1
|
Roberts DM. A new role for monomeric ParA/Soj in chromosome dynamics in Bacillus subtilis. Microbiologyopen 2023; 12:e1344. [PMID: 36825885 PMCID: PMC9841721 DOI: 10.1002/mbo3.1344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/17/2023] Open
Abstract
ParABS (Soj-Spo0J) systems were initially implicated in plasmid and chromosome segregation in bacteria. However, it is now increasingly understood that they play multiple roles in cell cycle events in Bacillus subtilis, and possibly other bacteria. In a recent study, monomeric forms of ParA/Soj have been implicated in regulating aspects of chromosome dynamics during B. subtilis sporulation. In this commentary, I will discuss the known roles of ParABS systems, explore why sporulation is a valuable model for studying these proteins, and the new insights into the role of monomeric ParA/Soj. Finally, I will touch upon some of the future work that remains.
Collapse
|
2
|
DNA-measuring Wadjet SMC ATPases restrict smaller circular plasmids by DNA cleavage. Mol Cell 2022; 82:4727-4740.e6. [PMID: 36525956 DOI: 10.1016/j.molcel.2022.11.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/31/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022]
Abstract
Structural maintenance of chromosome (SMC) complexes fold DNA by loop extrusion to support chromosome segregation and genome maintenance. Wadjet systems (JetABCD/MksBEFG/EptABCD) are derivative SMC complexes with roles in bacterial immunity against selfish DNA. Here, we show that JetABCD restricts circular plasmids with an upper size limit of about 100 kb, whereas a linear plasmid evades restriction. Purified JetABCD complexes cleave circular DNA molecules, regardless of the DNA helical topology; cleavage is DNA sequence nonspecific and depends on the SMC ATPase. A cryo-EM structure reveals a distinct JetABC dimer-of-dimers geometry, with the two SMC dimers facing in opposite direction-rather than the same as observed with MukBEF. We hypothesize that JetABCD is a DNA-shape-specific endonuclease and propose the "total extrusion model" for DNA cleavage exclusively when extrusion of an entire plasmid has been completed by a JetABCD complex. Total extrusion cannot be achieved on the larger chromosome, explaining how self-DNA may evade processing.
Collapse
|
3
|
Roberts DM, Anchimiuk A, Kloosterman TG, Murray H, Wu LJ, Gruber S, Errington J. Chromosome remodelling by SMC/Condensin in B. subtilis is regulated by monomeric Soj/ParA during growth and sporulation. Proc Natl Acad Sci U S A 2022; 119:e2204042119. [PMID: 36206370 PMCID: PMC9564211 DOI: 10.1073/pnas.2204042119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022] Open
Abstract
SMC complexes, loaded at ParB-parS sites, are key mediators of chromosome organization in bacteria. ParA/Soj proteins interact with ParB/Spo0J in a pathway involving adenosine triphosphate (ATP)-dependent dimerization and DNA binding, facilitating chromosome segregation in bacteria. In Bacillus subtilis, ParA/Soj also regulates DNA replication initiation and along with ParB/Spo0J is involved in cell cycle changes during endospore formation. The first morphological stage in sporulation is the formation of an elongated chromosome structure called an axial filament. Here, we show that a major redistribution of SMC complexes drives axial filament formation in a process regulated by ParA/Soj. Furthermore, and unexpectedly, this regulation is dependent on monomeric forms of ParA/Soj that cannot bind DNA or hydrolyze ATP. These results reveal additional roles for ParA/Soj proteins in the regulation of SMC dynamics in bacteria and yet further complexity in the web of interactions involving chromosome replication, segregation and organization, controlled by ParAB and SMC.
Collapse
Affiliation(s)
- David M. Roberts
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4AX, United Kingdom
| | - Anna Anchimiuk
- Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore, 015 Lausanne, Switzerland
| | - Tomas G. Kloosterman
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4AX, United Kingdom
| | - Heath Murray
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4AX, United Kingdom
| | - Ling Juan Wu
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4AX, United Kingdom
| | - Stephan Gruber
- Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore, 015 Lausanne, Switzerland
| | - Jeff Errington
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4AX, United Kingdom
| |
Collapse
|
4
|
Visualization of Germination Proteins in Putative Bacillus cereus Germinosomes. Int J Mol Sci 2020; 21:ijms21155198. [PMID: 32707970 PMCID: PMC7432890 DOI: 10.3390/ijms21155198] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/29/2022] Open
Abstract
Bacillus cereus can survive in the form of spores for prolonged periods posing a serious problem for the manufacture of safe shelf-stable foods of optimal quality. Our study aims at increasing knowledge of B. cereus spores focusing primarily on germination mechanisms to develop novel milder food preservation strategies. Major features of B. cereus spores are a core with the genetic material encased by multiple protective layers, an important one being the spores′ inner membrane (IM), the location of many important germination proteins. To study mechanisms involved in germination of B. cereus spores, we have examined the organization of germinant receptors (GRs) in spores′ IM. Previous studies have indicated that in spores of B.cereus ATCC 14579 the L-alanine responsive GR, GerR, plays a major role in the germination process. In our study, the location of the GerR GR subunit, GerRB, in spores was examined as a C-terminal SGFP2 fusion protein expressed under the control of the gerR operon′s promoter. Our results showed that: (i) the fluorescence maxima and integrated intensity in spores with plasmid-borne expression of GerRB-SGFP2 were significantly higher than in wild-type spores; (ii) western blot analysis confirmed the expression of the GerRB-SGFP2 fusion protein in spores; and (iii) fluorescence microscopy visualized GerRB-SGFP2 specific bright foci in ~30% of individual dormant spores if only GerRB-SGFP2 was expressed, but, noticeably, in ~85% of spores upon co-expression with GerRA and GerRC. Our data corroborates the notion that co-expression of GR subunits improves their stability. Finally, all spores displayed bright fluorescent foci upon expression of GerD-mScarlet-I under the control of the gerD promoter. We termed all fluorescent foci observed germinosomes, the term used for the IM foci of GRs in Bacillus subtilis spores. Our data are the first evidence for the existence of germinosomes in B. cereus spores.
Collapse
|
5
|
Cury J, Oliveira PH, de la Cruz F, Rocha EPC. Host Range and Genetic Plasticity Explain the Coexistence of Integrative and Extrachromosomal Mobile Genetic Elements. Mol Biol Evol 2020; 35:2230-2239. [PMID: 29905872 PMCID: PMC6107060 DOI: 10.1093/molbev/msy123] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Self-transmissible mobile genetic elements drive horizontal gene transfer between prokaryotes. Some of these elements integrate in the chromosome, whereas others replicate autonomously as plasmids. Recent works showed the existence of few differences, and occasional interconversion, between the two types of elements. Here, we enquired on why evolutionary processes have maintained the two types of mobile genetic elements by comparing integrative and conjugative elements (ICE) with extrachromosomal ones (conjugative plasmids) of the highly abundant MPFT conjugative type. We observed that plasmids encode more replicases, partition systems, and antibiotic resistance genes, whereas ICEs encode more integrases and metabolism-associated genes. ICEs and plasmids have similar average sizes, but plasmids are much more variable, have more DNA repeats, and exchange genes more frequently. On the other hand, we found that ICEs are more frequently transferred between distant taxa. We propose a model where the different genetic plasticity and amplitude of host range between elements explain the co-occurrence of integrative and extrachromosomal elements in microbial populations. In particular, the conversion from ICE to plasmid allows ICE to be more plastic, while the conversion from plasmid to ICE allows the expansion of the element's host range.
Collapse
Affiliation(s)
- Jean Cury
- Microbial Evolutionary Genomics, Institut Pasteur, Paris, France.,CNRS, UMR3525, Paris, France
| | - Pedro H Oliveira
- Microbial Evolutionary Genomics, Institut Pasteur, Paris, France.,CNRS, UMR3525, Paris, France
| | - Fernando de la Cruz
- Departamento de Biologia Molecular e Instituto de Biomedicina y Biotecnologia de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| | - Eduardo P C Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, Paris, France.,CNRS, UMR3525, Paris, France
| |
Collapse
|
6
|
Kloosterman TG, Lenarcic R, Willis CR, Roberts DM, Hamoen LW, Errington J, Wu LJ. Complex polar machinery required for proper chromosome segregation in vegetative and sporulating cells of Bacillus subtilis. Mol Microbiol 2016; 101:333-50. [PMID: 27059541 PMCID: PMC4949633 DOI: 10.1111/mmi.13393] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/04/2016] [Accepted: 04/04/2016] [Indexed: 01/16/2023]
Abstract
Chromosome segregation is an essential process of cell multiplication. In prokaryotes, segregation starts with the newly replicated sister origins of replication, oriCs, which move apart to defined positions in the cell. We have developed a genetic screen to identify mutants defective in placement of oriC during spore development in the Gram‐positive bacterium Bacillus subtilis. In addition to the previously identified proteins Soj and DivIVA, our screen identified several new factors involved in polar recruitment of oriC: a reported regulator of competence ComN, and the regulators of division site selection MinD and MinJ. Previous work implicated Soj as an important regulator of oriC positioning in the cell. Our results suggest a model in which the DivIVA‐interacting proteins ComN and MinJ recruit MinD to the cell pole, and that these proteins work upstream of Soj to enable oriC placement. We show that these proteins form a polar complex, which acts in parallel with but distinct from the sporulation‐specific RacA pathway of oriC placement, and also functions during vegetative growth. Our study further shows that MinD has two distinct cell cycle roles, in cell division and chromosome segregation, and highlights that cell probably use multiple parallel mechanisms to ensure accurate chromosome segregation.
Collapse
Affiliation(s)
- Tomas G Kloosterman
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, UK.,Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Rok Lenarcic
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, UK.,Lek Pharmaceuticals d.d., Menges, Slovenia
| | - Clare R Willis
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - David M Roberts
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Leendert W Hamoen
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, UK.,Department of Cell Biology & Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeff Errington
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Ling J Wu
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
7
|
Jecz P, Bartosik AA, Glabski K, Jagura-Burdzy G. A single parS sequence from the cluster of four sites closest to oriC is necessary and sufficient for proper chromosome segregation in Pseudomonas aeruginosa. PLoS One 2015; 10:e0120867. [PMID: 25794281 PMCID: PMC4368675 DOI: 10.1371/journal.pone.0120867] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/27/2015] [Indexed: 11/19/2022] Open
Abstract
Among the mechanisms that control chromosome segregation in bacteria are highly-conserved partitioning systems comprising three components: ParA protein (a deviant Walker-type ATPase), ParB protein (a DNA-binding element) and multiple cis-acting palindromic centromere-like sequences, designated parS. Ten putative parS sites have been identified in the P. aeruginosa PAO1 genome, four localized in close proximity of oriC and six, diverged by more than one nucleotide from a perfect palindromic sequence, dispersed along the chromosome. Here, we constructed and analyzed P. aeruginosa mutants deprived of each single parS sequence and their different combinations. The analysis included evaluation of a set of phenotypic features, chromosome segregation, and ParB localization in the cells. It was found that ParB binds specifically to all ten parS sites, although with different affinities. The P. aeruginosa parS mutant with all ten parS sites modified (parSnull) is viable however it demonstrates the phenotype characteristic for parAnull or parBnull mutants: slightly slower growth rate, high frequency of anucleate cells, and defects in motility. The genomic position and sequence of parS determine its role in P. aeruginosa biology. It transpired that any one of the four parS sites proximal to oriC (parS1 to parS4), which are bound by ParB with the highest affinity, is necessary and sufficient for the parABS role in chromosome partitioning. When all these four sites are mutated simultaneously, the strain shows the parSnull phenotype, which indicates that none of the remaining six parS sites can substitute for these four oriC-proximal sites in this function. A single ectopic parS2 (inserted opposite oriC in the parSnull mutant) facilitates ParB organization into regularly spaced condensed foci and reverses some of the mutant phenotypes but is not sufficient for accurate chromosome segregation.
Collapse
Affiliation(s)
- Paulina Jecz
- Institute of Biochemistry and Biophysics, Department of Microbial Biochemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Aneta A. Bartosik
- Institute of Biochemistry and Biophysics, Department of Microbial Biochemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof Glabski
- Institute of Biochemistry and Biophysics, Department of Microbial Biochemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Grazyna Jagura-Burdzy
- Institute of Biochemistry and Biophysics, Department of Microbial Biochemistry, Polish Academy of Sciences, Warsaw, Poland
- * E-mail:
| |
Collapse
|
8
|
Lin YL, Pasero P. Interference between DNA replication and transcription as a cause of genomic instability. Curr Genomics 2012; 13:65-73. [PMID: 22942676 PMCID: PMC3269018 DOI: 10.2174/138920212799034767] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 10/03/2011] [Accepted: 10/06/2011] [Indexed: 11/22/2022] Open
Abstract
Replication and transcription are key aspects of DNA metabolism that take place on the same template and potentially interfere with each other. Conflicts between these two activities include head-on or co-directional collisions between DNA and RNA polymerases, which can lead to the formation of DNA breaks and chromosome rearrangements. To avoid these deleterious consequences and prevent genomic instability, cells have evolved multiple mechanisms preventing replication forks from colliding with the transcription machinery. Yet, recent reports indicate that interference between replication and transcription is not limited to physical interactions between polymerases and that other cotranscriptional processes can interfere with DNA replication. These include DNA-RNA hybrids that assemble behind elongating RNA polymerases, impede fork progression and promote homologous recombination. Here, we discuss recent evidence indicating that R-loops represent a major source of genomic instability in all organisms, from bacteria to human, and are potentially implicated in cancer development.
Collapse
Affiliation(s)
- Yea-Lih Lin
- Institute of Human Genetics, CNRS-UPR1142, Montpellier, France
| | | |
Collapse
|
9
|
Srivatsan A, Tehranchi A, MacAlpine DM, Wang JD. Co-orientation of replication and transcription preserves genome integrity. PLoS Genet 2010; 6:e1000810. [PMID: 20090829 PMCID: PMC2797598 DOI: 10.1371/journal.pgen.1000810] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 12/10/2009] [Indexed: 01/18/2023] Open
Abstract
In many bacteria, there is a genome-wide bias towards co-orientation of replication and transcription, with essential and/or highly-expressed genes further enriched co-directionally. We previously found that reversing this bias in the bacterium Bacillus subtilis slows replication elongation, and we proposed that this effect contributes to the evolutionary pressure selecting the transcription-replication co-orientation bias. This selection might have been based purely on selection for speedy replication; alternatively, the slowed replication might actually represent an average of individual replication-disruption events, each of which is counter-selected independently because genome integrity is selected. To differentiate these possibilities and define the precise forces driving this aspect of genome organization, we generated new strains with inversions either over ∼1/4 of the chromosome or at ribosomal RNA (rRNA) operons. Applying mathematical analysis to genomic microarray snapshots, we found that replication rates vary dramatically within the inverted genome. Replication is moderately impeded throughout the inverted region, which results in a small but significant competitive disadvantage in minimal medium. Importantly, replication is strongly obstructed at inverted rRNA loci in rich medium. This obstruction results in disruption of DNA replication, activation of DNA damage responses, loss of genome integrity, and cell death. Our results strongly suggest that preservation of genome integrity drives the evolution of co-orientation of replication and transcription, a conserved feature of genome organization. An important feature of genome organization is that transcription and replication are selectively co-oriented. This feature helps to avoid conflicts between head-on replication and transcription. The precise consequences of the conflict and how it affects genome organization remain to be understood. We previously found that reversing the transcription bias slows replication in the Bacillus subtilis genome. Here we engineered new inversions to avoid changes in other aspects of genome organization. We found that the reversed transcription bias is sufficient to decrease replication speed, and it results in lowered fitness of the inversion strains and a competitive disadvantage relative to wild-type cells in minimal medium. Further, by analyzing genomic copy-number snapshots to obtain replication speed as a function of genome position, we found that inversion of the strongly-transcribed rRNA genes obstructs replication during growth in rich medium. This confers a strong growth disadvantage to cells in rich medium, turns on DNA damage responses, and leads to cell death in a subpopulation of cells, while the surviving cells are more sensitive to genotoxic agents. Our results strongly support the hypothesis that evolution has favored co-orientation of transcription with replication, mainly to avoid these effects.
Collapse
Affiliation(s)
- Anjana Srivatsan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ashley Tehranchi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - David M. MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jue D. Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
10
|
Abstract
Spore formation in Bacillus subtilis is a superb experimental system with which to study some of the most fundamental problems of cellular development and differentiation. Work begun in the 1980s and ongoing today has led to an impressive understanding of the temporal and spatial regulation of sporulation, and the functions of many of the several hundred genes involved. Early in sporulation the cells divide in an unusual asymmetrical manner, to produce a small prespore cell and a much larger mother cell. Aside from developmental biology, this modified division has turned out to be a powerful system for investigation of cell cycle mechanisms, including the components of the division machine, how the machine is correctly positioned in the cell, and how division is coordinated with replication and segregation of the chromosome. Insights into these fundamental mechanisms have provided opportunities for the discovery and development of novel antibiotics. This review summarizes how the bacterial cell cycle field has developed over the last 20 or so years, focusing on opportunities emerging from the B. subtilis system.
Collapse
Affiliation(s)
- Jeff Errington
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| |
Collapse
|
11
|
Moriya S, Kawai Y, Kaji S, Smith A, Harry EJ, Errington J. Effects of oriC relocation on control of replication initiation in Bacillus subtilis. Microbiology (Reading) 2009; 155:3070-3082. [DOI: 10.1099/mic.0.030080-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In bacteria, DNA replication initiation is tightly regulated in order to coordinate chromosome replication with cell growth. InEscherichia coli, positive factors and negative regulatory mechanisms playing important roles in the strict control of DNA replication initiation have been reported. However, it remains unclear how bacterial cells recognize the right time for replication initiation during the cell cycle. In the Gram-positive bacteriumBacillus subtilis, much less is known about the regulation of replication initiation, specifically, regarding negative control mechanisms which ensure replication initiation only once per cell cycle. Here we report that replication initiation was greatly enhanced in strains that had the origin of replication (oriC) relocated to various loci on the chromosome. WhenoriCwas relocated to new loci further than 250 kb counterclockwise from the native locus, replication initiation became asynchronous and earlier than in the wild-type cells. In twooriC-relocated strains (oriCatargGorpnbA, 25 ° or 30 ° on the 36 ° chromosome map, respectively), DnaA levels were higher than in the wild-type but not enough to cause earlier initiation of replication. Our results suggest that the initiation capacity of replication is accumulated well before the actual time of initiation, and its release may be suppressed by a unique DNA structure formed near the nativeoriClocus.
Collapse
Affiliation(s)
- Shigeki Moriya
- Institute for the Biotechnology of Infectious Diseases, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Yoshikazu Kawai
- Institute for Cell and Molecular Biosciences, University of Newcastle, Framlington Place, Newcastle NE2 4HH, UK
| | - Sakiko Kaji
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Adrian Smith
- Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Locked Bag No. 6, Newtown, NSW 2042, Australia
| | - Elizabeth J. Harry
- Institute for the Biotechnology of Infectious Diseases, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Jeffery Errington
- Institute for Cell and Molecular Biosciences, University of Newcastle, Framlington Place, Newcastle NE2 4HH, UK
| |
Collapse
|
12
|
Recruitment of SMC by ParB-parS organizes the origin region and promotes efficient chromosome segregation. Cell 2009; 137:697-707. [PMID: 19450517 DOI: 10.1016/j.cell.2009.04.044] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 02/16/2009] [Accepted: 04/20/2009] [Indexed: 12/27/2022]
Abstract
Organization and segregation of replicated chromosomes are essential processes during cell division in all organisms. Similar to eukaryotes, bacteria possess centromere-like DNA sequences (parS) that cluster at the origin of replication and the structural maintenance of chromosomes (SMC) complexes for faithful chromosome segregation. In Bacillus subtilis, parS sites are bound by the partitioning protein Spo0J (ParB), and we show here that Spo0J recruits the SMC complex to the origin. We demonstrate that the SMC complex colocalizes with Spo0J at the origin and that insertion of parS sites near the replication terminus targets SMC to this position leading to defects in chromosome organization and segregation. Consistent with these findings, the subcellular localization of the SMC complex is disrupted in the absence of Spo0J or the parS sites. We propose a model in which recruitment of SMC to the origin by Spo0J-parS organizes the origin region and promotes efficient chromosome segregation.
Collapse
|
13
|
Recruitment of condensin to replication origin regions by ParB/SpoOJ promotes chromosome segregation in B. subtilis. Cell 2009; 137:685-96. [PMID: 19450516 DOI: 10.1016/j.cell.2009.02.035] [Citation(s) in RCA: 235] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 12/23/2008] [Accepted: 02/19/2009] [Indexed: 11/20/2022]
Abstract
Proper segregation of DNA replication products is essential in all cells. In Bacillus subtilis, two protein complexes have been implicated in this process: the ParAB homologs, Soj and Spo0J, and the bacterial Smc/ScpAB complex, also called condensin. Here we demonstrate that Smc is highly enriched in the region around the origin of replication, specifically near parS sites to which Spo0J binds and at highly transcribed genes. Furthermore, we find that efficient recruitment of Smc to a large region around the origin of replication depends on the presence of Spo0J. We show that Spo0J performs two independent functions: regulation of initiation of DNA replication via Soj and promotion of chromosome segregation by Smc recruitment. Our results demonstrate a direct functional interaction between two widely conserved systems involved in chromosome replication and segregation.
Collapse
|
14
|
Sequence-directed DNA export guides chromosome translocation during sporulation in Bacillus subtilis. Nat Struct Mol Biol 2008; 15:485-93. [PMID: 18391964 DOI: 10.1038/nsmb.1412] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 02/22/2008] [Indexed: 11/08/2022]
Abstract
In prokaryotes, the transfer of DNA between cellular compartments is essential for the segregation and exchange of genetic material. SpoIIIE and FtsK are AAA+ ATPases responsible for intercompartmental chromosome translocation in bacteria. Despite functional and sequence similarities, these motors were proposed to use drastically different mechanisms: SpoIIIE was suggested to be a unidirectional DNA transporter that exports DNA from the compartment in which it assembles, whereas FtsK was shown to establish translocation directionality by interacting with highly skewed chromosomal sequences. Here we use a combination of single-molecule, bioinformatics and in vivo fluorescence methodologies to study the properties of DNA translocation by SpoIIIE in vitro and in vivo. These data allow us to propose a sequence-directed DNA exporter model that reconciles previously proposed models for SpoIIIE and FtsK, constituting a unified model for directional DNA transport by the SpoIIIE/FtsK family of AAA+ ring ATPases.
Collapse
|
15
|
Yamaichi Y, Fogel MA, McLeod SM, Hui MP, Waldor MK. Distinct centromere-like parS sites on the two chromosomes of Vibrio spp. J Bacteriol 2007; 189:5314-24. [PMID: 17496089 PMCID: PMC1951861 DOI: 10.1128/jb.00416-07] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Vibrio cholerae, the cause of cholera, has two circular chromosomes. The parAB genes on each V. cholerae chromosome act to control chromosome segregation in a replicon-specific fashion. The chromosome I (ChrI) parAB genes (parAB1) govern the localization of the origin region of ChrI, while the chromosome II (ChrII) parAB genes (parAB2) control the segregation of ChrII. In addition to ParA and ParB proteins, Par systems require ParB binding sites (parS). Here we identified the parS sites on both V. cholerae chromosomes. We found three clustered origin-proximal ParB1 binding parS1 sites on ChrI. Deletion of these three parS1 sites abrogated yellow fluorescent protein (YFP)-ParB1 focus formation in vivo and resulted in mislocalization of the ChrI origin region. However, as observed in a parA1 mutant, mislocalization of the ChrI origin region in the parS1 mutant did not compromise V. cholerae growth, suggesting that additional (non-Par-related) mechanisms may mediate the partitioning of ChrI. We also identified 10 ParB2 binding parS2 sites, which differed in sequence from parS1. Fluorescent derivatives of ParB1 and ParB2 formed foci only with the cognate parS sequence. parABS2 appears to form a functional partitioning system, as we found that parABS2 was sufficient to stabilize an ordinarily unstable plasmid in Escherichia coli. Most parS2 sites were located within 70 kb of the ChrII origin of replication, but one parS2 site was found in the terminus region of ChrI. In contrast, in other sequenced vibrio species, the distribution of parS1 and parS2 sites was entirely chromosome specific.
Collapse
Affiliation(s)
- Yoshiharu Yamaichi
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
16
|
Wang JD, Berkmen MB, Grossman AD. Genome-wide coorientation of replication and transcription reduces adverse effects on replication in Bacillus subtilis. Proc Natl Acad Sci U S A 2007; 104:5608-13. [PMID: 17372224 PMCID: PMC1838449 DOI: 10.1073/pnas.0608999104] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In many bacteria, there is a strong bias for genes to be encoded on the leading strand of DNA, resulting in coorientation of replication and transcription. In Bacillus subtilis, transcription of the majority of genes (75%) is cooriented with replication. By using genome-wide profiling of replication with DNA microarrays, we found that this coorientation bias reduces adverse effects of transcription on replication. We found that in wild-type cells, transcription did not appear to affect the rate of replication elongation. However, in mutants with reversed transcription bias for an extended region of the chromosome, replication elongation was slower. This reduced replication rate depended on transcription and was limited to the region in which the directions of replication and transcription are opposed. These results support the hypothesis that the strong bias to coorient transcription and replication is due to selective pressure for processive, efficient, and accurate replication.
Collapse
Affiliation(s)
- Jue D. Wang
- Department of Biology, Building 68-530, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Melanie B. Berkmen
- Department of Biology, Building 68-530, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Alan D. Grossman
- Department of Biology, Building 68-530, Massachusetts Institute of Technology, Cambridge, MA 02139
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
17
|
Lee PS, Grossman AD. The chromosome partitioning proteins Soj (ParA) and Spo0J (ParB) contribute to accurate chromosome partitioning, separation of replicated sister origins, and regulation of replication initiation in Bacillus subtilis. Mol Microbiol 2006; 60:853-69. [PMID: 16677298 DOI: 10.1111/j.1365-2958.2006.05140.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Soj (ParA) and Spo0J (ParB) of Bacillus subtilis belong to a conserved family of proteins required for efficient plasmid and chromosome partitioning in many bacterial species. Unlike most Par systems, for which intact copies of both parA and parB are required for the Par system to function, inactivating soj does not cause a detectable chromosome partitioning phenotype whereas inactivating spo0J leads to a 100-fold increase in the production of anucleate cells. This suggested either that Soj does not function like other ParA homologues, or that a cellular factor might compensate for the absence of soj. We found that inactivating smc, the gene encoding the structural maintenance of chromosomes (SMC) protein, unmasked a role for Soj in chromosome partitioning. A soj null mutation dramatically enhanced production of anucleate cells in an smc null mutant. To look for effects of a soj null on other phenotypes perturbed in a spo0J null mutant, we analysed replication initiation and origin positioning in (soj-spo0J)+, Deltasoj, Deltaspo0J and Delta(soj-spo0J) cells. All of the mutations caused increased initiation of replication and, to varying extents, affected origin positioning. Using a new assay to measure separation of the chromosomal origins, we found that inactivating soj, spo0J or both led to a significant defect in separating replicated sister origins, such that the origins remain too close to be spatially resolved. Separation of a region outside the origin was not affected. These results indicate that there are probably factors helping to pair sister origin regions for part of the replication cycle, and that Soj and Spo0J may antagonize this pairing to contribute to timely separation of replicated origins. The effects of Deltasoj, Deltaspo0J and Delta(soj-spo0J) mutations on origin positioning, chromosome partitioning and replication initiation may be a secondary consequence of a defect in separating replicated origins.
Collapse
Affiliation(s)
- Philina S Lee
- Department of Biology, Building 68-530, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
18
|
Prozorov AA. The Bacterial Cell Cycle: DNA Replication, Nucleoid Segregation, and Cell Division. Microbiology (Reading) 2005. [DOI: 10.1007/s11021-005-0077-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
19
|
Leonard TA, Møller-Jensen J, Löwe J. Towards understanding the molecular basis of bacterial DNA segregation. Philos Trans R Soc Lond B Biol Sci 2005; 360:523-35. [PMID: 15897178 PMCID: PMC1569471 DOI: 10.1098/rstb.2004.1608] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacteria ensure the fidelity of genetic inheritance by the coordinated control of chromosome segregation and cell division. Here, we review the molecules and mechanisms that govern the correct subcellular positioning and rapid separation of newly replicated chromosomes and plasmids towards the cell poles and, significantly, the emergence of mitotic-like machineries capable of segregating plasmid DNA. We further describe surprising similarities between proteins involved in DNA partitioning (ParA/ParB) and control of cell division (MinD/MinE), suggesting a mechanism for intracellular positioning common to the two processes. Finally, we discuss the role that the bacterial cytoskeleton plays in DNA partitioning and the missing link between prokaryotes and eukaryotes that is bacterial mechano-chemical motor proteins.
Collapse
Affiliation(s)
- Thomas A Leonard
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | | | |
Collapse
|
20
|
Jakimowicz D, Gust B, Zakrzewska-Czerwinska J, Chater KF. Developmental-stage-specific assembly of ParB complexes in Streptomyces coelicolor hyphae. J Bacteriol 2005; 187:3572-80. [PMID: 15866947 PMCID: PMC1112017 DOI: 10.1128/jb.187.10.3572-3580.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Streptomyces coelicolor ParB is required for accurate chromosome partitioning during sporulation. Using a functional ParB-enhanced green fluorescent protein fusion, we observed bright tip-associated foci and other weaker, irregular foci in S. coelicolor vegetative hyphae. In contrast, in aerial hyphae regularly spaced bright foci accompanied sporulation-associated chromosome condensation and septation.
Collapse
Affiliation(s)
- Dagmara Jakimowicz
- John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, United Kingdom.
| | | | | | | |
Collapse
|
21
|
Boccard F, Esnault E, Valens M. Spatial arrangement and macrodomain organization of bacterial chromosomes. Mol Microbiol 2005; 57:9-16. [PMID: 15948945 DOI: 10.1111/j.1365-2958.2005.04651.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent developments in fluorescence microscopy have shown that bacterial chromosomes have a defined spatial arrangement that preserves the linear order of genes on the genetic map. These approaches also revealed that large portions of the chromosome in Escherichia coli or Bacillus subtilis are concentrated in the same cellular space, suggesting an organization as large regions defined as macrodomains. In E. coli, two macrodomains of 1 Mb containing the replication origin (Ori) and the replication terminus (Ter) have been shown to relocalize at specific steps of the cell cycle. A genetic analysis of the collision probability between distant DNA sites in E. coli has confirmed the presence of macrodomains by revealing the existence of large regions that do not collide with each other. Two macrodomains defined by the genetic approach coincide with the Ori and Ter macrodomains, and two new macrodomains flanking the Ter macrodomain have been identified. Altogether, these results indicate that the E. coli chromosome has a ring organization with four structured and two less-structured regions. Implications for chromosome dynamics during the cell cycle and future prospects for the characterization and understanding of macrodomain organization are discussed.
Collapse
Affiliation(s)
- Frédéric Boccard
- Centre de Génétique Moléculaire du CNRS, Bât. 26, 1 Avenue de la Terrasse, F-91198 Gif-sur-Yvette, France.
| | | | | |
Collapse
|
22
|
Real G, Autret S, Harry EJ, Errington J, Henriques AO. Cell division protein DivIB influences the Spo0J/Soj system of chromosome segregation in Bacillus subtilis. Mol Microbiol 2005; 55:349-67. [PMID: 15659156 DOI: 10.1111/j.1365-2958.2004.04399.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The initiation of the developmental process of sporulation in the rod-shaped bacterium Bacillus subtilis involves the activation of the Spo0A response regulator. Spo0A then drives the switch in the site of division septum formation from midcell to a polar position. Activated Spo0A is required for the transcription of key sporulation loci such as spoIIG, which are negatively regulated by the Soj protein. The transcriptional repressing activity of Soj is antagonized by Spo0J, and both proteins belong to the well-conserved Par family of partitioning proteins. Soj has been shown to jump from nucleoid to nucleoid via the cell pole. The dynamic behaviour of Soj is somehow controlled by Spo0J, which prevents the static association of Soj with the nucleoid, and presumably its transcriptional repression activity. Soj in turn is required for the proper condensation of Spo0J foci around the oriC region. The asymmetric partitioning of the sporangial cell requires DivIB and other proteins involved in vegetative (medial) division. We describe an allele of the cell division gene divIB (divIB80) that reduces the cellular levels of DivIB, and affects nucleoid structure and segregation in growing cells, yet has no major impact on cell division. In divIB80 cells Spo0J foci are not correctly condensed and Soj associates statically with the nucleoid. The divIB80 allele prevents transcription of spoIIG, and arrests sporulation prior to the formation of the asymmetric division septum. The defect in Spo0A-dependent gene expression, and the Spo- phenotype can be suppressed by expression of divIB in trans or by deletion of the soj-spo0J locus. However, deletion of the spo0J-soj region does not restore the normal cellular levels of DivIB. Therefore, the reduced levels of DivIB in the divIB80 mutant are sufficient for efficient cell division, but not to sustain a second, earlier function of DivIB related to the activity of the Spo0J/Soj system of chromosome segregation.
Collapse
Affiliation(s)
- Gonçalo Real
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, Apartado 127, 2781-901 Oeiras Codex, Portugal
| | | | | | | | | |
Collapse
|
23
|
Ben-Yehuda S, Fujita M, Liu XS, Gorbatyuk B, Skoko D, Yan J, Marko JF, Liu JS, Eichenberger P, Rudner DZ, Losick R. Defining a Centromere-like Element in Bacillus subtilis by Identifying the Binding Sites for the Chromosome-Anchoring Protein RacA. Mol Cell 2005; 17:773-82. [PMID: 15780934 DOI: 10.1016/j.molcel.2005.02.023] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Revised: 01/16/2005] [Accepted: 02/16/2005] [Indexed: 10/25/2022]
Abstract
Chromosome segregation during sporulation in Bacillus subtilis involves the anchoring of sister chromosomes to opposite ends of the cell. Anchoring is mediated by RacA, which acts as a bridge between a centromere-like element in the vicinity of the origin of replication and the cell pole. To define this element we mapped RacA binding sites by performing chromatin immunoprecipitation in conjunction with gene microarray analysis. RacA preferentially bound to 25 regions spread over 612 kb across the origin portion of the chromosome. Computational and biochemical analysis identified a GC-rich, inverted 14 bp repeat as the recognition sequence. Experiments with single molecules of DNA demonstrated that RacA can condense nonspecific DNA dramatically against appreciable forces to form a highly stable protein-DNA complex. We propose that interactions between DNA bound RacA molecules cause the centromere-like element to fold up into a higher order complex that fastens the chromosome to the cell pole.
Collapse
Affiliation(s)
- Sigal Ben-Yehuda
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Leonard TA, Butler PJ, Löwe J. Bacterial chromosome segregation: structure and DNA binding of the Soj dimer--a conserved biological switch. EMBO J 2005; 24:270-82. [PMID: 15635448 PMCID: PMC545817 DOI: 10.1038/sj.emboj.7600530] [Citation(s) in RCA: 239] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Accepted: 11/29/2004] [Indexed: 11/08/2022] Open
Abstract
Soj and Spo0J of the Gram-negative hyperthermophile Thermus thermophilus belong to the conserved ParAB family of bacterial proteins implicated in plasmid and chromosome partitioning. Spo0J binds to DNA near the replication origin and localises at the poles following initiation of replication. Soj oscillates in the nucleoid region in an ATP- and Spo0J-dependent fashion. Here, we show that Soj undergoes ATP-dependent dimerisation in solution and forms nucleoprotein filaments with DNA. Crystal structures of Soj in three nucleotide states demonstrate that the empty and ADP-bound states are monomeric, while a hydrolysis-deficient mutant, D44A, is capable of forming a nucleotide 'sandwich' dimer. Soj ATPase activity is stimulated by Spo0J or the N-terminal 20 amino-acid peptide of Spo0J. Our analysis shows that dimerisation and activation involving a peptide containing a Lys/Arg is conserved for Soj, ParA and MinD and their modulators Spo0J, ParB and MinE, respectively. By homology to the nitrogenase iron protein and the GTPases Ffh/FtsY, we suggest that Soj dimerisation and regulation represent a conserved biological switch.
Collapse
|
25
|
Bravo A, Serrano-Heras G, Salas M. Compartmentalization of prokaryotic DNA replication. FEMS Microbiol Rev 2005; 29:25-47. [PMID: 15652974 DOI: 10.1016/j.femsre.2004.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Revised: 06/15/2004] [Accepted: 06/17/2004] [Indexed: 11/22/2022] Open
Abstract
It becomes now apparent that prokaryotic DNA replication takes place at specific intracellular locations. Early studies indicated that chromosomal DNA replication, as well as plasmid and viral DNA replication, occurs in close association with the bacterial membrane. Moreover, over the last several years, it has been shown that some replication proteins and specific DNA sequences are localized to particular subcellular regions in bacteria, supporting the existence of replication compartments. Although the mechanisms underlying compartmentalization of prokaryotic DNA replication are largely unknown, the docking of replication factors to large organizing structures may be important for the assembly of active replication complexes. In this article, we review the current state of this subject in two bacterial species, Escherichia coli and Bacillus subtilis, focusing our attention in both chromosomal and extrachromosomal DNA replication. A comparison with eukaryotic systems is also presented.
Collapse
Affiliation(s)
- Alicia Bravo
- Instituto de Biología Molecular Eladio Viñuela (CSIC), Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain.
| | | | | |
Collapse
|
26
|
Valens M, Penaud S, Rossignol M, Cornet F, Boccard F. Macrodomain organization of the Escherichia coli chromosome. EMBO J 2004; 23:4330-41. [PMID: 15470498 PMCID: PMC524398 DOI: 10.1038/sj.emboj.7600434] [Citation(s) in RCA: 258] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Accepted: 09/09/2004] [Indexed: 01/09/2023] Open
Abstract
We have explored the Escherichia coli chromosome architecture by genetic dissection, using a site-specific recombination system that reveals the spatial proximity of distant DNA sites and records interactions. By analysing the percentages of recombination between pairs of sites scattered over the chromosome, we observed that DNA interactions were restricted to within subregions of the chromosome. The results indicated an organization into a ring composed of four macrodomains and two less-structured regions. Two of the macrodomains defined by recombination efficiency are similar to the Ter and Ori macrodomains observed by FISH. Two newly characterized macrodomains flank the Ter macrodomain and two less-structured regions flank the Ori macrodomain. Also the interactions between sister chromatids are rare, suggesting that chromosome segregation quickly follows replication. These results reveal structural features that may be important for chromosome dynamics during the cell cycle.
Collapse
Affiliation(s)
- Michèle Valens
- Centre de Génétique Moléculaire du CNRS, Gif-sur-Yvette, France
| | | | | | - François Cornet
- Laboratoire de Microbiologie et Génétique Moléculaire du CNRS, Toulouse, France
| | - Frédéric Boccard
- Centre de Génétique Moléculaire du CNRS, Gif-sur-Yvette, France
- Centre de Génétique Moléculaire du CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France. Tel.: +33 1 6982 3211; Fax: +33 1 6982 3150; E-mail:
| |
Collapse
|
27
|
Hilbert DW, Piggot PJ. Compartmentalization of gene expression during Bacillus subtilis spore formation. Microbiol Mol Biol Rev 2004; 68:234-62. [PMID: 15187183 PMCID: PMC419919 DOI: 10.1128/mmbr.68.2.234-262.2004] [Citation(s) in RCA: 252] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene expression in members of the family Bacillaceae becomes compartmentalized after the distinctive, asymmetrically located sporulation division. It involves complete compartmentalization of the activities of sporulation-specific sigma factors, sigma(F) in the prespore and then sigma(E) in the mother cell, and then later, following engulfment, sigma(G) in the prespore and then sigma(K) in the mother cell. The coupling of the activation of sigma(F) to septation and sigma(G) to engulfment is clear; the mechanisms are not. The sigma factors provide the bare framework of compartment-specific gene expression. Within each sigma regulon are several temporal classes of genes, and for key regulators, timing is critical. There are also complex intercompartmental regulatory signals. The determinants for sigma(F) regulation are assembled before septation, but activation follows septation. Reversal of the anti-sigma(F) activity of SpoIIAB is critical. Only the origin-proximal 30% of a chromosome is present in the prespore when first formed; it takes approximately 15 min for the rest to be transferred. This transient genetic asymmetry is important for prespore-specific sigma(F) activation. Activation of sigma(E) requires sigma(F) activity and occurs by cleavage of a prosequence. It must occur rapidly to prevent the formation of a second septum. sigma(G) is formed only in the prespore. SpoIIAB can block sigma(G) activity, but SpoIIAB control does not explain why sigma(G) is activated only after engulfment. There is mother cell-specific excision of an insertion element in sigK and sigma(E)-directed transcription of sigK, which encodes pro-sigma(K). Activation requires removal of the prosequence following a sigma(G)-directed signal from the prespore.
Collapse
Affiliation(s)
- David W Hilbert
- Department of Microbiology and Immunology, Temple University School of Medicine, 3400 N. Broad St., Philadelphia, PA 19140, USA
| | | |
Collapse
|
28
|
Abstract
The structural elucidation of clear but distant homologs of actin and tubulin in bacteria and GFP labeling of these proteins promises to reinvigorate the field of prokaryotic cell biology. FtsZ (the tubulin homolog) and MreB/ParM (the actin homologs) are indispensable for cellular tasks that require the cell to accurately position molecules, similar to the function of the eukaryotic cytoskeleton. FtsZ is the organizing molecule of bacterial cell division and forms a filamentous ring around the middle of the cell. Many molecules, including MinCDE, SulA, ZipA, and FtsA, assist with this process directly. Recently, genes much more similar to tubulin than to FtsZ have been identified in Verrucomicrobia. MreB forms helices underneath the inner membrane and probably defines the shape of the cell by positioning transmembrane and periplasmic cell wall-synthesizing enzymes. Currently, no interacting proteins are known for MreB and its relatives that help these proteins polymerize or depolymerize at certain times and places inside the cell. It is anticipated that MreB-interacting proteins exist in analogy to the large number of actin binding proteins in eukaryotes. ParM (a plasmid-borne actin homolog) is directly involved in pushing certain single-copy plasmids to the opposite poles by ParR/parC-assisted polymerization into double-helical filaments, much like the filaments formed by actin, F-actin. Mollicutes seem to have developed special systems for cell shape determination and motility, such as the fibril protein in Spiroplasma.
Collapse
Affiliation(s)
- Jan Löwe
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom.
| | | | | |
Collapse
|
29
|
Abstract
The replication of the chromosome is among the most essential functions of the bacterial cell and influences many other cellular mechanisms, from gene expression to cell division. Yet the way it impacts on the bacterial chromosome was not fully acknowledged until the availability of complete genomes allowed one to look upon genomes as more than bags of genes. Chromosomal replication includes a set of asymmetric mechanisms, among which are a division in a lagging and a leading strand and a gradient between early and late replicating regions. These differences are the causes of many of the organizational features observed in bacterial genomes, in terms of both gene distribution and sequence composition along the chromosome. When asymmetries or gradients increase in some genomes, e.g. due to a different composition of the DNA polymerase or to a higher growth rate, so do the corresponding biases. As some of the features of the chromosome structure seem to be under strong selection, understanding such biases is important for the understanding of chromosome organization and adaptation. Inversely, understanding chromosome organization may shed further light on questions relating to replication and cell division. Ultimately, the understanding of the interplay between these different elements will allow a better understanding of bacterial genetics and evolution.
Collapse
Affiliation(s)
- Eduardo P C Rocha
- Atelier de Bioinformatique, Université Pierre et Marie Curie, 12, Rue Cuvier, 75005 Paris, and Unité Génétique des Génomes Bactériens, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
30
|
Campo N, Dias MJ, Daveran-Mingot ML, Ritzenthaler P, Le Bourgeois P. Chromosomal constraints in Gram-positive bacteria revealed by artificial inversions. Mol Microbiol 2004; 51:511-22. [PMID: 14756790 DOI: 10.1046/j.1365-2958.2003.03847.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We used artificial chromosome inversions to investigate the chromosomal constraints that preserve genome organization in the Gram-positive bacterium Lactococcus lactis. Large inversions, 80-1260 kb in length, disturbing the symmetry of the origin and terminus of the replication axis to various extents, were constructed using the site-specific Cre-loxP recombination system. These inversions were all mechanistically feasible and fell into various classes according to stability and effect on cell fitness. The L. lactis chromosome supports only to some extent unbalance in length of its replication arms. The location of detrimental inversions allowed identification of two constrained chromosomal regions: a large domain covering one fifth of the genome that encompasses the origin of replication (Ori domain), and a smaller domain located at the opposite of the chromosome (Ter domain).
Collapse
Affiliation(s)
- N Campo
- Laboratoire de Microbiologie et Génétique Moléculaire du CNRS (UMR5100), Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
| | | | | | | | | |
Collapse
|
31
|
Abstract
In bacteria, chromosome segregation and DNA replication occur concurrently and there is no clear equivalent of a eukaryote mitotic spindle. Chromosome segregation can be viewed as a two-step process. As the first step, the origin of replication regions are segregated actively, probably by a mechanism involving an as yet unidentified motor protein or proteins, and held in position. The second step is the separation and migration of the rest of the chromosome probably driven by forces generated from various cellular processes such as DNA replication, transcription and transertion.
Collapse
Affiliation(s)
- Ling Juan Wu
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
32
|
Abstract
It is now clear that bacterial chromosomes rapidly separate in a manner independent of cell elongation, suggesting the existence of a mitotic apparatus in bacteria. Recent studies of bacterial cells reveal filamentous structures similar to the eukaryotic cytoskeleton, proteins that mediate polar chromosome anchoring during Bacillus subtilis sporulation, and SMC interacting proteins that are involved in chromosome condensation. A picture is thereby developing of how bacterial chromosomes are organized within the cell, how they are separated following duplication, and how these processes are coordinated with the cell cycle.
Collapse
Affiliation(s)
- Kit Pogliano
- Division of Biological Sciences, 9500 Gilman Drive, University of California-San Diego, La Jolla, CA 92093-0349, USA.
| | | | | |
Collapse
|
33
|
Yamaichi Y, Niki H. migS, a cis-acting site that affects bipolar positioning of oriC on the Escherichia coli chromosome. EMBO J 2003; 23:221-33. [PMID: 14685268 PMCID: PMC1271666 DOI: 10.1038/sj.emboj.7600028] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Accepted: 11/14/2003] [Indexed: 11/09/2022] Open
Abstract
During replication of the Escherichia coli chromosome, the replicated Ori domains migrate towards opposite cell poles, suggesting that a cis-acting site for bipolar migration is located in this region. To identify this cis-acting site, a series of mutants was constructed by splitting subchromosomes from the original chromosome. One mutant, containing a 720 kb subchromosome, was found to be defective in the bipolar positioning of oriC. The creation of deletion mutants allowed the identification of migS, a 25 bp sequence, as the cis-acting site for the bipolar positioning of oriC. When migS was located at the replication terminus, the chromosomal segment showed bipolar positioning. migS was able to rescue bipolar migration of plasmid DNA containing a mutation in the SopABC partitioning system. Interestingly, multiple copies of the migS sequence on a plasmid in trans inhibited the bipolar positioning of oriC. Taken together, these findings indicate that migS plays a crucial role in the bipolar positioning of oriC. In addition, real-time analysis of the dynamic morphological changes of nucleoids in wild-type and migS mutants suggests that bipolar positioning of the replicated oriC contributes to nucleoid organization.
Collapse
Affiliation(s)
- Yoshiharu Yamaichi
- Radioisotope Center, National Institute of Genetics, Yata 1111, Mishima 411-8540 Japan
- Graduate School of Medicine, Kumamoto University, Kuhonji 4-24-1, Kumamoto 862-0976, Japan
| | - Hironori Niki
- Radioisotope Center, National Institute of Genetics, Yata 1111, Mishima 411-8540 Japan
- National Institute of Genetics, Radioisotope Center, Yata 1111, Mishima 411-8540, Japan. Tel.: +81 55 981 6870; Fax: +81 55 981 6880/6871; E-mail:
| |
Collapse
|
34
|
Abstract
Bacteria exhibit a high degree of intracellular organization, both in the timing of essential processes and in the placement of the chromosome, the division site, and individual structural and regulatory proteins. We examine the temporal and spatial regulation of the Caulobacter cell cycle, bacterial chromosome segregation and cytokinesis, and Bacillus subtilis sporulation. Mechanisms that control timing of cell cycle and developmental events include transcriptional cascades, regulated phosphorylation and proteolysis of signal transduction proteins, transient genetic asymmetry, and intercellular communication. Surprisingly, many signal transduction proteins are dynamically localized to specific subcellular addresses during the cell division cycle and sporulation, and proper localization is essential for their function. The Min proteins that govern division site selection in Escherichia coli may be the first example of a system that generates positional information de novo.
Collapse
Affiliation(s)
- Kathleen R Ryan
- Department of Developmental Biology, Beckman Center, Stanford University School of Medicine, Stanford, California 94305-5329, USA.
| | | |
Collapse
|
35
|
Kruse T, Møller-Jensen J, Løbner-Olesen A, Gerdes K. Dysfunctional MreB inhibits chromosome segregation in Escherichia coli. EMBO J 2003; 22:5283-92. [PMID: 14517265 PMCID: PMC204487 DOI: 10.1093/emboj/cdg504] [Citation(s) in RCA: 237] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mechanism of prokaryotic chromosome segregation is not known. MreB, an actin homolog, is a shape-determining factor in rod-shaped prokaryotic cells. Using immunofluorescence microscopy we found that MreB of Escherichia coli formed helical filaments located beneath the cell surface. Flow cytometric and cytological analyses indicated that MreB-depleted cells segregated their chromosomes in pairs, consistent with chromosome cohesion. Overexpression of wild-type MreB inhibited cell division but did not perturb chromosome segregation. Overexpression of mutant forms of MreB inhibited cell division, caused abnormal MreB filament morphology and induced severe localization defects of the nucleoid and of the oriC and terC chromosomal regions. The chromosomal terminus regions appeared cohered in both MreB-depleted cells and in cells overexpressing mutant forms of MreB. Our observations indicate that MreB filaments participate in directional chromosome movement and segregation.
Collapse
Affiliation(s)
- Thomas Kruse
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, DK-5230 Odense M, Denmark
| | | | | | | |
Collapse
|
36
|
Abstract
Spore formation in bacteria poses a number of biological problems of fundamental significance. Asymmetric cell division at the onset of sporulation is a powerful model for studying basic cell-cycle problems, including chromosome segregation and septum formation. Sporulation is one of the best understood examples of cellular development and differentiation. Fascinating problems posed by sporulation include the temporal and spatial control of gene expression, intercellular communication and various aspects of cell morphogenesis.
Collapse
Affiliation(s)
- Jeff Errington
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| |
Collapse
|
37
|
Espeli O, Nurse P, Levine C, Lee C, Marians KJ. SetB: an integral membrane protein that affects chromosome segregation in Escherichia coli. Mol Microbiol 2003; 50:495-509. [PMID: 14617174 DOI: 10.1046/j.1365-2958.2003.03736.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SetB was identified as a high-copy suppressor of the partition defect of a mutation in parC, encoding one of the subunits of topoisomerase IV. Deletion of this integral inner membrane protein causes a delay in chromosome segregation, whereas its overproduction causes nucleoid disintegration and stretching, leading to a cell division defect. setB deletion mutants also exhibit a synthetic phenotype when combined with mutations that delete the C-terminal motor domain of the septal ring protein FtsK. SetB localizes in the cell as a helix and interacts with MreB, the bacterial actin homologue, which also forms a helix. These observations suggest that there may be a link between chromosome segregation and cellular infrastructure.
Collapse
Affiliation(s)
- Olivier Espeli
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
38
|
Wu LJ, Errington J. RacA and the Soj-Spo0J system combine to effect polar chromosome segregation in sporulating Bacillus subtilis. Mol Microbiol 2003; 49:1463-75. [PMID: 12950914 DOI: 10.1046/j.1365-2958.2003.03643.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sporulating cells of Bacillus subtilis undergo a highly polarized cell division and possess a specialized mechanism to move the oriC region of the chromosome close to the cell pole before septation. DivIVA protein, which localizes to the cell pole, and the Soj and Spo0J proteins, which associate with the chromosome, are part of the mechanism that delivers the chromosome to the cell pole. A sporulation-specific protein, RacA, encodes a third DNA-binding protein, which acts in conjunction with Soj and Spo0J to effect efficient polar chromosome segregation. divIVA mutants and soj racA double mutants have an unexpected phenotype in which specific markers to the left and right of oriC can be captured in the prespore compartment but the central oriC region is efficiently excluded. This 'residual' trapping requires Spo0J protein. We suggest that the Soj RacA DivIVA system is required to extract the oriC region from its position determined by the vegetative chromosome segregation machinery and anchor it to the cell pole.
Collapse
Affiliation(s)
- Ling Juan Wu
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | | |
Collapse
|
39
|
Rocha EPC, Fralick J, Vediyappan G, Danchin A, Norris V. A strand-specific model for chromosome segregation in bacteria. Mol Microbiol 2003; 49:895-903. [PMID: 12890016 DOI: 10.1046/j.1365-2958.2003.03606.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chromosome separation and segregation must be executed within a bacterial cell in which the membrane and cytoplasm are highly structured. Here, we develop a strand-specific model based on each of the future daughter chromosomes being associated with a different set of structures or hyperstructures in an asymmetric cell. The essence of the segregation mechanism is that the genes on the same strand in the parental cell that are expressed together in a hyperstructure continue to be expressed together and segregate together in the daughter cell. The model therefore requires an asymmetric distribution of classes of genes and of binding sites and other structures on the strands of the parental chromosome. We show that the model is consistent with the asymmetric distribution of highly expressed genes and of stress response genes in Escherichia coli and Bacillus subtilis. The model offers a framework for interpreting data from genomics.
Collapse
Affiliation(s)
- Eduardo P C Rocha
- Unité Génétique des Génomes Bactériens, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris 15, France
| | | | | | | | | |
Collapse
|
40
|
Lee PS, Lin DCH, Moriya S, Grossman AD. Effects of the chromosome partitioning protein Spo0J (ParB) on oriC positioning and replication initiation in Bacillus subtilis. J Bacteriol 2003; 185:1326-37. [PMID: 12562803 PMCID: PMC142880 DOI: 10.1128/jb.185.4.1326-1337.2003] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spo0J (ParB) of Bacillus subtilis is a DNA-binding protein that belongs to a conserved family of proteins required for efficient plasmid and chromosome partitioning in many bacterial species. We found that Spo0J contributes to the positioning of the chromosomal oriC region, but probably not by recruiting the origin regions to specific subcellular locations. In wild-type cells during exponential growth, duplicated origin regions were generally positioned around the cell quarters. In a spo0J null mutant, sister origin regions were often closer together, nearer to midcell. We found, by using a Spo0J-green fluorescent protein [GFP] fusion, that the subcellular location of Spo0J was a consequence of the chromosomal positions of the Spo0J binding sites. When an array of binding sites (parS sites) were inserted at various chromosomal locations in the absence of six of the eight known parS sites, Spo0J-GFP was no longer found predominantly at the cell quarters, indicating that Spo0J is not sufficient to recruit chromosomal parS sites to the cell quarters. spo0J also affected chromosome positioning during sporulation. A spo0J null mutant showed an increase in the number of cells with some origin-distal regions located in the forespore. In addition, a spo0J null mutation caused an increase in the number of foci per cell of LacI-GFP bound to arrays of lac operators inserted in various positions in the chromosome, including the origin region, an increase in the DNA-protein ratio, and an increase in origins per cell, as determined by flow cytometry. These results indicate that the spo0J mutant produced a significant proportion of cells with increased chromosome content, probably due to increased and asynchronous initiation of DNA replication.
Collapse
Affiliation(s)
- Philina S Lee
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
41
|
Affiliation(s)
- Lee Kroos
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA.
| | | |
Collapse
|
42
|
Abstract
Eukaryotic chromosomes are anchored to a spindle apparatus during mitosis, but no such structure is known during chromosome segregation in bacteria. When sister chromosomes are segregated during sporulation in Bacillus subtilis, the replication origin regions migrate to opposite poles of the cell. If and how origin regions are fastened at the poles has not been determined. Here we describe a developmental protein, RacA, that acts as a bridge between the origin region and the cell poles. We propose that RacA assembles into an adhesive patch at a centromere-like element near the origin, causing chromosomes to stick at the poles.
Collapse
Affiliation(s)
- Sigal Ben-Yehuda
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
43
|
Surtees JA, Funnell BE. Plasmid and chromosome traffic control: how ParA and ParB drive partition. Curr Top Dev Biol 2003; 56:145-80. [PMID: 14584729 DOI: 10.1016/s0070-2153(03)01010-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Jennifer A Surtees
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|
44
|
Autret S, Errington J. A role for division-site-selection protein MinD in regulation of internucleoid jumping of Soj (ParA) protein in Bacillus subtilis. Mol Microbiol 2003; 47:159-69. [PMID: 12492861 DOI: 10.1046/j.1365-2958.2003.03264.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Bacillus subtilis soj-spo0J locus encodes two proteins belonging to a family of proteins (the ParAB proteins) with dual roles in plasmid or chromosome segregation and transcriptional regulation. Soj protein was previously shown to be capable of abrupt subcellular relocation. The movement was highly co-operative and at any moment, most of the Soj in any cell formed a single large 'patch' covering all or part of one nucleoid. Movement, and co-operativity, in the sense of formation of a single patch, was dependent on Spo0J. Movement, but not co-operativity, was also shown to be dependent, directly or indirectly, on FtsZ protein. We now report that the ftsZ effect arises because jumping onto a nucleoid is promoted by proximity to a cell pole. Studies of other mutants affected in cell division suggest that the attraction to the cell pole is mediated by the division-site-selection protein, MinD (which localizes at the cell poles). It does not require MinC, the main effector of the division site selection system. A mutant form of Soj, putatively locked in the ATP form of the protein, interacts with the cell pole (dependent on MinD) but not with the nucleoid. These results identify a novel function for MinD and demonstrate an intriguing link between proteins involved in the cell division and chromosome segregation machineries.
Collapse
Affiliation(s)
- Sabine Autret
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | |
Collapse
|
45
|
|