1
|
Ng YB, Akincilar SC. Shaping DNA damage responses: Therapeutic potential of targeting telomeric proteins and DNA repair factors in cancer. Curr Opin Pharmacol 2024; 76:102460. [PMID: 38776747 DOI: 10.1016/j.coph.2024.102460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 05/25/2024]
Abstract
Shelterin proteins regulate genomic stability by preventing inappropriate DNA damage responses (DDRs) at telomeres. Unprotected telomeres lead to persistent DDR causing cell cycle inhibition, growth arrest, and apoptosis. Cancer cells rely on DDR to protect themselves from DNA lesions and exogenous DNA-damaging agents such as chemotherapy and radiotherapy. Therefore, targeting DDR machinery is a promising strategy to increase the sensitivity of cancer cells to existing cancer therapies. However, the success of these DDR inhibitors depends on other mutations, and over time, patients develop resistance to these therapies. This suggests the need for alternative approaches. One promising strategy is co-inhibiting shelterin proteins with DDR molecules, which would offset cellular fitness in DNA repair in a mutation-independent manner. This review highlights the associations and dependencies of the shelterin complex with the DDR proteins and discusses potential co-inhibition strategies that might improve the therapeutic potential of current inhibitors.
Collapse
Affiliation(s)
- Yu Bin Ng
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Semih Can Akincilar
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore.
| |
Collapse
|
2
|
Sonmez C, Toia B, Eickhoff P, Matei AM, El Beyrouthy M, Wallner B, Douglas ME, de Lange T, Lottersberger F. DNA-PK controls Apollo's access to leading-end telomeres. Nucleic Acids Res 2024; 52:4313-4327. [PMID: 38407308 PMCID: PMC11077071 DOI: 10.1093/nar/gkae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/27/2024] Open
Abstract
The complex formed by Ku70/80 and DNA-PKcs (DNA-PK) promotes the synapsis and the joining of double strand breaks (DSBs) during canonical non-homologous end joining (c-NHEJ). In c-NHEJ during V(D)J recombination, DNA-PK promotes the processing of the ends and the opening of the DNA hairpins by recruiting and/or activating the nuclease Artemis/DCLRE1C/SNM1C. Paradoxically, DNA-PK is also required to prevent the fusions of newly replicated leading-end telomeres. Here, we describe the role for DNA-PK in controlling Apollo/DCLRE1B/SNM1B, the nuclease that resects leading-end telomeres. We show that the telomeric function of Apollo requires DNA-PKcs's kinase activity and the binding of Apollo to DNA-PK. Furthermore, AlphaFold-Multimer predicts that Apollo's nuclease domain has extensive additional interactions with DNA-PKcs, and comparison to the cryo-EM structure of Artemis bound to DNA-PK phosphorylated on the ABCDE/Thr2609 cluster suggests that DNA-PK can similarly grant Apollo access to the DNA end. In agreement, the telomeric function of DNA-PK requires the ABCDE/Thr2609 cluster. These data reveal that resection of leading-end telomeres is regulated by DNA-PK through its binding to Apollo and its (auto)phosphorylation-dependent positioning of Apollo at the DNA end, analogous but not identical to DNA-PK dependent regulation of Artemis at hairpins.
Collapse
Affiliation(s)
- Ceylan Sonmez
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping 58 183, Sweden
| | - Beatrice Toia
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping 58 183, Sweden
| | - Patrik Eickhoff
- Chester Beatty Laboratories, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Andreea Medeea Matei
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping 58 183, Sweden
| | - Michael El Beyrouthy
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping 58 183, Sweden
| | - Björn Wallner
- Department of Physics, Chemistry and Biology, Linköping University, Linköping 58 183, Sweden
| | - Max E Douglas
- Chester Beatty Laboratories, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, The Rockefeller University, 1230 York Avenue, NY, NY 10021, USA
| | - Francisca Lottersberger
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping 58 183, Sweden
| |
Collapse
|
3
|
Jubelin C, Muñoz-Garcia J, Ollivier E, Cochonneau D, Vallette F, Heymann MF, Oliver L, Heymann D. Identification of MCM4 and PRKDC as new regulators of osteosarcoma cell dormancy based on 3D cell cultures. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119660. [PMID: 38216092 DOI: 10.1016/j.bbamcr.2024.119660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024]
Abstract
Dormancy is a potential way for tumors to develop drug resistance and escape treatment. However, the mechanisms involved in cancer dormancy remain poorly understood. This is mainly because there is no in vitro culture model making it possible to spontaneously induce dormancy. In this context, the present work proposes the use of three-dimensional (3D) spheroids developed from osteosarcoma cell lines as a relevant model for studying cancer dormancy. MNNG-HOS, SaOS-2, 143B, MG-63, U2OS and SJSA-1 cell lines were cultured in 3D using the Liquid Overlay Technique (LOT). Dormancy was studied by staining cancer cells with a lipophilic dye (DiD), and long-term DiD+ cells were considered as dormant cancer cells. The role of the extracellular matrix in inducing dormancy was investigated by embedding cells into methylcellulose or Geltrex™. Gene expression of DiD+ cells was assessed with a Nanostring™ approach and the role of the genes detected in dormancy was validated by a transient down-expression model using siRNA treatment. Proliferation was measured using fluorescence microscopy and the xCELLigence technology. We observed that MNNG-HOS, 143B and MG-G3 cell lines had a reduced proliferation rate in 3D compared to 2D. U2OS cells had an increased proliferation rate when they were cultured in Geltrex™ compared to other 3D culture methods. Using 3D cultures, a transcriptomic signature of dormancy was obtained and showed a decreased expression of 18 genes including ETV4, HELLS, ITGA6, MCM4, PRKDC, RAD21 and UBE2T. The treatment with siRNA targeting these genes showed that cancer cell proliferation was reduced when the expression of ETV4 and MCM4 were decreased, whereas proliferation was increased when the expression of RAD21 was decreased. 3D culture facilitates the maintenance of dormant cancer cells characterized by a reduced proliferation and less differential gene expression as compared to proliferative cells. Further studies of the genes involved has enabled us to envisage their role in regulating cell proliferation.
Collapse
Affiliation(s)
- Camille Jubelin
- Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France; Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Lab., 44805 Saint-Herblain, France; Atlantic Bone Screen, 44800 Saint-Herblain, France
| | - Javier Muñoz-Garcia
- Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France; Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Lab., 44805 Saint-Herblain, France
| | - Emilie Ollivier
- Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Lab., 44805 Saint-Herblain, France
| | - Denis Cochonneau
- Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Lab., 44805 Saint-Herblain, France
| | - François Vallette
- Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Lab., 44805 Saint-Herblain, France; Nantes Université, INSERM, CRCI(2)NA, UMR1307, 44000 Nantes, France
| | - Marie-Françoise Heymann
- Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France; Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Lab., 44805 Saint-Herblain, France
| | - Lisa Oliver
- Nantes Université, INSERM, CRCI(2)NA, UMR1307, 44000 Nantes, France; CHU de Nantes, Nantes, France
| | - Dominique Heymann
- Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France; Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Lab., 44805 Saint-Herblain, France; Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK.
| |
Collapse
|
4
|
Adamson B, Brittain N, Walker L, Duncan R, Luzzi S, Rescigno P, Smith G, McGill S, Burchmore RJ, Willmore E, Hickson I, Robson CN, Bogdan D, Jimenez-Vacas JM, Paschalis A, Welti J, Yuan W, McCracken SR, Heer R, Sharp A, de Bono JS, Gaughan L. The catalytic subunit of DNA-PK regulates transcription and splicing of AR in advanced prostate cancer. J Clin Invest 2023; 133:e169200. [PMID: 37751307 PMCID: PMC10645393 DOI: 10.1172/jci169200] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023] Open
Abstract
Aberrant androgen receptor (AR) signaling drives prostate cancer (PC), and it is a key therapeutic target. Although initially effective, the generation of alternatively spliced AR variants (AR-Vs) compromises efficacy of treatments. In contrast to full-length AR (AR-FL), AR-Vs constitutively activate androgenic signaling and are refractory to the current repertoire of AR-targeting therapies, which together drive disease progression. There is an unmet clinical need, therefore, to develop more durable PC therapies that can attenuate AR-V function. Exploiting the requirement of coregulatory proteins for AR-V function has the capacity to furnish tractable routes for attenuating persistent oncogenic AR signaling in advanced PC. DNA-PKcs regulates AR-FL transcriptional activity and is upregulated in both early and advanced PC. We hypothesized that DNA-PKcs is critical for AR-V function. Using a proximity biotinylation approach, we demonstrated that the DNA-PK holoenzyme is part of the AR-V7 interactome and is a key regulator of AR-V-mediated transcription and cell growth in models of advanced PC. Crucially, we provide evidence that DNA-PKcs controls global splicing and, via RBMX, regulates the maturation of AR-V and AR-FL transcripts. Ultimately, our data indicate that targeting DNA-PKcs attenuates AR-V signaling and provide evidence that DNA-PKcs blockade is an effective therapeutic option in advanced AR-V-positive patients with PC.
Collapse
Affiliation(s)
- Beth Adamson
- Newcastle University Centre for Cancer, Paul O’Gorman Building, Newcastle Upon Tyne, United Kingdom
| | - Nicholas Brittain
- Newcastle University Centre for Cancer, Paul O’Gorman Building, Newcastle Upon Tyne, United Kingdom
| | - Laura Walker
- Newcastle University Centre for Cancer, Paul O’Gorman Building, Newcastle Upon Tyne, United Kingdom
| | - Ruaridh Duncan
- Newcastle University Centre for Cancer, Paul O’Gorman Building, Newcastle Upon Tyne, United Kingdom
| | - Sara Luzzi
- Newcastle University Biosciences Institute, International Centre for Life, Newcastle Upon Tyne, United Kingdom
| | - Pasquale Rescigno
- Newcastle University Centre for Cancer, Paul O’Gorman Building, Newcastle Upon Tyne, United Kingdom
| | - Graham Smith
- Newcastle University Bioinformatics Support Unit, Medical School, Newcastle Upon Tyne, United Kingdom
| | - Suzanne McGill
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Richard J.S. Burchmore
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Elaine Willmore
- Newcastle University Centre for Cancer, Paul O’Gorman Building, Newcastle Upon Tyne, United Kingdom
| | - Ian Hickson
- Newcastle University Centre for Cancer, Paul O’Gorman Building, Newcastle Upon Tyne, United Kingdom
| | - Craig N. Robson
- Newcastle University Centre for Cancer, Paul O’Gorman Building, Newcastle Upon Tyne, United Kingdom
| | - Denisa Bogdan
- The Institute for Cancer Research, London, United Kingdom
| | | | - Alec Paschalis
- The Institute for Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Jonathan Welti
- The Institute for Cancer Research, London, United Kingdom
| | - Wei Yuan
- The Institute for Cancer Research, London, United Kingdom
| | - Stuart R. McCracken
- Newcastle University Centre for Cancer, Paul O’Gorman Building, Newcastle Upon Tyne, United Kingdom
| | - Rakesh Heer
- Newcastle University Centre for Cancer, Paul O’Gorman Building, Newcastle Upon Tyne, United Kingdom
- Division of Surgery, Imperial College London, London, United Kingdom
| | - Adam Sharp
- The Institute for Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Johann S. de Bono
- The Institute for Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Luke Gaughan
- Newcastle University Centre for Cancer, Paul O’Gorman Building, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
5
|
Transcriptome analysis of HEK 293T cells revealed different significance of the depletion of DNA-dependent protein kinase subunits, Ku70, Ku80, and DNA-PKcs. Biochimie 2022; 199:139-149. [DOI: 10.1016/j.biochi.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/17/2022] [Accepted: 04/12/2022] [Indexed: 01/08/2023]
|
6
|
Engin AB, Engin A. The Connection Between Cell Fate and Telomere. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:71-100. [PMID: 33539012 DOI: 10.1007/978-3-030-49844-3_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abolition of telomerase activity results in telomere shortening, a process that eventually destabilizes the ends of chromosomes, leading to genomic instability and cell growth arrest or death. Telomere shortening leads to the attainment of the "Hayflick limit", and the transition of cells to state of senescence. If senescence is bypassed, cells undergo crisis through loss of checkpoints. This process causes massive cell death concomitant with further telomere shortening and spontaneous telomere fusions. In functional telomere of mammalian cells, DNA contains double-stranded tandem repeats of TTAGGG. The Shelterin complex, which is composed of six different proteins, is required for the regulation of telomere length and stability in cells. Telomere protection by telomeric repeat binding protein 2 (TRF2) is dependent on DNA damage response (DDR) inhibition via formation of T-loop structures. Many protein kinases contribute to the DDR activated cell cycle checkpoint pathways, and prevent DNA replication until damaged DNA is repaired. Thereby, the connection between cell fate and telomere length-associated telomerase activity is regulated by multiple protein kinase activities. Contrarily, inactivation of DNA damage checkpoint protein kinases in senescent cells can restore cell-cycle progression into S phase. Therefore, telomere-initiated senescence is a DNA damage checkpoint response that is activated with a direct contribution from dysfunctional telomeres. In this review, in addition to the above mentioned, the choice of main repair pathways, which comprise non-homologous end joining and homologous recombination in telomere uncapping telomere dysfunctions, are discussed.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| | - Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
7
|
Forrer Charlier C, Martins RAP. Protective Mechanisms Against DNA Replication Stress in the Nervous System. Genes (Basel) 2020; 11:E730. [PMID: 32630049 PMCID: PMC7397197 DOI: 10.3390/genes11070730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
The precise replication of DNA and the successful segregation of chromosomes are essential for the faithful transmission of genetic information during the cell cycle. Alterations in the dynamics of genome replication, also referred to as DNA replication stress, may lead to DNA damage and, consequently, mutations and chromosomal rearrangements. Extensive research has revealed that DNA replication stress drives genome instability during tumorigenesis. Over decades, genetic studies of inherited syndromes have established a connection between the mutations in genes required for proper DNA repair/DNA damage responses and neurological diseases. It is becoming clear that both the prevention and the responses to replication stress are particularly important for nervous system development and function. The accurate regulation of cell proliferation is key for the expansion of progenitor pools during central nervous system (CNS) development, adult neurogenesis, and regeneration. Moreover, DNA replication stress in glial cells regulates CNS tumorigenesis and plays a role in neurodegenerative diseases such as ataxia telangiectasia (A-T). Here, we review how replication stress generation and replication stress response (RSR) contribute to the CNS development, homeostasis, and disease. Both cell-autonomous mechanisms, as well as the evidence of RSR-mediated alterations of the cellular microenvironment in the nervous system, were discussed.
Collapse
Affiliation(s)
| | - Rodrigo A. P. Martins
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
8
|
Sui J, Zhang S, Chen BPC. DNA-dependent protein kinase in telomere maintenance and protection. Cell Mol Biol Lett 2020; 25:2. [PMID: 31988640 PMCID: PMC6969447 DOI: 10.1186/s11658-020-0199-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/02/2020] [Indexed: 12/12/2022] Open
Abstract
This review focuses on DNA-dependent protein kinase (DNA-PK), which is the key regulator of canonical non-homologous end-joining (NHEJ), the predominant mechanism of DNA double-strand break (DSB) repair in mammals. DNA-PK consists of the DNA-binding Ku70/80 heterodimer and the catalytic subunit DNA-PKcs. They assemble at DNA ends, forming the active DNA-PK complex, which initiates NHEJ-mediated DSB repair. Paradoxically, both Ku and DNA-PKcs are associated with telomeres, and they play crucial roles in protecting the telomere against fusions. Herein, we discuss possible mechanisms and contributions of Ku and DNA-PKcs in telomere regulation.
Collapse
Affiliation(s)
- Jiangdong Sui
- 1Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, 400030 China
| | - Shichuan Zhang
- 2Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu, China
| | - Benjamin P C Chen
- 3Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2201 Inwood Rd., Dallas, TX 75390-9187 USA
| |
Collapse
|
9
|
Mohiuddin IS, Kang MH. DNA-PK as an Emerging Therapeutic Target in Cancer. Front Oncol 2019; 9:635. [PMID: 31380275 PMCID: PMC6650781 DOI: 10.3389/fonc.2019.00635] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/27/2019] [Indexed: 12/21/2022] Open
Abstract
The DNA-dependent protein kinase (DNA-PK) plays an instrumental role in the overall survival and proliferation of cells. As a member of the phosphatidylinositol 3-kinase-related kinase (PIKK) family, DNA-PK is best known as a mediator of the cellular response to DNA damage. In this context, DNA-PK has emerged as an intriguing therapeutic target in the treatment of a variety of cancers, especially when used in conjunction with genotoxic chemotherapy or ionizing radiation. Beyond the DNA damage response, DNA-PK activity is necessary for multiple cellular functions, including the regulation of transcription, progression of the cell cycle, and in the maintenance of telomeres. Here, we review what is currently known about DNA-PK regarding its structure and established roles in DNA repair. We also discuss its lesser-known functions, the pharmacotherapies inhibiting its function in DNA repair, and its potential as a therapeutic target in a broader context.
Collapse
Affiliation(s)
- Ismail S Mohiuddin
- Cancer Center, Department of Pediatrics, Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Min H Kang
- Cancer Center, Department of Pediatrics, Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
10
|
Abstract
Telomeres are specialised structures at the end of linear chromosomes. They consist of tandem repeats of the hexanucleotide sequence TTAGGG, as well as a protein complex called shelterin. Together, they form a protective loop structure against chromosome fusion and degradation. Shortening or damage to telomeres and opening of the loop induce an uncapped state that triggers a DNA damage response resulting in senescence or apoptosis.Average telomere length, usually measured in human blood lymphocytes, was thought to be a biomarker for ageing, survival and mortality. However, it becomes obvious that regulation of telomere length is very complex and involves multiple processes. For example, the "end replication problem" during DNA replication as well as oxidative stress are responsible for the shortening of telomeres. In contrast, telomerase activity can potentially counteract telomere shortening when it is able to access and interact with telomeres. However, while highly active during development and in cancer cells, the enzyme is down-regulated in most human somatic cells with a few exceptions such as human lymphocytes. In addition, telomeres can be transcribed, and the transcription products called TERRA are involved in telomere length regulation.Thus, telomere length and their integrity are regulated at many different levels, and we only start to understand this process under conditions of increased oxidative stress, inflammation and during diseases as well as the ageing process.This chapter aims to describe our current state of knowledge on telomeres and telomerase and their regulation in order to better understand their role for the ageing process.
Collapse
|
11
|
Bains SK, Chapman K, Bright S, Senan A, Kadhim M, Slijepcevic P. Effects of ionizing radiation on telomere length and telomerase activity in cultured human lens epithelium cells. Int J Radiat Biol 2018; 95:54-63. [PMID: 29667481 DOI: 10.1080/09553002.2018.1466066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE To investigate the effects of ionizing radiation on telomere length and telomerase activity in human lens epithelial cells. There are studies suggesting evidence of telomere length in association with opacity of the lens; however, these studies have been conducted on Canine Lens cells. Our study was designed to understand further the effects of different doses of ionizing radiation on telomere length and telomerase activity in cultured human lens epithelium cells from three Donors. MATERIALS AND METHODS For this study, embryonic human lens epithelial (HLE) cells from three donors, obtained commercially were cultured. Telomere length and telomerase activity were measured after each passage until cells stopped growing in culture. This was repeated on irradiated (0.001 Gy, 0.01 Gy, 0.02 Gy, 0.1 Gy, 1 Gy and 2 Gy) cells. DNA damage response using the H2AX and telomere dysfunction foci assays were also examined at 30 mins, 24 hours, 48 hours and 72 hours postirradiation. RESULTS AND CONCLUSION We have demonstrated genetic changes in telomere length and oxidative stress, which may be relevant to cataractogenesis. Our study shows that in control cells telomere length increases as passage increases. We have also demonstrated that telomere length increases at higher doses of 1.0 Gy and 2.0 Gy. However, telomerase activity decreases dose dependently and as passages increase. These results are not conclusive and further studies ex vivo measuring lens opacity and telomere length in the model would be beneficial in a bigger cohort, hence confirming a link between telomere length, cataractogenesis and genetic factors.
Collapse
Affiliation(s)
- Savneet Kaur Bains
- a Department of Life Sciences , Brunel University London , Uxbridge , UK.,b Department of Biological and Medical Sciences , Oxford Brookes University , Oxford , UK
| | - Kim Chapman
- b Department of Biological and Medical Sciences , Oxford Brookes University , Oxford , UK.,c Oxford Institute of Nursing , Oxford Brookes University , Oxford , UK
| | - Scott Bright
- b Department of Biological and Medical Sciences , Oxford Brookes University , Oxford , UK.,d Department of Radiation Physics , University of Texas, MD Anderson Cancer Center , Houston , TX , USA
| | - Anish Senan
- b Department of Biological and Medical Sciences , Oxford Brookes University , Oxford , UK
| | - Munira Kadhim
- b Department of Biological and Medical Sciences , Oxford Brookes University , Oxford , UK
| | | |
Collapse
|
12
|
Chung JH. The role of DNA-PK in aging and energy metabolism. FEBS J 2018; 285:1959-1972. [PMID: 29453899 DOI: 10.1111/febs.14410] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/15/2018] [Accepted: 02/12/2018] [Indexed: 12/17/2022]
Abstract
DNA-dependent protein kinase (DNA-PK) is a very large holoenzyme comprised of the p470 kDa DNA-PK catalytic subunit (DNA-PKcs ) and the Ku heterodimer consisting of the p86 (Ku 80) and p70 (Ku 70) subunits. It is best known for its nonhomologous end joining (NHEJ) activity, which repairs double-strand DNA (dsDNA) breaks (DSBs). As expected, the absence of DNA-PK activity results in sensitivity to ionizing radiation, which generates DSBs and defect in lymphocyte development, which requires NHEJ of the V(D)J region in the immunoglobulin and T-cell receptor loci. DNA-PK also has been reported to have functions seemingly unrelated to NHEJ. For example, DNA-PK responds to insulin signaling to facilitate the conversion of carbohydrates to fatty acids in the liver. More recent evidence indicates that DNA-PK activity increases with age in skeletal muscle, promoting mitochondrial loss and weight gain. These discoveries suggest that our understanding of DNA-PK is far from complete. As many excellent reviews have already been written about the role of DNA-PK in NHEJ, here we will review the non-NHEJ role of DNA-PK with a focus on its role in aging and energy metabolism.
Collapse
Affiliation(s)
- Jay H Chung
- Laboratory of Obesity and Aging Research, Genetics and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
13
|
Tanori M, Casciati A, Berardinelli F, Leonardi S, Pasquali E, Antonelli F, Tanno B, Giardullo P, Pannicelli A, Babini G, De Stefano I, Sgura A, Mancuso M, Saran A, Pazzaglia S. Synthetic lethal genetic interactions between Rad54 and PARP-1 in mouse development and oncogenesis. Oncotarget 2017; 8:100958-100974. [PMID: 29254138 PMCID: PMC5731848 DOI: 10.18632/oncotarget.10479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 06/26/2016] [Indexed: 12/27/2022] Open
Abstract
Mutations in DNA repair pathways are frequent in human cancers. Hence, gaining insights into the interaction of DNA repair genes is key to development of novel tumor-specific treatment strategies. In this study, we tested the functional relationship in development and oncogenesis between the homologous recombination (HR) factor Rad54 and Parp-1, a nuclear enzyme that plays a multifunctional role in DNA damage signaling and repair. We introduced single or combined Rad54 and Parp-1 inactivating germline mutations in Ptc1 heterozygous mice, a well-characterized model of medulloblastoma, the most common malignant pediatric brain tumor. Our study reveals that combined inactivation of Rad54 and Parp-1 causes a marked growth delay culminating in perinatallethality, providing for the first time evidence of synthetic lethal interactions between Rad54 and Parp-1 in vivo. Although the double mutation hampered investigation of Rad54 and Parp-1 interactions in cerebellum tumorigenesis, insights were gained by showing accumulation of endogenous DNA damage and increased apoptotic rate in granule cell precursors (GCPs). A network-based approach to detect differential expression of DNA repair genes in the cerebellum revealed perturbation of p53 signaling in Rad54-/-/Parp-1-/-/Ptc1+/-, and MEFs from combined Rad54/Parp-1 mutants showed p53/p21-dependent typical senescent features. These findings help elucidate the genetic interplay between Rad54 and Parp-1 by suggesting that p53/p21-mediated apoptosis and/or senescence may be involved in synthetic lethal interactions occurring during development and inhibition of tumor growth.
Collapse
Affiliation(s)
- Mirella Tanori
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), CR-Casaccia, Rome, Italy
| | - Arianna Casciati
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), CR-Casaccia, Rome, Italy
| | | | - Simona Leonardi
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), CR-Casaccia, Rome, Italy
| | - Emanuela Pasquali
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), CR-Casaccia, Rome, Italy
| | - Francesca Antonelli
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), CR-Casaccia, Rome, Italy
| | - Barbara Tanno
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), CR-Casaccia, Rome, Italy
| | - Paola Giardullo
- Department of Science, University Roma Tre, Rome, Italy
- Department of Radiation Physics, Università degli Studi Guglielmo Marconi, Rome, Italy
| | | | | | - Ilaria De Stefano
- Department of Radiation Physics, Università degli Studi Guglielmo Marconi, Rome, Italy
| | | | - Mariateresa Mancuso
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), CR-Casaccia, Rome, Italy
| | - Anna Saran
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), CR-Casaccia, Rome, Italy
| | - Simonetta Pazzaglia
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), CR-Casaccia, Rome, Italy
| |
Collapse
|
14
|
DNA-dependent protein kinase modulates the anti-cancer properties of silver nanoparticles in human cancer cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 824:32-41. [PMID: 29150048 DOI: 10.1016/j.mrgentox.2017.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/04/2017] [Accepted: 10/09/2017] [Indexed: 12/19/2022]
Abstract
Silver nanoparticles (Ag-np) were reported to be toxic to eukaryotic cells. These potentially detrimental effects of Ag-np can be advantageous in experimental therapeutics. They are currently being employed to enhance the therapeutic efficacy of cancer drugs. In this study, we demonstrate that Ag-np treatment trigger the activation of DNA-PKcs and JNK pathway at selected doses, presumably as a physiologic response to DNA damage and repair in normal and malignant cells. Ag-np altered the telomere dynamics by disrupting the shelterin complex located at the telomeres and telomere lengths. The genotoxic effect of Ag-np was not restricted to telomeres but the entire genome as Ag-np induced γ-H2AX foci formation, an indicator of global DNA damage. Inhibition of DNA-PKcs activity sensitised the cancer cells towards the cytotoxicity of Ag-np and substantiated the damaging effect of Ag-np at telomeres in human cancer cells. Abrogation of JNK mediated DNA repair and extensive damage of telomeres led to greater cell death following Ag-np treatment in DNA-PKcs inhibited cancer cells. Collectively, this study suggests that improved anti-proliferative and cytotoxic effects of Ag-np treatment in cancer cells can be achieved by the inhibition of DNA-PKcs.
Collapse
|
15
|
Zhang T, Zhang Z, Li F, Hu Q, Liu H, Tang M, Ma W, Huang J, Songyang Z, Rong Y, Zhang S, Chen BP, Zhao Y. Looping-out mechanism for resolution of replicative stress at telomeres. EMBO Rep 2017; 18:1412-1428. [PMID: 28615293 DOI: 10.15252/embr.201643866] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/29/2017] [Accepted: 05/08/2017] [Indexed: 01/03/2023] Open
Abstract
Repetitive DNA is prone to replication fork stalling, which can lead to genome instability. Here, we find that replication fork stalling at telomeres leads to the formation of t-circle-tails, a new extrachromosomal structure that consists of circular telomeric DNA with a single-stranded tail. Structurally, the t-circle-tail resembles cyclized leading or lagging replication intermediates that are excised from the genome by topoisomerase II-mediated cleavage. We also show that the DNA damage repair machinery NHEJ is required for the formation of t-circle-tails and for the resolution of stalled replication forks, suggesting that NHEJ, which is normally constitutively suppressed at telomeres, is activated in the context of replication stress. Inhibition of NHEJ or knockout of DNA-PKcs impairs telomere replication, leading to multiple-telomere sites (MTS) and telomere shortening. Collectively, our results support a "looping-out" mechanism, in which the stalled replication fork is cut out and cyclized to form t-circle-tails, and broken DNA is religated. The telomere loss induced by replication stress may serve as a new factor that drives replicative senescence and cell aging.
Collapse
Affiliation(s)
- Tianpeng Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha, China
| | - Zepeng Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha, China
| | - Feng Li
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qian Hu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha, China
| | - Haiying Liu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha, China
| | - Mengfan Tang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenbin Ma
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Junjiu Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhou Songyang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yikang Rong
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shichuan Zhang
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu, China
| | - Benjamin Pc Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yong Zhao
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China .,Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha, China
| |
Collapse
|
16
|
Spontaneous tumor development in bone marrow-rescued DNA-PKcs(3A/3A) mice due to dysfunction of telomere leading strand deprotection. Oncogene 2015; 35:3909-18. [PMID: 26616856 PMCID: PMC4885801 DOI: 10.1038/onc.2015.459] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 12/16/2022]
Abstract
Phosphorylation of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) at the Thr2609 cluster is essential for its complete function in DNA repair and tissue stem cell homeostasis. This phenomenon is demonstrated by congenital bone marrow failure occurring in DNA-PKcs3A/3A mutant mice, which require bone marrow transplantation (BMT) to prevent early mortality. Surprisingly, an increased incidence of spontaneous tumors, especially skin cancer, was observed in adult BMT-rescued DNA-PKcs3A/3A mice. Upon further investigation we found that spontaneous γH2AX foci occurred in DNA-PKcs3A/3A skin biopsies and primary keratinocytes and that these foci overlapped with telomeres during mitosis, indicating impairment of telomere replication and maturation. Consistently, we observed significantly elevated frequencies of telomere fusion events in DNA-PKcs3A/3A cells as compared to wild type and DNA-PKcs knockout cells. In addition, a previously identified DNA-PKcs Thr2609Pro mutation, found in breast cancer, also induces a similar impairment of telomere leading end maturation. Taken together, our current analyses indicate that the functional DNA-PKcs T2609 cluster is required to facilitate telomere leading strand maturation and prevention of genomic instability and cancer development.
Collapse
|
17
|
Szumiel I. From radioresistance to radiosensitivity: In vitro evolution of L5178Y lymphoma. Int J Radiat Biol 2015; 91:465-71. [PMID: 25651039 DOI: 10.3109/09553002.2014.996263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE To discuss the possible reasons for the loss of tumourigenicity and the acquisition of new phenotypic features (among them, sensitivity to X and UVC radiations) as a result of in vitro cultivation of L5178Y lymphoma cells. RESULTS Ten years ago the phenotypic differences between LY-R (original L5178Y maintained in vivo and examined in vitro) and LY-S lines were reviewed in detail by the author. The loss of tumourigenicity of LY-R cells upon in vitro cultivation accompanying the acquirement of the LY-S phenotype had been described earlier by Beer et al. (1983). In spite of their common origin, the sublines were shown to differ in their relative sensitivity to a number of DNA damaging agents and in numerous other features. Here, selected differences between LY-R and LY-S lines are briefly reviewed. It is proposed that Wallace's concept (2010a) that mitochondria are the interface between environmental conditions and the genome may explain the LY-R-LY-S conversion under prolonged in vitro cultivation. CONCLUSION The differences between the LY lines were probably of epigenetic rather than genetic character. The properties of LY-R cells changed as a result of exposure to an oxic in vitro milieu. The changes could be preconditioned by heteroplasmy and the selection of cells endowed with mitochondria best fitted to a high oxygen-low carbon dioxide environment.
Collapse
Affiliation(s)
- Irena Szumiel
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology , Warsaw , Poland
| |
Collapse
|
18
|
Czarny P, Pawlowska E, Bialkowska-Warzecha J, Kaarniranta K, Blasiak J. Autophagy in DNA damage response. Int J Mol Sci 2015; 16:2641-62. [PMID: 25625517 PMCID: PMC4346856 DOI: 10.3390/ijms16022641] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 01/12/2015] [Indexed: 12/15/2022] Open
Abstract
DNA damage response (DDR) involves DNA repair, cell cycle regulation and apoptosis, but autophagy is also suggested to play a role in DDR. Autophagy can be activated in response to DNA-damaging agents, but the exact mechanism underlying this activation is not fully understood, although it is suggested that it involves the inhibition of mammalian target of rapamycin complex 1 (mTORC1). mTORC1 represses autophagy via phosphorylation of the ULK1/2-Atg13-FIP200 complex thus preventing maturation of pre-autophagosomal structures. When DNA damage occurs, it is recognized by some proteins or their complexes, such as poly(ADP)ribose polymerase 1 (PARP-1), Mre11-Rad50-Nbs1 (MRN) complex or FOXO3, which activate repressors of mTORC1. SQSTM1/p62 is one of the proteins whose levels are regulated via autophagic degradation. Inhibition of autophagy by knockout of FIP200 results in upregulation of SQSTM1/p62, enhanced DNA damage and less efficient damage repair. Mitophagy, one form of autophagy involved in the selective degradation of mitochondria, may also play role in DDR. It degrades abnormal mitochondria and can either repress or activate apoptosis, but the exact mechanism remains unknown. There is a need to clarify the role of autophagy in DDR, as this process may possess several important biomedical applications, involving also cancer therapy.
Collapse
Affiliation(s)
- Piotr Czarny
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland.
| | - Jolanta Bialkowska-Warzecha
- Department of Infectious and Liver Diseases, Medical University of Lodz, Kniaziewicza 1/5, 92-347 Lodz, Poland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio FI-70211, Finland.
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
19
|
Ito K, Mercado N. STOP accelerating lung aging for the treatment of COPD. Exp Gerontol 2014; 59:21-7. [DOI: 10.1016/j.exger.2014.03.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 03/15/2014] [Accepted: 03/18/2014] [Indexed: 11/28/2022]
|
20
|
Abstract
Ageing is associated with a progressive degeneration of the tissues, which has a negative impact on the structure and function of vital organs and is among the most important known risk factors for most chronic diseases. Since the proportion of the world's population aged >60 years will double in the next four decades, this will be accompanied by an increased incidence of chronic age-related diseases that will place a huge burden on healthcare resources. There is increasing evidence that many chronic inflammatory diseases represent an acceleration of the ageing process. Chronic pulmonary diseases represents an important component of the increasingly prevalent multiple chronic debilitating diseases, which are a major cause of morbidity and mortality, particularly in the elderly. The lungs age and it has been suggested that chronic obstructive pulmonary disease (COPD) is a condition of accelerated lung ageing and that ageing may provide a mechanistic link between COPD and many of its extrapulmonary effects and comorbidities. In this article we will describe the physiological changes and mechanisms of ageing, with particular focus on the pulmonary effects of ageing and how these may be relevant to the development of COPD and its major extrapulmonary manifestations.
Collapse
Affiliation(s)
- William MacNee
- ELEGI Colt Research Laboratories, MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Roberto A Rabinovich
- ELEGI Colt Research Laboratories, MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Gourab Choudhury
- ELEGI Colt Research Laboratories, MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
21
|
Rybanska-Spaeder I, Ghosh R, Franco S. 53BP1 mediates the fusion of mammalian telomeres rendered dysfunctional by DNA-PKcs loss or inhibition. PLoS One 2014; 9:e108731. [PMID: 25264618 PMCID: PMC4181871 DOI: 10.1371/journal.pone.0108731] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 09/04/2014] [Indexed: 12/21/2022] Open
Abstract
Telomere dysfunction promotes genomic instability and carcinogenesis via inappropriate end-to-end chromosomal rearrangements, or telomere fusions. Previous work indicates that the DNA Damage Response (DDR) factor 53BP1 promotes the fusion of telomeres rendered dysfunctional by loss of TRF2, but is dispensable for the fusion of telomeres lacking Pot1 or critically shortened (in telomerase-deficient mice). Here, we examine a role for 53BP1 at telomeres rendered dysfunctional by loss or catalytic inhibition of DNA-PKcs. Using mouse embryonic fibroblasts lacking 53BP1 and/or DNA-PKcs, we show that 53BP1 deficiency suppresses G1-generated telomere fusions that normally accumulate in DNA-PKcs-deficient fibroblasts with passage. Likewise, we find that 53BP1 promotes telomere fusions during the replicative phases of the cell cycle in cells treated with the specific DNA-PKcs inhibitor NU7026. However, telomere fusions are not fully abrogated in DNA-PKcs-inhibited 53BP1-deficient cells, but occur with a frequency approximately 10-fold lower than in control 53BP1-proficient cells. Treatment with PARP inhibitors or PARP1 depletion abrogates residual fusions, while Ligase IV depletion has no measurable effect, suggesting that PARP1-dependent alternative end-joining operates at low efficiency at 53BP1-deficient, DNA-PKcs-inhibited telomeres. Finally, we have also examined the requirement for DDR factors ATM, MDC1 or H2AX in this context. We find that ATM loss or inhibition has no measurable effect on the frequency of NU7026-induced fusions in wild-type MEFs. Moreover, analysis of MEFs lacking both ATM and 53BP1 indicates that ATM is also dispensable for telomere fusions via PARP-dependent end-joining. In contrast, loss of either MDC1 or H2AX abrogates telomere fusions in response to DNA-PKcs inhibition, suggesting that these factors operate upstream of both 53BP1-dependent and -independent telomere rejoining. Together, these experiments define a novel requirement for 53BP1 in the fusions of DNA-PKcs-deficient telomeres throughout the cell cycle and uncover a Ligase IV-independent, PARP1-dependent pathway that fuses telomeres at reduced efficiency in the absence of 53BP1.
Collapse
Affiliation(s)
- Ivana Rybanska-Spaeder
- Department of Radiation Oncology and Molecular Radiation Sciences; and Department of Oncology; and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Rajib Ghosh
- Department of Radiation Oncology and Molecular Radiation Sciences; and Department of Oncology; and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sonia Franco
- Department of Radiation Oncology and Molecular Radiation Sciences; and Department of Oncology; and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
22
|
DNA-PKcs-interacting protein KIP binding to TRF2 is required for the maintenance of functional telomeres. Biochem J 2014; 463:19-30. [DOI: 10.1042/bj20131395] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA-PKcs-interacting protein KIP interacts with TRF2 and enhances the telomere binding activity of TRF2. Depletion of KIP induces telomere-damage response foci. Thus KIP plays important roles in the maintenance of functional telomeres and the regulation of telomere-associated DNA-damage response.
Collapse
|
23
|
Kang GY, Pyun BJ, Seo HR, Jin YB, Lee HJ, Lee YJ, Lee YS. Inhibition of Snail1-DNA-PKcs protein-protein interface sensitizes cancer cells and inhibits tumor metastasis. J Biol Chem 2013; 288:32506-32516. [PMID: 24085291 DOI: 10.1074/jbc.m113.479840] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Our previous study suggested that the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) interacts with Snail1, which affects genomic instability, sensitivity to DNA-damaging agents, and migration of tumor cells by reciprocal regulation between DNA-PKcs and Snail1. Here, we further investigate that a peptide containing 7-amino acid sequences (amino acids 15-21) of Snail1 (KPNYSEL, SP) inhibits the endogenous interaction between DNA-PKcs and Snail1 through primary interaction with DNA-PKcs. SP restored the inhibited DNA-PKcs repair activity and downstream pathways. On the other hand, DNA-PKcs-mediated phosphorylation of Snail1 was inhibited by SP, which resulted in decreased Snail1 stability and Snail1 functions. However, these phenomena were only shown in p53 wild-type cells, not in p53-defective cells. From these results, it is suggested that interfering with the protein interaction between DNA-PKcs and Snail1 might be an effective strategy for sensitizing cancer cells and inhibiting tumor migration, especially in both Snail1-overexpressing and DNA-PKcs-overexpressing cancer cells with functional p53.
Collapse
Affiliation(s)
- Ga-Young Kang
- From the College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750
| | - Bo-Jeong Pyun
- From the College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750
| | - Haeng Ran Seo
- the Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706
| | - Yeung Bae Jin
- the Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute, Jeongeup-si, Jeollabuk-do 580-185, Korea
| | - Hae-June Lee
- the Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706
| | - Yoon-Jin Lee
- the Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706
| | - Yun-Sil Lee
- From the College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750,.
| |
Collapse
|
24
|
Zhou X, Zhang X, Xie Y, Tanaka K, Wang B, Zhang H. DNA-PKcs inhibition sensitizes cancer cells to carbon-ion irradiation via telomere capping disruption. PLoS One 2013; 8:e72641. [PMID: 24013362 PMCID: PMC3754927 DOI: 10.1371/journal.pone.0072641] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 07/11/2013] [Indexed: 11/18/2022] Open
Abstract
Heavy-ion irradiation induces a higher frequency of DNA double strand breaks (DSBs) which must be properly repaired. Critical shortening of telomeres can trigger DNA damage responses such as DSBs. Telomeres are very sensitive to oxidative stress such as ionizing radiation. The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is the central component in the non-homologous end joining (NHEJ) repair complex and participates in telomere maintenance. Therefore, it is expected to enhance the cell killing effect of heavy-ion irradiation via DNA-PKcs inhibition. To test this hypothesis, cellular radiosensitivity was measured by the clonal genetic assay. DNA damage repair was relatively quantified by long PCR. Apoptosis was quantified by flow-cytometric analysis of annexin V/PI double staining, and senescence was analyzed by galactosidase activity. Telomere length was semi-quantified by real-time PCR. P53 and p21 expression was determined by western blotting. Our data demonstrated that MCF-7 and HeLa cells with DNA-PKcs inhibition were more susceptible to carbon-ion irradiation than Those without DNA-PKcs inhibition. Even though NHEJ was inhibited by the DNA-PKcs specific inhibitor, NU7026, most DNA damage induced by carbon-ion irradiation was repaired within 24 hours after irradiation in both cell lines. However, potential lethal damage repair (PLDR) could not restore cellular inactivation in DNA-PKcs inhibited cells. MCF-7 cells showed extensive senescence and accelerated telomere length reduction, while HeLa cells underwent significant apoptosis after irradiation with NU7026 incubation. In addition, both cell lines with shorter telomere were more susceptible to carbon-ion radiation. Our current data suggested that DNA-PKcs inhibition could enhance cellular sensitivity to carbon-ion radiation via disturbing its functional role in telomere end protection. The combination of DNA-PKcs inhibition and carbon-ion irradiation may be an efficient method of heavy-ion therapy.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou, China
| | - Xin Zhang
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou, China
| | - Yi Xie
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou, China
| | - Kaoru Tanaka
- Radiation Risk Reduction Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Inage-ku, Chiba, Japan
| | - Bing Wang
- Radiation Risk Reduction Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Inage-ku, Chiba, Japan
| | - Hong Zhang
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou, China
- * E-mail:
| |
Collapse
|
25
|
Zhang Y, Shin SJ, Liu D, Ivanova E, Foerster F, Ying H, Zheng H, Xiao Y, Chen Z, Protopopov A, Depinho RA, Paik JH. ZNF365 promotes stability of fragile sites and telomeres. Cancer Discov 2013; 3:798-811. [PMID: 23776040 DOI: 10.1158/2159-8290.cd-12-0536] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Critically short telomeres activate cellular senescence or apoptosis, as mediated by the tumor suppressor p53, but in the absence of this checkpoint response, telomere dysfunction engenders chromosomal aberrations and cancer. Here, analysis of p53-regulated genes activated in the setting of telomere dysfunction identified Zfp365 (ZNF365 in humans) as a direct p53 target that promotes genome stability. Germline polymorphisms in the ZNF365 locus are associated with increased cancer risk, including those associated with telomere dysfunction. On the mechanistic level, ZNF365 suppresses expression of a subset of common fragile sites, including telomeres. In the absence of ZNF365, defective telomeres engage in aberrant recombination of telomere ends, leading to increased telomere sister chromatid exchange and formation of anaphase DNA bridges, including ultra-fine DNA bridges, and ultimately increased cytokinesis failure and aneuploidy. Thus, the p53-ZNF365 axis contributes to genomic stability in the setting of telomere dysfunction.
Collapse
Affiliation(s)
- Yuqing Zhang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yasaei H, Gozaly-Chianea Y, Slijepcevic P. Analysis of telomere length and function in radiosensitive mouse and human cells in response to DNA-PKcs inhibition. Genome Integr 2013; 4:2. [PMID: 23521760 PMCID: PMC3614538 DOI: 10.1186/2041-9414-4-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 03/18/2013] [Indexed: 11/15/2022] Open
Abstract
Background Telomeres, the physical ends of chromosomes, play an important role in preserving genomic integrity. This protection is supported by telomere binding proteins collectively known as the shelterin complex. The shelterin complex protects chromosome ends by suppressing DNA damage response and acting as a regulator of telomere length maintenance by telomerase, an enzyme that elongates telomeres. Telomere dysfunction manifests in different forms including chromosomal end-to-end fusion, telomere shortening and p53-dependent apoptosis and/or senescence. An important shelterin-associated protein with critical role in telomere protection in human and mouse cells is the catalytic subunit of DNA-protein kinase (DNA-PKcs). DNA-PKcs deficiency in mouse cells results in elevated levels of spontaneous telomeric fusion, a marker of telomere dysfunction, but does not cause telomere length shortening. Similarly, inhibition of DNA-PKcs with chemical inhibitor, IC86621, prevents chromosomal end protection through mechanism reminiscent of dominant-negative reduction in DNA-PKcs activity. Results We demonstrate here that the IC86621 mediated inhibition of DNA-PKcs in two mouse lymphoma cell lines results not only in elevated frequencies of chromosome end-to-end fusions, but also accelerated telomere shortening in the presence of telomerase. Furthermore, we observed increased levels of spontaneous telomeric fusions in Artemis defective human primary fibroblasts in which DNA-PKcs was inhibited, but no significant changes in telomere length. Conclusion These results confirm that DNA-PKcs plays an active role in chromosome end protection in mouse and human cells. Furthermore, it appears that DNA-PKcs is also involved in telomere length regulation, independently of telomerase activity, in mouse lymphoma cells but not in human cells.
Collapse
Affiliation(s)
- Hemad Yasaei
- Division of Biosciences, Brunel Institute of Cancer Genetics and Pharmacogenomics, School of Health Sciences and Social Care, Brunel University, Uxbridge, Middlesex, UB8 3PH, UK.
| | | | | |
Collapse
|
27
|
Hartwig FP, Collares T. Telomere dysfunction and tumor suppression responses in dyskeratosis congenita: balancing cancer and tissue renewal impairment. Ageing Res Rev 2013; 12:642-52. [PMID: 23541441 DOI: 10.1016/j.arr.2013.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/13/2013] [Accepted: 03/18/2013] [Indexed: 01/06/2023]
Abstract
Dyskeratosis congenita (DC) encompasses a large spectrum of diseases and clinical manifestations generally related to premature aging, including bone marrow failure and cancer predisposition. The major risk factor for DC is to carry germline telomere-related mutations - in telomerase or telomere shelterin genes - which results in premature telomere dysfunction, thus increasing the risk of premature aging impairments. Despite the advances that have been accomplished in DC research, the molecular aspects underlying the phenotypic variability of the disease remain poorly understood. Here different aspects of telomere biology, concerning adult stem cells senescence, tumor suppression and cancer are considered in the context of DC, resulting in two translational models: late onset of DC symptoms in telomere-related mutations carriers is a potential indicator of increased cancer risk and differences in tumor suppression capacities among the genetic subgroups are (at least partial) causes of different clinical manifestations of the disease. The limitations of both models are presented, and further experiments for their validation, as well as clinical implications, are discussed.
Collapse
|
28
|
Nowsheen S, Yang E. The intersection between DNA damage response and cell death pathways. Exp Oncol 2012; 34:243-254. [PMID: 23070009 PMCID: PMC3754840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Apoptosis is a finely regulated process that serves to determine the fate of cells in response to various stresses. One such stress is DNA damage, which not only can signal repair processes but is also intimately involved in regulating cell fate. In this review we examine the relationship between the DNA damage/repair response in cell survival and apoptosis following insults to the DNA. Elucidating these pathways and the crosstalk between them is of great importance, as they eventually contribute to the etiology of human disease such as cancer and may play key roles in determining therapeutic response. This article is part of a Special Issue entitled "Apoptosis: Four Decades Later".
Collapse
Affiliation(s)
- S. Nowsheen
- Departments of Radiation Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, Alabama, USA
| | - E.S. Yang
- Departments of Radiation Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, Alabama, USA
- Departments of Cell, Developmental, and Integrative Biology, Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, Alabama, USA
- Departments of Pharmacology and Toxicology, Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, Alabama, USA
| |
Collapse
|
29
|
PARP1 and DNA-PKcs synergize to suppress p53 mutation and telomere fusions during T-lineage lymphomagenesis. Oncogene 2012; 32:1761-71. [PMID: 22614020 DOI: 10.1038/onc.2012.199] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) interacts genetically with the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to suppress early-onset T-lineage lymphomas in the mouse, but the underlying mechanisms have remained unknown. To address this question, we analyzed a series of lymphomas arising in PARP1(-/-)/DNA-PKcs(-/-) (P1(-/-)/D(-/-)) mice. We found that, despite defective V(D)J recombination, P1(-/-)/D(-/-) lymphomas lacked clonal reciprocal translocations involving antigen-receptor loci. Instead, tumor cells were characterized by aneuploidy driven by two main mechanisms: p53 inactivation and abnormal chromosome disjunction due to telomere fusions (TFs). Aberrant accumulation of p53 was observed in 13/19 (68.4%) lymphomas. Sequence analysis revealed five p53 mutations: three missense point mutations (one transition in exon 8 and two transversions in exons 5 and 8, respectively), one in-frame 5-11 microindel in exon 7 and a 410-bp deletion encompassing exons 5-8, resulting in a truncated protein. Analysis of tumor metaphases using sequential telomere fluorescent in-situ hybridization and spectral karyotyping revealed that nine out of nine lymphomas contained TFs. Mutant but not wild-type p53 status was associated with frequent clonal and nonclonal TFs, suggesting that p53 normally limits the extent of telomere dysfunction during transformation. Chromosomes involved in TFs were more likely to be aneuploid than chromosomes not involved in TFs in the same metaphases, regardless of the p53 status, indicating that TFs promote aneuploidy via a mechanism that is distinct from p53 loss. Finally, analysis of radiation responses in P1(-/-)/D(-/-), and control primary cells and tissues indicates that loss of PARP1 increases in vivo radiosensitivity and genomic instability in DNA-PKcs-deficient mice without impairing p53 stabilization and effector functions, suggesting a more severe defect in double-strand break (DSB) repair in double mutants. Together, our findings uncover defective DSB repair leading to tumor suppressor inactivation and abnormal segregation of fused chromosomes as two novel mechanisms promoting tumorigenesis in thymocytes lacking PARP1 and DNA-PKcs.
Collapse
|
30
|
Kong X, Shen Y, Jiang N, Fei X, Mi J. Emerging roles of DNA-PK besides DNA repair. Cell Signal 2011; 23:1273-80. [PMID: 21514376 DOI: 10.1016/j.cellsig.2011.04.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 03/13/2011] [Accepted: 04/04/2011] [Indexed: 10/24/2022]
Abstract
The DNA-dependent protein kinase (DNA-PK) is a DNA-activated serine/threonine protein kinase, and abundantly expressed in almost all mammalian cells. The roles of DNA-PK in DNA-damage repair pathways, including non-homologous end-joining (NHEJ) repair and homologous recombinant (HR) repair, have been studied intensively. However, the high levels of DNA-PK in human cells are somewhat paradoxical in that it does not impart any increased ability to repair DNA damage. If DNA-PK essentially exceeds the demand for DNA damage repair, why do human cells universally express such high levels of this huge complex? DNA-PK has been recently reported to be involved in metabolic gene regulation in response to feeding/insulin stimulation; our studies have also suggested a role of DNA-PK in the regulation of the homeostasis of cell proliferation. These novel findings expand our horizons about the importance of DNA-PK.
Collapse
Affiliation(s)
- Xianming Kong
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | |
Collapse
|
31
|
Abstract
Telomeres protect the chromosome ends from unscheduled DNA repair and degradation. Telomeres are heterochromatic domains composed of repetitive DNA (TTAGGG repeats) bound to an array of specialized proteins. The length of telomere repeats and the integrity of telomere-binding proteins are both important for telomere protection. Furthermore, telomere length and integrity are regulated by a number of epigenetic modifications, thus pointing to higher order control of telomere function. In this regard, we have recently discovered that telomeres are transcribed generating long, non-coding RNAs, which remain associated with the telomeric chromatin and are likely to have important roles in telomere regulation. In the past, we showed that telomere length and the catalytic component of telomerase, Tert, are critical determinants for the mobilization of stem cells. These effects of telomerase and telomere length on stem cell behaviour anticipate the premature ageing and cancer phenotypes of telomerase mutant mice. Recently, we have demonstrated the anti-ageing activity of telomerase by forcing telomerase expression in mice with augmented cancer resistance. Shelterin is the major protein complex bound to mammalian telomeres; however, its potential relevance for cancer and ageing remained unaddressed to date. To this end, we have generated mice conditionally deleted for the shelterin proteins TRF1, TPP1 and Rap1. The study of these mice demonstrates that telomere dysfunction, even if telomeres are of a normal length, is sufficient to produce premature tissue degeneration, acquisition of chromosomal aberrations and initiation of neoplastic lesions. These new mouse models, together with the telomerase-deficient mouse model, are valuable tools for understanding human pathologies produced by telomere dysfunction.
Collapse
Affiliation(s)
- Luis E Donate
- Telomeres and Telomerase Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | | |
Collapse
|
32
|
Abstract
Telomeres are ends of chromosomes that play an important part in the biology of eukaryotic cells. Through the coordinated action of the telomerase and networks of other proteins and factors, the length and integrity of telomeres are maintained to prevent telomere dysfunction that has been linked to senescence, aging, diseases, and cancer. The tools and assays being used to study telomeres are being broadened, which has allowed us to derive a more detailed, high-resolution picture of the various players and pathways at work at the telomeres.
Collapse
Affiliation(s)
- Zhou Songyang
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
33
|
Kusumoto-Matsuo R, Opresko PL, Ramsden D, Tahara H, Bohr VA. Cooperation of DNA-PKcs and WRN helicase in the maintenance of telomeric D-loops. Aging (Albany NY) 2010; 2:274-84. [PMID: 20519774 PMCID: PMC2898018 DOI: 10.18632/aging.100141] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Werner syndrome
is an inherited human progeriod syndrome caused by mutations in the gene
encoding the Werner Syndrome protein, WRN. It has both 3'-5' DNA
helicase and exonuclease activities, and is
suggested to have roles in many aspects of DNA metabolism, including DNA
repair and telomere maintenance. The DNA-PK complex also functions in both
DNA double strand break repair and telomere maintenance. Interaction
between WRN and the DNA-PK complex has been reported in DNA double strand
break repair, but their possible cooperation at telomeres has not been
reported. This study analyzes thein vitro and in vivo
interaction at the telomere between WRN and DNA-PKcs, the catalytic subunit
of DNA-PK. The results show that DNA-PKcs selectively stimulates WRN
helicase but not WRN exonuclease in vitro, affecting that WRN
helicase unwinds and promotes the release of the full-length invading strand
of a telomere D-loop model substrate. In addition, the length of telomeric
G-tails decreases in DNA-PKcs knockdown cells, and this phenotype is
reversed by overexpression of WRN helicase. These results suggest that WRN
and DNA-PKcs may cooperatively prevent G-tail shortening in vivo.
Collapse
Affiliation(s)
- Rika Kusumoto-Matsuo
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
34
|
Gurung RL, Lim SN, Khaw AK, Soon JFF, Shenoy K, Mohamed Ali S, Jayapal M, Sethu S, Baskar R, Hande MP. Thymoquinone induces telomere shortening, DNA damage and apoptosis in human glioblastoma cells. PLoS One 2010; 5:e12124. [PMID: 20711342 PMCID: PMC2920825 DOI: 10.1371/journal.pone.0012124] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 06/22/2010] [Indexed: 12/15/2022] Open
Abstract
Background A major concern of cancer chemotherapy is the side effects caused by the non-specific targeting of both normal and cancerous cells by therapeutic drugs. Much emphasis has been placed on discovering new compounds that target tumour cells more efficiently and selectively with minimal toxic effects on normal cells. Methodology/Principal Findings The cytotoxic effect of thymoquinone, a component derived from the plant Nigella sativa, was tested on human glioblastoma and normal cells. Our findings demonstrated that glioblastoma cells were more sensitive to thymoquinone-induced antiproliferative effects. Thymoquinone induced DNA damage, cell cycle arrest and apoptosis in the glioblastoma cells. It was also observed that thymoquinone facilitated telomere attrition by inhibiting the activity of telomerase. In addition to these, we investigated the role of DNA-PKcs on thymoquinone mediated changes in telomere length. Telomeres in glioblastoma cells with DNA-PKcs were more sensitive to thymoquinone mediated effects as compared to those cells deficient in DNA-PKcs. Conclusions/Significance Our results indicate that thymoquinone induces DNA damage, telomere attrition by inhibiting telomerase and cell death in glioblastoma cells. Telomere shortening was found to be dependent on the status of DNA-PKcs. Collectively, these data suggest that thymoquinone could be useful as a potential chemotherapeutic agent in the management for brain tumours.
Collapse
Affiliation(s)
- Resham Lal Gurung
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shi Ni Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Aik Kia Khaw
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jasmine Fen Fen Soon
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kirthan Shenoy
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Safiyya Mohamed Ali
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Manikandan Jayapal
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Swaminathan Sethu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rajamanickam Baskar
- Division of Cellular and Molecular Research, Department of Radiation Oncology, National Cancer Centre, Singapore, Singapore
| | - M. Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
35
|
Bombarde O, Boby C, Gomez D, Frit P, Giraud-Panis MJ, Gilson E, Salles B, Calsou P. TRF2/RAP1 and DNA-PK mediate a double protection against joining at telomeric ends. EMBO J 2010; 29:1573-84. [PMID: 20407424 DOI: 10.1038/emboj.2010.49] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 03/04/2010] [Indexed: 11/09/2022] Open
Abstract
DNA-dependent protein kinase (DNA-PK) is a double-strand breaks repair complex, the subunits of which (KU and DNA-PKcs) are paradoxically present at mammalian telomeres. Telomere fusion has been reported in cells lacking these proteins, raising two questions: how is DNA-PK prevented from initiating classical ligase IV (LIG4)-dependent non-homologous end-joining (C-NHEJ) at telomeres and how is the backup end-joining (EJ) activity (B-NHEJ) that operates at telomeres under conditions of C-NHEJ deficiency controlled? To address these questions, we have investigated EJ using plasmid substrates bearing double-stranded telomeric tracks and human cell extracts with variable C-NHEJ or B-NHEJ activity. We found that (1) TRF2/RAP1 prevents C-NHEJ-mediated end fusion at the initial DNA-PK end binding and activation step and (2) DNA-PK counteracts a potent LIG4-independent EJ mechanism. Thus, telomeres are protected against EJ by a lock with two bolts. These results account for observations with mammalian models and underline the importance of alternative non-classical EJ pathways for telomere fusions in cells.
Collapse
Affiliation(s)
- Oriane Bombarde
- Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Ting NSY, Pohorelic B, Yu Y, Lees-Miller SP, Beattie TL. The human telomerase RNA component, hTR, activates the DNA-dependent protein kinase to phosphorylate heterogeneous nuclear ribonucleoprotein A1. Nucleic Acids Res 2009; 37:6105-15. [PMID: 19656952 PMCID: PMC2764450 DOI: 10.1093/nar/gkp636] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Telomere integrity in human cells is maintained by the dynamic interplay between telomerase, telomere associated proteins, and DNA repair proteins. These interactions are vital to suppress DNA damage responses and unfavorable changes in chromosome dynamics. The DNA-dependent protein kinase (DNA-PK) is critical for this process. Cells deficient for functional DNA-PKcs show increased rates of telomere loss, accompanied by chromosomal fusions and translocations. Treatment of cells with specific DNA-PK kinase inhibitors leads to similar phenotypes. These observations indicate that the kinase activity of DNA-PK is required for its function at telomeres possibly through phosphorylation of essential proteins needed for telomere length maintenance. Here we show that the heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is a direct substrate for DNA-PK in vitro. Phosphorylation of hnRNP A1 is stimulated not only by the presence of DNA but also by the telomerase RNA component, hTR. Furthermore, we show that hnRNP A1 is phosphorylated in vivo in a DNA-PK-dependent manner and that this phosphorylation is greatly reduced in cell lines which lack hTR. These data are the first to report that hTR stimulates the kinase activity of DNA-PK toward a known telomere-associated protein, and may provide further insights into the function of DNA-PK at telomeres.
Collapse
Affiliation(s)
- Nicholas S Y Ting
- Department of Biochemistry and Molecular Biology and Department of Oncology, Southern Alberta Cancer Research Institute, University of Calgary, 3330 Hospital Drive N.W. Calgary, AB T2N 4N1, Canada
| | | | | | | | | |
Collapse
|
37
|
De Boeck G, Forsyth RG, Praet M, Hogendoorn PCW. Telomere-associated proteins: cross-talk between telomere maintenance and telomere-lengthening mechanisms. J Pathol 2009; 217:327-44. [PMID: 19142887 DOI: 10.1002/path.2500] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Telomeres, the ends of eukaryotic chromosomes, have been the subject of intense investigation over the last decade. As telomere dysfunction has been associated with ageing and developing cancer, understanding the exact mechanisms regulating telomere structure and function is essential for the prevention and treatment of human cancers and age-related diseases. The mechanisms by which cells maintain telomere lengthening involve either telomerase or the alternative lengthening of the telomere pathway, although specific mechanisms of the latter and the relationship between the two are as yet unknown. Many cellular factors directly (TRF1/TRF2) and indirectly (shelterin-complex, PinX, Apollo and tankyrase) interact with telomeres, and their interplay influences telomere structure and function. One challenge comes from the observation that many DNA damage response proteins are stably associated with telomeres and contribute to several other aspects of telomere function. This review focuses on the different components involved in telomere maintenance and their role in telomere length homeostasis. Special attention is paid to understanding how these telomere-associated factors, and mainly those involved in double-strand break repair, perform their activities at the telomere ends.
Collapse
Affiliation(s)
- Gitte De Boeck
- N. Goormaghtigh Institute of Pathology, University Hospital Ghent, De Pintelaan 185, 9000 Ghent, Belgium
| | | | | | | |
Collapse
|
38
|
Hsiao SJ, Smith S. Sister telomeres rendered dysfunctional by persistent cohesion are fused by NHEJ. ACTA ACUST UNITED AC 2009; 184:515-26. [PMID: 19221198 PMCID: PMC2654126 DOI: 10.1083/jcb.200810132] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Telomeres protect chromosome ends from being viewed as double-strand breaks and from eliciting a DNA damage response. Deprotection of chromosome ends occurs when telomeres become critically short because of replicative attrition or inhibition of TRF2. In this study, we report a novel form of deprotection that occurs exclusively after DNA replication in S/G2 phase of the cell cycle. In cells deficient in the telomeric poly(adenosine diphosphate ribose) polymerase tankyrase 1, sister telomere resolution is blocked. Unexpectedly, cohered sister telomeres become deprotected and are inappropriately fused. In contrast to telomeres rendered dysfunctional by TRF2, which engage in chromatid fusions predominantly between chromatids from different chromosomes (Bailey, S.M., M.N. Cornforth, A. Kurimasa, D.J. Chen, and E.H. Goodwin. 2001. Science. 293:2462–2465; Smogorzewska, A., J. Karlseder, H. Holtgreve-Grez, A. Jauch, and T. de Lange. 2002. Curr. Biol. 12:1635–1644), telomeres rendered dysfunctional by tankyrase 1 engage in chromatid fusions almost exclusively between sister chromatids. We show that cohered sister telomeres are fused by DNA ligase IV–mediated nonhomologous end joining. These results demonstrate that the timely removal of sister telomere cohesion is essential for the formation of a protective structure at chromosome ends after DNA replication in S/G2 phase of the cell cycle.
Collapse
Affiliation(s)
- Susan J Hsiao
- Molecular Pathogenesis Program, The Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
39
|
Durkin SS, Guo X, Fryrear KA, Mihaylova VT, Gupta SK, Belgnaoui SM, Haoudi A, Kupfer GM, Semmes OJ. HTLV-1 Tax oncoprotein subverts the cellular DNA damage response via binding to DNA-dependent protein kinase. J Biol Chem 2008; 283:36311-20. [PMID: 18957425 PMCID: PMC2605996 DOI: 10.1074/jbc.m804931200] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Human T-cell leukemia virus type-1 is the causative agent for adult T-cell leukemia. Previous research has established that the viral oncoprotein Tax mediates the transformation process by impairing cell cycle control and cellular response to DNA damage. We showed previously that Tax sequesters huChk2 within chromatin and impairs the response to ionizing radiation. Here we demonstrate that DNA-dependent protein kinase (DNA-PK) is a member of the Tax.Chk2 nuclear complex. The catalytic subunit, DNA-PKcs, and the regulatory subunit, Ku70, were present. Tax-containing nuclear extracts showed increased DNA-PK activity, and specific inhibition of DNA-PK prevented Tax-induced activation of Chk2 kinase activity. Expression of Tax induced foci formation and phosphorylation of H2AX. However, Tax-induced constitutive signaling of the DNA-PK pathway impaired cellular response to new damage, as reflected in suppression of ionizing radiation-induced DNA-PK phosphorylation and gammaH2AX stabilization. Tax co-localized with phospho-DNA-PK into nuclear speckles and a nuclear excluded Tax mutant sequestered endogenous phospho-DNA-PK into the cytoplasm, suggesting that Tax interaction with DNA-PK is an initiating event. We also describe a novel interaction between DNA-PK and Chk2 that requires Tax. We propose that Tax binds to and stabilizes a protein complex with DNA-PK and Chk2, resulting in a saturation of DNA-PK-mediated damage repair response.
Collapse
Affiliation(s)
- Sarah S Durkin
- Department of Microbiology and Molecular Cell Biology, Center for Biomedical Proteomics, Eastern Virginia Medical School, Norfolk, Virginia 23507, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
The catalytic subunit of DNA-dependent protein kinase regulates proliferation, telomere length, and genomic stability in human somatic cells. Mol Cell Biol 2008; 28:6182-95. [PMID: 18710952 DOI: 10.1128/mcb.00355-08] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The DNA-dependent protein kinase (DNA-PK) complex is a serine/threonine protein kinase comprised of a 469-kDa catalytic subunit (DNA-PK(cs)) and the DNA binding regulatory heterodimeric (Ku70/Ku86) complex Ku. DNA-PK functions in the nonhomologous end-joining pathway for the repair of DNA double-stranded breaks (DSBs) introduced by either exogenous DNA damage or endogenous processes, such as lymphoid V(D)J recombination. Not surprisingly, mutations in Ku70, Ku86, or DNA-PK(cs) result in animals that are sensitive to agents that cause DSBs and that are also immune deficient. While these phenotypes have been validated in several model systems, an extension of them to humans has been missing due to the lack of patients with mutations in any one of the three DNA-PK subunits. The worldwide lack of patients suggests that during mammalian evolution this complex has become uniquely essential in primates. This hypothesis was substantiated by the demonstration that functional inactivation of either Ku70 or Ku86 in human somatic cell lines is lethal. Here we report on the functional inactivation of DNA-PK(cs) in human somatic cells. Surprisingly, DNA-PK(cs) does not appear to be essential, although the cell line lacking this gene has profound proliferation and genomic stability deficits not observed for other mammalian systems.
Collapse
|
41
|
Chromosome Fusions following Telomere Loss Are Mediated by Single-Strand Annealing. Mol Cell 2008; 31:463-473. [DOI: 10.1016/j.molcel.2008.05.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2007] [Revised: 04/16/2008] [Accepted: 05/29/2008] [Indexed: 11/23/2022]
|
42
|
Raynaud CM, Sabatier L, Philipot O, Olaussen KA, Soria JC. Telomere length, telomeric proteins and genomic instability during the multistep carcinogenic process. Crit Rev Oncol Hematol 2008; 66:99-117. [PMID: 18243729 DOI: 10.1016/j.critrevonc.2007.11.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 11/08/2007] [Accepted: 11/30/2007] [Indexed: 12/29/2022] Open
Abstract
Telomeres form specialized structures at the ends of eukaryotic chromosomes, preventing them from being wrongly recognized as DNA damage. The human telomere DNA sequence is a tandem repetition of the sequence TTAGGG. In normal cells, the DNA replication machinery is unable to completely duplicate the telomeric DNA; thus, telomeres are shortened after every cell division. Having reached a critical length, telomeres may be recognized as double strand break DNA lesions, and cells eventually enter senescence. Carcinogenesis is a multistep process involving multiple mutations and chromosomal aberrations. One of the most prevalent aberrations in pre-cancerous lesions is telomere shortening and telomerase activation. We discuss the role and homeostasis of telomeres in normal cells and their implication in the early steps of carcinogenesis. We also discuss various techniques used, and their limitations, in the study of telomeres and genome instability and their role in carcinogenesis and related genomic modifications.
Collapse
|
43
|
Else T, Theisen BK, Wu Y, Hutz JE, Keegan CE, Hammer GD, Ferguson DO. Tpp1/Acd maintains genomic stability through a complex role in telomere protection. Chromosome Res 2008; 15:1001-13. [PMID: 18185984 DOI: 10.1007/s10577-007-1175-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 09/05/2007] [Accepted: 09/05/2007] [Indexed: 11/29/2022]
Abstract
Telomeres serve to protect the ends of chromosomes, and failure to maintain telomeres can lead to dramatic genomic instability. Human TPP1 was identified as a protein which interacts with components of a telomere cap complex, but does not directly bind to telomeric DNA. While biochemical interactions indicate a function in telomere biology, much remains to be learned regarding the roles of TPP1 in vivo. We previously reported the positional cloning of the gene responsible for the adrenocortical dysplasia (acd) mouse phenotype, which revealed a mutation in the mouse homologue encoding TPP1. We find that cells from homozygous acd mice harbor chromosomes fused at telomere sequences, demonstrating a role in telomere protection in vivo. Surprisingly, our studies also reveal fusions and radial structures lacking internal telomere sequences, which are not anticipated from a simple deficiency in telomere protection. Employing spectral karyotyping and telomere FISH in a combined approach, we have uncovered a striking pattern; fusions with telomeric sequences involve nonhomologous chromosomes while those lacking telomeric sequences involve homologues. Together, these studies show that Tpp1/Acd plays a vital role in telomere protection, but likely has additional functions yet to be defined.
Collapse
Affiliation(s)
- Tobias Else
- Department of Internal Medicine, Division of Endocrinology and Metabolism, The University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Zhdanova NS, Rubtsov NB, Minina YM. Terminal regions of mammal chromosomes: Plasticity and role in evolution. RUSS J GENET+ 2007. [DOI: 10.1134/s1022795407070022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Riha K, Heacock ML, Shippen DE. The role of the nonhomologous end-joining DNA double-strand break repair pathway in telomere biology. Annu Rev Genet 2007; 40:237-77. [PMID: 16822175 DOI: 10.1146/annurev.genet.39.110304.095755] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Double-strand breaks are a cataclysmic threat to genome integrity. In higher eukaryotes the predominant recourse is the nonhomologous end-joining (NHEJ) double-strand break repair pathway. NHEJ is a versatile mechanism employing the Ku heterodimer, ligase IV/XRCC4 and a host of other proteins that juxtapose two free DNA ends for ligation. A critical function of telomeres is their ability to distinguish the ends of linear chromosomes from double-strand breaks, and avoid NHEJ. Telomeres accomplish this feat by forming a unique higher order nucleoprotein structure. Paradoxically, key components of NHEJ associate with normal telomeres and are required for proper length regulation and end protection. Here we review the biochemical mechanism of NHEJ in double-strand break repair, and in the response to dysfunctional telomeres. We discuss the ways in which NHEJ proteins contribute to telomere biology, and highlight how the NHEJ machinery and the telomere complex are evolving to maintain genome stability.
Collapse
Affiliation(s)
- Karel Riha
- Gregor Mendel Institute of Plant Molecular Biology, Austrian Academy of Sciences, A-1030 Vienna, Austria.
| | | | | |
Collapse
|
46
|
|
47
|
Zhou FX, Liao ZK, Dai J, Xiong J, Xie CH, Luo ZG, Liu SQ, Zhou YF. Radiosensitization effect of zidovudine on human malignant glioma cells. Biochem Biophys Res Commun 2007; 354:351-6. [PMID: 17223082 DOI: 10.1016/j.bbrc.2006.12.180] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 12/18/2006] [Indexed: 10/23/2022]
Abstract
Telomeres are shortened with each cell division and play an important role in maintaining chromosomal integrity and function. Telomerase, responsible for telomere synthesis, is activated in 90% of human tumor cells but seldom in normal somatic cells. Zidovudine (AZT) is a reverse transcriptase inhibitor. In this study, we have investigated the effects of gamma-radiation in combination with AZT on telomerase activity (TA), telomere length, DNA single-strand breaks (SSBs), DNA double-strand breaks (DSBs), and the changes in radiosensitivity of human malignant glioma cell line U251. The results showed that the TA was suppressed by AZT but enhanced by irradiation, resulting in a deceleration of restored rate of shortened telomere, decreased repair rate of DNA strand breaks, and increased radiosensitivity of U251 cells. Our results suggested that telomerase activity and telomere length may serve as markers for estimating the efficacy of cancer radiotherapy and reverse transcriptase inhibitors, such as AZT, may be used clinically as a new radiosensitizer in cancer radiotherapy.
Collapse
Affiliation(s)
- Fu-Xiang Zhou
- Department of Chemo-Radiotherapy Oncology, Zhongnan Hospital, Wuhan University, The Cancer Center of Wuhan University, Wuhan, Hubei 430071, China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Ghosh G, Li G, Myung K, Hendrickson EA. The Lethality of Ku86 (XRCC5) Loss-of-Function Mutations in Human Cells is Independent of p53 (TP53). Radiat Res 2007; 167:66-79. [PMID: 17214517 DOI: 10.1667/rr0692.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 08/24/2006] [Indexed: 11/03/2022]
Abstract
Ku86 is one of the two regulatory subunits of the DNA-PK (DNA-dependent protein kinase) complex that is required for DNA double-strand break repair in mammalian cells. In a previous study, by means of somatic gene targeting, we generated human cell lines deficient in Ku86 (XRCC5). Heterozygous human Ku86 cells exhibited a wide array of haploinsufficient phenotypes, including sensitivity to ionizing radiation, defects in DNA-PK and DNA end-binding activities, elevated levels of p53 (TP53) and gamma-H2AX foci, and a defect in cell proliferation with an increase in the frequency of aneuploid cells. Here we demonstrate that the overexpression of a human Ku86 cDNA complemented the deficiencies of these cells to wild-type levels. In contrast, Ku86 overexpression only partially rescued the telomere defects characteristic of Ku86 heterozygous cells and did not rescue their genetic instability. Additionally, in stark contrast to every other species described to date, we had shown earlier that homozygous human Ku86(-/-) cells are inviable, because they undergo 8 to 10 rounds of cell division before succumbing to apoptosis. The tumor suppressor protein p53 regulates the DNA damage response in mammalian cells and triggers apoptosis in the face of excessive DNA damage. Correspondingly, ablation of p53 expression has repeatedly been shown to significantly ameliorate the pathological effects of loss-of-function mutations for a large number of DNA repair genes. Surprisingly, however, even in a p53-null genetic background, the absence of Ku86 proved lethal. Thus the gene encoding Ku86 (XRCC5) is an essential gene in human somatic cells, and its absence cannot be suppressed by the loss of p53 function. These results suggest that Ku86 performs an essential role in telomere maintenance in human cells.
Collapse
Affiliation(s)
- Goutam Ghosh
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
49
|
Maser RS, Wong KK, Sahin E, Xia H, Naylor M, Hedberg HM, Artandi SE, DePinho RA. DNA-dependent protein kinase catalytic subunit is not required for dysfunctional telomere fusion and checkpoint response in the telomerase-deficient mouse. Mol Cell Biol 2006; 27:2253-65. [PMID: 17145779 PMCID: PMC1820500 DOI: 10.1128/mcb.01354-06] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Telomeres are key structural elements for the protection and maintenance of linear chromosomes, and they function to prevent recognition of chromosomal ends as DNA double-stranded breaks. Loss of telomere capping function brought about by telomerase deficiency and gradual erosion of telomere ends or by experimental disruption of higher-order telomere structure culminates in the fusion of defective telomeres and/or the activation of DNA damage checkpoints. Previous work has implicated the nonhomologous end-joining (NHEJ) DNA repair pathway as a critical mediator of these biological processes. Here, employing the telomerase-deficient mouse model, we tested whether the NHEJ component DNA-dependent protein kinase catalytic subunit (DNA-PKcs) was required for fusion of eroded/dysfunctional telomere ends and the telomere checkpoint responses. In late-generation mTerc(-/-) DNA-PKcs(-/-) cells and tissues, chromosomal end-to-end fusions and anaphase bridges were readily evident. Notably, nullizygosity for DNA Ligase4 (Lig4)--an additional crucial NHEJ component--was also permissive for chromosome fusions in mTerc(-/-) cells, indicating that, in contrast to results seen with experimental disruption of telomere structure, telomere dysfunction in the context of gradual telomere erosion can engage additional DNA repair pathways. Furthermore, we found that DNA-PKcs deficiency does not reduce apoptosis, tissue atrophy, or p53 activation in late-generation mTerc(-/-) tissues but rather moderately exacerbates germ cell apoptosis and testicular degeneration. Thus, our studies indicate that the NHEJ components, DNA-PKcs and Lig4, are not required for fusion of critically shortened telomeric ends and that DNA-PKcs is not required for sensing and executing the telomere checkpoint response, findings consistent with the consensus view of the limited role of DNA-PKcs in DNA damage signaling in general.
Collapse
Affiliation(s)
- Richard S Maser
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Wong KK, Maser RS, Sahin E, Bailey ST, Xia H, Ji H, McNamara K, Naylor M, Bronson RT, Ghosh S, Welsh R, DePinho RA. Diminished lifespan and acute stress-induced death in DNA-PKcs-deficient mice with limiting telomeres. Oncogene 2006; 26:2815-21. [PMID: 17072335 DOI: 10.1038/sj.onc.1210099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An adequate and appropriate response to physiological and pathophysiological stresses is critical for long-term homeostasis and viability of the aging organism. Previous work has pointed to the immune system, telomeres and DNA repair pathways as important and distinct determinants of a normal healthy lifespan. In this study, we explored the genetic interactions of telomeres and DNA-PKcs, a protein involved in non-homologous end-joining (NHEJ) and immune responses, in the context of a key aspect of aging and lifespan--the capacity to mount an acute and appropriate immune-mediated stress response. We observed that the combination of DNA-PKcs deficiency and telomere dysfunction resulted in a shortened lifespan that was reduced further following viral infection or experimental activation of the innate immune response. Analysis of the innate immune response in the DNA-PKcs-deficient mice with short dysfunctional telomeres revealed high basal serum levels of tumor necrosis factor alpha (TNFalpha) and hyper-active cytokine responses upon challenge with polyinosinic-polycytidylic acid (poly-IC). We further show that serum cytokine levels become elevated in telomere dysfunctional mice as a function of age. These results raise speculation that these genetic factors may contribute to misdirected immune responses of the aged under conditions of acute and chronic stress.
Collapse
Affiliation(s)
- K-K Wong
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|