1
|
Huang T, Chamberlain A, Zhu J, Harris ME. A minimal RNA substrate with dual fluorescent probes enables rapid kinetics and provides insight into bacterial RNase P active site interactions. RSC Chem Biol 2024; 5:652-668. [PMID: 38966670 PMCID: PMC11221534 DOI: 10.1039/d4cb00049h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/17/2024] [Indexed: 07/06/2024] Open
Abstract
Bacterial ribonuclease P (RNase P) is a tRNA processing endonuclease that occurs primarily as a ribonucleoprotein with a catalytic RNA subunit (P RNA). As one of the first ribozymes discovered, P RNA is a well-studied model system for understanding RNA catalysis and substrate recognition. Extensive structural and biochemical studies have revealed the structure of RNase P bound to precursor tRNA (ptRNA) and product tRNA. These studies also helped to define active site residues and propose the molecular interactions that are involved in substrate binding and catalysis. However, a detailed quantitative model of the reaction cycle that includes the structures of intermediates and the process of positioning active site metal ions for catalysis is lacking. To further this goal, we used a chemically modified minimal RNA duplex substrate (MD1) to establish a kinetic framework for measuring the functional effects of P RNA active site mutations. Substitution of U69, a critical nucleotide involved in active site Mg2+ binding, was found to reduce catalysis >500-fold as expected, but had no measurable effect on ptRNA binding kinetics. In contrast, the same U69 mutations had little effect on catalysis in Ca2+ compared to reactions containing native Mg2+ ions. CryoEM structures and SHAPE mapping suggested increased flexibility of U69 and adjacent nucleotides in Ca2+ compared to Mg2+. These results support a model in which slow catalysis in Ca2+ is due to inability to engage U69. These studies establish a set of experimental tools to analyze RNase P kinetics and mechanism and can be expanded to gain new insights into the assembly of the active RNase P-ptRNA complex.
Collapse
Affiliation(s)
- Tong Huang
- Department of Chemistry, University of Florida Gainesville FL 32608 USA
| | | | - Jiaqiang Zhu
- Department of Chemistry, University of Florida Gainesville FL 32608 USA
| | - Michael E Harris
- Department of Chemistry, University of Florida Gainesville FL 32608 USA
| |
Collapse
|
2
|
Kirsebom LA, Liu F, McClain WH. The discovery of a catalytic RNA within RNase P and its legacy. J Biol Chem 2024; 300:107318. [PMID: 38677513 PMCID: PMC11143913 DOI: 10.1016/j.jbc.2024.107318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024] Open
Abstract
Sidney Altman's discovery of the processing of one RNA by another RNA that acts like an enzyme was revolutionary in biology and the basis for his sharing the 1989 Nobel Prize in Chemistry with Thomas Cech. These breakthrough findings support the key role of RNA in molecular evolution, where replicating RNAs (and similar chemical derivatives) either with or without peptides functioned in protocells during the early stages of life on Earth, an era referred to as the RNA world. Here, we cover the historical background highlighting the work of Altman and his colleagues and the subsequent efforts of other researchers to understand the biological function of RNase P and its catalytic RNA subunit and to employ it as a tool to downregulate gene expression. We primarily discuss bacterial RNase P-related studies but acknowledge that many groups have significantly contributed to our understanding of archaeal and eukaryotic RNase P, as reviewed in this special issue and elsewhere.
Collapse
Affiliation(s)
- Leif A Kirsebom
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| | - Fenyong Liu
- School of Public Health, University of California, Berkeley, California, USA.
| | - William H McClain
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
3
|
Structural and mechanistic basis for recognition of alternative tRNA precursor substrates by bacterial ribonuclease P. Nat Commun 2022; 13:5120. [PMID: 36045135 PMCID: PMC9433436 DOI: 10.1038/s41467-022-32843-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
Binding of precursor tRNAs (ptRNAs) by bacterial ribonuclease P (RNase P) involves an encounter complex (ES) that isomerizes to a catalytic conformation (ES*). However, the structures of intermediates and the conformational changes that occur during binding are poorly understood. Here, we show that pairing between the 5′ leader and 3′RCCA extending the acceptor stem of ptRNA inhibits ES* formation. Cryo-electron microscopy single particle analysis reveals a dynamic enzyme that becomes ordered upon formation of ES* in which extended acceptor stem pairing is unwound. Comparisons of structures with alternative ptRNAs reveals that once unwinding is completed RNase P primarily uses stacking interactions and shape complementarity to accommodate alternative sequences at its cleavage site. Our study reveals active site interactions and conformational changes that drive molecular recognition by RNase P and lays the foundation for understanding how binding interactions are linked to helix unwinding and catalysis. Ribonuclease P efficiently processes all tRNA precursors despite sequence variation at the site of cleavage. Here, authors use high-throughput enzymology and cryoEM to reveal conformational changes that drive recognition by bacterial RNase P.
Collapse
|
4
|
Lan P, Tan M, Zhang Y, Niu S, Chen J, Shi S, Qiu S, Wang X, Peng X, Cai G, Cheng H, Wu J, Li G, Lei M. Structural insight into precursor tRNA processing by yeast ribonuclease P. Science 2018; 362:science.aat6678. [PMID: 30262633 DOI: 10.1126/science.aat6678] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 09/18/2018] [Indexed: 11/02/2022]
Abstract
Ribonuclease P (RNase P) is a universal ribozyme responsible for processing the 5'-leader of pre-transfer RNA (pre-tRNA). Here, we report the 3.5-angstrom cryo-electron microscopy structures of Saccharomyces cerevisiae RNase P alone and in complex with pre-tRNAPhe The protein components form a hook-shaped architecture that wraps around the RNA and stabilizes RNase P into a "measuring device" with two fixed anchors that recognize the L-shaped pre-tRNA. A universally conserved uridine nucleobase and phosphate backbone in the catalytic center together with the scissile phosphate and the O3' leaving group of pre-tRNA jointly coordinate two catalytic magnesium ions. Binding of pre-tRNA induces a conformational change in the catalytic center that is required for catalysis. Moreover, simulation analysis suggests a two-metal-ion SN2 reaction pathway of pre-tRNA cleavage. These results not only reveal the architecture of yeast RNase P but also provide a molecular basis of how the 5'-leader of pre-tRNA is processed by eukaryotic RNase P.
Collapse
Affiliation(s)
- Pengfei Lan
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Ming Tan
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), Shanghai 200031, China.,University of Chinese Academy of Sciences, CAS, Shanghai 200031, China
| | - Yuebin Zhang
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China
| | - Shuangshuang Niu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), Shanghai 200031, China.,University of Chinese Academy of Sciences, CAS, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Juan Chen
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Shaohua Shi
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Shuwan Qiu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Xuejuan Wang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Xiangda Peng
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China
| | - Gang Cai
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), Shanghai 200031, China
| | - Jian Wu
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China.
| | - Ming Lei
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China. .,Key laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,National Facility for Protein Science in Shanghai, Zhangjiang Laboratory, Shanghai, 201210, China.,Shanghai Science Research Center, CAS, Shanghai, 201204, China
| |
Collapse
|
5
|
Liu X, Chen Y, Fierke CA. Inner-Sphere Coordination of Divalent Metal Ion with Nucleobase in Catalytic RNA. J Am Chem Soc 2017; 139:17457-17463. [PMID: 29116782 PMCID: PMC6020041 DOI: 10.1021/jacs.7b08755] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Identification of the function of metal ions and the RNA moieties, particularly nucleobases, that bind metal ions is important in RNA catalysis. Here we combine single-atom and abasic substitutions to probe functions of conserved nucleobases in ribonuclease P (RNase P). Structural and biophysical studies of bacterial RNase P propose direct coordination of metal ions by the nucleobases of conserved uridine and guanosine in helix P4 of the RNA subunit (P RNA). To biochemically probe the function of metal ion interactions, we substituted the universally conserved bulged uridine (U51) in the P4 helix of circularly permuted Bacillus subtilis P RNA with 4-thiouridine, 4-deoxyuridine, and abasic modifications and G378/379 with 2-aminopurine, N7-deazaguanosine, and 6-thioguanosine. The functional group modifications of U51 decrease RNase P-catalyzed phosphodiester bond cleavage 16- to 23-fold, as measured by the single-turnover cleavage rate constant. The activity of the 4-thiouridine RNase P is partially rescued by addition of Cd(II) or Mn(II) ions. This is the first time a metal-rescue experiment provides evidence for inner-sphere divalent metal ion coordination with a nucleobase. Modifications of G379 modestly decrease the cleavage activity of RNase P, suggesting outer-sphere coordination of O6 on G379 to a metal ion. These data provide biochemical evidence for catalytically important interactions of the P4 helix of P RNA with metal ions, demonstrating that the bulged uridine coordinates at least one catalytic metal ion through an inner-sphere interaction. The combination of single-atom and abasic nucleotide substitutions provides a powerful strategy to probe functions of conserved nucleobases in large RNAs.
Collapse
Affiliation(s)
- Xin Liu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Yu Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Carol A. Fierke
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
6
|
Kimura M. Structural basis for activation of an archaeal ribonuclease P RNA by protein cofactors. Biosci Biotechnol Biochem 2017; 81:1670-1680. [PMID: 28715256 DOI: 10.1080/09168451.2017.1353404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribonuclease P (RNase P) is an endoribonuclease that catalyzes the processing of the 5'-leader sequence of precursor tRNA (pre-tRNA) in all phylogenetic domains. We have found that RNase P in the hyperthermophilic archaeon Pyrococcus horikoshii OT3 consists of RNase P RNA (PhopRNA) and five protein cofactors designated PhoPop5, PhoRpp21, PhoRpp29, PhoRpp30, and PhoRpp38. Biochemical characterizations over the past 10 years have revealed that PhoPop5 and PhoRpp30 fold into a heterotetramer and cooperate to activate a catalytic domain (C-domain) in PhopRNA, whereas PhoRpp21 and PhoRpp29 form a heterodimer and function together to activate a specificity domain (S-domain) in PhopRNA. PhoRpp38 plays a role in elevation of the optimum temperature of RNase P activity, binding to kink-turn (K-turn) motifs in two stem-loops in PhopRNA. This review describes the structural and functional information on P. horikoshii RNase P, focusing on the structural basis for the PhopRNA activation by the five RNase P proteins.
Collapse
Affiliation(s)
- Makoto Kimura
- a Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School , Kyushu University , Fukuoka , Japan
| |
Collapse
|
7
|
Mechanistic Insights Into Catalytic RNA-Protein Complexes Involved in Translation of the Genetic Code. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017. [PMID: 28683922 DOI: 10.1016/bs.apcsb.2017.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The contemporary world is an "RNA-protein world" rather than a "protein world" and tracing its evolutionary origins is of great interest and importance. The different RNAs that function in close collaboration with proteins are involved in several key physiological processes, including catalysis. Ribosome-the complex megadalton cellular machinery that translates genetic information encoded in nucleotide sequence to amino acid sequence-epitomizes such an association between RNA and protein. RNAs that can catalyze biochemical reactions are known as ribozymes. They usually employ general acid-base catalytic mechanism, often involving the 2'-OH of RNA that activates and/or stabilizes a nucleophile during the reaction pathway. The protein component of such RNA-protein complexes (RNPCs) mostly serves as a scaffold which provides an environment conducive for the RNA to function, or as a mediator for other interacting partners. In this review, we describe those RNPCs that are involved at different stages of protein biosynthesis and in which RNA performs the catalytic function; the focus of the account is on highlighting mechanistic aspects of these complexes. We also provide a perspective on such associations in the context of proofreading during translation of the genetic code. The latter aspect is not much appreciated and recent works suggest that this is an avenue worth exploring, since an understanding of the subject can provide useful insights into how RNAs collaborate with proteins to ensure fidelity during these essential cellular processes. It may also aid in comprehending evolutionary aspects of such associations.
Collapse
|
8
|
Klemm BP, Wu N, Chen Y, Liu X, Kaitany KJ, Howard MJ, Fierke CA. The Diversity of Ribonuclease P: Protein and RNA Catalysts with Analogous Biological Functions. Biomolecules 2016; 6:biom6020027. [PMID: 27187488 PMCID: PMC4919922 DOI: 10.3390/biom6020027] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 12/30/2022] Open
Abstract
Ribonuclease P (RNase P) is an essential endonuclease responsible for catalyzing 5' end maturation in precursor transfer RNAs. Since its discovery in the 1970s, RNase P enzymes have been identified and studied throughout the three domains of life. Interestingly, RNase P is either RNA-based, with a catalytic RNA subunit, or a protein-only (PRORP) enzyme with differential evolutionary distribution. The available structural data, including the active site data, provides insight into catalysis and substrate recognition. The hydrolytic and kinetic mechanisms of the two forms of RNase P enzymes are similar, yet features unique to the RNA-based and PRORP enzymes are consistent with different evolutionary origins. The various RNase P enzymes, in addition to their primary role in tRNA 5' maturation, catalyze cleavage of a variety of alternative substrates, indicating a diversification of RNase P function in vivo. The review concludes with a discussion of recent advances and interesting research directions in the field.
Collapse
Affiliation(s)
- Bradley P Klemm
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Nancy Wu
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yu Chen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| | - Xin Liu
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| | - Kipchumba J Kaitany
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Michael J Howard
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Carol A Fierke
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| |
Collapse
|
9
|
Abstract
This review provides a description of the known Escherichia coli ribonucleases (RNases), focusing on their structures, catalytic properties, genes, physiological roles, and possible regulation. Currently, eight E. coli exoribonucleases are known. These are RNases II, R, D, T, PH, BN, polynucleotide phosphorylase (PNPase), and oligoribonuclease (ORNase). Based on sequence analysis and catalytic properties, the eight exoribonucleases have been grouped into four families. These are the RNR family, including RNase II and RNase R; the DEDD family, including RNase D, RNase T, and ORNase; the RBN family, consisting of RNase BN; and the PDX family, including PNPase and RNase PH. Seven well-characterized endoribonucleases are known in E. coli. These are RNases I, III, P, E, G, HI, and HII. Homologues to most of these enzymes are also present in Salmonella. Most of the endoribonucleases cleave RNA in the presence of divalent cations, producing fragments with 3'-hydroxyl and 5'-phosphate termini. RNase H selectively hydrolyzes the RNA strand of RNA?DNA hybrids. Members of the RNase H family are widely distributed among prokaryotic and eukaryotic organisms in three distinct lineages, RNases HI, HII, and HIII. It is likely that E. coli contains additional endoribonucleases that have not yet been characterized. First of all, endonucleolytic activities are needed for certain known processes that cannot be attributed to any of the known enzymes. Second, homologues of known endoribonucleases are present in E. coli. Third, endonucleolytic activities have been observed in cell extracts that have different properties from known enzymes.
Collapse
|
10
|
Wilson TJ, Lilley DM. A Mechanistic Comparison of the Varkud Satellite and Hairpin Ribozymes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 120:93-121. [DOI: 10.1016/b978-0-12-381286-5.00003-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Reiter NJ, Osterman AK, Mondragón A. The bacterial ribonuclease P holoenzyme requires specific, conserved residues for efficient catalysis and substrate positioning. Nucleic Acids Res 2012; 40:10384-93. [PMID: 22904083 PMCID: PMC3488217 DOI: 10.1093/nar/gks744] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
RNase P is an RNA-based enzyme primarily responsible for 5′-end pre-tRNA processing. A structure of the bacterial RNase P holoenzyme in complex with tRNAPhe revealed the structural basis for substrate recognition, identified the active site location, and showed how the protein component increases functionality. The active site includes at least two metal ions, a universal uridine (U52), and P RNA backbone moieties, but it is unclear whether an adjacent, bacterially conserved protein loop (residues 52–57) participates in catalysis. Here, mutagenesis combined with single-turnover reaction kinetics demonstrate that point mutations in this loop have either no or modest effects on catalytic efficiency. Similarly, amino acid changes in the ‘RNR’ region, which represent the most conserved region of bacterial RNase P proteins, exhibit negligible changes in catalytic efficiency. However, U52 and two bacterially conserved protein residues (F17 and R89) are essential for efficient Thermotoga maritima RNase P activity. The U52 nucleotide binds a metal ion at the active site, whereas F17 and R89 are positioned >20 Å from the cleavage site, probably making contacts with N−4 and N−5 nucleotides of the pre-tRNA 5′-leader. This suggests a synergistic coupling between transition state formation and substrate positioning via interactions with the leader.
Collapse
Affiliation(s)
- Nicholas J Reiter
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Dr., Evanston, IL 60208, USA.
| | | | | |
Collapse
|
12
|
Chen WY, Xu Y, Cho IM, Oruganti SV, Foster MP, Gopalan V. Cooperative RNP assembly: complementary rescue of structural defects by protein and RNA subunits of archaeal RNase P. J Mol Biol 2011; 411:368-83. [PMID: 21683084 DOI: 10.1016/j.jmb.2011.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 05/09/2011] [Indexed: 12/31/2022]
Abstract
Ribonuclease P (RNase P) is a ribonucleoprotein complex that utilizes a Mg(2+)-dependent RNA catalyst to cleave the 5' leader of precursor tRNAs (pre-tRNAs) and generate mature tRNAs. The bacterial RNase P protein (RPP) aids RNase P RNA (RPR) catalysis by promoting substrate binding, Mg(2+) coordination and product release. Archaeal RNase P comprises an RPR and at least four RPPs, which have eukaryal homologs and function as two binary complexes (POP5·RPP30 and RPP21·RPP29). Here, we employed a previously characterized substrate-enzyme conjugate [pre-tRNA(Tyr)-Methanocaldococcus jannaschii (Mja) RPR] to investigate the functional role of a universally conserved uridine in a bulge-helix structure in archaeal RPRs. Deletion of this bulged uridine resulted in an 80-fold decrease in the self-cleavage rate of pre-tRNA(Tyr)-MjaΔU RPR compared to the wild type, and this defect was partially ameliorated upon addition of either RPP pair. The catalytic defect in the archaeal mutant RPR mirrors that reported in a bacterial RPR and highlights a parallel in their active sites. Furthermore, an N-terminal deletion mutant of Pyrococcus furiosus (Pfu) RPP29 that is defective in assembling with its binary partner RPP21, as assessed by isothermal titration calorimetry and NMR spectroscopy, is functional when reconstituted with the cognate Pfu RPR. Collectively, these results indicate that archaeal RPPs are able to compensate for structural defects in their cognate RPR and vice-versa, and provide striking examples of the cooperative subunit interactions critical for driving archaeal RNase P toward its functional conformation.
Collapse
Affiliation(s)
- Wen-Yi Chen
- Department of Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
13
|
Cuzic-Feltens S, Weber MHW, Hartmann RK. Investigation of catalysis by bacterial RNase P via LNA and other modifications at the scissile phosphodiester. Nucleic Acids Res 2010; 37:7638-53. [PMID: 19793868 PMCID: PMC2794163 DOI: 10.1093/nar/gkp775] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We analyzed cleavage of precursor tRNAs with an LNA, 2'-OCH(3), 2'-H or 2'-F modification at the canonical (c(0)) site by bacterial RNase P. We infer that the major function of the 2'-substituent at nt -1 during substrate ground state binding is to accept an H-bond. Cleavage of the LNA substrate at the c(0) site by Escherichia coli RNase P RNA demonstrated that the transition state for cleavage can in principle be achieved with a locked C3' -endo ribose and without the H-bond donor function of the 2'-substituent. LNA and 2'-OCH(3) suppressed processing at the major aberrant m(-)(1) site; instead, the m(+1) (nt +1/+2) site was utilized. For the LNA variant, parallel pathways leading to cleavage at the c(0) and m(+1) sites had different pH profiles, with a higher Mg(2+) requirement for c(0) versus m(+1) cleavage. The strong catalytic defect for LNA and 2'-OCH(3) supports a model where the extra methylene (LNA) or methyl group (2'-OCH(3)) causes a steric interference with a nearby bound catalytic Mg(2+) during its recoordination on the way to the transition state for cleavage. The presence of the protein cofactor suppressed the ground state binding defects, but not the catalytic defects.
Collapse
Affiliation(s)
| | | | - Roland K. Hartmann
- *To whom correspondence should be addressed. Tel: +49 6421 2825827; Fax +49 6421 2825854;
| |
Collapse
|
14
|
Forconi M, Herschlag D. Use of phosphorothioates to identify sites of metal-ion binding in RNA. Methods Enzymol 2009; 468:311-33. [PMID: 20946776 DOI: 10.1016/s0076-6879(09)68015-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Single atom substitutions provide an exceptional opportunity to investigate RNA structure and function. Replacing a phosphoryl oxygen with a sulfur represents one of the most common and powerful single atom substitutions and can be used to determine the sites of metal-ion binding. Using functional assays of ribozyme catalysis, based on pre-steady-state kinetics, it is possible to extend this analysis to the transition state, capturing ligands for catalytic metal ions in this fleeting state. In conjunction with data determined from X-ray crystallography, this technique can provide a picture of the environment surrounding catalytic metal ions in both the ground state and the transition state at atomic resolution. Here, we describe the principles of such analysis, explain limitations of the method, and provide a practical example based on our results with the Tetrahymena group I ribozyme.
Collapse
Affiliation(s)
- Marcello Forconi
- Department of Biochemistry, Stanford University, Stanford, California, USA
| | | |
Collapse
|
15
|
Binding of C5 protein to P RNA enhances the rate constant for catalysis for P RNA processing of pre-tRNAs lacking a consensus (+ 1)/C(+ 72) pair. J Mol Biol 2009; 395:1019-37. [PMID: 19917291 DOI: 10.1016/j.jmb.2009.11.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 11/03/2009] [Accepted: 11/10/2009] [Indexed: 12/23/2022]
Abstract
The RNA subunit of the ribonucleoprotein enzyme ribonuclease P (RNase P (P RNA) contains the active site, but binding of Escherichia coli RNase P protein (C5) to P RNA increases the rate constant for catalysis for certain pre-tRNA substrates up to 1000-fold. Structure-swapping experiments between a substrate that is cleaved slowly by P RNA alone (pre-tRNA(f-met605)) and one that is cleaved quickly (pre-tRNA(met608)) pinpoint the characteristic C(+1)/A(+72) base pair of initiator tRNA(f-met) as the sole determinant of slow RNA-alone catalysis. Unlike other substrate modifications that slow RNA-alone catalysis, the presence of a C(+1)/A(+72) base pair reduces the rate constant for processing at both correct and miscleavage sites, indicating an indirect but nonetheless important role in catalysis. Analysis of the Mg(2)(+) dependence of apparent catalytic rate constants for pre-tRNA(met608) and a pre-tRNA(met608) (+1)C/(+72)A mutant provides evidence that C5 promotes rate enhancement primarily by compensating for the decrease in the affinity of metal ions important for catalysis engendered by the presence of the CA pair. Together, these results support and extend current models for RNase P substrate recognition in which contacts involving the conserved (+1)G/C(+72) pair of tRNA stabilize functional metal ion binding. Additionally, these observations suggest that C5 protein has evolved to compensate for tRNA variation at positions important for binding to P RNA, allowing for tRNA specialization.
Collapse
|
16
|
Frederiksen JK, Piccirilli JA. Identification of catalytic metal ion ligands in ribozymes. Methods 2009; 49:148-66. [PMID: 19651216 DOI: 10.1016/j.ymeth.2009.07.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 07/20/2009] [Accepted: 07/29/2009] [Indexed: 01/05/2023] Open
Abstract
Site-bound metal ions participate in the catalytic mechanisms of many ribozymes. Understanding these mechanisms therefore requires knowledge of the specific ligands on both substrate and ribozyme that coordinate these catalytic metal ions. A number of different structural and biochemical strategies have been developed and refined for identifying metal ion binding sites within ribozymes, and for assessing the catalytic contributions of the metal ions bound at those sites. We review these approaches and provide examples of their application, focusing in particular on metal ion rescue experiments and their roles in the construction of the transition state models for the Tetrahymena group I and RNase P ribozymes.
Collapse
Affiliation(s)
- John K Frederiksen
- The Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
17
|
Kazantsev AV, Krivenko AA, Pace NR. Mapping metal-binding sites in the catalytic domain of bacterial RNase P RNA. RNA (NEW YORK, N.Y.) 2009; 15:266-76. [PMID: 19095619 PMCID: PMC2648716 DOI: 10.1261/rna.1331809] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Ribonuclease P (RNase P) is a ribonucleoprotein enzyme that contains a universally conserved, catalytically active RNA component. RNase P RNA requires divalent metal ions for folding, substrate binding, and catalysis. Despite recent advances in understanding the structure of RNase P RNA, no comprehensive analysis of metal-binding sites has been reported, in part due to the poor crystallization properties of this large RNA. We have developed an abbreviated yet still catalytic construct, Bst P7Delta RNA, which contains the catalytic domain of the bacterial RNase P RNA and has improved crystallization properties. We use this mutant RNA as well as the native RNA to map metal-binding sites in the catalytic core of the bacterial RNase P RNA, by anomalous scattering in diffraction analysis. The results provide insight into the interplay between RNA structure and focalization of metal ions, and a structural basis for some previous biochemical observations with RNase P. We use electrostatic calculations to extract the potential functional significance of these metal-binding sites with respect to binding Mg(2+). The results suggest that with at least one important exception of specific binding, these sites mainly map areas of diffuse association of magnesium ions.
Collapse
Affiliation(s)
- Alexei V Kazantsev
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, 80309, USA
| | | | | |
Collapse
|
18
|
Cuzic S, Hartmann RK. A 2'-methyl or 2'-methylene group at G+1 in precursor tRNA interferes with Mg2+ binding at the enzyme-substrate interface in E-S complexes of E. coli RNase P. Biol Chem 2007; 388:717-26. [PMID: 17570824 DOI: 10.1515/bc.2007.095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We analyzed processing of precursor tRNAs carrying a single 2'-deoxy, 2'-OCH(3), or locked nucleic acid (LNA) modification at G+1 by Escherichia coli RNase P RNA in the absence and presence of its protein cofactor. The extra methyl or methylene group caused a substrate binding defect, which was rescued at higher divalent metal ion (M(2+)) concentrations (more efficiently with Mn(2+) than Mg(2+)), and had a minor effect on cleavage chemistry at saturating M(2+) concentrations. The 2'-OCH(3) and LNA modification at G+1 resulted in higher metal ion cooperativity for substrate binding to RNase P RNA without affecting cleavage site selection. This indicates disruption of an M(2+) binding site in enzyme-substrate complexes, which is compensated for by occupation of alternative M(2+) binding sites of lower affinity. The 2'-deoxy modification at G+1 caused at most a two-fold decrease in the cleavage rate; this mild defect relative to 2'-OCH(3) and LNA at G+1 indicates that the defect caused by the latter two is steric in nature. We propose that the 2'-hydroxyl at G+1 in the substrate is in the immediate vicinity of the M(2+) cluster at the phosphates of A67 to U69 in helix P4 of E. coli RNase P RNA.
Collapse
Affiliation(s)
- Simona Cuzic
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
| | | |
Collapse
|
19
|
Niranjanakumari S, Day-Storms JJ, Ahmed M, Hsieh J, Zahler NH, Venters RA, Fierke CA. Probing the architecture of the B. subtilis RNase P holoenzyme active site by cross-linking and affinity cleavage. RNA (NEW YORK, N.Y.) 2007; 13:521-35. [PMID: 17299131 PMCID: PMC1831860 DOI: 10.1261/rna.308707] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 12/21/2006] [Indexed: 05/03/2023]
Abstract
Bacterial ribonuclease P (RNase P) is a ribonucleoprotein complex composed of one catalytic RNA (PRNA) and one protein subunit (P protein) that together catalyze the 5' maturation of precursor tRNA. High-resolution X-ray crystal structures of the individual P protein and PRNA components from several species have been determined, and structural models of the RNase P holoenzyme have been proposed. However, holoenzyme models have been limited by a lack of distance constraints between P protein and PRNA in the holoenzyme-substrate complex. Here, we report the results of extensive cross-linking and affinity cleavage experiments using single-cysteine P protein variants derivatized with either azidophenacyl bromide or 5-iodoacetamido-1,10-o-phenanthroline to determine distance constraints and to model the Bacillus subtilis holoenzyme-substrate complex. These data indicate that the evolutionarily conserved RNR motif of P protein is located near (<15 Angstroms) the pre-tRNA cleavage site, the base of the pre-tRNA acceptor stem and helix P4 of PRNA, the putative active site of the enzyme. In addition, the metal binding loop and N-terminal region of the P protein are proximal to the P3 stem-loop of PRNA. Studies using heterologous holoenzymes composed of covalently modified B. subtilis P protein and Escherichia coli M1 RNA indicate that P protein binds similarly to both RNAs. Together, these data indicate that P protein is positioned close to the RNase P active site and may play a role in organizing the RNase P active site.
Collapse
|
20
|
Abstract
Ribonuclease P (RNase P) is a ubiquitous endonuclease that catalyses the maturation of the 5' end of transfer RNA (tRNA). Although it carries out a biochemically simple reaction, RNase P is a complex ribonucleoprotein particle composed of a single large RNA and at least one protein component. In bacteria and some archaea, the RNA component of RNase P can catalyse tRNA maturation in vitro in the absence of proteins. The discovery of the catalytic activity of the bacterial RNase P RNA triggered numerous mechanistic and biochemical studies of the reactions catalysed by the RNA alone and by the holoenzyme and, in recent years, structures of individual components of the RNase P holoenzyme have been determined. The goal of the present review is to summarize what is known about the bacterial RNase P, and to bring together the recent structural results with extensive earlier biochemical and phylogenetic findings.
Collapse
Affiliation(s)
- Alexei V Kazantsev
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA
| | | |
Collapse
|
21
|
Christian EL, Smith KMJ, Perera N, Harris ME. The P4 metal binding site in RNase P RNA affects active site metal affinity through substrate positioning. RNA (NEW YORK, N.Y.) 2006; 12:1463-7. [PMID: 16822954 PMCID: PMC1524898 DOI: 10.1261/rna.158606] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Although helix P4 in the catalytic domain of the RNase P ribozyme is known to coordinate magnesium ions important for activity, distinguishing between direct and indirect roles in catalysis has been difficult. Here, we provide evidence for an indirect role in catalysis by showing that while the universally conserved bulge of helix P4 is positioned 5 nt downstream of the cleavage site, changes in its structure can still purturb active site metal binding. Because changes in helix P4 also appear to alter its position relative to the pre-tRNA cleavage site, these data suggest that P4 contributes to catalytic metal ion binding through substrate positioning.
Collapse
Affiliation(s)
- Eric L Christian
- Center for RNA Molecular Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | | | | | | |
Collapse
|
22
|
Torres-Larios A, Swinger KK, Pan T, Mondragón A. Structure of ribonuclease P--a universal ribozyme. Curr Opin Struct Biol 2006; 16:327-35. [PMID: 16650980 DOI: 10.1016/j.sbi.2006.04.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 04/04/2006] [Accepted: 04/19/2006] [Indexed: 11/22/2022]
Abstract
Ribonuclease P (RNase P) is one of only two known universal ribozymes and was one of the first ribozymes to be discovered. It is involved in RNA processing, in particular the 5' maturation of tRNA. Unlike most other natural ribozymes, it recognizes and cleaves its substrate in trans. RNase P is a ribonucleoprotein complex containing one RNA subunit and as few as one protein subunit. It has been shown that, in bacteria and in some archaea, the RNA subunit alone can support catalysis. The structure and function of bacterial RNase P RNA have been studied extensively, but the detailed catalytic mechanism is not yet fully understood. Recently, structures of one of the structural domains and of the entire RNA component of RNase P from two different bacteria have been described. These structures provide the first atomic-level information on the structural assembly of the RNA component, and the regions involved in substrate recognition and catalysis. Comparison of these structures reveals a highly conserved core that comprises two universally conserved structural modules. Interestingly, the same structural core can be found in the context of different scaffolds.
Collapse
Affiliation(s)
- Alfredo Torres-Larios
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208, USA
| | | | | | | |
Collapse
|
23
|
Kazantsev AV, Krivenko AA, Harrington DJ, Holbrook SR, Adams PD, Pace NR. Crystal structure of a bacterial ribonuclease P RNA. Proc Natl Acad Sci U S A 2005; 102:13392-7. [PMID: 16157868 PMCID: PMC1224664 DOI: 10.1073/pnas.0506662102] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The x-ray crystal structure of a 417-nt ribonuclease P RNA from Bacillus stearothermophilus was solved to 3.3-A resolution. This RNA enzyme is constructed from a number of coaxially stacked helical domains joined together by local and long-range interactions. These helical domains are arranged to form a remarkably flat surface, which is implicated by a wealth of biochemical data in the binding and cleavage of the precursors of transfer RNA substrate. Previous photoaffinity crosslinking data are used to position the substrate on the crystal structure and to identify the chemically active site of the ribozyme. This site is located in a highly conserved core structure formed by intricately interlaced long-range interactions between interhelical sequences.
Collapse
Affiliation(s)
- Alexei V Kazantsev
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | | | | | | | | | | |
Collapse
|
24
|
Torres-Larios A, Swinger KK, Krasilnikov AS, Pan T, Mondragón A. Crystal structure of the RNA component of bacterial ribonuclease P. Nature 2005; 437:584-7. [PMID: 16113684 DOI: 10.1038/nature04074] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Accepted: 07/28/2005] [Indexed: 11/09/2022]
Abstract
Transfer RNA (tRNA) is produced as a precursor molecule that needs to be processed at its 3' and 5' ends. Ribonuclease P is the sole endonuclease responsible for processing the 5' end of tRNA by cleaving the precursor and leading to tRNA maturation. It was one of the first catalytic RNA molecules identified and consists of a single RNA component in all organisms and only one protein component in bacteria. It is a true multi-turnover ribozyme and one of only two ribozymes (the other being the ribosome) that are conserved in all kingdoms of life. Here we show the crystal structure at 3.85 A resolution of the RNA component of Thermotoga maritima ribonuclease P. The entire RNA catalytic component is revealed, as well as the arrangement of the two structural domains. The structure shows the general architecture of the RNA molecule, the inter- and intra-domain interactions, the location of the universally conserved regions, the regions involved in pre-tRNA recognition and the location of the active site. A model with bound tRNA is in agreement with all existing data and suggests the general basis for RNA-RNA recognition by this ribozyme.
Collapse
Affiliation(s)
- Alfredo Torres-Larios
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | |
Collapse
|
25
|
Hougland JL, Kravchuk AV, Herschlag D, Piccirilli JA. Functional identification of catalytic metal ion binding sites within RNA. PLoS Biol 2005; 3:e277. [PMID: 16092891 PMCID: PMC1184590 DOI: 10.1371/journal.pbio.0030277] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Accepted: 06/09/2005] [Indexed: 12/03/2022] Open
Abstract
The viability of living systems depends inextricably on enzymes that catalyze phosphoryl transfer reactions. For many enzymes in this class, including several ribozymes, divalent metal ions serve as obligate cofactors. Understanding how metal ions mediate catalysis requires elucidation of metal ion interactions with both the enzyme and the substrate(s). In the Tetrahymena group I intron, previous work using atomic mutagenesis and quantitative analysis of metal ion rescue behavior identified three metal ions (MA, MB, and MC) that make five interactions with the ribozyme substrates in the reaction's transition state. Here, we combine substrate atomic mutagenesis with site-specific phosphorothioate substitutions in the ribozyme backbone to develop a powerful, general strategy for defining the ligands of catalytic metal ions within RNA. In applying this strategy to the Tetrahymena group I intron, we have identified the pro-SP phosphoryl oxygen at nucleotide C262 as a ribozyme ligand for MC. Our findings establish a direct connection between the ribozyme core and the functionally defined model of the chemical transition state, thereby extending the known set of transition-state interactions and providing information critical for the application of the recent group I intron crystallographic structures to the understanding of catalysis. A combination of substrate atomic mutagenesis with site-specific substitutions in the ribozyme backbone allow the ligands of catalytic metal ions to be identified.
Collapse
Affiliation(s)
- James L Hougland
- 1Department of Chemistry, University of Chicago, Illinois, United States of America
| | - Alexander V Kravchuk
- 2Department of Biochemistry, Stanford University, California, United States of America
| | - Daniel Herschlag
- 2Department of Biochemistry, Stanford University, California, United States of America
| | - Joseph A Piccirilli
- 1Department of Chemistry, University of Chicago, Illinois, United States of America
- 3Department of Biochemistry and Molecular Biology, University of Chicago, Illinois, United States of America
- 4Howard Hughes Medical Institute, University of Chicago, Illinois, United States of America
| |
Collapse
|
26
|
Cuzic S, Hartmann RK. Studies on Escherichia coli RNase P RNA with Zn2+ as the catalytic cofactor. Nucleic Acids Res 2005; 33:2464-74. [PMID: 15867194 PMCID: PMC1088067 DOI: 10.1093/nar/gki540] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We demonstrate, for the first time, catalysis by Escherichia coli ribonuclease P (RNase P) RNA with Zn2+ as the sole divalent metal ion cofactor in the presence of ammonium, but not sodium or potassium salts. Hill analysis suggests a role for two or more Zn2+ ions in catalysis. Whereas Zn2+ destabilizes substrate ground state binding to an extent that precludes reliable Kd determination, Co(NH3)63+ and Sr2+ in particular, both unable to support catalysis by themselves, promote high-substrate affinity. Zn2+ and Co(NH3)63+ substantially reduce the fraction of precursor tRNA molecules capable of binding to RNase P RNA. Stimulating and inhibitory effects of Sr2+ on the ribozyme reaction with Zn2+ as cofactor could be rationalized by a model involving two Sr2+ ions (or two classes of Sr2+ ions). Both ions improve substrate affinity in a cooperative manner, but one of the two inhibits substrate conversion in a non-competitive mode with respect to the substrate and the Zn2+. A single 2′-fluoro modification at nt −1 of the substrate substantially weakened the inhibitory effect of Sr2+. Our results demonstrate that the studies on RNase P RNA with metal cofactors other than Mg2+ entail complex effects on structural equilibria of ribozyme and substrate RNAs as well as E·S formation apart from the catalytic performance.
Collapse
Affiliation(s)
| | - Roland K. Hartmann
- To whom correspondence should be addressed. Tel: +49 6421 28 25827; Fax: +49 6421 28 25854;
| |
Collapse
|
27
|
Zahler NH, Sun L, Christian EL, Harris ME. The pre-tRNA nucleotide base and 2'-hydroxyl at N(-1) contribute to fidelity in tRNA processing by RNase P. J Mol Biol 2004; 345:969-85. [PMID: 15644198 DOI: 10.1016/j.jmb.2004.10.080] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 10/20/2004] [Accepted: 10/27/2004] [Indexed: 10/26/2022]
Abstract
Fidelity in tRNA processing by the RNase P RNA from Escherichia coli depends, in part, on interactions with the nucleobase and 2' hydroxyl group of N(-1), the nucleotide immediately upstream of the site of RNA strand cleavage. Here, we report a series of biochemical and structure-function studies designed to address how these interactions contribute to cleavage site selection. We find that simultaneous disruption of cleavage site nucleobase and 2' hydroxyl interactions results in parallel reactions leading to correct cleavage and mis-cleavage one nucleotide upstream (5') of the correct site. Changes in Mg(2+) concentration and pH can influence the fraction of product that is incorrectly processed, with pH effects attributable to differences in the rate-limiting steps for the correct and mis-cleavage reaction pathways. Additionally, we provide evidence that interactions with the 2' hydroxyl group adjacent to the reactive phosphate group also contribute to catalysis at the mis-cleavage site. Finally, disruption of the adjacent 2'-hydroxyl contact has a greater effect on catalysis when pairing between the ribozyme and N(-1) is also disrupted, and the effects of simultaneously disrupting these contacts on binding are also non-additive. One implication of these results is that mis-cleavage will result from any combination of active site modifications that decrease the rate of correct cleavage beyond a certain threshold. Indeed, we find that inhibition of correct cleavage and corresponding mis-cleavage also results from disruption of any combination of active site contacts including metal ion interactions and conserved pairing interactions with the 3' RCCA sequence. Such redundancy in interactions needed for maintaining fidelity may reflect the necessity for multiple substrate recognition in vivo. These studies provide a framework for interpreting effects of substrate modifications on RNase P cleavage fidelity and provide evidence for interactions with the nucleobase and 2' hydroxyl group adjacent to the reactive phosphate group in the transition state.
Collapse
Affiliation(s)
- Nathan H Zahler
- Department of Biochemistry, Center for RNA Molecular Biology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-4973, USA
| | | | | | | |
Collapse
|
28
|
Schmitz M. Change of RNase P RNA function by single base mutation correlates with perturbation of metal ion binding in P4 as determined by NMR spectroscopy. Nucleic Acids Res 2004; 32:6358-66. [PMID: 15576680 PMCID: PMC535670 DOI: 10.1093/nar/gkh961] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The solution structures of two 27 nt RNA hairpins and their complexes with cobalt(III)-hexammine [Co(NH(3))(6)(3+)] were determined by NMR spectroscopy. The RNA hairpins are variants of the P4 region from Escherichia coli RNase P RNA: a U-to-A mutant changing the identity of the bulged nucleotide, and a U-to-C, C-to-U double mutant changing only the bulge position. Structures calculated from NMR constraints show that the RNA hairpins adopt different conformations. In the U-to-C, C-to-U double mutant, the conserved bulged uridine in the P4 wild-type stem is found to be shifted in the 3'-direction by one nucleotide when compared with the wild-type structure. Co(NH(3))(6)(3+) is used as a spectroscopic probe for Mg(H(2)O)(6)(2+) binding sites because both complexes have octahedral symmetry and have similar radii. Intermolecular NOE crosspeaks between Co(NH(3))(6)(3+) and RNA protons were used to locate the site of Co(NH(3))(6)(3+) binding to both RNA hairpins. The metal ion binds in the major groove near a bulge loop in both mutants, but is shifted 3' by about one base pair in the double mutant. The change of the metal ion binding site is compared with results obtained on corresponding mutant RNase P RNA molecules as reported by Harris and co-workers (RNA, 1, 210-218).
Collapse
Affiliation(s)
- Michael Schmitz
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany.
| |
Collapse
|
29
|
Brännvall M, Kikovska E, Kirsebom LA. Cross talk between the +73/294 interaction and the cleavage site in RNase P RNA mediated cleavage. Nucleic Acids Res 2004; 32:5418-29. [PMID: 15477392 PMCID: PMC524293 DOI: 10.1093/nar/gkh883] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To monitor functionally important metal ions and possible cross talk in RNase P RNA mediated cleavage we studied cleavage of substrates, where the 2'OH at the RNase P cleavage site (at -1) and/or at position +73 had been replaced with a 2' amino group (or 2'H). Our data showed that the presence of 2' modifications at these positions affected cleavage site recognition, ground state binding of substrate and/or rate of cleavage. Cleavage of 2' amino substituted substrates at different pH showed that substitution of Mg2+ by Mn2+ (or Ca2+), identity of residues at and near the cleavage site, and addition of C5 protein influenced the frequency of miscleavage at -1 (cleavage at the correct site is referred to as +1). From this we infer that these findings point at effects mediated by protonation/deprotonation of the 2' amino group, i.e. an altered charge distribution, at the site of cleavage. Moreover, our data suggested that the structural architecture of the interaction between the 3' end of the substrate and RNase P RNA influence the charge distribution at the cleavage site as well as the rate of cleavage under conditions where the chemistry is suggested to be rate limiting. Thus, these data provide evidence for cross talk between the +73/294 interaction and the cleavage site in RNase P RNA mediated cleavage. We discuss the role metal ions might play in this cross talk and the likelihood that at least one functionally important metal ion is positioned in the vicinity of, and use the 2'OH at the cleavage site as an inner or outer sphere ligand.
Collapse
Affiliation(s)
- Mathias Brännvall
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24 Uppsala, Sweden
| | | | | |
Collapse
|
30
|
Li Y, Altman S. In search of RNase P RNA from microbial genomes. RNA (NEW YORK, N.Y.) 2004; 10:1533-40. [PMID: 15337843 PMCID: PMC1370640 DOI: 10.1261/rna.7970404] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Accepted: 07/06/2004] [Indexed: 05/19/2023]
Abstract
A simple procedure has been developed to quickly retrieve and validate the DNA sequence encoding the RNA subunit of ribonuclease P (RNase P RNA) from microbial genomes. RNase P RNA sequences were identified from 94% of bacterial and archaeal complete genomes where previously no RNase P RNA was annotated. A sequence was found in camelpox virus, highly conserved in all orthopoxviruses (including smallpox virus), which could fold into a putative RNase P RNA in terms of conserved primary features and secondary structure. New structure features of RNase P RNA that enable one to distinguish bacteria from archaea and eukarya were found. This RNA is yet another RNA that can be a molecular criterion to divide the living world into three domains (bacteria, archaea, and eukarya). The catalytic center of this RNA, and its detection from some environmental whole genome shotgun sequences, is also discussed.
Collapse
Affiliation(s)
- Yong Li
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
31
|
Sanchez ER, Caudle MT. Evidence for ditopic coordination of phosphate diesters to [Mg(15-crown-5)]2+. Implications for magnesium biocoordination chemistry. J Biol Inorg Chem 2004; 9:724-32. [PMID: 15241659 DOI: 10.1007/s00775-004-0568-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 05/27/2004] [Indexed: 10/26/2022]
Abstract
The interaction of a series of phosphate diesters and triesters (1=diphenyl phosphate,2=dimethyl phosphate,3=bis(2-ethylhexyl) phosphate,4=trimethyl phosphate,5=methyldiphenyl phosphate,6=triphenyl phosphate) with [Mg(15-crown-5)](2+) (15-crown-5=1,4,7,10,13-pentaoxocyclopentadecane) was studied as a simplified model for the interaction of aqueous Mg(2+) ion with phosphate-containing biomolecules such as RNA. Using electrospray mass spectrometry, we confirm the formation of 1:1 adducts in the gas phase. Proton and (31)P NMR titration data were used to construct binding isotherms, and a 1:1 binding equilibrium was fit to the isotherms at room temperature to estimate the binding affinities. The binding affinity data are consistent with ditopic coordination of neutral dialkyl phosphate ligands to the [Mg(15-crown-5)](2+) unit. This involves inner-sphere coordination to the Mg(2+) via an oxygen atom, which is complemented by a weak hydrogen-bonding interaction with the crown ether ligand. Ditopic interaction is consistent with low-temperature NMR spectra showing four different configurations for1 coordinated to [Mg(15-crown-5)](2+), which are interpreted in terms of hindered rotation around the Mg-O(phos) bond. Thermochemical analysis of the binding affinity data suggests that the second-shell interaction contributes only about 1 kcal/mol to the binding free energy, so additional factors, such as steric constraints, must be operative to give a preferred phosphate orientation in this system. However, the experimental data do suggest that second-shell interactions contribute as much as 40% of the total binding energy, consistent with the pronounced ability of aqueous Mg(2+) to form salt-bridges linking secondary and tertiary elements of RNA structure.
Collapse
Affiliation(s)
- Elizabeth R Sanchez
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA
| | | |
Collapse
|
32
|
Abstract
[reaction: see text] Metal ion rescue experiments provide a powerful approach to establish the presence and role of divalent metal ions in the biological function of RNA. The utility of this approach depends on the availability of suitable nucleoside analogues. To expand the range of this experimental strategy, we describe the first synthesis of 2',3'-dideoxy-2'-amino-3'-thiouridine (12) in 19.5% overall yield starting from 2,2'-anhydrouridine (1).
Collapse
Affiliation(s)
- Qing Dai
- Howard Hughes Medical Institute, Department of Biochemistry & Molecular Biology, The University of Chicago, 5841 South Maryland Avenue, MC 1028, Chicago, Illinois 60637, USA
| | | |
Collapse
|
33
|
Mikulík K. Structure and functional properties of prokaryotic small noncoding RNAs. Folia Microbiol (Praha) 2003; 48:443-68. [PMID: 14533476 DOI: 10.1007/bf02931326] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Most biochemical, computational and genetic approaches to gene finding assume the Central Dogma and look for genes that make mRNA and have ORFs. These approaches essentially do not work for one class of genes--the noncoding RNA. In all living organisms RNA is involved in a number of essential cell processes. Functional analysis of genome sequences has largely ignored RNA genes and their structures. Different RNA species including rRNA, tRNA, mRNA and sRNA (small RNA) are important structural, transfer, informational, and regulatory molecules containing complex folded conformations that participate in recognition and catalytic processes. Noncoding RNAs play an number of important structural, catalytic and regulatory roles in the cell. The size of the sRNA genes ranges from 70 to 500 nucleotides. Several transcripts of these genes are processed by RNAases and their final products are smaller. The encoding genes are localized between two ORFs and do not overlap with ORFs on the complementary DNA strand. As aptamers, some sRNA bind small molecular components (metal ions, peptides and nucleotides). This review summarizes recent data on the functions of prokaryotic sRNAs and approaches to their identification.
Collapse
Affiliation(s)
- K Mikulík
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 142 20 Prague, Czechia.
| |
Collapse
|
34
|
Persson T, Cuzic S, Hartmann RK. Catalysis by RNase P RNA: unique features and unprecedented active site plasticity. J Biol Chem 2003; 278:43394-401. [PMID: 12904300 DOI: 10.1074/jbc.m305939200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Metal ions are essential cofactors for precursor tRNA (ptRNA) processing by bacterial RNase P. The ribose 2'-OH at nucleotide (nt) -1 of ptRNAs is known to contribute to positioning of catalytic Me2+. To investigate the catalytic process, we used ptRNAs with single 2'-deoxy (2'-H), 2'-amino (2'-N), or 2'-fluoro (2'-F) modifications at the cleavage site (nt -1). 2' modifications had small (2.4-7.7-fold) effects on ptRNA binding to E. coli RNase P RNA in the ground state, decreasing substrate affinity in the order 2'-OH > 2'-F > 2'-N > 2'-H. Effects on the rate of the chemical step (about 10-fold for 2'-F, almost 150-fold for 2'-H and 2'-N) were much stronger, and, except for the 2'-N modification, resembled strikingly those observed in the Tetrahymena ribozyme-catalyzed reaction at corresponding position. Mn2+ rescued cleavage of the 2'-N but also the 2'-H-modified ptRNA, arguing against a direct metal ion coordination at this location. Miscleavage between nt -1 and -2 was observed for the 2'-N-ptRNA at low pH (further influenced by the base identities at nt -1 and +73), suggesting repulsion of a catalytic metal ion due to protonation of the amino group. Effects caused by the 2'-N modification at nt -1 of the substrate allowed us to substantiate a mechanistic difference in phosphodiester hydrolysis catalyzed by Escherichia coli RNase P RNA and the Tetrahymena ribozyme: a metal ion binds next to the 2' substituent at nt -1 in the reaction catalyzed by RNase P RNA, but not at the corresponding location in the Tetrahymena ribozyme reaction.
Collapse
Affiliation(s)
- Tina Persson
- Universität zu Lübeck, Institut für Biochemie, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | | | | |
Collapse
|
35
|
Abstract
Ribonuclease P (RNase P) is an essential enzyme that processes the 5' leader sequence of precursor tRNA. Eubacterial RNase P is an RNA enzyme, while its eukaryotic counterpart acts as catalytic ribonucleoprotein, consisting of RNA and numerous protein subunits. To study the latter form, we reconstitute human RNase P activity, demonstrating that the subunits H1 RNA, Rpp21, and Rpp29 are sufficient for 5' cleavage of precursor tRNA. The reconstituted RNase P precisely delineates its cleavage sites in various substrates and hydrolyzes the phosphodiester bond. Rpp21 and Rpp29 facilitate catalysis by H1 RNA, which seems to require a phylogenetically conserved pseudoknot structure for function. Unexpectedly, Rpp29 forms a catalytic complex with M1 RNA of E. coli RNase P. The results uncover the core components of eukaryotic RNase P, reveal its evolutionary origin in translation, and provide a paradigm for studying RNA-based catalysis by other nuclear and nucleolar ribonucleoprotein enzymes.
Collapse
Affiliation(s)
- Hagit Mann
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | |
Collapse
|
36
|
Abstract
Ribonuclease P (RNase P) is a ubiquitous ribonucleoprotein complex responsible for the biosynthesis of tRNA. This enzyme from Escherichia coli contains a catalytic RNA subunit (M1 ribozyme) and a protein subunit (C5 cofactor). M1 ribozyme cleaves an RNA helix that resembles the acceptor stem and T-stem structure of its natural tRNA substrate. When covalently linked with a guide sequence, M1 RNA can be engineered into a sequence-specific endonuclease, M1GS ribozyme, which can cleave any target RNA sequences that base pair with the guide sequence. Recent studies indicate that M1GS ribozymes efficiently cleave the mRNAs of herpes simplex virus 1, human cytomegalovirus, and cancer causing BCR-ABL proteins in vitro and effectively inhibit the expression of these mRNAs in cultured cells. Moreover, RNase P ribozyme variants that are more active than the wild type M1 RNA can be generated using in vitro selection procedures and the selected variants are also more effective in inhibiting gene expression in cultured cells. These results demonstrate that engineered RNase P ribozymes represent a novel class of promising gene-targeting agents for applications in both basic research and clinical therapy. This review discusses the principle underlying M1GS-mediated gene inactivation and methodologies involved in effective M1GS construction, expression in vivo and emerging prospects of this technology for gene therapy.
Collapse
Affiliation(s)
- Stephen M L Raj
- Division of Infectious Diseases, School of Public Health, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
37
|
Abstract
Cations play critical roles in ribozyme structure and catalysis. Unraveling the contributions of cations as catalytic cofactors is a complex process, due to their role in inducing RNA folding and their potential ability to influence chemical reactions. Recent studies have made progress in separating these roles by directly comparing ion-induced folding with ribozyme activity. In addition, spectroscopic studies have allowed some ribozyme metal sites to be directly observed in solution, providing binding affinities and ligand information. The emerging picture suggests that important cation sites can be classified according to their affinities and properties, and can be located within the ribozyme structure. At moderate ionic strengths, a common theme is emerging for some ribozymes of structural sites that have relatively high metal ion affinities and a second type of metal site with weaker affinity that is responsible for catalysis or structural fine-tuning. In the larger ribozymes, apparent clusters of metal-sensitive positions are observed.
Collapse
Affiliation(s)
- Victoria J DeRose
- Department of Chemistry, Texas A&M University, College Station, TX 77842-3012, USA.
| |
Collapse
|
38
|
Harris ME, Christian EL. Recent insights into the structure and function of the ribonucleoprotein enzyme ribonuclease P. Curr Opin Struct Biol 2003; 13:325-33. [PMID: 12831883 DOI: 10.1016/s0959-440x(03)00069-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In bacteria, the tRNA-processing endonuclease ribonuclease P is composed of a large ( approximately 400 nucleotide) catalytic RNA and a smaller ( approximately 100 amino acid) protein subunit that is essential for substrate recognition. Current biochemical and biophysical investigations are providing fresh insights into the modular architecture of the ribozyme, the mechanisms of substrate specificity and the role of essential metal ions in catalysis. Together with recent high-resolution structures of portions of the ribozyme, these findings are beginning to reveal how the functions of RNA and protein are coordinated in this ribonucleoprotein enzyme.
Collapse
Affiliation(s)
- Michael E Harris
- Center for RNA Molecular Biology, Case Western Reserve University, School of Medicine, 44106, Cleveland, OH 44106, USA.
| | | |
Collapse
|
39
|
Tsai HY, Masquida B, Biswas R, Westhof E, Gopalan V. Molecular modeling of the three-dimensional structure of the bacterial RNase P holoenzyme. J Mol Biol 2003; 325:661-75. [PMID: 12507471 DOI: 10.1016/s0022-2836(02)01267-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Bacterial ribonuclease P (RNase P), an enzyme involved in tRNA maturation, consists of a catalytic RNA subunit and a protein cofactor. Comparative phylogenetic analysis and molecular modeling have been employed to derive secondary and tertiary structure models of the RNA subunits from Escherichia coli (type A) and Bacillus subtilis (type B) RNase P. The tertiary structure of the protein subunit of B.subtilis and Staphylococcus aureus RNase P has recently been determined. However, an understanding of the structure of the RNase P holoenzyme (i.e. the ribonucleoprotein complex) is lacking. We have now used an EDTA-Fe-based footprinting approach to generate information about RNA-protein contact sites in E.coli RNase P. The footprinting data, together with results from other biochemical and biophysical studies, have furnished distance constraints, which in turn have enabled us to build three-dimensional models of both type A and B versions of the bacterial RNase P holoenzyme in the absence and presence of its precursor tRNA substrate. These models are consistent with results from previous studies and provide both structural and mechanistic insights into the functioning of this unique catalytic RNP complex.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Catalytic Domain
- Computer Simulation
- Cysteine/chemistry
- DNA Footprinting
- DNA, Bacterial/genetics
- Edetic Acid
- Endoribonucleases/chemistry
- Endoribonucleases/genetics
- Endoribonucleases/metabolism
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Escherichia coli Proteins
- Evolution, Molecular
- Ferrous Compounds
- Holoenzymes/chemistry
- Holoenzymes/genetics
- Holoenzymes/metabolism
- Hydroxyl Radical/chemistry
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Nucleic Acid Conformation
- Protein Subunits
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Catalytic/chemistry
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- Ribonuclease P
Collapse
Affiliation(s)
- Hsin-Yue Tsai
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
40
|
Kaye NM, Zahler NH, Christian EL, Harris ME. Conservation of helical structure contributes to functional metal ion interactions in the catalytic domain of ribonuclease P RNA. J Mol Biol 2002; 324:429-42. [PMID: 12445779 DOI: 10.1016/s0022-2836(02)01094-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Like protein enzymes, catalytic RNAs contain conserved structure motifs important for function. A universal feature of the catalytic domain of ribonuclease P RNA is a bulged-helix motif within the P1-P4 helix junction. Here, we show that changes in bulged nucleotide identity and position within helix P4 affect both catalysis and substrate binding, while a subset of the mutations resulted only in catalytic defects. We find that the proximity of the bulge to sites of metal ion coordination in P4 is important for catalysis; moving the bulge distal to these sites and deleting it had similarly large effects, while moving it proximal to these sites had only a moderate effect on catalysis. To test whether the effects of the mutations are linked to metal ion interactions, we used terbium-dependent cleavage of the phosphate backbone to probe metal ion-binding sites in the wild-type and mutant ribozymes. We detect cleavages at specific sites within the catalytic domain, including helix P4 and J3/4, which have previously been shown to participate directly in metal ion interactions. Mutations introduced into P4 cause local changes in the terbium cleavage pattern due to alternate metal ion-binding configurations with the helix. In addition, a bulge deletion mutation results in a 100-fold decrease in the single turnover cleavage rate constant at saturating magnesium levels, and a reduced affinity for magnesium ions important for catalysis. In light of the alternate terbium cleavage pattern in P4 caused by bulge deletion, this decreased ability to utilize magnesium ions for catalysis appears to be due to localized structural changes in the ribozyme's catalytic core that weaken metal ion interactions in P4 and J3/4. The information reported here, therefore, provides evidence that the universal conservation of the P4 structure is based in part on optimization of metal ion interactions important for catalysis.
Collapse
Affiliation(s)
- Nicholas M Kaye
- Center for RNA Molecular Biology, and Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
41
|
Abstract
This review describes some of the contributions of chemistry to the RNA field with a personal bias towards the phosphorothioate modification and the derivatives at the ribose 2'-position. The usefulness of these modifications is discussed and documented with some examples.
Collapse
Affiliation(s)
- F Eckstein
- Max-Planck-Institut für experimentelle Medizin, Hermann-Rein-Str. 3, 37075 Göttingen, Germany.
| |
Collapse
|