1
|
DCAF12 promotes apoptosis and inhibits NF-κB activation by acting as an endogenous antagonist of IAPs. Oncogene 2022; 41:3000-3010. [PMID: 35459779 DOI: 10.1038/s41388-022-02319-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/08/2022]
Abstract
Members of the Inhibitor of Apoptosis Protein (IAP) family are essential for cell survival and appear to neutralize the cell death machinery by binding pro-apoptotic caspases. dcaf12 was recently identified as an apoptosis regulator in Drosophila. However, the underlying molecular mechanisms are unknown. Here we revealed that human DCAF12 homolog binds multiple IAPs, including XIAP, cIAP1, cIAP2, and BRUCE, through recognition of BIR domains in IAPs. The pro-apoptotic function of DCAF12 is dependent on its capacity to bind IAPs. In response to apoptotic stimuli, DCAF12 translocates from the nucleus to the cytoplasm, where it blocks the interaction between XIAP and pro-apoptotic caspases to facilitate caspase activation and apoptosis execution. Similarly, DCAF12 suppresses NF-κB activation in an IAP binding-dependent manner. Moreover, DCAF12 acts as a tumor suppressor to restrict the malignant phenotypes of cancer cells. Together, our results suggest that DCAF12 is an evolutionarily conserved IAP antagonist.
Collapse
|
2
|
Xu D, Zhu X, Ren J, Huang S, Xiao Z, Jiang H, Tan Y. Quantitative proteomic analysis of cervical cancer based on TMT-labeled quantitative proteomics. J Proteomics 2022; 252:104453. [PMID: 34915198 DOI: 10.1016/j.jprot.2021.104453] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 12/18/2022]
Abstract
Cervical cancer is the second most common gynecological malignancy, which immensely threatens the well-being of women. However, the pathogenesis of cervical cancer is still unclear. Using tandem mass tags-labeled quantitative proteomic technology and bioinformatics tools, we analyzed the exfoliated cervical cells from the normal and cervical cancer groups to establish a cancer-specific protein profile, thereby identifying key proteins related to cervical oncogenesis. When compared with the normal group, a total of 351 differentially expressed proteins were identified in the cervical cancer group, including 247 up-regulated and 104 down-regulated proteins. Gene ontology function annotation revealed that the differentially expressed proteins were mainly involved in the single-multicellular organism process, multicellular organismal process, and negative regulation of biological process. These proteins were discerned to play a role in the extracellular membrane-bounded organelle, exosome of cell components, protein binding, structural molecule activity, and enzyme binding of molecular functions. The results of Kyoto Encyclopedia of Genes and Genomes signaling pathway enrichment proved that these differentially expressed proteins were mainly involved in PI3K - Akt, ECM-receptor interaction, complement and coagulation cascades, and other signaling pathways. Particularly, peroxiredoxin-2 may be involved in cervical tumor oncogenesis through inhibition of apoptosis signaling. SIGNIFICANCE: In this study, we determined that the proteins of the cervical cancer group exhibited qualitative and quantitative changes, and a total of 351 differentially expressed proteins were identified. The functions and signaling pathways of these differentially expressed proteins have laid a theoretical foundation for elucidating the molecular mechanism of cervical cancer.
Collapse
Affiliation(s)
- Dianqin Xu
- Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Xiaoyu Zhu
- Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Ji Ren
- School of Laboratory Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Shan Huang
- School of Laboratory Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Ziwen Xiao
- Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Hongmei Jiang
- School of Laboratory Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yujie Tan
- Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Laboratory Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China.
| |
Collapse
|
3
|
Yang J, Wang Z, Liu X, Lu P. Modulation of vascular integrity and neuroinflammation by peroxiredoxin 4 following cerebral ischemia-reperfusion injury. Microvasc Res 2021; 135:104144. [PMID: 33515567 DOI: 10.1016/j.mvr.2021.104144] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/16/2021] [Accepted: 01/25/2021] [Indexed: 01/10/2023]
Abstract
Ischemic stroke is a leading cause of morbidity and mortality worldwide, with oxidative stress playing a key role in the injury mechanism of thrombolytic therapy. There is increasing evidence that oxidative stress damages endothelial cells (ECs), degrades tight junction proteins (TJs), and contributes to increased blood-brain barrier (BBB) permeability. It has been demonstrated that the breakdown of BBB could increase the risk of intracerebral hemorrhagic transformation in ischemic stroke. And an episode of cerebral ischemia/reperfusion (I/R) also initiates oxidative stress-mediated inflammatory processes in ECs, which further promotes BBB disruption and the progression of brain injury. Previous studies have revealed that antioxidants could inhibit ROS generation and attenuate BBB disruption after cerebral I/R. Peroxiredoxin 4 (Prx4) is a member of the antioxidant enzymes family (Prx1-6) and has been characterized to be an efficient H2O2 scavenger. It should be noted that Prx4 may be directly involved in the protection of ECs from the effects of ROS and function in ECs as a membrane-associated peroxidase. This paper reviewed the implication of Prx4 on vascular integrity and neuroinflammation following a cerebral I/R injury.
Collapse
Affiliation(s)
- Jiping Yang
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China.
| | - Zairan Wang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Xiuying Liu
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Pengchao Lu
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| |
Collapse
|
4
|
Millet-Boureima C, Chingle R, Lubell WD, Gamberi C. Cyst Reduction in a Polycystic Kidney Disease Drosophila Model Using Smac Mimics. Biomedicines 2019; 7:biomedicines7040082. [PMID: 31635379 PMCID: PMC6966561 DOI: 10.3390/biomedicines7040082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is an inherited malady affecting 12.5 million people worldwide. Therapeutic options to treat PKD are limited, due in part to lack of precise knowledge of underlying pathological mechanisms. Mimics of the second mitochondria-derived activator of caspases (Smac) have exhibited activity as antineoplastic agents and reported recently to ameliorate cysts in a murine ADPKD model, possibly by differentially targeting cystic cells and sparing the surrounding tissue. A first-in-kind Drosophila PKD model has now been employed to probe further the activity of novel Smac mimics. Substantial reduction of cystic defects was observed in the Malpighian (renal) tubules of treated flies, underscoring mechanistic conservation of the cystic pathways and potential for efficient testing of drug prototypes in this PKD model. Moreover, the observed differential rescue of the anterior and posterior tubules overall, and within their physiologically diverse intermediate and terminal regions implied a nuanced response in distinct tubular regions contingent upon the structure of the Smac mimic. Knowledge gained from studying Smac mimics reveals the capacity for the Drosophila model to precisely probe PKD pharmacology highlighting the value for such critical evaluation of factors implicated in renal function and pathology.
Collapse
Affiliation(s)
| | - Ramesh Chingle
- Département de Chimie, Université de Montréal, Montreal, QC H3T 1J4, Canada.
| | - William D Lubell
- Département de Chimie, Université de Montréal, Montreal, QC H3T 1J4, Canada.
| | - Chiara Gamberi
- Biology Department, Concordia University, Montreal, QC H4B 1R6, Canada.
| |
Collapse
|
5
|
Khan C, Muliyil S, Rao BJ. Genome Damage Sensing Leads to Tissue Homeostasis in Drosophila. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 345:173-224. [PMID: 30904193 DOI: 10.1016/bs.ircmb.2018.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DNA repair is a critical cellular process required for the maintenance of genomic integrity. It is now well appreciated that cells employ several DNA repair pathways to take care of distinct types of DNA damage. It is also well known that a cascade of signals namely DNA damage response or DDR is activated in response to DNA damage which comprise cellular responses, such as cell cycle arrest, DNA repair and cell death, if the damage is irreparable. There is also emerging literature suggesting a cross-talk between DNA damage signaling and several signaling networks within a cell. Moreover, cell death players themselves are also well known to engage in processes outside their canonical function of apoptosis. This chapter attempts to build a link between DNA damage, DDR and signaling from the studies mainly conducted in mammals and Drosophila model systems, with a special emphasis on their relevance in overall tissue homeostasis and development.
Collapse
Affiliation(s)
- Chaitali Khan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Sonia Muliyil
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - B J Rao
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| |
Collapse
|
6
|
Seong KM, Coates BS, Sun W, Clark JM, Pittendrigh BR. Changes in Neuronal Signaling and Cell Stress Response Pathways are Associated with a Multigenic Response of Drosophila melanogaster to DDT Selection. Genome Biol Evol 2018; 9:3356-3372. [PMID: 29211847 PMCID: PMC5737697 DOI: 10.1093/gbe/evx252] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2017] [Indexed: 12/11/2022] Open
Abstract
The adaptation of insect populations to insecticidal control is a continual threat to human health and sustainable agricultural practices, but many complex genomic mechanisms involved in this adaption remain poorly understood. This study applied a systems approach to investigate the interconnections between structural and functional variance in response to dichlorodiphenyltrichloroethane (DDT) within the Drosophila melanogaster strain 91-R. Directional selection in 6 selective sweeps coincided with constitutive gene expression differences in DDT resistant flies, including the most highly upregulated transcript, Unc-115 b, which plays a central role in axon guidance, and the most highly downregulated transcript, the angiopoietin-like CG31832, which is involved in directing vascular branching and dendrite outgrowth but likely may be under trans-regulatory control. Direct functions and protein–protein interactions mediated by differentially expressed transcripts control changes in cell migration, signal transduction, and gene regulatory cascades that impact the nervous system. Although changes to cellular stress response pathways involve 8 different cytochrome P450s, stress response, and apoptosis is controlled by a multifacetted regulatory mechanism. These data demonstrate that DDT selection in 91-R may have resulted in genome-wide adaptations that impacts genetic and signal transduction pathways that converge to modify stress response, cell survival, and neurological functions. This study implicates the involvement of a multigenic mechanism in the adaptation to a chemical insecticide, which impact interconnected regulatory cascades. We propose that DDT selection within 91-R might act systemically, wherein pathway interactions function to reinforce the epistatic effects of individual adaptive changes on an additive or nonadditive basis.
Collapse
Affiliation(s)
- Keon Mook Seong
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
| | - Brad S Coates
- Corn Insects & Crop Genetics Research Unit, USDA-ARS, Iowa State University, Ames, Iowa, USA
| | - Weilin Sun
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
| | - John M Clark
- Department of Veterinary & Animal Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Barry R Pittendrigh
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
7
|
Detienne G, De Haes W, Mergan L, Edwards SL, Temmerman L, Van Bael S. Beyond ROS clearance: Peroxiredoxins in stress signaling and aging. Ageing Res Rev 2018; 44:33-48. [PMID: 29580920 DOI: 10.1016/j.arr.2018.03.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 03/21/2018] [Indexed: 12/12/2022]
Abstract
Antioxidants were long predicted to have lifespan-promoting effects, but in general this prediction has not been well supported. While some antioxidants do seem to have a clear effect on longevity, this may not be primarily as a result of their role in the removal of reactive oxygen species, but rather mediated by other mechanisms such as the modulation of intracellular signaling. In this review we discuss peroxiredoxins, a class of proteinaceous antioxidants with redox signaling and chaperone functions, and their involvement in regulating longevity and stress resistance. Peroxiredoxins have a clear role in the regulation of lifespan and survival of many model organisms, including the mouse, Caenorhabditis elegans and Drosophila melanogaster. Recent research on peroxiredoxins - in these models and beyond - has revealed surprising new insights regarding the interplay between peroxiredoxins and longevity signaling, which will be discussed here in detail. As redox signaling is emerging as a potentially important player in the regulation of longevity and aging, increased knowledge of these fascinating antioxidants and their mode(s) of action is paramount.
Collapse
Affiliation(s)
- Giel Detienne
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Wouter De Haes
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Lucas Mergan
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Samantha L Edwards
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Liesbet Temmerman
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Sven Van Bael
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| |
Collapse
|
8
|
Kabbage M, Kessens R, Bartholomay LC, Williams B. The Life and Death of a Plant Cell. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:375-404. [PMID: 28125285 DOI: 10.1146/annurev-arplant-043015-111655] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Like all eukaryotic organisms, plants possess an innate program for controlled cellular demise termed programmed cell death (PCD). Despite the functional conservation of PCD across broad evolutionary distances, an understanding of the molecular machinery underpinning this fundamental program in plants remains largely elusive. As in mammalian PCD, the regulation of plant PCD is critical to development, homeostasis, and proper responses to stress. Evidence is emerging that autophagy is key to the regulation of PCD in plants and that it can dictate the outcomes of PCD execution under various scenarios. Here, we provide a broad and comparative overview of PCD processes in plants, with an emphasis on stress-induced PCD. We also discuss the implications of the paradox that is functional conservation of apoptotic hallmarks in plants in the absence of core mammalian apoptosis regulators, what that means, and whether an equivalent form of death occurs in plants.
Collapse
Affiliation(s)
- Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin 53706;
| | - Ryan Kessens
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin 53706;
| | - Lyric C Bartholomay
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Brett Williams
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Queensland 4001, Australia;
| |
Collapse
|
9
|
Clavier A, Rincheval-Arnold A, Colin J, Mignotte B, Guénal I. Apoptosis in Drosophila: which role for mitochondria? Apoptosis 2015; 21:239-51. [DOI: 10.1007/s10495-015-1209-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Klichko VI, Orr WC, Radyuk SN. The role of peroxiredoxin 4 in inflammatory response and aging. Biochim Biophys Acta Mol Basis Dis 2015; 1862:265-73. [PMID: 26689888 DOI: 10.1016/j.bbadis.2015.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/25/2015] [Accepted: 12/08/2015] [Indexed: 01/06/2023]
Abstract
In prior studies, we determined that the moderate overexpression of the Drosophila endoplasmic reticulum (ER)-localized peroxiredoxin (Prx), dPrx4, reduced oxidative damage and conferred beneficial effects on life span, while a high-level expression increased the incidence of tissue-specific apoptosis and dramatically shortened longevity. The detrimental pro-apoptotic and life-shortening effects were attributed to aberrant localization of dPrx4 and the apparent ER stress elicited by dPrx4 overexpression. In addition, the activation of both the NF-κB- and the JAK/STAT-mediated stress responses was detected, although it was not clear whether these served as functional alarm signals. Here we extend these findings to show that the activation of the NF-κB-dependent immunity-related/inflammatory genes, associated with life span shortening effects, is dependent on the activity of a Drosophila NF-κB ortholog, Relish. In the absence of Relish, the pro-inflammatory effects typically elicited by dPrx4 overexpression were not detected. The absence of Relish not only prevented the hyperactivation of the immunity-related genes but also significantly rescued the severe shortening of life span normally observed in dPrx4 overexpressors. The overactivation of the immune/inflammatory responses was also lessened by JAK/STAT signaling. In addition, we found that cellular immune/pro-inflammatory responses provoked by the oxidant paraquat but not bacteria are mediated via dPrx4 activity in the ER, as the upregulation of the immune-related genes was eliminated in flies underexpressing dPrx4, whereas immune responses triggered by bacteria were unaffected. Finally, efforts to reveal critical tissues where dPrx4 modulates longevity showed that broad targeting of dPrx4 to neuronal tissue had strong beneficial effects, while targeting expression to the fat body had deleterious effects.
Collapse
Affiliation(s)
- Vladimir I Klichko
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA
| | - William C Orr
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA
| | - Svetlana N Radyuk
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA.
| |
Collapse
|
11
|
Abstract
The apoptotic machinery is highly conserved throughout evolution, and central to the regulation of apoptosis is the caspase family of cysteine proteases. Insights into the regulation and function of apoptosis in mammals have come from studies using model organisms. Drosophila provides an exceptional model system for identifying the function of conserved mechanisms regulating apoptosis, especially during development. The characteristic patterns of apoptosis during Drosophila development have been well described, as has the apoptotic response following DNA damage. The focus of this discussion is to introduce methodologies for monitoring apoptosis during Drosophila development and also in Drosophila cell lines.
Collapse
Affiliation(s)
- Donna Denton
- Centre for Cancer Biology, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, South Australia 5001, Australia
| |
Collapse
|
12
|
|
13
|
Creagh EM. Caspase crosstalk: integration of apoptotic and innate immune signalling pathways. Trends Immunol 2014; 35:631-640. [PMID: 25457353 DOI: 10.1016/j.it.2014.10.004] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/14/2014] [Accepted: 10/15/2014] [Indexed: 01/30/2023]
Abstract
The caspase family of cysteine proteases has been functionally divided into two groups: those involved in apoptosis and those involved in innate immune signalling. Recent findings have identified 'apoptotic' caspases within inflammasome complexes and revealed that 'inflammatory' caspases are capable of inducing cell death, suggesting that the earlier view of caspase function may have been overly simplistic. Here, I review evidence attributing nonclassical functions to many caspases and propose that caspases serve as critical mediators in the integration of apoptotic and inflammatory pathways, thereby forming an integrated signalling system that regulates cell death and innate immune responses during development, infection, and homeostasis.
Collapse
Affiliation(s)
- Emma M Creagh
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland.
| |
Collapse
|
14
|
Multiple mechanisms modulate distinct cellular susceptibilities toward apoptosis in the developing Drosophila eye. Dev Cell 2014; 30:48-60. [PMID: 24981611 DOI: 10.1016/j.devcel.2014.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/09/2014] [Accepted: 05/10/2014] [Indexed: 02/06/2023]
Abstract
Although apoptosis is mechanistically well understood, a comprehensive understanding of how cells modulate their susceptibility toward apoptosis in a developing tissue is lacking. Here, we reveal striking dynamics in the apoptotic susceptibilities of different cell types in the Drosophila retina over a period of only 24 hr. Mitotic cells are extremely susceptible to apoptotic signals, while postmitotic cells have developed several strategies to promote survival. For example, photoreceptor neurons accumulate the inhibitor of apoptosis, Diap1. In unspecified cells, Cullin-3-mediated degradation keeps Diap1 levels low. These cells depend on EGFR signaling for survival. As development proceeds, developmentally older photoreceptors degrade Diap1, resulting in increased apoptosis susceptibility. Finally, R8 photoreceptors have very efficient survival mechanisms independent of EGFR or Diap1. These examples illustrate how complex cellular susceptibility toward apoptosis is regulated in a developing organ. Similar complexities may regulate apoptosis susceptibilities in mammalian development, and tumor cells may take advantage of it.
Collapse
|
15
|
BmICE-2 is a novel pro-apoptotic caspase involved in apoptosis in the silkworm, Bombyx mori. Biochem Biophys Res Commun 2014; 445:100-6. [DOI: 10.1016/j.bbrc.2014.01.139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 01/25/2014] [Indexed: 11/18/2022]
|
16
|
Denton D, Aung-Htut MT, Kumar S. Developmentally programmed cell death in Drosophila. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3499-3506. [DOI: 10.1016/j.bbamcr.2013.06.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/16/2013] [Indexed: 12/24/2022]
|
17
|
Berthelet J, Dubrez L. Regulation of Apoptosis by Inhibitors of Apoptosis (IAPs). Cells 2013; 2:163-87. [PMID: 24709650 PMCID: PMC3972657 DOI: 10.3390/cells2010163] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/04/2013] [Accepted: 03/05/2013] [Indexed: 01/05/2023] Open
Abstract
Abstract Inhibitors of Apoptosis (IAPs) are a family of proteins with various biological functions including regulation of innate immunity and inflammation, cell proliferation, cell migration and apoptosis. They are characterized by the presence of at least one N-terminal baculoviral IAP repeat (BIR) domain involved in protein-protein interaction. Most of them also contain a C-terminal RING domain conferring an E3-ubiquitin ligase activity. In drosophila, IAPs are essential to ensure cell survival, preventing the uncontrolled activation of the apoptotic protease caspases. In mammals, IAPs can also regulate apoptosis through controlling caspase activity and caspase-activating platform formation. Mammalian IAPs, mainly X-linked IAP (XIAP) and cellular IAPs (cIAPs) appeared to be important determinants of the response of cells to endogenous or exogenous cellular injuries, able to convert the survival signal into a cell death-inducing signal. This review highlights the role of IAP in regulating apoptosis in Drosophila and Mammals.
Collapse
Affiliation(s)
- Jean Berthelet
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR866, Dijon F-21079, France.
| | - Laurence Dubrez
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR866, Dijon F-21079, France.
| |
Collapse
|
18
|
Wu Y, Wu Y, Hui T, Wu H, Wu Y, Wang W. Reaper homologue IBM1 in silkwormBombyx moriinduces apoptosis upon baculovirus infection. FEBS Lett 2013; 587:600-6. [DOI: 10.1016/j.febslet.2013.01.072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/16/2013] [Accepted: 01/31/2013] [Indexed: 01/24/2023]
|
19
|
Radyuk SN, Klichko VI, Michalak K, Orr WC. The effect of peroxiredoxin 4 on fly physiology is a complex interplay of antioxidant and signaling functions. FASEB J 2012; 27:1426-38. [PMID: 23271054 DOI: 10.1096/fj.12-214106] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peroxiredoxin 4 (Prx4) has been implicated in a wide variety of biological processes, including development, progression of cancer, inflammation, and antioxidant function. The purpose of this study was to provide further insight into its multiple roles at the whole-animal level, using Drosophila. Reduced expression of dPrx4 (up to 90%) resulted in greater sensitivity to oxidative stress, an elevated H₂O₂ flux, and increases in lipid peroxidation, but no effect on longevity. Overexpression at low levels (<2-fold) gave reduced levels of oxidative damage and tended to show an increase in longevity. Flies expressing dPrx4 globally at high levels (>5-fold) had a dramatically reduced life span (by 20-80%) and increased apoptosis. Analysis of these overexpressors revealed an aberrant redistribution of the dPrx4 protein from the endoplasmic reticulum (ER) to cytosol and hemolymph. In addition to the known proapoptotic effects of the cytosolic form of dPrx4, dPrx4 overexpression triggered an NF-κB-mediated proinflammatory response, similar to that observed in cells under ER stress or when microbially challenged. Finally, we provide the first evidence that dPrx4, on secretion into the hemolymph, elicits a JAK/STAT-mediated response. The effects on fly survival and homeostasis appear to represent a combination of differential effects dictated in large part by dPrx4 subcellular and tissue-specific localization.
Collapse
Affiliation(s)
- Svetlana N Radyuk
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas, USA
| | | | | | | |
Collapse
|
20
|
Rovani MK, Brachmann CB, Ramsay G, Katzen AL. The dREAM/Myb-MuvB complex and Grim are key regulators of the programmed death of neural precursor cells at the Drosophila posterior wing margin. Dev Biol 2012; 372:88-102. [PMID: 22960039 DOI: 10.1016/j.ydbio.2012.08.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 07/23/2012] [Accepted: 08/14/2012] [Indexed: 10/27/2022]
Abstract
Successful development of a multicellular organism depends on the finely tuned orchestration of cell proliferation, differentiation and apoptosis from embryogenesis through adulthood. The MYB-gene family encodes sequence-specific DNA-binding transcription factors that have been implicated in the regulation of both normal and neoplastic growth. The Drosophila Myb protein, DMyb (and vertebrate B-Myb protein), has been shown to be part of the dREAM/MMB complex, a large multi-subunit complex, which in addition to four Myb-interacting proteins including Mip130, contains repressive E2F and pRB proteins. This complex has been implicated in the regulation of DNA replication within the context of chorion gene amplification and transcriptional regulation of a wide array of genes. Detailed phenotypic analysis of mutations in the Drosophila myb gene, Dm myb, has revealed a previously undiscovered function for the dREAM/MMB complex in regulating programmed cell death (PCD). In cooperation with the pro-apoptotic protein Grim and dREAM/MMB, DMyb promotes the PCD of specified sensory organ precursor daughter cells in at least two different settings in the peripheral nervous system: the pIIIb precursor of the neuron and sheath cells in the posterior wing margin and the glial cell in the thoracic microchaete lineage. Unlike previously analyzed settings, in which the main role of DMyb has been to antagonize the activities of other dREAM/MMB complex members, it appears to be the critical effector in promoting PCD. The finding that Dm myb and grim are both involved in regulating PCD in two distinct settings suggests that these two genes may often work together to mediate PCD.
Collapse
Affiliation(s)
- Margritte K Rovani
- Department of Biochemistry and Molecular Genetics University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607-7170, USA
| | | | | | | |
Collapse
|
21
|
Kolahgar G, Bardet PL, Langton PF, Alexandre C, Vincent JP. Apical deficiency triggers JNK-dependent apoptosis in the embryonic epidermis of Drosophila. Development 2011; 138:3021-31. [PMID: 21693518 DOI: 10.1242/dev.059980] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epithelial homeostasis and the avoidance of diseases such as cancer require the elimination of defective cells by apoptosis. Here, we investigate how loss of apical determinants triggers apoptosis in the embryonic epidermis of Drosophila. Transcriptional profiling and in situ hybridisation show that JNK signalling is upregulated in mutants lacking Crumbs or other apical determinants. This leads to transcriptional activation of the pro-apoptotic gene reaper and to apoptosis. Suppression of JNK signalling by overexpression of Puckered, a feedback inhibitor of the pathway, prevents reaper upregulation and apoptosis. Moreover, removal of endogenous Puckered leads to ectopic reaper expression. Importantly, disruption of the basolateral domain in the embryonic epidermis does not trigger JNK signalling or apoptosis. We suggest that apical, not basolateral, integrity could be intrinsically required for the survival of epithelial cells. In apically deficient embryos, JNK signalling is activated throughout the epidermis. Yet, in the dorsal region, reaper expression is not activated and cells survive. One characteristic of these surviving cells is that they retain discernible adherens junctions despite the apical deficit. We suggest that junctional integrity could restrain the pro-apoptotic influence of JNK signalling.
Collapse
Affiliation(s)
- Golnar Kolahgar
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, UK
| | | | | | | | | |
Collapse
|
22
|
Abstract
Arthropoda is the largest of all animal phyla and includes about 90% of extant species. Our knowledge about regulation of apoptosis in this phylum is largely based on findings for the fruit fly Drosophila melanogaster. Recent work with crustaceans shows that apoptotic proteins, and presumably mechanisms of cell death regulation, are more diverse in arthropods than appreciated based solely on the excellent work with fruit flies. Crustacean homologs exist for many major proteins in the apoptotic networks of mammals and D. melanogaster, but integration of these proteins into the physiology and pathophysiology of crustaceans is far from complete. Whether apoptosis in crustaceans is mainly transcriptionally regulated as in D. melanogaster (e.g., RHG 'killer' proteins), or rather is controlled by pro- and anti-apoptotic Bcl-2 family proteins as in vertebrates needs to be clarified. Some phenomena like the calcium-induced opening of the mitochondrial permeability transition pore (MPTP) are apparently lacking in crustaceans and may represent a vertebrate invention. We speculate that differences in regulation of the intrinsic pathway of crustacean apoptosis might represent a prerequisite for some species to survive harsh environmental insults. Pro-apoptotic stimuli described for crustaceans include UV radiation, environmental toxins, and a diatom-produced chemical that promotes apoptosis in offspring of a copepod. Mechanisms that serve to depress apoptosis include the inhibition of caspase activity by high potassium in energetically healthy cells, alterations in nucleotide abundance during energy-limited states like diapause and anoxia, resistance to opening of the calcium-induced MPTP, and viral accommodation during persistent viral infection. Characterization of the players, pathways, and their significance in the core machinery of crustacean apoptosis is revealing new insights for the field of cell death.
Collapse
|
23
|
Hambarde S, Yennamalli RM, Subbarao N, Chandna S. Predictive inference on cytoplasmic and mitochondrial thioredoxin peroxidases in the highly radioresistant Lepidopteran insect Spodoptera frugiperda. Bioinformation 2010; 4:399-404. [PMID: 20975889 PMCID: PMC2951639 DOI: 10.6026/97320630004399] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 12/28/2009] [Accepted: 02/08/2010] [Indexed: 11/23/2022] Open
Abstract
Lepidopteran insects show remarkable resistance to radiation and chemical stress than insects of other orders. Despite this, the antioxidant
machinery of insects of this order is poorly understood. Recently we demonstrated the significance of cytoplasmic NOS and a stronger
mitochondrial antioxidant enzyme system in the stress-resistance of Lepidopteran insects. In the present study, we hypothesize two
thioredoxin peroxidase orthologues (Sf-TPx1 and Sf-TPx2) in Lepidopteran insect Spodoptera frugiperda and demonstrate their
structural/functional features important for cellular antioxidant activity and stress resistance. Results show a higher mitochondrial
localization score (WoLFPSORT) of Sf-TPx2 (mitochondria-18.0, cytoplasm-7.0, nucleus-4.0) than its Drosophila orthologue Jafrac2
(secretory-30.0; mitochondria/nucleus/cytoplasm-no signal), which is important for antioxidant activity, and a higher cytoplasmic
localization score of Sf-TPx1 (mitochondria-no signal; cytoplasm-22.0; nucleus-3.5) than the Drosophila Jafrac1 (mitochondria-17; nucleus-
11; cytoplasm-no signal). Structural modeling data show certain motifs present in Jafrac1 and Jafrac2 that affect active site conformation
and separate cysteine residues at distances not suitable for disulphide bridge formation (5.21Å; 5.73Å). These motifs are absent in Sf-TPx1
and Sf-TPx2, yielding shorter distance (2.01Å; 2.05Å) between the cysteine residues suitable for disulphide bridge formation. Taken
together, the disulphide bridge as well as mitochondrial and cytoplasmic localization are crucial for peroxidatic activity of TPx's. Therefore,we hypothesize
that the Spodoptera TPx's offer potentially stronger anti-oxidant activity than that of Drosophila orthologues, and may
contribute in the high radioresistance of Lepidopteran insects.
Collapse
Affiliation(s)
- Shashank Hambarde
- Natural Radiation Response Mechanisms Group, Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Road, Delhi -110054, India
| | | | | | | |
Collapse
|
24
|
Abstract
Ubiquitylation describes a process in which ubiquitin, a 76-amino-acid polypeptide, is covalently attached to target proteins. Traditionally, ubiquitin-conjugated proteins are targeted for degradation by the 26S proteasome. However, non-proteolytic roles in histone regulation, DNA repair and signal transduction have been reported. Here, the role of ubiquitylation in the cell death pathway in Drosophila is reviewed. Interestingly, ubiquitylation serves both pro- and anti-apoptotic functions. Although pro-apoptotic ubiquitylation leads to proteolytic degradation, recent evidence suggests that anti-apoptotic ubiquitylation may involve, at least in part, non-proteolytic functions.
Collapse
Affiliation(s)
- A Bergmann
- Department of Biochemistry and Molecular Biology, Graduate Program in Genes and Development, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
25
|
Heifetz Y, Rivlin PK. Beyond the mouse model: using Drosophila as a model for sperm interaction with the female reproductive tract. Theriogenology 2009; 73:723-39. [PMID: 20015541 DOI: 10.1016/j.theriogenology.2009.11.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 10/13/2009] [Indexed: 11/15/2022]
Abstract
Although the fruit fly, Drosophila melanogaster, has emerged as a model system for human disease, its potential as a model for mammalian reproductive biology has not been fully exploited. Here we describe how Drosophila can be used to study the interactions between sperm and the female reproductive tract. Like many insects, Drosophila has two types of sperm storage organs, the spermatheca and seminal receptacle, whose ducts arise from the uterine wall. The spermatheca duct ends in a capsule-like structure surrounded by a layer of gland cells. In contrast, the seminal receptacle is a slender, blind-ended tubule. Recent studies suggest that the spermatheca is specialized for long-term storage, as well as sperm maturation, whereas the receptacle functions in short-term sperm storage. Here we discuss recent molecular and morphological analyses that highlight possible themes of gamete interaction with the female reproductive tract and draw comparison of sperm storage organ design in Drosophila and other animals, particularly mammals. Furthermore, we discuss how the study of multiple sperm storage organ types in Drosophila may help us identify factors essential for sperm viability and, moreover, factors that promote long-term sperm survivorship.
Collapse
Affiliation(s)
- Y Heifetz
- Entomology, Hebrew University, Rehovot, Israel.
| | | |
Collapse
|
26
|
Abstract
Mitochondria play key roles in activating apoptosis in mammalian cells. Bcl-2 family members regulate the release of proteins from the space between the mitochondrial inner and outer membrane that, once in the cytosol, activate caspase proteases that dismantle cells and signal efficient phagocytosis of cell corpses. Here we review the extensive literature on proteins released from the intermembrane space and consider genetic evidence for and against their roles in apoptosis activation. We also compare and contrast apoptosis pathways in Caenorhabditis elegans, Drosophila melanogaster, and mammals that indicate major mysteries remaining to be solved.
Collapse
Affiliation(s)
- Chunxin Wang
- Biochemistry Section, Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
27
|
Orme M, Meier P. Inhibitor of apoptosis proteins in Drosophila: gatekeepers of death. Apoptosis 2009; 14:950-60. [PMID: 19495985 DOI: 10.1007/s10495-009-0358-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 05/01/2009] [Indexed: 01/25/2023]
Abstract
Regulation of apoptosis is crucial to ensure cellular viability, and failure to do so is linked to several human pathologies. The apoptotic cell death programme culminates in the activation of caspases, a family of highly specific cysteine proteases essential for the destruction of the cell. Although best known for their role in executing apoptosis, caspases also play important signalling roles in non-apoptotic processes, such as regulation of actin dynamics, innate immunity, cell proliferation, differentiation and survival. Under such conditions, caspases are activated without killing the cell. Caspase activation and activity is subject to complex regulation, and various cellular and viral inhibitors have been identified that control the activity of caspases in their apoptotic and non-apoptotic roles. Members of the Inhibitor of APoptosis (IAP) protein family ensure cell viability in Drosophila by directly binding to caspases and regulating their activities in a ubiquitin-dependent manner. The observation that IAPs are essential for cell survival in Drosophila, and are frequently deregulated in human cancer, contributing to tumourigenesis, chemoresistance, disease progression and poor patient survival, highlights the importance of this family of caspase regulators in health and disease. Here we summarise recent advances from Drosophila that start to elucidate how the cellular response to caspase activation is modulated by IAPs and their regulators.
Collapse
Affiliation(s)
- Mariam Orme
- The Breakthrough Toby Robins Breast Cancer Research Centre, Chester Beatty Laboratories, Institute of Cancer Research, London SW3 6JB, UK.
| | | |
Collapse
|
28
|
Xu D, Woodfield SE, Lee TV, Fan Y, Antonio C, Bergmann A. Genetic control of programmed cell death (apoptosis) in Drosophila. Fly (Austin) 2009; 3:78-90. [PMID: 19182545 DOI: 10.4161/fly.3.1.7800] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Programmed cell death, or apoptosis, is a highly conserved cellular process that has been intensively investigated in nematodes, flies and mammals. The genetic conservation, the low redundancy, the feasibility for high-throughput genetic screens and the identification of temporally and spatially regulated apoptotic responses make Drosophila melanogaster a great model for the study of apoptosis. Here, we review the key players of the cell death pathway in Drosophila and discuss their roles in apoptotic and non-apoptotic processes.
Collapse
Affiliation(s)
- Dongbin Xu
- The University of Texas MD Anderson Cancer Center, The Genes and Development Graduate Program, Department of Biochemistry and Molecular Biology, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
29
|
Kim I, Xu W, Reed JC. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 2008; 7:1013-30. [PMID: 19043451 DOI: 10.1038/nrd2755] [Citation(s) in RCA: 1430] [Impact Index Per Article: 89.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The accumulation of unfolded proteins in the endoplasmic reticulum (ER) represents a cellular stress induced by multiple stimuli and pathological conditions. These include hypoxia, oxidative injury, high-fat diet, hypoglycaemia, protein inclusion bodies and viral infection. ER stress triggers an evolutionarily conserved series of signal-transduction events, which constitutes the unfolded protein response. These signalling events aim to ameliorate the accumulation of unfolded proteins in the ER; however, when these events are severe or protracted they can induce cell death. With the increasing recognition of an association between ER stress and human diseases, and with the improved understanding of the diverse underlying molecular mechanisms, novel targets for drug discovery and new strategies for therapeutic intervention are beginning to emerge.
Collapse
Affiliation(s)
- Inki Kim
- Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
30
|
Lhocine N, Ribeiro PS, Buchon N, Wepf A, Wilson R, Tenev T, Lemaitre B, Gstaiger M, Meier P, Leulier F. PIMS modulates immune tolerance by negatively regulating Drosophila innate immune signaling. Cell Host Microbe 2008; 4:147-58. [PMID: 18692774 DOI: 10.1016/j.chom.2008.07.004] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 06/19/2008] [Accepted: 07/16/2008] [Indexed: 01/20/2023]
Abstract
Metazoans tolerate commensal-gut microbiota by suppressing immune activation while maintaining the ability to launch rapid and balanced immune reactions to pathogenic bacteria. Little is known about the mechanisms underlying the establishment of this threshold. We report that a recently identified Drosophila immune regulator, which we call PGRP-LC-interacting inhibitor of Imd signaling (PIMS), is required to suppress the Imd innate immune signaling pathway in response to commensal bacteria. pims expression is Imd (immune deficiency) dependent, and its basal expression relies on the presence of commensal flora. In the absence of PIMS, resident bacteria trigger constitutive expression of antimicrobial peptide genes (AMPs). Moreover, pims mutants hyperactivate AMPs upon infection with Gram-negative bacteria. PIMS interacts with the peptidoglycan recognition protein (PGRP-LC), causing its depletion from the plasma membrane and shutdown of Imd signaling. Therefore, PIMS is required to establish immune tolerance to commensal bacteria and to maintain a balanced Imd response following exposure to bacterial infections.
Collapse
Affiliation(s)
- Nouara Lhocine
- CNRS, Centre de Génétique Moléculaire, UPR2167, Gif-sur-Yvette, F-91198, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bardet PL, Kolahgar G, Mynett A, Miguel-Aliaga I, Briscoe J, Meier P, Vincent JP. A fluorescent reporter of caspase activity for live imaging. Proc Natl Acad Sci U S A 2008; 105:13901-5. [PMID: 18779587 PMCID: PMC2544551 DOI: 10.1073/pnas.0806983105] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Indexed: 11/18/2022] Open
Abstract
There is a growing interest in the mechanisms that control the apoptosis cascade during development and adult life. To investigate the regulatory events that trigger apoptosis in whole tissues, we have devised a genetically encoded caspase sensor that can be detected in live and fixed tissue by standard confocal microscopy. The sensor comprises two fluorophores, mRFP, monomeric red fluorescent protein (mRFP) and enhanced green fluorescent protein (eGFP), that are linked by an efficient and specific caspase-sensitive site. Upon caspase activation, the sensor is cleaved and eGFP translocates to the nucleus, leaving mRFP at membranes. This is detected before other markers of apoptosis, including anti-cleaved caspase 3 immunoreactivity. Moreover, the sensor does not perturb normal developmental apoptosis and is specific, as cleavage does not occur in Drosophila embryos that are unable to activate the apoptotic cascade. Importantly, dying cells can be recognized in live embryos, thus opening the way for in vivo imaging. As expected from the high conservation of caspases, it is also cleaved in dying cells of chick embryos. It is therefore likely to be generally useful to track the spatiotemporal pattern of caspase activity in a variety of species.
Collapse
Affiliation(s)
- Pierre-Luc Bardet
- Developmental Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom; and
| | - Golnar Kolahgar
- Developmental Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom; and
| | - Anita Mynett
- Developmental Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom; and
| | - Irene Miguel-Aliaga
- Developmental Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom; and
| | - James Briscoe
- Developmental Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom; and
| | - Pascal Meier
- The Breakthrough Toby Robins Breast Cancer Research Centre, Institute of Cancer Research, Fulham Road, London SW3 6JB, United Kingdom
| | - Jean-Paul Vincent
- Developmental Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom; and
| |
Collapse
|
32
|
Abstract
Insects have made major contributions to understanding the regulation of cell death, dating back to the pioneering work of Lockshin and Williams on death of muscle cells during postembryonic development of Manduca. A physically smaller cousin of moths, the fruit fly Drosophila melanogaster, offers unique advantages for studying the regulation of cell death in response to different apoptotic stimuli in situ. Different signaling pathways converge in Drosophila to activate a common death program through transcriptional activation of reaper, hid and grim. Reaper-family proteins induce apoptosis by binding to and antagonizing inhibitor of apoptosis proteins (IAPs), which in turn inhibit caspases. This switch from life to death relies extensively on targeted degradation of cell death proteins by the ubiquitin-proteasome pathway. Drosophila IAP-1 (Diap1) functions as an E3-ubiquitin ligase to protect cells from unwanted death by promoting the degradation of the initiator caspase Dronc. However, in response to apoptotic signals, Reaper-family proteins are produced, which promote the auto-ubiquitination and degradation of Diap1, thereby removing the 'brakes on death' in cells that are doomed to die. More recently, several other ubiquitin pathway proteins were found to play important roles for caspase regulation, indicating that the control of cell survival and death relies extensively on targeted degradation by the ubiquitin-proteasome pathway.
Collapse
|
33
|
Ribeiro PS, Kuranaga E, Tenev T, Leulier F, Miura M, Meier P. DIAP2 functions as a mechanism-based regulator of drICE that contributes to the caspase activity threshold in living cells. ACTA ACUST UNITED AC 2008; 179:1467-80. [PMID: 18166655 PMCID: PMC2373516 DOI: 10.1083/jcb.200706027] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In addition to their well-known function in apoptosis, caspases are also important in several nonapoptotic processes. How caspase activity is restrained and shut down under such nonapoptotic conditions remains unknown. Here, we show that Drosophila melanogaster inhibitor of apoptosis protein 2 (DIAP2) controls the level of caspase activity in living cells. Animals that lack DIAP2 have higher levels of drICE activity. Although diap2-deficient cells remain viable, they are sensitized to apoptosis following treatment with sublethal doses of x-ray irradiation. We find that DIAP2 regulates the effector caspase drICE through a mechanism that resembles the one of the caspase inhibitor p35. As for p35, cleavage of DIAP2 is required for caspase inhibition. Our data suggest that DIAP2 forms a covalent adduct with the catalytic machinery of drICE. In addition, DIAP2 also requires a functional RING finger domain to block cell death and target drICE for ubiquitylation. Because DIAP2 efficiently interacts with drICE, our data suggest that DIAP2 controls drICE in its apoptotic and nonapoptotic roles.
Collapse
Affiliation(s)
- Paulo S Ribeiro
- Breakthrough Toby Robins Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, England, UK
| | | | | | | | | | | |
Collapse
|
34
|
echinus, required for interommatidial cell sorting and cell death in the Drosophila pupal retina, encodes a protein with homology to ubiquitin-specific proteases. BMC DEVELOPMENTAL BIOLOGY 2007; 7:82. [PMID: 17612403 PMCID: PMC1950886 DOI: 10.1186/1471-213x-7-82] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 07/05/2007] [Indexed: 01/03/2023]
Abstract
BACKGROUND Programmed cell death is used to remove excess cells between ommatidia in the Drosophila pupal retina. This death is required to establish the crystalline, hexagonal packing of ommatidia that characterizes the adult fly eye. In previously described echinus mutants, interommatidial cell sorting, which precedes cell death, occurred relatively normally. Interommatidial cell death was partially suppressed, resulting in adult eyes that contained excess pigment cells, and in which ommatidia were mildly disordered. These results have suggested that echinus functions in the pupal retina primarily to promote interommatidial cell death. RESULTS We generated a number of new echinus alleles, some likely null mutants. Analysis of these alleles provides evidence that echinus has roles in cell sorting as well as cell death. echinus encodes a protein with homology to ubiquitin-specific proteases. These proteins cleave ubiquitin-conjugated proteins at the ubiquitin C-terminus. The echinus locus encodes multiple splice forms, including two proteins that lack residues thought to be critical for deubiquitination activity. Surprisingly, ubiquitous expression in the eye of versions of Echinus that lack residues critical for ubiquitin specific protease activity, as well as a version predicted to be functional, rescue the echinus loss-of-function phenotype. Finally, genetic interactions were not detected between echinus loss and gain-of-function and a number of known apoptotic regulators. These include Notch, EGFR, the caspases Dronc, Drice, Dcp-1, Dream, the caspase activators, Rpr, Hid, and Grim, the caspase inhibitor DIAP1, and Lozenge or Klumpfuss. CONCLUSION The echinus locus encodes multiple splice forms of a protein with homology to ubiquitin-specific proteases, but protease activity is unlikely to be required for echinus function, at least when echinus is overexpressed. Characterization of likely echinus null alleles and genetic interactions suggests that echinus acts at a novel point(s) to regulate interommatidial cell sorting and/or cell death in the fly eye.
Collapse
|
35
|
Challa M, Malladi S, Pellock BJ, Dresnek D, Varadarajan S, Yin YW, White K, Bratton SB. Drosophila Omi, a mitochondrial-localized IAP antagonist and proapoptotic serine protease. EMBO J 2007; 26:3144-56. [PMID: 17557079 PMCID: PMC1914093 DOI: 10.1038/sj.emboj.7601745] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 05/10/2007] [Indexed: 12/16/2022] Open
Abstract
Although essential in mammals, in flies the importance of mitochondrial outer membrane permeabilization for apoptosis remains highly controversial. Herein, we demonstrate that Drosophila Omi (dOmi), a fly homologue of the serine protease Omi/HtrA2, is a developmentally regulated mitochondrial intermembrane space protein that undergoes processive cleavage, in situ, to generate two distinct inhibitor of apoptosis (IAP) binding motifs. Depending upon the proapoptotic stimulus, mature dOmi is then differentially released into the cytosol, where it binds selectively to the baculovirus IAP repeat 2 (BIR2) domain in Drosophila IAP1 (DIAP1) and displaces the initiator caspase DRONC. This interaction alone, however, is insufficient to promote apoptosis, as dOmi fails to displace the effector caspase DrICE from the BIR1 domain in DIAP1. Rather, dOmi alleviates DIAP1 inhibition of all caspases by proteolytically degrading DIAP1 and induces apoptosis both in cultured cells and in the developing fly eye. In summary, we demonstrate for the first time in flies that mitochondrial permeabilization not only occurs during apoptosis but also results in the release of a bona fide proapoptotic protein.
Collapse
Affiliation(s)
- Madhavi Challa
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Srinivas Malladi
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Brett J Pellock
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Douglas Dresnek
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Shankar Varadarajan
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Y Whitney Yin
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX, USA
| | - Kristin White
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Shawn B Bratton
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, 1 University Station A1915, 2409 University Avenue, Austin, TX 78712-0125, USA. Tel.: +1 512 471 1735; Fax: +1 512 471 5002; E-mail:
| |
Collapse
|
36
|
Cao C, Liu Y, Lehmann M. Fork head controls the timing and tissue selectivity of steroid-induced developmental cell death. ACTA ACUST UNITED AC 2007; 176:843-52. [PMID: 17339378 PMCID: PMC2064058 DOI: 10.1083/jcb.200611155] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell death during Drosophila melanogaster metamorphosis is controlled by the steroid hormone 20-hydroxyecdysone (20E). Elements of the signaling pathway that triggers death are known, but it is not known why some tissues, and not others, die in response to a particular hormone pulse. We found that loss of the tissue-specific transcription factor Fork head (Fkh) is both required and sufficient to specify a death response to 20E in the larval salivary glands. Loss of fkh itself is a steroid-controlled event that is mediated by the 20E-induced BR-C gene, and that renders the key death regulators hid and reaper hormone responsive. These results implicate the D. melanogaster FOXA orthologue Fkh with a novel function as a competence factor for steroid-controlled cell death. They explain how a specific tissue is singled out for death, and why this tissue survives earlier hormone pulses. More generally, they suggest that cell identity factors like Fkh play a pivotal role in the normal control of developmental cell death.
Collapse
Affiliation(s)
- Chike Cao
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | | | | |
Collapse
|
37
|
Schröder M. The unfolded protein response. Mol Biotechnol 2007; 34:279-90. [PMID: 17172673 DOI: 10.1385/mb:34:2:279] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
The unfolded protein response (UPR) is a signal transduction network activated by inhibition of protein folding in the endoplasmic reticulum (ER). The UPR coordinates adaptive responses to this stress situation, including induction of ER resident molecular chaperone and protein foldase expression to increase the protein folding capacity of the ER, induction of phospholipid synthesis, attenuation of general translation, and upregulation of ER-associated degradation to decrease the unfolded protein load of the ER, and an antioxidant response. Upon severe or prolonged ER stress the UPR induces apoptosis to eliminate unhealthy cells from an organism or a population. In this review, I will summarize our current knowledge about signal transduction pathways involved in transducing the unfolded protein signal from the ER to the nucleus or the cytosol.
Collapse
Affiliation(s)
- Martin Schröder
- School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, United Kingdom.
| |
Collapse
|
38
|
Abstract
Cell death plays many roles during development, in the adult, and in the genesis of many pathological states. Much of this death is apoptotic in nature and requires the activity of members of the caspase family of proteases. It is now possible uniquely in Drosophila to carry out genetic screens for genes that determine the fate-life or death-of any population of cells during development and adulthood. This, in conjunction with the ability to obtain biochemical quantities of material, has made Drosophila a useful organism for exploring the mechanisms by which apoptosis is carried out and regulated. This review summarizes our knowledge of caspase-dependent cell death in Drosophila and compares that knowledge with what is known in worms and mammals. We also discuss the significance of recent work showing that a number of key cell death activators also play nonapoptotic roles. We highlight opportunities and outstanding questions along the way.
Collapse
Affiliation(s)
- Bruce A Hay
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA.
| | | |
Collapse
|
39
|
Muro I, Berry DL, Huh JR, Chen CH, Huang H, Yoo SJ, Guo M, Baehrecke EH, Hay BA. The Drosophila caspase Ice is important for many apoptotic cell deaths and for spermatid individualization, a nonapoptotic process. Development 2006; 133:3305-15. [PMID: 16887831 DOI: 10.1242/dev.02495] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Caspase family proteases play important roles in the regulation of apoptotic cell death. Initiator caspases are activated in response to death stimuli, and they transduce and amplify these signals by cleaving and thereby activating effector caspases. In Drosophila, the initiator caspase Nc (previously Dronc) cleaves and activates two short-prodomain caspases, Dcp-1 and Ice (previously Drice), suggesting these as candidate effectors of Nc killing activity. dcp-1-null mutants are healthy and possess few defects in normally occurring cell death. To explore roles for Ice in cell death, we generated and characterized an Ice null mutant. Animals lacking Ice show a number of defects in cell death, including those that occur during embryonic development, as well as during formation of adult eyes, arista and wings. Ice mutants exhibit subtle defects in the destruction of larval tissues, and do not prevent destruction of salivary glands during metamorphosis. Cells from Ice animals are also markedly resistant to several stresses, including X-irradiation and inhibition of protein synthesis. Mutations in Ice also suppress cell death that is induced by expression of Rpr, Wrinkled (previously Hid) and Grim. These observations demonstrate that Ice plays an important non-redundant role as a cell death effector. Finally, we demonstrate that Ice participates in, but is not absolutely required for, the non-apoptotic process of spermatid differentiation.
Collapse
Affiliation(s)
- Israel Muro
- Division of Biology, MC 156-29, California Institute of Technology, Pasadena, CA 91125, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Means JC, Muro I, Clem RJ. Lack of involvement of mitochondrial factors in caspase activation in a Drosophila cell-free system. Cell Death Differ 2006; 13:1222-34. [PMID: 16322754 PMCID: PMC2575646 DOI: 10.1038/sj.cdd.4401821] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Although mitochondrial proteins play well-defined roles in caspase activation in mammalian cells, the role of mitochondrial factors in caspase activation in Drosophila is unclear. Using cell-free extracts, we demonstrate that mitochondrial factors play no apparent role in Drosophila caspase activation. Cytosolic extract from apoptotic S2 cells, in which caspases were inhibited, induced caspase activation in cytosolic extract from normal S2 cells. Mitochondrial extract did not activate caspases, nor did it influence caspase activation by cytosolic extract. Silencing of Hid, Reaper, or Grim reduced caspase activation by apoptotic cell extract. Furthermore, a peptide representing the amino terminus of Hid was sufficient to activate caspases in cytosolic extract, and this activity was not enhanced by addition of mitochondria or mitochondrial lysate. The Hid peptide also induced apoptosis when introduced into S2 cells. These results suggest that caspase activation in Drosophila is regulated solely by cytoplasmic factors and does not involve any mitochondrial factors.
Collapse
Affiliation(s)
- John C. Means
- Molecular, Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506
| | | | - Rollie J. Clem
- Molecular, Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506
| |
Collapse
|
41
|
Choi YJ, Lee G, Park JH. Programmed cell death mechanisms of identifiable peptidergic neurons in Drosophila melanogaster. Development 2006; 133:2223-32. [PMID: 16672345 DOI: 10.1242/dev.02376] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The molecular basis of programmed cell death (PCD) of neurons during early metamorphic development of the central nervous system (CNS) in Drosophila melanogaster are largely unknown, in part owing to the lack of appropriate model systems. Here, we provide evidence showing that a group of neurons (vCrz) that express neuropeptide Corazonin (Crz) gene in the ventral nerve cord of the larval CNS undergo programmed death within 6 hours of the onset of metamorphosis. The death was prevented by targeted expression of caspase inhibitor p35, suggesting that these larval neurons are eliminated via a caspase-dependent pathway. Genetic and transgenic disruptions of ecdysone signal transduction involving ecdysone receptor-B (EcR-B) isoforms suppressed vCrz death, whereas transgenic re-introduction of either EcR-B1 or EcR-B2 isoform into the EcR-B-null mutant resumed normal death. Expression of reaper in vCrz neurons and suppression of vCrz-cell death in a reaper-null mutant suggest that reaper functions are required for the death, while no apparent role was found for hid or grim as a death promoter. Our data further suggest that diap1 does not play a role as a central regulator of the PCD of vCrz neurons. Significant delay of vCrz-cell death was observed in mutants that lack dronc or dark functions, indicating that formation of an apoptosome is necessary, but not sufficient, for timely execution of the death. These results suggest that activated ecdysone signaling determines precise developmental timing of the neuronal degeneration during early metamorphosis, and that subsequent reaper-mediated caspase activation occurs through a novel DIAP1-independent pathway.
Collapse
Affiliation(s)
- Youn-Jeong Choi
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, 37996, USA
| | | | | |
Collapse
|
42
|
Walter L, Hajnóczky G. Mitochondria and endoplasmic reticulum: the lethal interorganelle cross-talk. J Bioenerg Biomembr 2006; 37:191-206. [PMID: 16167176 DOI: 10.1007/s10863-005-6600-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The fundamental contribution of the mitochondria and ER to the decision made on the cell's fate has been increasingly recognized. This progress has illuminated the need for the mechanisms these organelles use to initiate and to propagate apoptotic signals. The toolbox of the mitochondria and ER is evolutionary conserved, overlapping and complementary. Furthermore, mitochondria are often closely associated with the ER providing the conditions for a local and privileged communication between the two organelles. The present review is concerned with the spatially and temporally coordinated utilization of Bcl-2 family proteins and Ca(2+) by the mitochondria and ER to control the membrane permeabilization in the mitochondria and to regulate Ca(2+) distribution and the activity of apoptotic proteins in the ER. The apoptotic means of the mitochondria and ER will eventually come together to control the dismantling of the cell by the caspases and other enzymes.
Collapse
Affiliation(s)
- Ludivine Walter
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | |
Collapse
|
43
|
Holcík M. Targeting endogenous inhibitors of apoptosis for treatment of cancer, stroke and multiple sclerosis. Expert Opin Ther Targets 2006; 8:241-53. [PMID: 15161430 DOI: 10.1517/14728222.8.3.241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The inhibitor of apoptosis (IAP) genes have emerged as probably the most important intrinsic regulators of apoptosis. The members of the IAP family are highly conserved in evolutionarily distant species and perform the critical role of binding to and inhibiting distinct caspases. This inhibition is mediated by discrete baculoviral IAP repeat domains that, in a domain-specific manner, inhibit either the initiator or executioner caspases. As such the function of IAPs lies at the very centre of virtually all apoptotic pathways. Since many, if not most, human pathologies involve aberrant apoptosis, the modulation of IAP levels or their activity offers huge therapeutic potential for treatment of various disorders. Indeed, available data suggest that the therapeutic downregulation of IAPs by antisense targeting or their adenovirally-mediated overexpression, can in fact be used to successfully modulate cell death.
Collapse
Affiliation(s)
- Martin Holcík
- Apoptosis Research Center, Children's Hospital of Eastern Ontario Research Institute and Department of Pediatrics, University of Ottawa, 401 Smyth Road, Ottawa, Ontario, K1H 8L1, USA.
| |
Collapse
|
44
|
Abstract
Apoptosis plays a central role in the development and homeostasis of metazoans. Research in the past two decades has led to the identification of hundreds of genes that govern the initiation, execution, and regulation of apoptosis. An earlier focus on the genetic and cell biological characterization has now been complemented by systematic biochemical and structural investigation, giving rise to an unprecedented level of clarity in many aspects of apoptosis. In this review, we focus on the molecular mechanisms of apoptosis by synthesizing available biochemical and structural information. We discuss the mechanisms of ligand binding to death receptors, actions of the Bcl-2 family of proteins, and caspase activation, inhibition, and removal of inhibition. Although an emphasis is given to the mammalian pathways, a comparative analysis is applied to related mechanistic information in Drosophila and Caenorhabditis elegans.
Collapse
Affiliation(s)
- Nieng Yan
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, New Jersey 08544, USA.
| | | |
Collapse
|
45
|
Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest 2005; 115:2656-64. [PMID: 16200199 PMCID: PMC1236697 DOI: 10.1172/jci26373] [Citation(s) in RCA: 1772] [Impact Index Per Article: 93.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Disturbances in the normal functions of the ER lead to an evolutionarily conserved cell stress response, the unfolded protein response, which is aimed initially at compensating for damage but can eventually trigger cell death if ER dysfunction is severe or prolonged. The mechanisms by which ER stress leads to cell death remain enigmatic, with multiple potential participants described but little clarity about which specific death effectors dominate in particular cellular contexts. Important roles for ER-initiated cell death pathways have been recognized for several diseases, including hypoxia, ischemia/reperfusion injury, neurodegeneration, heart disease, and diabetes.
Collapse
Affiliation(s)
- Chunyan Xu
- The Burnham Institute for Medical Research, La Jolla, California 92037, USA
| | | | | |
Collapse
|
46
|
Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest 2005. [PMID: 16200199 DOI: 10.1172/jci26373.2656] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Disturbances in the normal functions of the ER lead to an evolutionarily conserved cell stress response, the unfolded protein response, which is aimed initially at compensating for damage but can eventually trigger cell death if ER dysfunction is severe or prolonged. The mechanisms by which ER stress leads to cell death remain enigmatic, with multiple potential participants described but little clarity about which specific death effectors dominate in particular cellular contexts. Important roles for ER-initiated cell death pathways have been recognized for several diseases, including hypoxia, ischemia/reperfusion injury, neurodegeneration, heart disease, and diabetes.
Collapse
Affiliation(s)
- Chunyan Xu
- The Burnham Institute for Medical Research, La Jolla, California 92037, USA
| | | | | |
Collapse
|
47
|
Cashio P, Lee TV, Bergmann A. Genetic control of programmed cell death in Drosophila melanogaster. Semin Cell Dev Biol 2005; 16:225-35. [PMID: 15797833 DOI: 10.1016/j.semcdb.2005.01.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Apoptosis is a genetically controlled form of cell death that is an important feature of animal development and homeostasis. The genes involved in the control and execution of apoptosis are conserved throughout evolution. However, the actual molecular mechanisms used by these genes vary from species to species. In this review, we focus on the genetic components of apoptosis in the fruit fly Drosophila melanogaster, and compare their mode of action to the one employed by the homologous genes in mammals. We also cover recent advances that show that apoptotic genes have a requirement in processes other than apoptosis.
Collapse
Affiliation(s)
- Peter Cashio
- The University of Texas, MD Anderson Cancer Center, Department of Biochemistry and Molecular Biology, The Genes and Development Graduate Program, Houston, TX 77030, USA
| | | | | |
Collapse
|
48
|
Abstract
The inhibitor of apoptosis (IAP) proteins all contain one or more baculoviral IAP repeat motifs, through which they interact with various other proteins. Many IAPs also have another zinc-binding motif, the RING domain, which can recruit E2 ubiquitin-conjugating enzymes and catalyse the transfer of ubiquitin onto target proteins. The number of targets of IAP-mediated ubiquitylation is increasing and recent results indicate that outcomes following ubiquitylation are tantalizingly complex. As well as regulating other proteins, the IAPs themselves are controlled by ubiquitin-mediated degradation.
Collapse
Affiliation(s)
- David L Vaux
- The Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria 3050, Australia.
| | | |
Collapse
|
49
|
Li Q, Liston P, Schokman N, Ho JM, Moyer RW. Amsacta moorei Entomopoxvirus inhibitor of apoptosis suppresses cell death by binding Grim and Hid. J Virol 2005; 79:3684-91. [PMID: 15731262 PMCID: PMC1075740 DOI: 10.1128/jvi.79.6.3684-3691.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Accepted: 11/03/2004] [Indexed: 11/20/2022] Open
Abstract
Inhibitor of apoptosis (iap) genes have been identified in the genomes of two independent families of insect viruses, the Baculoviridae and the Entomopoxvirinae. In this report, we examined the functional attributes of the Amsacta moorei entomopoxvirus-encoded IAP protein (AMV-IAP). The binding specificity of the individual baculoviral IAP repeat (BIR) domains of AMV-IAP was investigated by using a random-peptide, phage display library, and sequences similar to the amino termini of proapoptotic Drosophila proteins in the Reaper/Hid/Grim family were identified. Furthermore, the BIR domains of AMV-IAP protein were demonstrated to bind the mammalian IAP inhibitor Smac through the AVPI tetrapeptide sequence, suggesting that the peptide binding pocket and groove found in the insect and mammalian IAPs is conserved in this viral protein. Interaction analysis implicated BIR1 as the high-affinity site for Grim, while BIR2 interacted more strongly with Hid. Both Grim and Hid were demonstrated to interact with AMV-IAP in vivo, and Grim- or Hid-induced cell death was suppressed when AMV-IAP was coexpressed.
Collapse
Affiliation(s)
- Qianjun Li
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Box 100266, Gainesville, FL 32610-0266, USA
| | | | | | | | | |
Collapse
|
50
|
Tait SWG, Werner AB, de Vries E, Borst J. Mechanism of action of Drosophila Reaper in mammalian cells: Reaper globally inhibits protein synthesis and induces apoptosis independent of mitochondrial permeability. Cell Death Differ 2005; 11:800-11. [PMID: 15044965 DOI: 10.1038/sj.cdd.4401410] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Drosophila Reaper can bind inhibitor of apoptosis proteins (IAP) and thereby rescue caspases from proteasomal degradation. In insect cells, this is sufficient to induce apoptosis. Reaper can also induce apoptosis in mammalian cells, in which caspases need to be activated, usually via the mitochondrial pathway. Nevertheless, we find that Reaper efficiently induces apoptosis in mammalian cells in the absence of mitochondrial permeabilisation and cytochrome c release. Moreover, this capacity was only marginally affected by deletion of Reaper's amino-terminal IAP-binding motif. Independent of this motif, Reaper could globally suppress protein synthesis. Deletion of 20 amino acids from the carboxy-terminus of Reaper fully abrogated its potential to inhibit protein synthesis and to induce apoptosis in the absence of IAP-binding. Our findings indicate that the newly identified capacity of Reaper to suppress protein translation can operate in mammalian cells and may be key to its pro-apoptotic activity.
Collapse
Affiliation(s)
- S W G Tait
- Division of Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | | | | | |
Collapse
|