Cells. THE JOURNAL OF IMMUNOLOGY 2004; 172:7272-81. [PMID: 15187102 DOI: 10.4049/jimmunol.172.12.7272] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cell cycle aberrations occurring at the G(1)/S checkpoint often lead to uncontrolled cell proliferation and tumor growth. We recently demonstrated that IL-1beta inhibits insulin-like growth factor (IGF)-I-induced cell proliferation by preventing cells from entering the S phase of the cell cycle, leading to G(0)/G(1) arrest. Notably, IL-1beta suppresses the ability of the IGF-I receptor tyrosine kinase to phosphorylate its major docking protein, insulin receptor substrate-1, in MCF-7 breast carcinoma cells. In this study, we extend this juxtamembrane cross-talk between cytokine and growth factor receptors to downstream cell cycle machinery. IL-1beta reduces the ability of IGF-I to activate Cdk2 and to induce E2F-1, cyclin A, and cyclin A-dependent phosphorylation of a retinoblastoma tumor suppressor substrate. Long-term activation of the phosphatidylinositol 3-kinase/Akt signaling pathway, but not the mammalian target of rapamycin or mitogen-activated protein kinase pathways, is required for IGF-I to hyperphosphorylate retinoblastoma and to cause accumulation of E2F-1 and cyclin A. In the absence of IGF-I to induce Akt activation and cell cycle progression, IL-1beta has no effect. IL-1beta induces p21(Cip1/Waf1), which may contribute to its inhibition of IGF-I-activated Cdk2. Collectively, these data establish a novel mechanism by which prolonged Akt phosphorylation serves as a convergent target for both IGF-I and IL-1beta; stimulation by growth factors such as IGF-I promotes G(1)-S phase progression, whereas IL-1beta antagonizes IGF-I-induced Akt phosphorylation to induce cytostasis. In this manner, Akt serves as a critical bridge that links proximal receptor signaling events to more distal cell cycle machinery.
Collapse
Affiliation(s)
- Wen Hong Shen
- Laboratory of Immunophysiology, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Riva F, Savio M, Cazzalini O, Stivala LA, Scovassi IA, Cox LS, Ducommun B, Prosperi E. Distinct pools of proliferating cell nuclear antigen associated to DNA replication sites interact with the p125 subunit of DNA polymerase δ or DNA ligase I. Exp Cell Res 2004; 293:357-67. [PMID: 14729473 DOI: 10.1016/j.yexcr.2003.10.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Proliferating cell nuclear antigen (PCNA) plays an essential role in DNA replication, repair, and cell cycle control. PCNA is a homotrimeric ring that, when encircling DNA, is not easily extractable. Consequently, the dynamics of protein-protein interactions established by PCNA at DNA replication sites is not well understood. We have used DNase I to release DNA-bound PCNA together with replication proteins including the p125-catalytic subunit of DNA polymerase delta (p125-pol delta), DNA ligase I, cyclin A, and cyclin-dependent kinase 2 (CDK2). Interaction with these proteins was investigated by immunoprecipitation with antibodies binding near the interdomain connector loop or to the C-terminal domain of PCNA, respectively, or with antibodies to p125-pol delta or DNA ligase I. PCNA interaction with p125-pol delta or DNA ligase I was detected only by the latter antibodies, and found to be mutually exclusive. In contrast, antibodies to PCNA co-immunoprecipitated only CDK2. A GST-p21(waf1/cip1) C-terminal peptide displaced p125-pol delta and DNA ligase I, but not CDK2, from PCNA. These results suggest that PCNA trimers bound to DNA during the S phase are organized as distinct pools able to bind selectively different partners. Among them, p125-pol delta and DNA ligase I interact with PCNA in a mutually exclusive manner.
Collapse
Affiliation(s)
- Federica Riva
- Istituto di Genetica Molecolare del CNR, Dipartimento di Biologia Animale, sezione Istochimica e Citometria, Università di Pavia, Piazza Botta 10, 27100 Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Munshi A, Cannella D, Brickner H, Salles-Passador I, Podust V, Fotedar R, Fotedar A. Cell cycle-dependent phosphorylation of the large subunit of replication factor C (RF-C) leads to its dissociation from the RF-C complex. J Biol Chem 2003; 278:48467-73. [PMID: 12947101 DOI: 10.1074/jbc.m309349200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The five subunit replication factor C (RF-C) complex plays a critical role in DNA elongation. We find that the large subunit of RF-C (RF-Cp145) is phosphorylated in vivo whereas the smaller RF-C subunits are not phosphorylated. The phosphorylation of endogenous RFCp145 is modulated in a cell cycle-dependent manner. Phosphorylation is maximal in G2/M and is inhibited by an inhibitor of cyclin-dependent kinases. Phosphorylation of purified recombinant RF-C complex in vitro reveals that RF-Cp145 is preferentially phosphorylated by cdc2-cyclin B but not by cdk2-cyclin A or cdk2-cyclin E. In vitro phosphorylation of RF-C complex by cdc2-cyclin B kinases leads to dissociation of phosphorylated RFCp145 from the RF-C complex. Using different approaches we demonstrate that phosphorylated RFCp145 is indeed dissociated from RF-Cp40 and RF-Cp37 in vivo. These results suggest that destabilization of the RF-C complex by CDKs may inactivate the RF-C complex at the end of S phase.
Collapse
Affiliation(s)
- Anil Munshi
- Sidney Kimmel Cancer Center, San Diego, California 92121, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Frouin I, Maga G, Denegri M, Riva F, Savio M, Spadari S, Prosperi E, Scovassi AI. Human proliferating cell nuclear antigen, poly(ADP-ribose) polymerase-1, and p21waf1/cip1. A dynamic exchange of partners. J Biol Chem 2003; 278:39265-8. [PMID: 12930846 DOI: 10.1074/jbc.c300098200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We addressed the analysis of the physical and functional association of proliferating cell nuclear antigen (PCNA), a protein involved in many DNA transactions, with poly(ADP-ribose) polymerase (PARP-1), an enzyme that plays a crucial role in DNA repair and interacts with many DNA replication/repair factors. We demonstrated that PARP-1 and PCNA co-immunoprecipitated both from the soluble and the DNA-bound fraction isolated from S-phase-synchronized HeLa cells. Immunoprecipitation experiments with purified proteins further confirmed a physical association between PARP-1 and PCNA. To investigate the effect of this association on PARP-1 activity, an assay based on the incorporation of radioactive NAD was performed. Conversely, the effect of PARP-1 on PCNA-dependent DNA synthesis was assessed by a DNA polymerase delta assay. A marked inhibition of both reactions was found. Unexpectedly, PARP-1 activity also decreased in the presence of p21waf1/cip1. By pull-down experiments, we provided the first evidence for an association between PARP-1 and p21, which involves the C-terminal part of p21 protein. This association was further demonstrated to occur also in vivo in MNNG (N-methyl-N'-nitro-N-nitrosoguanidine)-treated human fibroblasts. These observations suggest that PARP-1 and p21 could cooperate in regulating the functions of PCNA during DNA replication/repair.
Collapse
Affiliation(s)
- Isabelle Frouin
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Via Abbiategrasso 207, 27100 Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Coulonval K, Bockstaele L, Paternot S, Roger PP. Phosphorylations of cyclin-dependent kinase 2 revisited using two-dimensional gel electrophoresis. J Biol Chem 2003; 278:52052-60. [PMID: 14551212 DOI: 10.1074/jbc.m307012200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To control the G1/S transition and the progression through the S phase, the activation of the cyclin-dependent kinase (CDK) 2 involves the binding of cyclin E then cyclin A, the activating Thr-160 phosphorylation within the T-loop by CDK-activating kinase (CAK), inhibitory phosphorylations within the ATP binding region at Tyr-15 and Thr-14, dephosphorylation of these sites by cdc25A, and release from Cip/Kip family (p27kip1 and p21cip1) CDK inhibitors. To re-assess the precise relationship between the different phosphorylations of CDK2, and the influence of cyclins and CDK inhibitors upon them, we introduce here the use of the high resolution power of two-dimensional gel electrophoresis, combined to Tyr-15- or Thr-160-phosphospecific antibodies. The relative proportions of the potentially active forms of CDK2 (phosphorylated at Thr-160 but not Tyr-15) and inactive forms (non-phosphorylated, phosphorylated only at Tyr-15, or at both Tyr-15 and Thr-160), and their respective association with cyclin E, cyclin A, p21, and p27, were demonstrated during the mitogenic stimulation of normal human fibroblasts. Novel observations modify the current model of the sequential CDK2 activation process: (i) Tyr-15 phosphorylation induced by serum was not restricted to cyclin-bound CDK2; (ii) Thr-160 phosphorylation engaged the entirety of Tyr-15-phosphorylated CDK2 associated not only with a cyclin but also with p27 and p21, suggesting that Cip/Kip proteins do not prevent CDK2 activity by impairing its phosphorylation by CAK; (iii) the potentially active CDK2 phosphorylated at Thr-160 but not Tyr-15 represented a tiny fraction of total CDK2 and a minor fraction of cyclin A-bound CDK2, underscoring the rate-limiting role of Tyr-15 dephosphorylation by cdc25A.
Collapse
Affiliation(s)
- Katia Coulonval
- Institute of Interdisciplinary Research and Protein Chemistry Department, Faculté de Médecine, Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium.
| | | | | | | |
Collapse
|
31
|
Ferrari G, Rossi R, Arosio D, Vindigni A, Biamonti G, Montecucco A. Cell cycle-dependent phosphorylation of human DNA ligase I at the cyclin-dependent kinase sites. J Biol Chem 2003; 278:37761-7. [PMID: 12851383 DOI: 10.1074/jbc.m304462200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have described previously that, during S-phase, human DNA ligase I is phosphorylated on Ser66, a casein kinase II site. Here we investigate the phosphorylation status of DNA ligase I during the cell cycle by gel shift analysis and electrospray mass spectrometry. We show that three residues (Ser51, Ser76, and Ser91), which are part of cyclin-dependent kinase sites, are phosphorylated in a cell cycle-dependent manner. Phosphorylation of Ser91 occurs at G1/S transition and depends on a cyclin binding site in the C-terminal part of the protein. This modification is required for the ensuing phosphorylation of Ser76 detectable in G2/M extracts. The substitution of serines at positions 51, 66, 76, and 91 with aspartic acid to mimic the phosphorylated enzyme hampers the association of DNA ligase I with the replication foci. We suggest that the phosphorylation of DNA ligase I and possibly other replicative enzymes is part of the mechanism that directs the disassembly of the replication machinery at the completion of S-phase.
Collapse
Affiliation(s)
- Giovanni Ferrari
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100 Pavia, Italy
| | | | | | | | | | | |
Collapse
|
32
|
Salles-Passador I, Munshi A, Cannella D, Pennaneach V, Koundrioukoff S, Jaquinod M, Forest E, Podust V, Fotedar A, Fotedar R, Jacquinod M. Phosphorylation of the PCNA binding domain of the large subunit of replication factor C on Thr506 by cyclin-dependent kinases regulates binding to PCNA. Nucleic Acids Res 2003; 31:5202-11. [PMID: 12930972 PMCID: PMC212794 DOI: 10.1093/nar/gkg692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Replication factor C (RF-C) complex binds to DNA primers and loads PCNA onto DNA, thereby increasing the processivity of DNA polymerases. We have previously identified a distinct region, domain B, in the large subunit of human RF-C (RF-Cp145) which binds to PCNA. We show here that the functional interaction of RF-Cp145 with PCNA is regulated by cdk-cyclin kinases. Phosphorylation of either RF-Cp145 as a part of the RF-C complex or RF-Cp145 domain B by cdk-cyclin kinases inhibits their ability to bind PCNA. A cdk-cyclin phosphorylation site, Thr506 in RF-Cp145, identified by mass spectrometry, is also phosphorylated in vivo. A Thr506-->Ala RF-Cp145 domain B mutant is a poor in vitro substrate for cdk-cyclin kinase and, consequently, the ability of this mutant to bind PCNA was not suppressed by phosphorylation. By generating an antibody directed against phospho-Thr506 in RF-Cp145, we demonstrate that phosphorylation of endogenous RF-Cp145 at Thr506 is mediated by CDKs since it is abolished by treatment of cells with the cdk-cyclin inhibitor roscovitine. We have thus mapped an in vivo cdk-cyclin phosphorylation site within the PCNA binding domain of RF-Cp145.
Collapse
Affiliation(s)
- Isabelle Salles-Passador
- Institut de Biologie Structurale, J.-P. Ebel, 41 rue Jules Horowitz, F-38027 Grenoble Cedex 1, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Miccoli L, Biard DSF, Frouin I, Harper F, Maga G, Angulo JF. Selective interactions of human kin17 and RPA proteins with chromatin and the nuclear matrix in a DNA damage- and cell cycle-regulated manner. Nucleic Acids Res 2003; 31:4162-75. [PMID: 12853634 PMCID: PMC165974 DOI: 10.1093/nar/gkg459] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Several proteins involved in DNA synthesis are part of the so-called 'replication factories' that are anchored on non-chromatin nuclear structures. We report here that human kin17, a nuclear stress-activated protein, associates with both chromatin and non-chromatin nuclear structures in a cell cycle- and DNA damage-dependent manner. After L-mimosine block and withdrawal we observed that kin17 protein was recruited in the nucleus during re-entry and progression through S phase. These results are consistent with a role of kin17 protein in DNA replication. About 50% of the total amount of kin17 protein was detected on nuclear structures and could not be released by detergents. Furthermore, the amount of kin17 protein greatly increased in both G(1)/S and S phase-arrested cells in fractions containing proteins anchored to nuclear structures. The detection of kin17 protein showed for the first time its preferential assembly within non-chromatin nuclear structures in G(1)/S and S phase-arrested cells, while the association with these structures was found to be less stable in the G(2)/M phase, as judged by fractionation of human cells and immunostaining. In asynchronous growing cells, kin17 protein interacted with both chromatin DNA and non-chromatin nuclear structures, while in S phase-arrested cells it interacted mostly with non-chromatin nuclear structures, as judged by DNase I treatment and in vivo UV cross-linking. In the presence of DNA damage in S phase cells, the distribution of kin17 protein became mainly associated with chromosomal DNA, as judged by limited formaldehyde cross-linking of living cells. The physical interaction of kin17 protein with components of the nuclear matrix was confirmed and visualized by indirect immunofluorescence and immunoelectron microscopy. Our results indicate that, during S phase, a fraction of the human kin17 protein preferentially associates with the nuclear matrix, a fundamentally non-chromatin higher order nuclear structure, and to chromatin DNA in the presence of DNA damage.
Collapse
Affiliation(s)
- Laurent Miccoli
- Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Laboratoire de Génétique de la Radiosensibilité, Département de Radiobiologie et de Radiopathologie, F-92265 Fontenay-aux-Roses, France.
| | | | | | | | | | | |
Collapse
|
34
|
Henneke G, Koundrioukoff S, Hübscher U. Phosphorylation of human Fen1 by cyclin-dependent kinase modulates its role in replication fork regulation. Oncogene 2003; 22:4301-13. [PMID: 12853968 DOI: 10.1038/sj.onc.1206606] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cyclin-dependent kinase (Cdk) Cdk1-Cyclin A can phosphorylate Flap endonuclease 1 (Fen1), a key-enzyme of the DNA replication machinery, in late S phase. Cdk1-cyclin A forms a complex in vitro and in vivo with Fen1. Furthermore, Fen1 phosphorylation is detected in vivo and depends upon Cdks activity. As a functional consequence of phosphorylation by Cdk1-Cyclin A in vitro, endo- and exonuclease activities of Fen1 are reduced whereas its DNA binding is not affected. Moreover, phosphorylation of Fen1 by Cdk1-Cyclin A abrogates its proliferating cell nuclear antigen (PCNA) binding thus preventing stimulation of Fen1 by PCNA. Concomitantly, human cells expressing the S187A mutant defective for Cdk1-Cyclin A phosphorylation accumulate in S phase consistent with a failure in cell cycle regulation through DNA replication. Our results suggest a novel regulatory role of Cdks onto the end of S phase by targeting directly a key enzyme involved in DNA replication.
Collapse
Affiliation(s)
- Ghislaine Henneke
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|
35
|
Frouin I, Montecucco A, Spadari S, Maga G. DNA replication: a complex matter. EMBO Rep 2003; 4:666-70. [PMID: 12835753 PMCID: PMC1326325 DOI: 10.1038/sj.embor.embor886] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2003] [Accepted: 05/21/2003] [Indexed: 02/01/2023] Open
Abstract
In eukaryotic cells, the essential function of DNA replication is carried out by a network of enzymes and proteins, which work together to rapidly and accurately duplicate the genetic information of the cell. Many of the components of this DNA replication apparatus associate with other cellular factors as components of multiprotein complexes, which act cooperatively in networks to regulate cell cycle progression and checkpoint control, but are distinct from the pre-replication complexes that associate with the origins and regulate their firing. In this review, we summarize current knowledge about the composition and dynamics of these large multiprotein complexes in mammalian cells and their relationships to the replication factories.
Collapse
Affiliation(s)
- Isabelle Frouin
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, I-27100
Pavia, Italy
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich-Irchel, Winterthurerstrasse 190, CH-8050
Zürich, Switzerland
| | - Alessandra Montecucco
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, I-27100
Pavia, Italy
| | - Silvio Spadari
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, I-27100
Pavia, Italy
| | - Giovanni Maga
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, I-27100
Pavia, Italy
- Tel: +39 0382 546355; Fax: +39 0382 422286;
| |
Collapse
|
36
|
Quéméneur L, Gerland LM, Flacher M, Ffrench M, Revillard JP, Genestier L. Differential control of cell cycle, proliferation, and survival of primary T lymphocytes by purine and pyrimidine nucleotides. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:4986-95. [PMID: 12734342 DOI: 10.4049/jimmunol.170.10.4986] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Purine and pyrimidine nucleotides play critical roles in DNA and RNA synthesis as well as in membrane lipid biosynthesis and protein glycosylation. They are necessary for the development and survival of mature T lymphocytes. Activation of T lymphocytes is associated with an increase of purine and pyrimidine pools. However, the question of how purine vs pyrimidine nucleotides regulate proliferation, cell cycle, and survival of primary T lymphocytes following activation has not yet been specifically addressed. This was investigated in the present study by using well-known purine (mycophenolic acid, 6-mercaptopurine) and pyrimidine (methotrexate, 5-fluorouracil) inhibitors, which are used in neoplastic diseases or as immunosuppressive agents. The effect of these inhibitors was analyzed according to their time of addition with respect to the initiation of mitogenic activation. We showed that synthesis of both purine and pyrimidine nucleotides is required for T cell proliferation. However, purine and pyrimidine nucleotides differentially regulate the cell cycle since purines control both G(1) to S phase transition and progression through the S phase, whereas pyrimidines only control progression from early to intermediate S phase. Furthermore, inhibition of pyrimidine synthesis induces apoptosis whatever the time of inhibitor addition whereas inhibition of purine nucleotides induces apoptosis only when applied to already cycling T cells, suggesting that both purine and pyrimidine nucleotides are required for survival of cells committed into S phase. These findings reveal a hitherto unknown role of purine and pyrimidine de novo synthesis in regulating cell cycle progression and maintaining survival of activated T lymphocytes.
Collapse
Affiliation(s)
- Laurence Quéméneur
- Laboratoire d'immunopharmacologie, Institut National de la Santé et de la Recherche Médicale Unité 503, Centre d'Etudes et de Recherche en Virologie et Immunologie, Institut Fédératif de Recherche 128 Biosciences Lyon-Gerland, France
| | | | | | | | | | | |
Collapse
|
37
|
Henneke G, Koundrioukoff S, Hübscher U. Multiple roles for kinases in DNA replication. EMBO Rep 2003; 4:252-6. [PMID: 12634841 PMCID: PMC1315902 DOI: 10.1038/sj.embor.embor774] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2002] [Accepted: 01/17/2003] [Indexed: 11/09/2022] Open
Abstract
DNA replication is carried out by the replisome, which includes several proteins that are targets of cell-cycle-regulated kinases. The phosphorylation of proteins such as replication protein A, DNA polymerase-alpha and -delta, replication factor C, flap endonuclease 1 and DNA ligase I leads to their inactivation, suggesting that phosphorylation is important in the prevention of re-replication. Moreover, the phosphorylation of several of these replication proteins has been shown to block their association with the 'moving platform'-proliferating cell nuclear antigen. Therefore, phosphorylation seems to be a crucial regulator of replisome assembly and DNA replication, although its precise role in these processes remains to be clarified.
Collapse
Affiliation(s)
- Ghislaine Henneke
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- These authors contributed equally to this work
| | - Stéphane Koundrioukoff
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- These authors contributed equally to this work
| | - Ulrich Hübscher
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Tel: +41 1 635 54 72; Fax: +41 1 635 68 40;
| |
Collapse
|