1
|
Crawford MR, Harper JA, Cooper TJ, Marsolier-Kergoat MC, Llorente B, Neale MJ. Separable roles of the DNA damage response kinase Mec1ATR and its activator Rad24RAD17 during meiotic recombination. PLoS Genet 2024; 20:e1011485. [PMID: 39652586 DOI: 10.1371/journal.pgen.1011485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/19/2024] [Accepted: 11/04/2024] [Indexed: 12/21/2024] Open
Abstract
During meiosis, programmed DNA double-strand breaks (DSBs) are formed by the topoisomerase-like enzyme, Spo11, activating the DNA damage response (DDR) kinase Mec1ATR via the checkpoint clamp loader, Rad24RAD17. At single loci, loss of Mec1 and Rad24 activity alters DSB formation and recombination outcome, but their genome-wide roles have not been examined in detail. Here, we utilise two strategies-deletion of the mismatch repair protein, Msh2, and control of meiotic prophase length via regulation of the Ndt80 transcription factor-to help characterise the roles Mec1 and Rad24 play in meiotic recombination by enabling genome-wide mapping of meiotic progeny. In line with previous studies, we observe severely impacted spore viability and a reduction in the frequency of recombination upon deletion of RAD24-driven by a shortened prophase. By contrast, loss of Mec1 function increases recombination frequency, consistent with its role in DSB trans-interference, and has less effect on spore viability. Despite these differences, complex multi-chromatid events initiated by closely spaced DSBs-rare in wild-type cells-occur more frequently in the absence of either Rad24 or Mec1, suggesting a loss of spatial regulation at the level of DSB formation in both. Mec1 and Rad24 also have important roles in the spatial regulation of crossovers (COs). Upon loss of either Mec1 or Rad24, CO distributions become more random-suggesting reductions in the global manifestation of interference. Such effects are similar to, but less extreme than, the phenotype of 'ZMM' mutants such as zip3Δ, and may be driven by reductions in the proportion of interfering COs. Collectively, in addition to shared roles in CO regulation, our results highlight separable roles for Rad24 as a pro-CO factor, and for Mec1 as a regulator of recombination frequency, the loss of which helps to suppress any broader defects in CO regulation caused by abrogation of the DDR.
Collapse
Affiliation(s)
- Margaret R Crawford
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, United Kingdom
- Francis Crick Institute, London, United Kingdom
| | - Jon A Harper
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, United Kingdom
| | - Tim J Cooper
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, United Kingdom
| | - Marie-Claude Marsolier-Kergoat
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
- UMR7206 Eco-Anthropology and Ethno-Biology, CNRS-MNHN-University Paris Diderot, Musée de l'Homme, Paris, France
| | - Bertrand Llorente
- Cancer Research Centre of Marseille, CNRS, INSERM U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
| | - Matthew J Neale
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, United Kingdom
| |
Collapse
|
2
|
Tong X, Li D, Liu N, Huang W, Zhao X, Zhang D, Xue X, Fu J. Rad1 attenuates DNA double-strand breaks and cell cycle arrest in type II alveolar epithelial cells of rats with bronchopulmonary dysplasia. Mol Med 2023; 29:70. [PMID: 37226090 PMCID: PMC10207718 DOI: 10.1186/s10020-023-00660-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/27/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is the most common and serious chronic lung disease in preterm infants with pathological characteristics of arrested lung development. DNA double-strand breaks (DSBs) are a serious manifestation of oxidative stress damage, but little is known about the role of DSBs in BPD. The current study set out to detect DSB accumulation and cell cycle arrest in BPD and study the expression of genes related to DNA damage and repair in BPD through DNA damage signaling pathway-based PCR array to determine a suitable target to improve arrested lung development associated with BPD. METHODS DSB accumulation and cell cycle arrest were detected in a BPD animal model and primary cells, then a DNA damage signaling pathway-based PCR array was used to identify the target of DSB repair in BPD. RESULTS DSB accumulation and cell cycle arrest were shown in BPD animal model, primary type II alveolar epithelial cells (AECII) and cultured cells after exposure to hyperoxia. Of the 84 genes in the DNA damage-signaling pathway PCR array, eight genes were overexpressed and 11 genes were repressed. Rad1, an important protein for DSB repair, was repressed in the model group. Real-time PCR and western blots were used to verify the microarray results. Next, we confirmed that silencing Rad1 expression aggravated the accumulation of DSBs and cell cycle arrest in AECII cells, whereas its overexpression alleviated DSB accumulation and cell cycle arrest. CONCLUSIONS The accumulation of DSBs in AECII might be an important cause of alveolar growth arrest associated with BPD. Rad1 could be an effective target for intervention to improve this arrest in lung development associated with BPD.
Collapse
Affiliation(s)
- Xin Tong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Danni Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Na Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wanjie Huang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinyi Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dan Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xindong Xue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Tsubouchi H. The Hop2-Mnd1 Complex and Its Regulation of Homologous Recombination. Biomolecules 2023; 13:biom13040662. [PMID: 37189409 DOI: 10.3390/biom13040662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Homologous recombination (HR) is essential for meiosis in most sexually reproducing organisms, where it is induced upon entry into meiotic prophase. Meiotic HR is conducted by the collaborative effort of proteins responsible for DNA double-strand break repair and those produced specifically during meiosis. The Hop2-Mnd1 complex was originally identified as a meiosis-specific factor that is indispensable for successful meiosis in budding yeast. Later, it was found that Hop2-Mnd1 is conserved from yeasts to humans, playing essential roles in meiosis. Accumulating evidence suggests that Hop2-Mnd1 promotes RecA-like recombinases towards homology search/strand exchange. This review summarizes studies on the mechanism of the Hop2-Mnd1 complex in promoting HR and beyond.
Collapse
Affiliation(s)
- Hideo Tsubouchi
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Kanagawa, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8503, Kanagawa, Japan
| |
Collapse
|
4
|
Shodhan A, Xaver M, Wheeler D, Lichten M. Turning coldspots into hotspots: targeted recruitment of axis protein Hop1 stimulates meiotic recombination in Saccharomyces cerevisiae. Genetics 2022; 222:iyac106. [PMID: 35876814 PMCID: PMC9434160 DOI: 10.1093/genetics/iyac106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/01/2022] [Indexed: 11/15/2022] Open
Abstract
The DNA double-strand breaks that initiate meiotic recombination are formed in the context of the meiotic chromosome axis, which in Saccharomyces cerevisiae contains a meiosis-specific cohesin isoform and the meiosis-specific proteins Hop1 and Red1. Hop1 and Red1 are important for double-strand break formation; double-strand break levels are reduced in their absence and their levels, which vary along the lengths of chromosomes, are positively correlated with double-strand break levels. How axis protein levels influence double-strand break formation and recombination remains unclear. To address this question, we developed a novel approach that uses a bacterial ParB-parS partition system to recruit axis proteins at high levels to inserts at recombination coldspots where Hop1 and Red1 levels are normally low. Recruiting Hop1 markedly increased double-strand breaks and homologous recombination at target loci, to levels equivalent to those observed at endogenous recombination hotspots. This local increase in double-strand breaks did not require Red1 or the meiosis-specific cohesin component Rec8, indicating that, of the axis proteins, Hop1 is sufficient to promote double-strand break formation. However, while most crossovers at endogenous recombination hotspots are formed by the meiosis-specific MutLγ resolvase, crossovers that formed at an insert locus were only modestly reduced in the absence of MutLγ, regardless of whether or not Hop1 was recruited to that locus. Thus, while local Hop1 levels determine local double-strand break levels, the recombination pathways that repair these breaks can be determined by other factors, raising the intriguing possibility that different recombination pathways operate in different parts of the genome.
Collapse
Affiliation(s)
- Anura Shodhan
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Martin Xaver
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - David Wheeler
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Michael Lichten
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Tsubouchi H, Argunhan B, Iwasaki H. Biochemical properties of fission yeast homologous recombination enzymes. Curr Opin Genet Dev 2021; 71:19-26. [PMID: 34246071 DOI: 10.1016/j.gde.2021.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/06/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022]
Abstract
Homologous recombination (HR) is a universal phenomenon conserved from viruses to humans. The mechanisms of HR are essentially the same in humans and simple unicellular eukaryotes like yeast. Two highly diverged yeast species, Saccharomyces cerevisiae and Schizosaccharomyces pombe, have proven exceptionally useful in understanding the fundamental mechanisms of eukaryotic HR by serving as a source for unique biological insights and also complementing each other. Here, we will review the features of S. pombe HR mechanisms in comparison to S. cerevisiae and other model organisms. Particular emphasis will be put on the biochemical characterization of HR mechanisms uncovered using S. pombe proteins.
Collapse
Affiliation(s)
- Hideo Tsubouchi
- Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, Japan; School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan.
| | - Bilge Argunhan
- Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, Japan
| | - Hiroshi Iwasaki
- Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, Japan; School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan.
| |
Collapse
|
6
|
CDK Regulation of Meiosis: Lessons from S. cerevisiae and S. pombe. Genes (Basel) 2020; 11:genes11070723. [PMID: 32610611 PMCID: PMC7397238 DOI: 10.3390/genes11070723] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
Meiotic progression requires precise orchestration, such that one round of DNA replication is followed by two meiotic divisions. The order and timing of meiotic events is controlled through the modulation of the phosphorylation state of proteins. Key components of this phospho-regulatory system include cyclin-dependent kinase (CDK) and its cyclin regulatory subunits. Over the past two decades, studies in budding and fission yeast have greatly informed our understanding of the role of CDK in meiotic regulation. In this review, we provide an overview of how CDK controls meiotic events in both budding and fission yeast. We discuss mechanisms of CDK regulation through post-translational modifications and changes in the levels of cyclins. Finally, we highlight the similarities and differences in CDK regulation between the two yeast species. Since CDK and many meiotic regulators are highly conserved, the findings in budding and fission yeasts have revealed conserved mechanisms of meiotic regulation among eukaryotes.
Collapse
|
7
|
Chen X, Gaglione R, Leong T, Bednor L, de los Santos T, Luk E, Airola M, Hollingsworth NM. Mek1 coordinates meiotic progression with DNA break repair by directly phosphorylating and inhibiting the yeast pachytene exit regulator Ndt80. PLoS Genet 2018; 14:e1007832. [PMID: 30496175 PMCID: PMC6289461 DOI: 10.1371/journal.pgen.1007832] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/11/2018] [Accepted: 11/13/2018] [Indexed: 02/02/2023] Open
Abstract
Meiotic recombination plays a critical role in sexual reproduction by creating crossovers between homologous chromosomes. These crossovers, along with sister chromatid cohesion, connect homologs to enable proper segregation at Meiosis I. Recombination is initiated by programmed double strand breaks (DSBs) at particular regions of the genome. The meiotic recombination checkpoint uses meiosis-specific modifications to the DSB-induced DNA damage response to provide time to convert these breaks into interhomolog crossovers by delaying entry into Meiosis I until the DSBs have been repaired. The meiosis-specific kinase, Mek1, is a key regulator of meiotic recombination pathway choice, as well as being required for the meiotic recombination checkpoint. The major target of this checkpoint is the meiosis-specific transcription factor, Ndt80, which is essential to express genes necessary for completion of recombination and meiotic progression. The molecular mechanism by which cells monitor meiotic DSB repair to allow entry into Meiosis I with unbroken chromosomes was unknown. Using genetic and biochemical approaches, this work demonstrates that in the presence of DSBs, activated Mek1 binds to Ndt80 and phosphorylates the transcription factor, thus inhibiting DNA binding and preventing Ndt80's function as a transcriptional activator. Repair of DSBs by recombination reduces Mek1 activity, resulting in removal of the inhibitory Mek1 phosphates. Phosphorylation of Ndt80 by the meiosis-specific kinase, Ime2, then results in fully activated Ndt80. Ndt80 upregulates transcription of its own gene, as well as target genes, resulting in prophase exit and progression through meiosis.
Collapse
Affiliation(s)
- Xiangyu Chen
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Robert Gaglione
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Trevor Leong
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Lauren Bednor
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Teresa de los Santos
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Ed Luk
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Michael Airola
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Nancy M. Hollingsworth
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
8
|
The telomere bouquet facilitates meiotic prophase progression and exit in fission yeast. Cell Discov 2017; 3:17041. [PMID: 29123917 PMCID: PMC5674143 DOI: 10.1038/celldisc.2017.41] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 09/28/2017] [Indexed: 12/03/2022] Open
Abstract
During meiotic prophase, chromosome arrangement and oscillation promote the pairing of homologous chromosomes for meiotic recombination. This dramatic movement involves clustering of telomeres at the nuclear membrane to form the so-called telomere bouquet. In fission yeast, the telomere bouquet is formed near the spindle pole body (SPB), which is the microtubule organising centre, functionally equivalent to the metazoan centrosome. Disruption of bouquet configuration impedes homologous chromosome pairing, meiotic recombination and spindle formation. Here, we demonstrate that the bouquet is maintained throughout meiotic prophase and promotes timely prophase exit in fission yeast. Persistent DNA damages, induced during meiotic recombination, activate the Rad3 and Chk1 DNA damage checkpoint kinases and extend the bouquet stage beyond the chromosome oscillation period. The auxin-inducible degron system demonstrated that premature termination of the bouquet stage leads to severe extension of prophase and consequently spindle formation defects. However, this delayed exit from meiotic prophase was not caused by residual DNA damage. Rather, loss of chromosome contact with the SPB caused delayed accumulation of CDK1-cyclin B at the SPB, which correlated with impaired SPB separation. In the absence of the bouquet, CDK1-cyclin B localised near the telomeres but not at the SPB at the later stage of meiotic prophase. Thus, bouquet configuration is maintained throughout meiotic prophase, by which this spatial organisation may facilitate local and timely activation of CDK1 near the SPB. Our findings illustrate that chromosome contact with the nuclear membrane synchronises meiotic progression of the nucleoplasmic chromosomes with that of the cytoplasmic SPB.
Collapse
|
9
|
Amelina H, Subramaniam S, Moiseeva V, Armstrong CA, Pearson SR, Tomita K. Telomere protein Rap1 is a charge resistant scaffolding protein in chromosomal bouquet formation. BMC Biol 2015; 13:37. [PMID: 26058898 PMCID: PMC4660835 DOI: 10.1186/s12915-015-0149-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/04/2015] [Indexed: 11/10/2022] Open
Abstract
Background Chromosomes reorganize in early meiotic prophase to form the so-called telomere bouquet. In fission yeast, telomeres localize to the nuclear periphery via interaction of the telomeric protein Rap1 with the membrane protein Bqt4. During meiotic prophase, the meiotic proteins Bqt1-2 bind Rap1 and tether to the spindle pole body to form the bouquet. Although it is known that this polarized chromosomal arrangement plays a crucial role in meiotic progression, the molecular mechanisms of telomere bouquet regulation are poorly understood. Results Here, we detected high levels of Rap1 phospho-modification throughout meiotic prophase, and identified a maximum of 35 phosphorylation sites. Concomitant phosphomimetic mutation of the modification sites suggests that Rap1 hyper-phosphorylation does not directly regulate telomere bouquet formation or dissociation. Despite the negative charge conferred by its highly phosphorylated state, Rap1 maintains interactions with its binding partners. Interestingly, mutations that change the charge of negatively charged residues within the Bqt1-2 binding site of Rap1 abolished the affinity to the Bqt1-2 complex, suggesting that the intrinsic negative charge of Rap1 is crucial for telomere bouquet formation. Conclusions Whereas Rap1 hyper-phosphorylation observed in meiotic prophase does not have an apparent role in bouquet formation, the intrinsic negative charge of Rap1 is important for forming interactions with its binding partners. Thus, Rap1 is able to retain bouquet formation under heavily phosphorylated status. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0149-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hanna Amelina
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London, WC1E 6DD, UK.
| | - Shaan Subramaniam
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London, WC1E 6DD, UK.
| | - Vera Moiseeva
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London, WC1E 6DD, UK.
| | - Christine Anne Armstrong
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London, WC1E 6DD, UK.
| | - Siân Rosanna Pearson
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London, WC1E 6DD, UK.
| | - Kazunori Tomita
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London, WC1E 6DD, UK.
| |
Collapse
|
10
|
Shinohara M, Hayashihara K, Grubb JT, Bishop DK, Shinohara A. DNA damage response clamp 9-1-1 promotes assembly of ZMM proteins for formation of crossovers and synaptonemal complex. J Cell Sci 2015; 128:1494-506. [PMID: 25736290 DOI: 10.1242/jcs.161554] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 02/23/2015] [Indexed: 12/22/2022] Open
Abstract
Formation of crossovers between homologous chromosomes during meiosis is positively regulated by the ZMM proteins (also known as SIC proteins). DNA damage checkpoint proteins also promote efficient formation of interhomolog crossovers. Here, we examined, in budding yeast, the meiotic role of the heterotrimeric DNA damage response clamp composed of Rad17, Ddc1 and Mec3 (known as '9-1-1' in other organisms) and a component of the clamp loader, Rad24 (known as Rad17 in other organisms). Cytological analysis indicated that the 9-1-1 clamp and its loader are not required for the chromosomal loading of RecA homologs Rad51 or Dmc1, but are necessary for the efficient loading of ZMM proteins. Interestingly, the loading of ZMM proteins onto meiotic chromosomes was independent of the checkpoint kinase Mec1 (the homolog of ATR) as well as Rad51. Furthermore, the ZMM member Zip3 (also known as Cst9) bound to the 9-1-1 complex in a cell-free system. These data suggest that, in addition to promoting interhomolog bias mediated by Rad51-Dmc1, the 9-1-1 clamp promotes crossover formation through a specific role in the assembly of ZMM proteins. Thus, the 9-1-1 complex functions to promote two crucial meiotic recombination processes, the regulation of interhomolog recombination and crossover formation mediated by ZMM.
Collapse
Affiliation(s)
- Miki Shinohara
- Institute for Protein Research, Graduate School of Science, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kayoko Hayashihara
- Institute for Protein Research, Graduate School of Science, Osaka University, Suita, Osaka 565-0871, Japan
| | - Jennifer T Grubb
- Department of Radiation Oncology/Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Douglas K Bishop
- Department of Radiation Oncology/Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Akira Shinohara
- Institute for Protein Research, Graduate School of Science, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
11
|
Subramanian VV, Hochwagen A. The meiotic checkpoint network: step-by-step through meiotic prophase. Cold Spring Harb Perspect Biol 2014; 6:a016675. [PMID: 25274702 DOI: 10.1101/cshperspect.a016675] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The generation of haploid gametes by meiosis is a highly conserved process for sexually reproducing organisms that, in almost all cases, involves the extensive breakage of chromosomes. These chromosome breaks occur during meiotic prophase and are essential for meiotic recombination as well as the subsequent segregation of homologous chromosomes. However, their formation and repair must be carefully monitored and choreographed with nuclear dynamics and the cell division program to avoid the creation of aberrant chromosomes and defective gametes. It is becoming increasingly clear that an intricate checkpoint-signaling network related to the canonical DNA damage response is deeply interwoven with the meiotic program and preserves order during meiotic prophase. This meiotic checkpoint network (MCN) creates a wide range of dependent relationships controlling chromosome movement, chromosome pairing, chromatin structure, and double-strand break (DSB) repair. In this review, we summarize our current understanding of the MCN. We discuss commonalities and differences in different experimental systems, with a particular emphasis on the emerging design principles that control and limit cross talk between signals to ultimately ensure the faithful inheritance of chromosomes by the next generation.
Collapse
Affiliation(s)
| | - Andreas Hochwagen
- Department of Biology, New York University, New York, New York 10003
| |
Collapse
|
12
|
A genome-wide screen for sporulation-defective mutants in Schizosaccharomyces pombe. G3-GENES GENOMES GENETICS 2014; 4:1173-82. [PMID: 24727291 PMCID: PMC4065261 DOI: 10.1534/g3.114.011049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Yeast sporulation is a highly regulated developmental program by which diploid cells generate haploid gametes, termed spores. To better define the genetic pathways regulating sporulation, a systematic screen of the set of ~3300 nonessential Schizosaccharomyces pombe gene deletion mutants was performed to identify genes required for spore formation. A high-throughput genetic method was used to introduce each mutant into an h(90) background, and iodine staining was used to identify sporulation-defective mutants. The screen identified 34 genes whose deletion reduces sporulation, including 15 that are defective in forespore membrane morphogenesis. In S. pombe, the total number of sporulation-defective mutants is a significantly smaller fraction of coding genes than in S. cerevisiae, which reflects the different evolutionary histories and biology of the two yeasts.
Collapse
|
13
|
Guo H, King MC. A quality control mechanism linking meiotic success to release of ascospores. PLoS One 2013; 8:e82758. [PMID: 24312672 PMCID: PMC3846778 DOI: 10.1371/journal.pone.0082758] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 11/05/2013] [Indexed: 11/19/2022] Open
Abstract
Eukaryotic organisms employ a variety of mechanisms during meiosis to assess and ensure the quality of their gametes. Defects or delays in successful meiotic recombination activate conserved mechanisms to delay the meiotic divisions, but many multicellular eukaryotes also induce cell death programs to eliminate gametes deemed to have failed during meiosis. It is generally thought that yeasts lack such mechanisms. Here, we show that in the fission yeast Schizosaccharomyces pombe, defects in meiotic recombination lead to the activation of a checkpoint that is linked to ascus wall endolysis – the process by which spores are released in response to nutritional cues for subsequent germination. Defects in meiotic recombination are sensed as unrepaired DNA damage through the canonical ATM and ATR DNA damage response kinases, and this information is communicated to the machinery that stimulates ascus wall breakdown. Viability of spores that undergo endolysis spontaneously is significantly higher than that seen upon chemical endolysis, demonstrating that this checkpoint contributes to a selective mechanism for the germination of high quality progeny. These results provide the first evidence for the existence of a checkpoint linking germination to meiosis and suggest that analysis solely based on artificial, enzymatic endolysis bypasses an important quality control mechanism in this organism and potentially other ascomycota, which are models widely used to study meiosis.
Collapse
Affiliation(s)
- Haiyan Guo
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Megan C. King
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
14
|
Lyndaker AM, Vasileva A, Wolgemuth DJ, Weiss RS, Lieberman HB. Clamping down on mammalian meiosis. Cell Cycle 2013; 12:3135-45. [PMID: 24013428 DOI: 10.4161/cc.26061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The RAD9A-RAD1-HUS1 (9-1-1) complex is a PCNA-like heterotrimeric clamp that binds damaged DNA to promote cell cycle checkpoint signaling and DNA repair. While various 9-1-1 functions in mammalian somatic cells have been established, mounting evidence from lower eukaryotes predicts critical roles in meiotic germ cells as well. This was investigated in 2 recent studies in which the 9-1-1 complex was disrupted specifically in the mouse male germline through conditional deletion of Rad9a or Hus1. Loss of these clamp subunits led to severely impaired fertility and meiotic defects, including faulty DNA double-strand break repair. While 9-1-1 is critical for ATR kinase activation in somatic cells, these studies did not reveal major defects in ATR checkpoint pathway signaling in meiotic cells. Intriguingly, this new work identified separable roles for 9-1-1 subunits, namely RAD9A- and HUS1-independent roles for RAD1. Based on these studies and the high-level expression of the paralogous proteins RAD9B and HUS1B in testis, we propose a model in which multiple alternative 9-1-1 clamps function during mammalian meiosis to ensure genome maintenance in the germline.
Collapse
Affiliation(s)
- Amy M Lyndaker
- Department of Biomedical Sciences; Cornell University; Ithaca, NY USA
| | - Ana Vasileva
- Center for Radiological Research; College of Physicians and Surgeons; Columbia University Medical Center; New York, NY USA
| | - Debra J Wolgemuth
- Genetics & Development and Obstetrics & Gynecology; The Institute of Human Nutrition; Herbert Irving Comprehensive Cancer Center; Columbia University Medical Center; New York, NY USA
| | - Robert S Weiss
- Department of Biomedical Sciences; Cornell University; Ithaca, NY USA
| | - Howard B Lieberman
- Department of Environmental Health Sciences; Mailman School of Public Health; Columbia University Medical Center; New York, NY USA
| |
Collapse
|
15
|
Refolio E, Cavero S, Marcon E, Freire R, San-Segundo PA. The Ddc2/ATRIP checkpoint protein monitors meiotic recombination intermediates. J Cell Sci 2011; 124:2488-500. [PMID: 21693576 DOI: 10.1242/jcs.081711] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During meiosis, accurate segregation of intact chromosomes is essential for generating healthy gametes. Defects in recombination and/or chromosome synapsis activate the pachytene checkpoint, which delays meiotic cell cycle progression to avoid aberrant chromosome segregation and formation of defective gametes. Here, we characterize the role of the conserved DNA damage checkpoint protein Ddc2/ATRIP in this meiotic surveillance mechanism. We show that deletion of DDC2 relieves the checkpoint-dependent meiotic block that occurs in Saccharomyces cerevisiae mutants defective in various aspects of meiotic chromosome dynamics and results in the generation of faulty meiotic products. Moreover, production of the Ddc2 protein is induced during meiotic prophase, accumulates in checkpoint-arrested mutants and localizes to distinctive chromosomal foci. Formation of meiotic Ddc2 foci requires the generation of Spo11-dependent DNA double-strand breaks (DSBs), and is impaired in an RPA mutant. Chromatin immunoprecipitation analysis reveals that Ddc2 accumulates at meiotic DSB sites, indicating that Ddc2 senses the presence of meiotic recombination intermediates. Furthermore, pachytene checkpoint signaling is defective in the ddc2 mutant. In addition, we show that mammalian ATRIP colocalizes with ATR, TopBP1 and RPA at unsynapsed regions of mouse meiotic chromosomes. Thus, our results point to an evolutionary conserved role for Ddc2/ATRIP in monitoring meiotic chromosome metabolism.
Collapse
Affiliation(s)
- Esther Refolio
- Instituto de Microbiología Bioquímica, CSIC / University of Salamanca, 37007 Salamanca, Spain
| | | | | | | | | |
Collapse
|
16
|
MacQueen AJ, Hochwagen A. Checkpoint mechanisms: the puppet masters of meiotic prophase. Trends Cell Biol 2011; 21:393-400. [PMID: 21531561 DOI: 10.1016/j.tcb.2011.03.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/20/2011] [Accepted: 03/21/2011] [Indexed: 11/30/2022]
Abstract
The coordinated execution of cell cycle processes during meiosis is essential for the production of viable gametes and fertility. Coordination is particularly important during meiotic prophase, when nuclei undergo a dramatic reorganization that requires the precise choreography of chromosome movements, pairing interactions and DNA double-strand break (DSB) repair. Analysis of the underlying regulatory mechanisms has revealed crucial and widespread roles for DNA-damage checkpoint proteins, not only in cell cycle surveillance, but also in controlling many processes uniquely characteristic of meiosis. The resulting regulatory network uses checkpoint machinery to provide an integral coordinating mechanism during every meiotic division and enables cells to safely maintain an error-prone event such as DSB formation as an essential part of the meiotic program.
Collapse
Affiliation(s)
- Amy J MacQueen
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | | |
Collapse
|
17
|
Tougan T, Kasama T, Ohtaka A, Okuzaki D, Saito TT, Russell P, Nojima H. The Mek1 phosphorylation cascade plays a role in meiotic recombination of Schizosaccharomyces pombe. Cell Cycle 2010; 9:4688-702. [PMID: 21084840 DOI: 10.4161/cc.9.23.14050] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mek1 is a Chk2/Rad53/Cds1-related protein kinase that is required for proper meiotic progression of Schizosaccharomyces pombe. However, the molecular mechanisms of Mek1 regulation and Mek1 phosphorylation targets are unclear. Here, we report that Mek1 is phosphorylated at serine-12 (S12), S14 and threonine-15 (T15) by Rad3 (ATR) and/or Tel1 (ATM) kinases that are activated by meiotic programmed double-strand breaks (DSBs). Mutations of these sites by alanine replacement caused abnormal meiotic progression and recombination rates. Phosphorylation of these sites triggers autophosphorylation of Mek1; indeed, alanine replacement mutations of Mek1-T318 and -T322 residues in the activation loop of Mek1 reduced Mek1 kinase activity and meiotic recombination rates. Substrates of Mek1 include Mus81-T275, Rdh54-T6 and Rdh54-T673. Mus81-T275 is known to regulate the Mus81 function in DNA cleavage, whereas Rdh54-T6A/T673A mutant cells showed abnormal meiotic recombination. Taken together, we conclude that the phosphorylation of Mek1 by Rad3 or Tel1, Mek1 autophosphorylation and Mus81 or Rdh54 phosphorylation by Mek1 regulate meiotic progression in S. pombe.
Collapse
Affiliation(s)
- Takahiro Tougan
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Stronghill P, Pathan N, Ha H, Supijono E, Hasenkampf C. Ahp2 (Hop2) function in Arabidopsis thaliana (Ler) is required for stabilization of close alignment and synaptonemal complex formation except for the two short arms that contain nucleolus organizer regions. Chromosoma 2010; 119:443-58. [PMID: 20358378 DOI: 10.1007/s00412-010-0270-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Revised: 02/20/2010] [Accepted: 02/26/2010] [Indexed: 10/19/2022]
Abstract
A cytological comparative analysis of male meiocytes was performed for Arabidopsis wild type and the ahp2 (hop2) mutant with emphasis on ahp2's largely uncharacterized prophase I. Leptotene progression appeared normal in ahp2 meiocytes; chromosomes exhibited regular axis formation and assumed a typical polarized nuclear organization. In contrast, 4',6'-diamidino-2-phenylindole-stained ahp2 pachytene chromosome spreads demonstrated a severe reduction in stabilized pairing. However, transmission electron microscopy (TEM) analysis of sections from meiocytes revealed that ahp2 chromosome axes underwent significant amounts of close alignment (44% of total axis). This apparent paradox strongly suggests that the Ahp2 protein is involved in the stabilization of homologous chromosome close alignment. Fluorescent in situ hybridization in combination with Zyp1 immunostaining revealed that ahp2 mutants undergo homologous synapsis of the nucleolus-organizer-region-bearing short arms of chromosomes 2 and 4, despite the otherwise "nucleus-wide" lack of stabilized pairing. The duration of ahp2 zygotene was significantly prolonged and is most likely due to difficulties in chromosome alignment stabilization and subsequent synaptonemal complex formation. Ahp2 and Mnd1 proteins have previously been shown, "in vitro," to form a heterodimer. Here we show, "in situ," that the Ahp2 and Mnd1 proteins are synchronous in their appearance and disappearance from meiotic chromosomes. Both the Ahp2 and Mnd1 proteins localize along the chromosomal axis. However, localization of the Ahp2 protein was entirely foci-based whereas Mnd1 protein exhibited an immunostaining pattern with some foci along the axis and a diffuse staining for the rest of the chromosome.
Collapse
Affiliation(s)
- P Stronghill
- Department of Cell and Systems Biology, University of Toronto, Scarborough, Ontario, Canada.
| | | | | | | | | |
Collapse
|
19
|
Shigehisa A, Okuzaki D, Kasama T, Tohda H, Hirata A, Nojima H. Mug28, a meiosis-specific protein of Schizosaccharomyces pombe, regulates spore wall formation. Mol Biol Cell 2010; 21:1955-67. [PMID: 20410137 PMCID: PMC2883940 DOI: 10.1091/mbc.e09-12-0997] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The meiosis-specific mug28+ gene of Schizosaccharomyces pombe encodes a putative RNA-binding protein. mug28Δ cells generated spores with low viability, due to the aberrant FSM formation. Meu14-GFP in mug28Δ cells showed that the FSM formed extra membranes with buds. We conclude that Mug28 is essential for the proper maturation of the FSM and the spore wall. The meiosis-specific mug28+ gene of Schizosaccharomyces pombe encodes a putative RNA-binding protein with three RNA recognition motifs (RRMs). Live observations of meiotic cells that express Mug28 tagged with green fluorescent protein (GFP) revealed that Mug28 is localized in the cytoplasm, and accumulates around the nucleus from metaphase I to anaphase II. Disruption of mug28+ generated spores with low viability, due to the aberrant formation of the forespore membrane (FSM). Visualization of the FSM in living cells expressing GFP-tagged Psy1, an FSM protein, indicated that mug28Δ cells harbored abnormal FSMs that contained buds, and had a delayed disappearance of Meu14, a leading edge protein. Electron microscopic observation revealed that FSM formation was abnormal in mug28Δ cells, showing bifurcated spore walls that were thicker than the nonbifurcated spore walls of the wild type. Analysis of Mug28 mutants revealed that RRM3, in particular phenylalanin-466, is of primary importance for the proper localization of Mug28, spore viability, and FSM formation. Together, we conclude that Mug28 is essential for the proper maturation of the FSM and the spore wall.
Collapse
Affiliation(s)
- Akira Shigehisa
- Department of Molecular Genetics, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Doll E, Molnar M, Cuanoud G, Octobre G, Latypov V, Ludin K, Kohli J. Cohesin and recombination proteins influence the G1-to-S transition in azygotic meiosis in Schizosaccharomyces pombe. Genetics 2008; 180:727-40. [PMID: 18780734 PMCID: PMC2567376 DOI: 10.1534/genetics.108.092619] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 08/05/2008] [Indexed: 11/18/2022] Open
Abstract
To determine whether recombination and/or sister-chromatid cohesion affect the timing of meiotic prophase events, the horsetail stage and S phase were analyzed in Schizosaccharomyces pombe strains carrying mutations in the cohesin genes rec8 or rec11, the linear element gene rec10, the pairing gene meu13, the double-strand-break formation genes rec6, rec7, rec12, rec14, rec15, and mde2, and the recombination gene dmc1. The double-mutant strains rec8 rec11 and rec8 rec12 were also assayed. Most of the single and both double mutants showed advancement of bulk DNA synthesis, start of nuclear movement (horsetail stage), and meiotic divisions by up to 2 hr. Only mde2 and dmc1 deletion strains showed wild-type timing. Contrasting behavior was observed for rec8 deletions (delayed by 1 hr) compared to a rec8 point mutation (advanced by 1 hr). An hypothesis for the role of cohesin and recombination proteins in the control of the G(1)-to-S transition is proposed. Finally, differences between azygotic meiosis and two other types of fission yeast meiosis (zygotic and pat1-114 meiosis) are discussed with respect to possible control steps in meiotic G(1).
Collapse
Affiliation(s)
- Eveline Doll
- Institute of Cell Biology, University of Berne, CH-3012 Berne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
21
|
Ohtaka A, Okuzaki D, Nojima H. Mug27 is a meiosis-specific protein kinase that functions in fission yeast meiosis II and sporulation. J Cell Sci 2008; 121:1547-58. [PMID: 18411246 DOI: 10.1242/jcs.022830] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Several meiosis-specific proteins of Schizosaccharomyces pombe play essential roles in meiotic progression. We report here that a novel meiosis-specific protein kinase, Mug27 (also known as Ppk35), is required for proper spore formation. This kinase is expressed by the mug27(+) gene, which is abruptly transcribed after horsetail movement. This transcription is maintained until the second meiotic division. Green fluorescent protein (GFP)-tagged Mug27 appears at the start of prometaphase I, localizes to the spindle pole body (SPB) and then translocates to the forespore membrane (FSM) at late anaphase II. In the mug27Delta strain, smaller spores are produced compared with those of the mug27(+) strain. Moreover, spore viability was reduced by half or more compared with that of the mug27(+) strain. The protein-kinase activity of Mug27 appears to be important for its function: the putative kinase-dead Mug27 mutant had similar phenotypes to mug27Delta. Our results here indicate that the Mug27 kinase localizes at the SPB and regulates FSM formation and sporulation.
Collapse
Affiliation(s)
- Ayami Ohtaka
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita City, Osaka, Japan
| | | | | |
Collapse
|
22
|
Limbo O, Chahwan C, Yamada Y, de Bruin RAM, Wittenberg C, Russell P. Ctp1 is a cell-cycle-regulated protein that functions with Mre11 complex to control double-strand break repair by homologous recombination. Mol Cell 2008; 28:134-46. [PMID: 17936710 DOI: 10.1016/j.molcel.2007.09.009] [Citation(s) in RCA: 256] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 08/30/2007] [Accepted: 09/21/2007] [Indexed: 11/26/2022]
Abstract
The Mre11-Rad50-Nbs1 (MRN) complex is a primary sensor of DNA double-strand breaks (DSBs). Upon recruitment to DSBs, it plays a critical role in catalyzing 5' --> 3' single-strand resection that is required for repair by homologous recombination (HR). Unknown mechanisms repress HR in G1 phase of the cell cycle during which nonhomologous end-joining (NHEJ) is the favored mode of DSB repair. Here we describe fission yeast Ctp1, so-named because it shares conserved domains with the mammalian tumor suppressor CtIP. Ctp1 is recruited to DSBs where it is essential for repair by HR. Ctp1 is required for efficient formation of RPA-coated single-strand DNA adjacent to DSBs, indicating that it functions with the MRN complex in 5' --> 3' resection. Transcription of ctp1(+) is periodic during the cell cycle, with the onset of its expression coinciding with the start of DNA replication. These data suggest that regulation of Ctp1 underlies cell-cycle control of HR.
Collapse
Affiliation(s)
- Oliver Limbo
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
23
|
Kazama Y, Ishii C, Schroeder AL, Shimada H, Wakabayashi M, Inoue H. The Neurospora crassa UVS-3 epistasis group encodes homologues of the ATR/ATRIP checkpoint control system. DNA Repair (Amst) 2007; 7:213-29. [PMID: 17983847 DOI: 10.1016/j.dnarep.2007.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 09/17/2007] [Accepted: 09/25/2007] [Indexed: 10/22/2022]
Abstract
The mutagen sensitive uvs-3 and mus-9 mutants of Neurospora show mutagen and hydroxyurea sensitivity, mutator effects and duplication instability typical of recombination repair and DNA damage checkpoint defective mutants. To determine the nature of these genes we used cosmids from a genomic library to clone the uvs-3 gene by complementation for MMS sensitivity. Mutation induction by transposon insertion and RIP defined the coding sequence. RFLP analysis confirmed that this sequence maps in the area of uvs-3 at the left telomere of LG IV. Analysis of the cDNA showed that the UVS-3 protein contains an ORF of 969 amino acids with one intron. It is homologous to UvsD of Aspergillus nidulans, a member of the ATRIP family of checkpoint proteins. It retains the N' terminal coiled-coil motif followed by four basic amino acids typical of these proteins and shows the highest homology in this region. The uvsD cDNA partially complements the defects of the uvs-3 mutation. The uvs-3 mutant shows a higher level of micronuclei in conidia and failure to halt germination and nuclear division in the presence of hydroxyurea than wild type, suggesting checkpoint defects. ATRIP proteins bind tightly to ATR PI-3 kinase (phosphatidylinositol 3-kinase) proteins. Therefore, we searched the Neurospora genome sequence for homologues of the Aspergillus nidulans ATR, UvsB. A uvsB homologous sequence was present in the right arm of chromosome I where the mus-9 gene maps. A cosmid containing this genomic DNA complemented the mus-9 mutation. The putative MUS-9 protein is 2484 amino acids long with eight introns. Homology is especially high in the C-terminal 350 amino acids that correspond to the PI-3 kinase domain. In wild type a low level of constitutive mRNA is present for both genes. It is transiently induced upon UV exposure.
Collapse
Affiliation(s)
- Yusuke Kazama
- Laboratory of Genetics, Department of Regulation Biology, Faculty of Sciences, Saitama University, Saitama, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Hirota K, Steiner WW, Shibata T, Ohta K. Multiple modes of chromatin configuration at natural meiotic recombination hot spots in fission yeast. EUKARYOTIC CELL 2007; 6:2072-80. [PMID: 17827346 PMCID: PMC2168419 DOI: 10.1128/ec.00246-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ade6-M26 meiotic recombination hot spot of fission yeast is defined by a cyclic AMP-responsive element (CRE)-like heptanucleotide sequence, 5'-ATGACGT-3', which acts as a binding site for the Atf1/Pcr1 heterodimeric transcription factor required for hot spot activation. We previously demonstrated that the local chromatin around the M26 sequence motif alters to exhibit higher sensitivity to micrococcal nuclease before the initiation of meiotic recombination. In this study, we have examined whether or not such alterations in chromatin occur at natural meiotic DNA double-strand break (DSB) sites in Schizosaccharomyces pombe. At one of the most prominent DSB sites, mbs1 (meiotic break site 1), the chromatin structure has a constitutively accessible configuration at or near the DSB sites. The establishment of the open chromatin state and DSB formation are independent of the CRE-binding transcription factor, Atf1. Analysis of the chromatin configuration at CRE-dependent DSB sites revealed both differences from and similarities to mbs1. For example, the tdh1+ locus, which harbors a CRE consensus sequence near the DSB site, shows a meiotically induced open chromatin configuration, similar to ade6-M26. In contrast, the cds1+ locus is similar to mbs1 in that it exhibits a constitutive open configuration. Importantly, Atf1 is required for the open chromatin formation in both tdh1+ and cds1+. These results suggest that CRE-dependent meiotic chromatin changes are intrinsic processes related to DSB formation in fission yeast meiosis. In addition, the results suggest that the chromatin configuration in natural meiotic recombination hot spots can be classified into at least three distinct categories: (i) an Atf1-CRE-independent constitutively open chromatin configuration, (ii) an Atf1-CRE-dependent meiotically induced open chromatin configuration, and (iii) an Atf1-CRE-dependent constitutively open chromatin configuration.
Collapse
Affiliation(s)
- Kouji Hirota
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguroku, Tokyo 153-8902, Japan.
| | | | | | | |
Collapse
|
25
|
Ohtaka A, Okuzaki D, Saito TT, Nojima H. Mcp4, a meiotic coiled-coil protein, plays a role in F-actin positioning during Schizosaccharomyces pombe meiosis. EUKARYOTIC CELL 2007; 6:971-83. [PMID: 17435009 PMCID: PMC1951525 DOI: 10.1128/ec.00016-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Some meiosis-specific proteins of Schizosaccharomyces pombe harbor coiled-coil motifs and play essential roles in meiotic progression. Here we describe Mcp4, a novel meiosis-specific protein whose expression is abruptly induced at the horsetail phase and which remains expressed until sporulation is finished. Fluorescence microscopic analysis revealed that Mcp4 alters its subcellular localization during meiosis in a manner that partially resembles the movement of F-actin during meiosis. Mcp4 and F-actin never colocalize; rather, they are located in a side-by-side manner. When forespore membrane formation begins at metaphase II, the Mcp4 signals assemble at the lagging face of the dividing nuclei. At this stage, they are sandwiched between F-actin and the nucleus. Mcp4, in turn, appears to sandwich F-actin with Meu14. In mcp4Delta cells at anaphase II, the F-actin, which is normally dumbbell-shaped, adopts an abnormal balloon shape. Spores of mcp4Delta cells were sensitive to NaCl, although their shape and viability were normal. Taken together, we conclude that Mcp4 plays a role in the accurate positioning of F-actin during S. pombe meiosis.
Collapse
Affiliation(s)
- Ayami Ohtaka
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
26
|
Kasama T, Shigehisa A, Hirata A, Saito TT, Tougan T, Okuzaki D, Nojima H. Spo5/Mug12, a putative meiosis-specific RNA-binding protein, is essential for meiotic progression and forms Mei2 dot-like nuclear foci. EUKARYOTIC CELL 2007; 5:1301-13. [PMID: 16896214 PMCID: PMC1539142 DOI: 10.1128/ec.00099-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report here a functional analysis of spo5(+)(mug12(+)) of Schizosaccharomyces pombe, which encodes a putative RNA-binding protein. The disruption of spo5(+) caused abnormal sporulation, generating inviable spores due to failed forespore membrane formation and the absence of a spore wall, as determined by electron microscopy. Spo5 regulates the progression of meiosis I because spo5 mutant cells display normal premeiotic DNA synthesis and the timely initiation of meiosis I but they show a delay in the peaking of cells with two nuclei, abnormal tyrosine 15 dephosphorylation of Cdc2, incomplete degradation of Cdc13, retarded formation and repair of double strand breaks, and a reduced frequency of intragenic recombination. Immunostaining showed that Spo5-green fluorescent protein (GFP) appeared in the cytoplasm at the horsetail phase, peaked around the metaphase I to anaphase I transition, and suddenly disappeared after anaphase II. Images of Spo5-GFP in living cells revealed that Spo5 forms a dot in the nucleus at prophase I that colocalized with the Mei2 dot. Unlike the Mei2 dot, however, the Spo5 dot was observed even in sme2Delta cells. Taken together, we conclude that Spo5 is a novel regulator of meiosis I and that it may function in the vicinity of the Mei2 dot.
Collapse
Affiliation(s)
- Takashi Kasama
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Martín-Castellanos C, Blanco M, Rozalén AE, Pérez-Hidalgo L, García AI, Conde F, Mata J, Ellermeier C, Davis L, San-Segundo P, Smith GR, Moreno S. A large-scale screen in S. pombe identifies seven novel genes required for critical meiotic events. Curr Biol 2006; 15:2056-62. [PMID: 16303567 PMCID: PMC2721798 DOI: 10.1016/j.cub.2005.10.038] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 10/05/2005] [Accepted: 10/11/2005] [Indexed: 11/17/2022]
Abstract
Meiosis is a specialized form of cell division by which sexually reproducing diploid organisms generate haploid gametes. During a long prophase, telomeres cluster into the bouquet configuration to aid chromosome pairing, and DNA replication is followed by high levels of recombination between homologous chromosomes (homologs). This recombination is important for the reductional segregation of homologs at the first meiotic division; without further replication, a second meiotic division yields haploid nuclei. In the fission yeast Schizosaccharomyces pombe, we have deleted 175 meiotically upregulated genes and found seven genes not previously reported to be critical for meiotic events. Three mutants (rec24, rec25, and rec27) had strongly reduced meiosis-specific DNA double-strand breakage and recombination. One mutant (tht2) was deficient in karyogamy, and two (bqt1 and bqt2) were deficient in telomere clustering, explaining their defects in recombination and segregation. The moa1 mutant was delayed in premeiotic S phase progression and nuclear divisions. Further analysis of these mutants will help elucidate the complex machinery governing the special behavior of meiotic chromosomes.
Collapse
Affiliation(s)
- Cristina Martín-Castellanos
- Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Miguel Blanco
- Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Ana E. Rozalén
- Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Livia Pérez-Hidalgo
- Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Ana I. García
- Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Francisco Conde
- Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Juan Mata
- The Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Chad Ellermeier
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, U.S.A
| | - Luther Davis
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, U.S.A
| | - Pedro San-Segundo
- Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Gerald R. Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, U.S.A
| | - Sergio Moreno
- Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
28
|
Ogino K, Hirota K, Matsumoto S, Takeda T, Ohta K, Arai KI, Masai H. Hsk1 kinase is required for induction of meiotic dsDNA breaks without involving checkpoint kinases in fission yeast. Proc Natl Acad Sci U S A 2006; 103:8131-6. [PMID: 16698922 PMCID: PMC1472441 DOI: 10.1073/pnas.0602498103] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2005] [Indexed: 11/18/2022] Open
Abstract
Cdc7 kinase, conserved through evolution, is known to be essential for mitotic DNA replication. The role of Cdc7 in meiotic recombination was suggested in Saccharomyces cerevisiae, but its precise role has not been addressed. Here, we report that Hsk1, the Cdc7-related kinase in Schizosaccharomyces pombe, plays a crucial role during meiosis. In a hsk1 temperature-sensitive strain (hsk1-89), meiosis is arrested with one nucleus state before meiosis I in most of the cells and meiotic recombination frequency is reduced by one order of magnitude, whereas premeiotic DNA replication is delayed but is apparently completed. Strikingly, formation of meiotic dsDNA breaks (DSBs) are largely impaired in the mutant, and Hsk1 kinase activity is essential for these processes. Deletion of all three checkpoint kinases, namely Cds1, Chk1, and Mek1, does not restore DSB formation, meiosis, or Cdc2 activation, which is suppressed in hsk1-89, suggesting that these aberrations are not caused by known checkpoint pathways but that Hsk1 may regulate DSB formation and meiosis. Whereas transcriptional induction of some rec genes and horsetail movement are normal, chromatin remodeling at ade6-M26, a recombination hotspot, which is prerequisite for subsequent DSB formation at this locus, is not observed in hsk1-89. These results indicate unique and essential roles of Hsk1 kinase in the initiation of meiotic recombination and meiosis.
Collapse
Affiliation(s)
| | - Kouji Hirota
- Genetic System Regulation Laboratory, The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-01, Japan; and
| | | | - Tadayuki Takeda
- Computational and Experimental Systems Biology Group, The Institute of Physical and Chemical Research (RIKEN), Genomic Sciences Center, Yokohama, Kanagawa 230-0045, Japan
| | - Kunihiro Ohta
- Genetic System Regulation Laboratory, The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-01, Japan; and
| | - Ken-ichi Arai
- Department of Integrated Life Science, Tokyo Metropolitan Institute of Medical Science, Bunkyo-ku, Tokyo 113-8613, Japan
| | | |
Collapse
|
29
|
Loidl J. S. pombe linear elements: the modest cousins of synaptonemal complexes. Chromosoma 2006; 115:260-71. [PMID: 16532354 DOI: 10.1007/s00412-006-0047-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 12/20/2005] [Accepted: 12/21/2005] [Indexed: 01/04/2023]
Abstract
Synaptonemal complexes (SCs) are not formed during meiotic prophase in the fission yeast, Schizosaccharomyces pombe. Instead, so-called linear elements (LinEs) are formed at the corresponding stages. LinEs are remarkable in that their number does not correspond to the number of chromosomes or bivalents and that the changes in their organisation during prophase do not evidently reflect the pairing of chromosomes. Yet, LinEs are necessary for full meiotic pairing levels and for meiotic recombination. In this review, the composition of LinEs, their evolutionary relationship to SCs and their possible functions are discussed.
Collapse
Affiliation(s)
- Josef Loidl
- Department of Chromosome Biology, University of Vienna, Rennweg 14, 1030, Vienna, Austria.
| |
Collapse
|
30
|
Abstract
Numerous DNA double-strand breaks (DSBs) are introduced into the genome in the course of meiotic recombination. This poses a significant hazard to the genomic integrity of the cell. Studies in a number of organisms have unveiled the existence of surveillance mechanisms or checkpoints that couple the formation and repair of DSBs to cell cycle progression. Through these mechanisms, aberrant meiocytes are delayed in their meiotic progression, thereby facilitating repair of meiotic DSBs, or are culled through programmed cell death, thereby protecting the germline from aneuploidies that could lead to spontaneous abortions, birth defects and cancer predisposition in the offspring. Here we summarize recent progress in our understanding of these checkpoints. This review focuses on the surveillance mechanisms of the budding yeast S. cerevisiae, where the molecular details are best understood, but will frequently compare and contrast these mechanisms with observations in other organisms.
Collapse
Affiliation(s)
- Andreas Hochwagen
- Center for Cancer Research and Howard Hughes Medical Institute, Massachusetts Institute of Technology, E17-233, 40 Ames Street, Cambridge Massachusetts 02139, USA
| | | |
Collapse
|
31
|
Ogino K, Masai H. Rad3-Cds1 mediates coupling of initiation of meiotic recombination with DNA replication. Mei4-dependent transcription as a potential target of meiotic checkpoint. J Biol Chem 2005; 281:1338-44. [PMID: 16286472 DOI: 10.1074/jbc.m505767200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Premeiotic S-phase and meiotic recombination are known to be strictly coupled in Saccharomyces cerevisiae. However, the checkpoint pathway regulating this coupling has been largely unknown. In fission yeast, Rad3 is known to play an essential role in coordination of DNA replication and cell division during both mitotic growth and meiosis. Here we have examined whether the Rad3 pathway also regulates the coupling of DNA synthesis and recombination. Inhibition of premeiotic S-phase with hydroxyurea completely abrogates the progression of meiosis, including the formation of DNA double-strand breaks (DSBs). DSB formation is restored in rad3 mutant even in the presence of hydroxyurea, although repair of DSBs does not take place or is significantly delayed, indicating that the subsequent recombination steps may be still inhibited. Examination of the roles of downstream checkpoint kinases reveals that Cds1, but not Chk1 or Mek1, is required for suppression of DSB in the presence of hydroxyurea. Transcriptional induction of some rec+ genes essential for DSB occurs at a normal timing and to a normal level in the absence of DNA synthesis in both the wild-type and cds1delta cells. On the other hand, the transcriptional induction of the mei4+ transcription factor and cdc25+ phosphatase, which is significantly suppressed by hydroxyurea in the wild-type cells, occurs almost to a normal level in cds1delta cells even in the presence of hydroxyurea. These results show that the Rad3-Cds1 checkpoint pathway coordinates initiation of meiotic recombination and meiotic cell divisions with premeiotic DNA synthesis. Because mei4+ is known to be required for DSB formation and cdc25+ is required for activation of meiotic cell divisions, we propose an intriguing possibility that the Rad3-Cds1 meiotic checkpoint pathway may target transcription of these factors.
Collapse
Affiliation(s)
- Keiko Ogino
- Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613, Japan
| | | |
Collapse
|
32
|
Barchi M, Mahadevaiah S, Di Giacomo M, Baudat F, de Rooij DG, Burgoyne PS, Jasin M, Keeney S. Surveillance of different recombination defects in mouse spermatocytes yields distinct responses despite elimination at an identical developmental stage. Mol Cell Biol 2005; 25:7203-15. [PMID: 16055729 PMCID: PMC1190256 DOI: 10.1128/mcb.25.16.7203-7215.2005] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fundamentally different recombination defects cause apoptosis of mouse spermatocytes at the same stage in development, stage IV of the seminiferous epithelium cycle, equivalent to mid-pachynema in normal males. To understand the cellular response(s) that triggers apoptosis, we examined markers of spermatocyte development in mice with different recombination defects. In Spo11(-)(/)(-) mutants, which lack the double-strand breaks (DSBs) that initiate recombination, spermatocytes express markers of early to mid-pachynema, forming chromatin domains that contain sex body-associated proteins but that rarely encompass the sex chromosomes. Dmc1(-)(/)(-) spermatocytes, impaired in DSB repair, appear to arrest at or about late zygonema. Epistasis analysis reveals that this earlier arrest is a response to unrepaired DSBs, and cytological analysis implicates the BRCT-containing checkpoint protein TOPBP1. Atm(-)(/)(-) spermatocytes show similarities to Dmc1(-)(/)(-) spermatocytes, suggesting that ATM promotes meiotic DSB repair. Msh5(-)(/)(-) mutants display a set of characteristics distinct from these other mutants. Thus, despite equivalent stages of spermatocyte elimination, different recombination-defective mutants manifest distinct responses, providing insight into surveillance mechanisms in male meiosis.
Collapse
Affiliation(s)
- Marco Barchi
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Bimbó A, Jia Y, Poh SL, Karuturi RKM, den Elzen N, Peng X, Zheng L, O'Connell M, Liu ET, Balasubramanian MK, Liu J. Systematic deletion analysis of fission yeast protein kinases. EUKARYOTIC CELL 2005; 4:799-813. [PMID: 15821139 PMCID: PMC1087820 DOI: 10.1128/ec.4.4.799-813.2005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Eukaryotic protein kinases are key molecules mediating signal transduction that play a pivotal role in the regulation of various biological processes, including cell cycle progression, cellular morphogenesis, development, and cellular response to environmental changes. A total of 106 eukaryotic protein kinase catalytic-domain-containing proteins have been found in the entire fission yeast genome, 44% (or 64%) of which possess orthologues (or nearest homologues) in humans, based on sequence similarity within catalytic domains. Systematic deletion analysis of all putative protein kinase-encoding genes have revealed that 17 out of 106 were essential for viability, including three previously uncharacterized putative protein kinases. Although the remaining 89 protein kinase mutants were able to form colonies under optimal growth conditions, 46% of the mutants exhibited hypersensitivity to at least 1 of the 17 different stress factors tested. Phenotypic assessment of these mutants allowed us to arrange kinases into functional groups. Based on the results of this assay, we propose also the existence of four major signaling pathways that are involved in the response to 17 stresses tested. Microarray analysis demonstrated a significant correlation between the expression signature and growth phenotype of kinase mutants tested. Our complete microarray data sets are available at http://giscompute.gis.a-star.edu.sg/~gisljh/kinome.
Collapse
Affiliation(s)
- Andrea Bimbó
- Temasek Life Sciences Laboratory, 1 Research Link, NUS, Singapore 117604
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Saito TT, Tougan T, Okuzaki D, Kasama T, Nojima H. Mcp6, a meiosis-specific coiled-coil protein of Schizosaccharomyces pombe, localizes to the spindle pole body and is required for horsetail movement and recombination. J Cell Sci 2005; 118:447-59. [PMID: 15654021 DOI: 10.1242/jcs.01629] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We report here that a meiosis-specific gene of Schizosaccharomyces pombe denoted mcp6+ (meiotic coiled-coil protein) encodes a protein that is required for the horsetail movement of chromosomes at meiosis I. The mcp6+ gene is specifically transcribed during the horsetail phase. Green fluorescent protein (GFP)-tagged Mcp6 appears at the start of karyogamy, localizes to the spindle-pole body (SPB) and then disappears before chromosome segregation at meiosis I. In the mcp6Delta strain, the horsetail movement was either hampered (zygotic meiosis) or abolished (azygotic meiosis) and the pairing of homologous chromosomes was impaired. Accordingly, the allelic recombination rates of the mcp6Delta strain were only 10-40% of the wild-type rates. By contrast, the ectopic recombination rate of the mcp6Delta strain was twice the wild-type rate. This is probably caused by abnormal homologous pairing in mcp6Delta cells because of aberrant horsetail movement. Fluorescent microscopy indicates that SPB components such as Sad1, Kms1 and Spo15 localize normally in mcp6Delta cells. Because Taz1 and Swi6 also localized with Sad1 in mcp6Delta cells, Mcp6 is not required for telomere clustering. In a taz1Delta strain, which does not display telomere clustering, and the dhc1-d3 mutant, which lacks horsetail movement, Mcp6 localized with Sad1 normally. However, we observed abnormal astral microtubule organization in mcp6Delta cells. From these results, we conclude that Mcp6 is necessary for neither SPB organization nor telomere clustering, but is required for proper astral microtubule positioning to maintain horsetail movement.
Collapse
Affiliation(s)
- Takamune T Saito
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
35
|
Young JA, Hyppa RW, Smith GR. Conserved and nonconserved proteins for meiotic DNA breakage and repair in yeasts. Genetics 2005; 167:593-605. [PMID: 15238514 PMCID: PMC1470912 DOI: 10.1534/genetics.103.023762] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During meiosis DNA double-strand breaks initiate recombination in the distantly related budding and fission yeasts and perhaps in most eukaryotes. Repair of broken meiotic DNA is essential for formation of viable gametes. We report here distinct but overlapping sets of proteins in these yeasts required for formation and repair of double-strand breaks. Meiotic DNA breakage in Schizosaccharomyces pombe did not require Rad50 or Rad32, although the homologs Rad50 and Mre11 are required in Saccharomyces cerevisiae; these proteins are required for meiotic DNA break repair in both yeasts. DNA breakage required the S. pombe midmeiosis transcription factor Mei4, but the structurally unrelated midmeiosis transcription factor Ndt80 is not required for breakage in S. cerevisiae. Rhp51, Swi5, and Rad22 + Rti1 were required for full levels of DNA repair in S. pombe, as are the related S. cerevisiae proteins Rad51, Sae3, and Rad52. Dmc1 was not required for repair in S. pombe, but its homolog Dmc1 is required in the well-studied strain SK1 of S. cerevisiae. Additional proteins required in one yeast have no obvious homologs in the other yeast. The occurrence of conserved and nonconserved proteins indicates potential diversity in the mechanism of meiotic recombination and divergence of the machinery during the evolution of eukaryotes.
Collapse
Affiliation(s)
- Jennifer A Young
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | |
Collapse
|
36
|
Lorenz A, Wells JL, Pryce DW, Novatchkova M, Eisenhaber F, McFarlane RJ, Loidl J. S. pombe meiotic linear elements contain proteins related to synaptonemal complex components. J Cell Sci 2005; 117:3343-51. [PMID: 15226405 DOI: 10.1242/jcs.01203] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe does not form synaptonemal complexes (SCs) in meiotic prophase nuclei. Instead, thin threads, the so-called linear elements (LEs), are observed at the corresponding stages by electron microscopy. Here, we demonstrate that S. pombe Rec10 is a protein related to the Saccharomyces cerevisiae SC protein Red1 and that it localizes to LEs. Moreover, a homologue to S. cerevisiae Hop1 does exist in S. pombe and we show by in situ immunostaining that it, and the kinase Mek1 (a homologue of which is also known to be associated with SCs), localizes to LEs. These observations indicate the evolutionary relationship of LEs with the lateral elements of SCs and suggest that these structures might exert similar functions in S. cerevisiae and S. pombe.
Collapse
Affiliation(s)
- Alexander Lorenz
- Institute of Botany, University of Vienna, Rennweg 14, A-1030, Austria
| | | | | | | | | | | | | |
Collapse
|
37
|
Pankratz DG, Forsburg SL. Meiotic S-phase damage activates recombination without checkpoint arrest. Mol Biol Cell 2005; 16:1651-60. [PMID: 15689488 PMCID: PMC1073649 DOI: 10.1091/mbc.e04-10-0934] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Checkpoints operate during meiosis to ensure the completion of DNA synthesis and programmed recombination before the initiation of meiotic divisions. Studies in the fission yeast Schizosaccharomyces pombe suggest that the meiotic response to DNA damage due to a failed replication checkpoint response differs substantially from the vegetative response, and may be influenced by the presence of homologous chromosomes. The checkpoint responses to DNA damage during fission yeast meiosis are not well characterized. Here we report that DNA damage induced during meiotic S-phase does not activate checkpoint arrest. We also find that in wild-type cells, markers for DNA breaks can persist at least to the first meiotic division. We also observe increased spontaneous S-phase damage in checkpoint mutants, which is repaired by recombination without activating checkpoint arrest. Our results suggest that fission yeast meiosis is exceptionally tolerant of DNA damage, and that some forms of spontaneous S-phase damage can be repaired by recombination without activating checkpoint arrest.
Collapse
Affiliation(s)
- Daniel G Pankratz
- Molecular & Cell Biology Laboratory, The Salk Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
38
|
Saito TT, Tougan T, Kasama T, Okuzaki D, Nojima H. Mcp7, a meiosis-specific coiled-coil protein of fission yeast, associates with Meu13 and is required for meiotic recombination. Nucleic Acids Res 2004; 32:3325-39. [PMID: 15210864 PMCID: PMC443530 DOI: 10.1093/nar/gkh654] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We previously showed that Meu13 of Schizosaccharomyces pombe functions in homologous pairing and recombination at meiosis I. Here we show that a meiosis-specific gene encodes a coiled-coil protein that complexes with Meu13 during meiosis in vivo. This gene denoted as mcp7+ (after meiotic coiled-coil protein) is an ortholog of Mnd1 of Saccharomyces cerevisiae. Mcp7 proteins are detected on meiotic chromatin. The phenotypes of mcp7Delta cells are similar to those of meu13Delta cells as they show reduced recombination rates and spore viability and produce spores with abnormal morphology. However, a delay in initiation of meiosis I chromosome segregation of mcp7Delta cells is not so conspicuous as meu13Delta cells, and no meiotic delay is observed in mcp7Deltameu13Delta cells. Mcp7 and Meu13 proteins depend on each other differently; Mcp7 becomes more stable in meu13Delta cells, whereas Meu13 becomes less stable in mcp7Delta cells. Genetic analysis shows that Mcp7 acts in the downstream of Dmc1, homologs of Escherichia coli RecA protein, for both recombination and subsequent sporulation. Taken together, we conclude that Mcp7 associates with Meu13 and together they play a key role in meiotic recombination.
Collapse
Affiliation(s)
- Takamune T Saito
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
39
|
Petukhova GV, Romanienko PJ, Camerini-Otero RD. The Hop2 protein has a direct role in promoting interhomolog interactions during mouse meiosis. Dev Cell 2004; 5:927-36. [PMID: 14667414 DOI: 10.1016/s1534-5807(03)00369-1] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The S. cerevisiae Hop2 protein and its fission yeast homolog Meu13 are required for proper homologous chromosome pairing and recombination during meiosis. The mechanism of this requirement is, however, not understood. The previous studies in Saccharomyces suggested that Hop2 is a guardian of meiotic chromosome synapsis with the ability to prevent or resolve deleterious associations between nonhomologous chromosomes. We have generated a Hop2 knockout mouse that shows profound meiotic defects with a distinct and novel phenotype. Hop2(-/-) spermatocytes arrest at the stage of pachytene-like chromosome condensation. Axial elements are fully developed, but synapsis of any kind is very limited. Immunofluorescence analysis of meiotic chromosome spreads indicates that while meiotic double-stranded breaks are formed and processed in the Hop2 knockout, they fail to be repaired. In aggregate, the Hop2 phenotype is consistent with a direct role for the mouse Hop2 protein in promoting homologous chromosome synapsis.
Collapse
Affiliation(s)
- Galina V Petukhova
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
40
|
Perera D, Perez-Hidalgo L, Moens PB, Reini K, Lakin N, Syväoja JE, San-Segundo PA, Freire R. TopBP1 and ATR colocalization at meiotic chromosomes: role of TopBP1/Cut5 in the meiotic recombination checkpoint. Mol Biol Cell 2004; 15:1568-79. [PMID: 14718568 PMCID: PMC379256 DOI: 10.1091/mbc.e03-06-0444] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mammalian TopBP1 is a BRCT domain-containing protein whose function in mitotic cells is linked to replication and DNA damage checkpoint. Here, we study its possible role during meiosis in mice. TopBP1 foci are abundant during early prophase I and localize mainly to histone gamma-H2AX-positive domains, where DNA double-strand breaks (required to initiate recombination) occur. Strikingly, TopBP1 showed a pattern almost identical to that of ATR, a PI3K-like kinase involved in mitotic DNA damage checkpoint. In the synapsis-defective Fkbp6(-/-) mouse, TopBP1 heavily stains unsynapsed regions of chromosomes. We also tested whether Schizosaccharomyces pombe Cut5 (the TopBP1 homologue) plays a role in the meiotic recombination checkpoint, like spRad3, the ATR homologue. Indeed, we found that a cut5 mutation suppresses the checkpoint-dependent meiotic delay of a meiotic recombination defective mutant, indicating a direct role of the Cut5 protein in the meiotic checkpoint. Our findings suggest that ATR and TopBP1 monitor meiotic recombination and are required for activation of the meiotic recombination checkpoint.
Collapse
Affiliation(s)
- David Perera
- Unidad de Investigación, Hospital Universitario de Canarias, Ofra s/n, La Cuesta, 38320 Tenerife, Spain
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Catlett MG, Forsburg SL. Schizosaccharomyces pombe Rdh54 (TID1) acts with Rhp54 (RAD54) to repair meiotic double-strand breaks. Mol Biol Cell 2003; 14:4707-20. [PMID: 14551247 PMCID: PMC266785 DOI: 10.1091/mbc.e03-05-0288] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2003] [Revised: 07/24/2003] [Accepted: 07/25/2003] [Indexed: 11/11/2022] Open
Abstract
We report the characterization of rdh54+, the second fission yeast Schizosaccharomyces pombe Rad54 homolog. rdh54+ shares sequence and functional homology to budding yeast RDH54/TID1. Rdh54p is present during meiosis with appropriate timing for a meiotic recombination factor. It interacts with Rhp51 and the meiotic Rhp51 homolog Dmc1 in yeast two-hybrid assays. Deletion of rdh54+ has no effect on DNA damage repair during the haploid vegetative cell cycle. In meiosis, however, rdh54Delta shows decreased spore viability and homologous recombination with a concomitant increase in sister chromatid exchange. The rdh54Delta single mutant repairs meiotic breaks with similar timing to wild type, suggesting redundancy of meiotic recombination factors. Consistent with this, the rdh54Delta rhp54Delta double mutant fails to repair meiotic double strand breaks. Live cell analysis shows that rdh54Delta rhp54Delta asci do not arrest, but undergo both meiotic divisions with near normal timing, suggesting that failure to repair double strand breaks in S. pombe meiosis does not result in checkpoint arrest.
Collapse
Affiliation(s)
- Michael G Catlett
- Molecular & Cell Biology Laboratory, The Salk Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
42
|
Grishchuk AL, Kohli J. Five RecA-like Proteins of Schizosaccharomyces pombe Are Involved in Meiotic Recombination. Genetics 2003; 165:1031-43. [PMID: 14668362 PMCID: PMC1462848 DOI: 10.1093/genetics/165.3.1031] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
The genome of Schizosaccharomyces pombe contains five genes that code for proteins with sequence similarity to the Escherichia coli recombination protein RecA: rad51+, rhp55+, rhp57+, rlp1+, and dmc1+. We analyzed the effect of deletion of each of these genes on meiotic recombination and viability of spores. Meiotic recombination levels were different from wild type in all recA-related mutants in several genetic intervals, suggesting that all five RecA homologs of S. pombe are required for normal levels of meiotic recombination. Spore viability was reduced in rad51, rhp55, and rhp57 mutants, but not in rlp1 and dmc1. It is argued that reduction of crossover is not the only cause for the observed reduction of spore viability. Analysis of double and triple mutants revealed that Rad51 and Dmc1 play major and partially overlapping roles in meiotic recombination, while Rhp55, Rhp57, and Rlp1 play accessory roles. Remarkably, deletion of Rlp1 decreases the frequency of intergenic recombination (crossovers), but increases intragenic recombination (gene conversion). On the basis of our results, we present a model for the involvement of five RecA-like proteins of S. pombe in meiotic recombination and discuss their respective roles.
Collapse
Affiliation(s)
- A L Grishchuk
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | | |
Collapse
|
43
|
Shinohara M, Sakai K, Ogawa T, Shinohara A. The mitotic DNA damage checkpoint proteins Rad17 and Rad24 are required for repair of double-strand breaks during meiosis in yeast. Genetics 2003; 164:855-65. [PMID: 12871899 PMCID: PMC1462628 DOI: 10.1093/genetics/164.3.855] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We show here that deletion of the DNA damage checkpoint genes RAD17 and RAD24 in Saccharomyces cerevisiae delays repair of meiotic double-strand breaks (DSBs) and results in an altered ratio of crossover-to-noncrossover products. These mutations also decrease the colocalization of immunostaining foci of the RecA homologs Rad51 and Dmc1 and cause a delay in the disappearance of Rad51 foci, but not of Dmc1. These observations imply that RAD17 and RAD24 promote efficient repair of meiotic DSBs by facilitating proper assembly of the meiotic recombination complex containing Rad51. Consistent with this proposal, extra copies of RAD51 and RAD54 substantially suppress not only the spore inviability of the rad24 mutant, but also the gamma-ray sensitivity of the mutant. Unexpectedly, the entry into meiosis I (metaphase I) is delayed in the checkpoint single mutants compared to wild type. The control of the cell cycle in response to meiotic DSBs is also discussed.
Collapse
Affiliation(s)
- Miki Shinohara
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Japan
| | | | | | | |
Collapse
|
44
|
Okuzaki D, Satake W, Hirata A, Nojima H. Fission yeast meu14+ is required for proper nuclear division and accurate forespore membrane formation during meiosis II. J Cell Sci 2003; 116:2721-35. [PMID: 12759375 DOI: 10.1242/jcs.00496] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using a meiosis-specific subtracted cDNA library of Schizosaccharomyces pombe, we identified meu14+ as a gene whose expression is upregulated during meiosis. Transcription of meu14+ is induced abruptly after the cell enters meiosis. Its transcription is dependent on the meiosis-specific transcription factor Mei4. In meu14Delta cells, the segregation and modification of the SPBs (spindle pole bodies) and microtubule elongation during meiosis II were aberrant. Meiotic meu14Delta cells consequently produced a high frequency of abnormal tetranucleate cells harboring aberrant forespore membranes and failed to produce asci. In wild-type cells harboring the integrated meu14+-gfp fusion gene, Meu14-GFP first appeared inside the nuclear region at prophase II, after which it accumulated beside the two SPBs at metaphase II. Thereafter, it formed two ring-shaped structures that surrounded the nucleus at early anaphase II. At post-anaphase II, it disappeared. Meu14-GFP appears to localize at the border of the forespore membrane that later develops into spore walls at the end of sporulation. This was confirmed by coexpressing Spo3-HA, a component of the forespore membrane, with Meu14-GFP. Taken together, we conclude that meu14+ is crucial in meiosis in that it participates in both the nuclear division during meiosis II and the accurate formation of the forespore membrane.
Collapse
Affiliation(s)
- Daisuke Okuzaki
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
45
|
Molnar M, Doll E, Yamamoto A, Hiraoka Y, Kohli J. Linear element formation and their role in meiotic sister chromatid cohesion and chromosome pairing. J Cell Sci 2003; 116:1719-31. [PMID: 12665553 DOI: 10.1242/jcs.00387] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fission yeast does not form synaptonemal complexes in meiotic prophase. Instead, linear elements appear that resemble the axial cores of other eukaryotes. They have been proposed to be minimal structures necessary for proper meiotic chromosome functions. We examined linear element formation in meiotic recombination deficient mutants. The rec12, rec14 and meu13 mutants showed altered linear element formation. Examination of rec12 and other mutants deficient in the initiation of meiotic recombination revealed that occurrence of meiosis-specific DNA breaks is not a precondition for the formation of linear elements. The rec11 and rec8 mutants exhibited strongly impaired linear elements with morphologies specific for these meiotic cohesin mutants. The rec10 and rec16/rep1 mutants lack linear elements completely. The region specificity of loss of recombination in the rec8, rec10 and rec11 mutants can be explained by their defects in linear element formation. Investigation of the rec10 mutant showed that linear elements are basically dispensable for sister chromatid cohesion, but contribute to full level pairing of homologous chromosomes.
Collapse
Affiliation(s)
- Monika Molnar
- CREST Research Project, Kansai Advanced Research Center, Communications Research Laboratory, Kobe 651-2492, Japan
| | | | | | | | | |
Collapse
|
46
|
Pérez-Hidalgo L, Moreno S, San-Segundo PA. Regulation of meiotic progression by the meiosis-specific checkpoint kinase Mek1 in fission yeast. J Cell Sci 2003; 116:259-71. [PMID: 12482912 DOI: 10.1242/jcs.00232] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the eukaryotic cell cycle, accurate transmission of genetic information to progeny is ensured by the operation of cell cycle checkpoints. Checkpoints are regulatory mechanisms that block cell cycle progression when key cellular processes are defective or chromosomes are damaged. During meiosis, genetic recombination between homologous chromosomes is essential for proper chromosome segregation at the first meiotic division. In response to incomplete recombination, the pachytene checkpoint (also known as the meiotic recombination checkpoint) arrests or delays meiotic cell cycle progression, thus preventing the formation of defective gametes. Here, we describe a role for a meiosis-specific kinase, Mek1, in the meiotic recombination checkpoint in fission yeast. Mek1 belongs to the Cds1/Rad53/Chk2 family of kinases containing forkhead-associated domains, which participate in a number of checkpoint responses from yeast to mammals. We show that defects in meiotic recombination generated by the lack of the fission yeast Meu13 protein lead to a delay in entry into meiosis I owing to inhibitory phosphorylation of the cyclin-dependent kinase Cdc2 on tyrosine 15. Mutation of mek1(+) alleviates this checkpoint-induced delay, resulting in the formation of largely inviable meiotic products. Experiments involving ectopic overexpression of the mek1(+) gene indicate that Mek1 inhibits the Cdc25 phosphatase, which is responsible for dephosphorylation of Cdc2 on tyrosine 15. Furthermore, the meiotic recombination checkpoint is impaired in a cdc25 phosphorylation site mutant. Thus, we provide the first evidence of a connection between an effector kinase of the meiotic recombination checkpoint and a crucial cell cycle regulator and present a model for the operation of this meiotic checkpoint in fission yeast.
Collapse
Affiliation(s)
- Livia Pérez-Hidalgo
- Centro de Investigación del Cáncer, CSIC/University of Salamanca, Campus Unamuno, 37007 Salamanca, Spain
| | | | | |
Collapse
|
47
|
Current awareness on yeast. Yeast 2002; 19:1277-84. [PMID: 12400546 DOI: 10.1002/yea.829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
48
|
Abdu U, Brodsky M, Schüpbach T. Activation of a meiotic checkpoint during Drosophila oogenesis regulates the translation of Gurken through Chk2/Mnk. Curr Biol 2002; 12:1645-51. [PMID: 12361566 DOI: 10.1016/s0960-9822(02)01165-x] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND During Drosophila oogenesis, unrepaired double-strand DNA breaks activate a mei-41-dependent meiotic checkpoint, which couples the progression through meiosis to specific developmental processes. This checkpoint affects the accumulation of Gurken protein, a transforming growth factor alpha-like signaling molecule, as well as the morphology of the oocyte nucleus. However, the components of this checkpoint in flies have not been completely elucidated. RESULTS We show that a mutation in the Drosophila Chk2 homolog (DmChk2/Mnk) suppresses the defects in the translation of gurken mRNA and also the defects in oocyte nuclear morphology. We also found that DmChk2 is phosphorylated in a mei-41-dependent pathway. Analysis of the meiotic cell cycle progression shows that the Drosophila Chk2 homolog is not required during early meiotic prophase, as has been observed for Chk2 in C. elegans. We demonstrate that the activation of the meiotic checkpoint affects Dwee1 localization and is associated with DmChk2-dependent posttranslational modification of Dwee1. We suggest that Dwee1 has a role in the meiotic checkpoint that regulates the meiotic cell cycle, but not the translation of gurken mRNA. In addition, we found that p53 and mus304, the Drosophila ATR-IP homolog, are not required for the patterning defects caused by the meiotic DNA repair mutations. CONCLUSIONS DmChk2 is a transducer of the meiotic checkpoint in flies that is activated by unrepaired double-strand DNA breaks. Activation of DmChk2 in this specific checkpoint affects a cell cycle regulator as well as mRNA translation.
Collapse
Affiliation(s)
- Uri Abdu
- HHMI, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|