1
|
Lee CY, Hubrich D, Varga JK, Schäfer C, Welzel M, Schumbera E, Djokic M, Strom JM, Schönfeld J, Geist JL, Polat F, Gibson TJ, Keller Valsecchi CI, Kumar M, Schueler-Furman O, Luck K. Systematic discovery of protein interaction interfaces using AlphaFold and experimental validation. Mol Syst Biol 2024; 20:75-97. [PMID: 38225382 PMCID: PMC10883280 DOI: 10.1038/s44320-023-00005-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024] Open
Abstract
Structural resolution of protein interactions enables mechanistic and functional studies as well as interpretation of disease variants. However, structural data is still missing for most protein interactions because we lack computational and experimental tools at scale. This is particularly true for interactions mediated by short linear motifs occurring in disordered regions of proteins. We find that AlphaFold-Multimer predicts with high sensitivity but limited specificity structures of domain-motif interactions when using small protein fragments as input. Sensitivity decreased substantially when using long protein fragments or full length proteins. We delineated a protein fragmentation strategy particularly suited for the prediction of domain-motif interfaces and applied it to interactions between human proteins associated with neurodevelopmental disorders. This enabled the prediction of highly confident and likely disease-related novel interfaces, which we further experimentally corroborated for FBXO23-STX1B, STX1B-VAMP2, ESRRG-PSMC5, PEX3-PEX19, PEX3-PEX16, and SNRPB-GIGYF1 providing novel molecular insights for diverse biological processes. Our work highlights exciting perspectives, but also reveals clear limitations and the need for future developments to maximize the power of Alphafold-Multimer for interface predictions.
Collapse
Affiliation(s)
- Chop Yan Lee
- Institute of Molecular Biology (IMB) gGmbH, 55128, Mainz, Germany
| | - Dalmira Hubrich
- Institute of Molecular Biology (IMB) gGmbH, 55128, Mainz, Germany
| | - Julia K Varga
- Department of Microbiology and Molecular Genetics, Institute for Biomedical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112001, Israel
| | | | - Mareen Welzel
- Institute of Molecular Biology (IMB) gGmbH, 55128, Mainz, Germany
| | - Eric Schumbera
- Institute of Molecular Biology (IMB) gGmbH, 55128, Mainz, Germany
- Computational Biology and Data Mining Group Biozentrum I, 55128, Mainz, Germany
| | - Milena Djokic
- Institute of Molecular Biology (IMB) gGmbH, 55128, Mainz, Germany
| | - Joelle M Strom
- Institute of Molecular Biology (IMB) gGmbH, 55128, Mainz, Germany
| | - Jonas Schönfeld
- Institute of Molecular Biology (IMB) gGmbH, 55128, Mainz, Germany
| | - Johanna L Geist
- Institute of Molecular Biology (IMB) gGmbH, 55128, Mainz, Germany
| | - Feyza Polat
- Institute of Molecular Biology (IMB) gGmbH, 55128, Mainz, Germany
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, 69117, Germany
| | | | - Manjeet Kumar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, 69117, Germany
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, Institute for Biomedical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112001, Israel.
| | - Katja Luck
- Institute of Molecular Biology (IMB) gGmbH, 55128, Mainz, Germany.
| |
Collapse
|
2
|
Meyer F. Viral interactions with components of the splicing machinery. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 142:241-68. [PMID: 27571697 DOI: 10.1016/bs.pmbts.2016.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Eukaryotic genes are often interrupted by stretches of sequence with no protein coding potential or obvious function. After transcription, these interrupting sequences must be removed to give rise to the mature messenger RNA. This fundamental process is called RNA splicing and is achieved by complicated machinery made of protein and RNA that assembles around the RNA to be edited. Viruses also use RNA splicing to maximize their coding potential and economize on genetic space, and use clever strategies to manipulate the splicing machinery to their advantage. This article gives an overview of the splicing process and provides examples of viral strategies that make use of various components of the splicing system to promote their replicative cycle. Representative virus families have been selected to illustrate the interaction with various regulatory proteins and ribonucleoproteins. The unifying theme is fine regulation through protein-protein and protein-RNA interactions with the spliceosome components and associated factors to promote or prevent spliceosome assembly on given splice sites, in addition to a strong influence from cis-regulatory sequences on viral transcripts. Because there is an intimate coupling of splicing with the processes that direct mRNA biogenesis, a description of how these viruses couple the regulation of splicing with the retention or stability of mRNAs is also included. It seems that a unique balance of suppression and activation of splicing and nuclear export works optimally for each family of viruses.
Collapse
Affiliation(s)
- F Meyer
- Department of Biochemistry & Molecular Biology, Entomology & Plant Pathology, Mississippi State University, Starkville, MS, USA.
| |
Collapse
|
3
|
An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense. Proc Natl Acad Sci U S A 2009; 106:17841-6. [PMID: 19805194 DOI: 10.1073/pnas.0905006106] [Citation(s) in RCA: 395] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Here, we show that the major mosquito vector for dengue virus uses the JAK-STAT pathway to control virus infection. Dengue virus infection in Aedes aegypti mosquitoes activates the JAK-STAT immune signaling pathway. The mosquito's susceptibility to dengue virus infection increases when the JAK-STAT pathway is suppressed through RNAi depletion of its receptor Domeless (Dome) and the Janus kinase (Hop), whereas mosquitoes become more resistant to the virus when the negative regulator of the JAK-STAT pathway, PIAS, is silenced. The JAK-STAT pathway exerts its anti-dengue activity presumably through one or several STAT-regulated effectors. We have identified, and partially characterized, two JAK-STAT pathway-regulated and infection-responsive dengue virus restriction factors (DVRFs) that contain putative STAT-binding sites in their promoter regions. Our data suggest that the JAK-STAT pathway is part of the A. aegypti mosquito's anti-dengue defense and may act independently of the Toll pathway and the RNAi-mediated antiviral defenses.
Collapse
|
4
|
Kristie TM, Liang Y, Vogel JL. Control of alpha-herpesvirus IE gene expression by HCF-1 coupled chromatin modification activities. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1799:257-65. [PMID: 19682612 DOI: 10.1016/j.bbagrm.2009.08.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 07/15/2009] [Accepted: 08/01/2009] [Indexed: 01/17/2023]
Abstract
The immediate early genes of the alpha-herpesviruses HSV and VZV are transcriptionally regulated by viral and cellular factors in a complex combinatorial manner. Despite this complexity and the apparent redundancy of activators, the expression of the viral IE genes is critically dependent upon the cellular transcriptional coactivator HCF-1. Although the role of HCF-1 had remained elusive, recent studies have demonstrated that the protein is a component of multiple chromatin modification complexes including the Set1/MLL1 histone H3K4 methyltransferases. Studies using model viral promoter-reporter systems as well as analyses of components recruited to the viral genome during the initiation of infection have elucidated the significance of HCF-1 chromatin modification complexes in contributing to the final state of modified histones assembled on the viral IE promoters. Strikingly, the absence of HCF-1 results in the accumulation of nucleosomes bearing repressive marks on the viral IE promoters and silencing of viral gene expression.
Collapse
Affiliation(s)
- Thomas M Kristie
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4-129, 4 Center Drive, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
5
|
Valderrama X, Rapin N, Verge VMK, Misra V. Zhangfei induces the expression of the nerve growth factor receptor, trkA, in medulloblastoma cells and causes their differentiation or apoptosis. J Neurooncol 2008; 91:7-17. [DOI: 10.1007/s11060-008-9682-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 08/08/2008] [Indexed: 12/29/2022]
|
6
|
Wang Z, Pandey A, Hart GW. Dynamic interplay between O-linked N-acetylglucosaminylation and glycogen synthase kinase-3-dependent phosphorylation. Mol Cell Proteomics 2007; 6:1365-79. [PMID: 17507370 DOI: 10.1074/mcp.m600453-mcp200] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
O-GlcNAcylation on serine and threonine side chains of nuclear and cytoplasmic proteins is dynamically regulated in response to various environmental and biological stimuli. O-GlcNAcylation is remarkably similar to O-phosphorylation and appears to have a dynamic interplay with O-phosphate in cellular regulation. A systematic glycoproteomics analysis of the affects of inhibiting specific kinases on O-GlcNAcylation should help reveal both the global and specific dynamic relationships between these two abundant post-translational modifications. Here we report the O-GlcNAc perturbations in response to inhibition of glycogen synthase kinase-3 (GSK-3), a pivotal kinase involved in many signaling pathways. By combining immunoaffinity chromatography and SILAC (stable isotope labeling with amino acids in cell culture)-based quantitative mass spectrometry, we identified 45 potentially O-GlcNAcylated proteins. Quantitative measurements indicated that at least 10 proteins had an apparent increase of O-GlcNAcylation upon GSK-3 inhibition by lithium, whereas surprisingly 19 other proteins showed decreases. O-GlcNAcylation changes on a subset of the proteins were confirmed by follow-up experiments. By combining a new O-GlcNAc peptide enrichment method and beta-elimination followed by Michael addition with DTT, we also mapped the O-GlcNAc site (Ser-55) of vimentin, which showed an apparent increase of O-GlcNAcylation upon GSK-3 inhibition. Based on the MS data, we further investigated potential roles of O-GlcNAc on host cell factor-1, a transcription co-activator, and showed that dynamic regulation of O-GlcNAcylation on host cell factor-1 influenced its subcellular distribution. Taken together, these data indicated the complex interplay between phosphorylation and O-GlcNAcylation that occurs within signaling networks.
Collapse
Affiliation(s)
- Zihao Wang
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185, USA
| | | | | |
Collapse
|
7
|
Knez J, Piluso D, Bilan P, Capone JP. Host Cell Factor-1 and E2F4 Interact Via Multiple Determinants in Each Protein. Mol Cell Biochem 2006; 288:79-90. [PMID: 16633736 DOI: 10.1007/s11010-006-9122-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Accepted: 01/09/2006] [Indexed: 12/17/2022]
Abstract
Host Cell Factor (HCF-1) is a conserved, essential protein initially identified as a co-regulator for the Herpes Simplex Virus transactivator VP16. HCF-1 is variously involved in regulating transcription, splicing, cell proliferation and cytokinesis; however, its mechanisms of action remain unknown. HCF-1 function is manifested through an increasing assortment of cellular factors that target different regions of the protein. Several HCF-1 partners target the amino-terminal kelch domain of HCF-1 (residues 1-380) via a consensus HCF-binding motif (HBM) comprising the tetrapeptide (D/E)HXY. Searches of sequence databases indicated that this motif is present in E2F1 and E2F4, two members of the E2F family of cell cycle regulators. We show here that E2F4 specifically and directly interacts with HCF-1. Mutational analysis showed E2F4 independently targets the kelch domain and the basic domain (residues 450-902) of HCF-1, both of which are required for normal cell-cycle progression via separate determinants. The HBM-containing domain of E2F4 was necessary for interaction with the kelch domain of HCF-1 but not for interaction with the basic domain. Mutations in the HCF-1 kelch domain known to block cell growth abrogated E2F4 binding to the kelch domain in the absence but not in the presence of the juxtaposed basic region. Functionally, HCF-1 co-activated E2F4/DP-1 in transient transfection assays, while E2F4 blocked HCF-1-dependent rescue of a cell line that harbors a temperature sensitive mutant of HCF-1 that causes growth arrest. Our findings show that HCF-1 and E2F4 interact via multiple determinants and suggest a linkage between E2F4 and HCF-1 cell growth pathways.
Collapse
Affiliation(s)
- Jozo Knez
- Department of Biochemistry and Biomedical Sciences, McMaster University Medical Center, McMaster University, 1200 Main St. W., Hamilton, Ontario, L8N 3Z5, Canada
| | | | | | | |
Collapse
|
8
|
Vogel JL, Kristie TM. Site-specific proteolysis of the transcriptional coactivator HCF-1 can regulate its interaction with protein cofactors. Proc Natl Acad Sci U S A 2006; 103:6817-22. [PMID: 16624878 PMCID: PMC1440766 DOI: 10.1073/pnas.0602109103] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Limited proteolytic processing is an important transcriptional regulatory mechanism. In various contexts, proteolysis controls the cytoplasmic-to-nuclear transport of important transcription factors or removes domains to produce factors with altered activities. The transcriptional coactivator host cell factor-1 (HCF-1) is proteolytically processed within a unique domain consisting of 20-aa reiterations. Site-specific cleavage within one or more repeats generates a family of amino- and carboxyl-terminal subunits that remain tightly associated. However, the consequences of HCF-1 processing have been undefined. In this study, it was determined that the HCF-1-processing domain interacts with several proteins including the transcriptional coactivator/corepressor four-and-a-half LIM domain-2 (FHL2). Analysis of this interaction has uncovered specificity with both sequence and context determinants within the reiterations of this processing domain. In cells, FHL2 interacts exclusively with the nonprocessed coactivator and costimulates transcription of an HCF-1-dependent target gene. The functional interaction of HCF-1 with FHL2 supports a model in which site-specific proteolysis regulates the interaction of HCF-1 with protein partners and thus can modulate the activity of this coactivator. This paradigm expands the biological significance of limited proteolytic processing as a regulatory mechanism in gene transcription.
Collapse
Affiliation(s)
- Jodi L. Vogel
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 4-131, 4 Center Drive, Bethesda, MD 20892
| | - Thomas M. Kristie
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 4-131, 4 Center Drive, Bethesda, MD 20892
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
9
|
Akhova O, Bainbridge M, Misra V. The neuronal host cell factor-binding protein Zhangfei inhibits herpes simplex virus replication. J Virol 2006; 79:14708-18. [PMID: 16282471 PMCID: PMC1287584 DOI: 10.1128/jvi.79.23.14708-14718.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During lytic infection in epithelial cells the expression of herpes simplex virus type 1 (HSV-1) immediate-early (IE) genes is initiated by a multiprotein complex comprising the virion-associated protein VP16 and two cellular proteins, host cellular factor (HCF) and Oct-1. Oct-1 directly recognizes TAATGARAT elements in promoters of IE genes. The role of HCF is not clear. HSV-1 also infects sensory neurons innervating the site of productive infection and establishes a latent infection in these cells. It is likely that some VP16 is retained by the HSV-1 nucleocapsid as it reaches the neuronal nucleus. Its activity must therefore be suppressed for successful establishment of viral latency. Recently, we discovered an HCF-binding cellular protein called Zhangfei. Zhangfei, in an HCF-dependent manner, inhibits Luman/LZIP/CREB3, another cellular HCF-binding transcription factor. Here we show that Zhangfei is selectively expressed in human neurons. When delivered to cultured cells that do not normally express the protein, Zhangfei inhibited the ability of VP16 to activate HSV-1 IE expression. The inhibition was specific for HCF-dependent transcriptional activation by VP16, since a Gal4-VP16 chimeric protein was inhibited only on a TAATGARAT-containing promoter and not a on a Gal4-containing promoter. Zhangfei associated with VP16 and inhibited formation of the VP16-HCF-Oct-1 complex on TAATGARAT motifs. Zhangfei also suppressed HSV-1-induced expression of several cellular genes including topoisomerase IIalpha, suggesting that in addition to suppressing IE expression Zhangfei may have an inhibitory effect on HSV-1 DNA replication and late gene expression.
Collapse
Affiliation(s)
- Oksana Akhova
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada
| | | | | |
Collapse
|
10
|
Chusainow J, Ajuh PM, Trinkle-Mulcahy L, Sleeman JE, Ellenberg J, Lamond AI. FRET analyses of the U2AF complex localize the U2AF35/U2AF65 interaction in vivo and reveal a novel self-interaction of U2AF35. RNA (NEW YORK, N.Y.) 2005; 11:1201-14. [PMID: 16043505 PMCID: PMC1370804 DOI: 10.1261/rna.7277705] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We have analyzed the interaction between the U2AF subunits U2AF35 and U2AF65 in vivo using fluorescence resonance energy transfer (FRET) microscopy. U2 snRNP Auxiliary Factor (U2AF) is an essential pre-mRNA splicing factor complex, comprising 35-kDa (U2AF35) and 65-kDa (U2AF65) subunits. U2AF65 interacts directly with the polypyrimidine tract and promotes binding of U2 snRNP to the pre-mRNA branchpoint, while U2AF35 associates with the conserved AG dinucleotide at the 3' end of the intron and has multiple functions in the splicing process. Using two different approaches for measuring FRET, we have identified and spatially localized sites of direct interaction between U2AF35 and U2AF65 in vivo in live cell nuclei. While U2AF is thought to function as a heterodimeric complex, the FRET data have also revealed a novel U2AF35 self-interaction in vivo, which is confirmed in vitro using biochemical assays. These results suggest that the stoichiometry of the U2AF complex may, at least in part, differ in vivo from the expected heterodimeric complex. The data show that FRET studies offer a valuable approach for probing interactions between pre-mRNA splicing factors in vivo.
Collapse
Affiliation(s)
- Janet Chusainow
- Wellcome Trust Biocentre, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | | | | | | | | | | |
Collapse
|
11
|
Deléhouzée S, Yoshikawa T, Sawa C, Sawada JI, Ito T, Omori M, Wada T, Yamaguchi Y, Kabe Y, Handa H. GABP, HCF-1 and YY1 are involved in Rb gene expression during myogenesis. Genes Cells 2005; 10:717-31. [PMID: 15966902 DOI: 10.1111/j.1365-2443.2005.00873.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Muscle cell differentiation, or myogenesis, is a well-characterized process and involves the expression of specific sets of genes in an orderly manner. A prerequisite for myogenesis is the exit from the cell cycle, which is associated with the up-regulation of the tumor suppressor Rb. In this study, we set to investigate the regulatory mechanism of the Rb promoter that allows adequate up-regulation in differentiating myoblasts. We report that Rb expression is regulated by the transcription factors GABP, HCF-1 and YY1. Before induction of differentiation, Rb is expressed at a low level and GABP and YY1 are both present on the promoter. YY1, which exerts an inhibitory effect on Rb expression, is removed from the promoter as cells advance through myogenesis and translocates from the nucleus to the cytoplasm. On the other hand, upon induction of differentiation, the GABP cofactor HCF-1 is recruited to and coactivates the promoter with GABP. RNAi-mediated knock-down of HCF-1 results in inhibition of Rb up-regulation as well as myotube formation. These results indicate that the Rb promoter is subject to regulation by positive and negative factors and that this intricate activation mechanism is critical to allow the accurate Rb gene up-regulation observed during myogenesis.
Collapse
Affiliation(s)
- Sophie Deléhouzée
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhangfei is a potent and specific inhibitor of the host cell factor-binding transcription factor Luman. J Biol Chem 2005; 280:15257-66. [PMID: 15705566 DOI: 10.1074/jbc.m500728200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Host cell factor (HCF) was initially discovered as a cellular co-factor required for the activation of herpes simplex virus immediate early gene expression by the virion associated transactivator VP16. HCF also participates in a variety of cellular processes, although the mechanism of its action is not known. VP16 binds to HCF through a 4-amino acid motif (EHAY), which closely resembles the HCF binding domain of two cellular basic leucine-zipper proteins, Luman and Zhangfei. Luman is a powerful transcription factor that, in transient expression assays, activates promoters containing cAMP or unfolded protein response elements (UPRE). In contrast, Zhangfei neither binds consensus recognition elements for basic leucine-zipper proteins nor does it activate promoters containing them. Here we show that Zhangfei suppresses the ability of Luman to activate transcription. HCF appeared to be required for efficient suppression. A mutant of Zhangfei, which was unable to bind HCF, was impaired in its ability to suppress Luman. Zhangfei did not suppress ATF6, a transcription factor closely related to Luman but that does not bind HCF, unless the HCF binding motif of Luman was grafted onto it. Zhangfei inhibited the HCF-dependent activation of a UPRE-containing promoter by a Gal4-Luman fusion protein but was unable to inhibit the HCF-independent activation by Gal4-Luman of a promoter that contained Gal4 binding motifs. Binding of HCF by Zhangfei was required for the co-localization of Luman and Zhangfei to nuclear domains, suggesting that HCF might target the proteins to a common location.
Collapse
|
13
|
Khurana B, Kristie TM. A Protein Sequestering System Reveals Control of Cellular Programs by the Transcriptional Coactivator HCF-1. J Biol Chem 2004; 279:33673-83. [PMID: 15190068 DOI: 10.1074/jbc.m401255200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian transcriptional coactivator HCF-1 is a critical component of the multiprotein herpes simplex virus immediate early gene enhancer core complex. The protein has also been implicated in basic cellular processes such as cell-cycle progression, transcriptional coactivation, and mRNA processing. Functions have been attributed to HCF-1 primarily from analyses of protein-protein interactions and from the cell-cycle-arrested phenotype of an HCF-1 temperature-sensitive mutant. However, neither the mechanisms involved nor specific cellular transcriptional targets have been identified. As the protein is essential for cell viability and proliferation, a genetic system was developed to specifically sequester the nuclear factor in the cell cytoplasm in a regulated manner. This approach exhibits no significant cell toxicity yet clearly demonstrates the requirement of available nuclear HCF-1 for herpes simplex virus immediate early gene expression during productive infection. Additionally, cellular transcriptional events were identified that contribute to understanding the functions ascribed to the protein and implicate the protein in events that impact the regulation of critical cellular processes.
Collapse
Affiliation(s)
- Bharat Khurana
- Laboratory of Viral Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
14
|
Izeta A, Malcomber S, O'Rourke D, Hodgkin J, O'Hare P. A C-terminal targeting signal controls differential compartmentalisation of Caenorhabditis elegans host cell factor (HCF) to the nucleus or mitochondria. Eur J Cell Biol 2004; 82:495-504. [PMID: 14629117 DOI: 10.1078/0171-9335-00341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
HCF-1 (host cell factor 1) is a human protein originally identified as a component of the VP16 transcription complex. A related protein HCF-2 is also present in humans and while at least HCF-1 appears to be required for normal cell growth there is currently little information on the precise cellular role(s) of these proteins. C. elegans contains a single HCF orthologue (CeHCF) which is very closely related to human HCF-2. To contribute to an understanding of the activities of these proteins here we analyse the subcellular localisation of the CeHCF protein in live transgenic worms and in mammalian cells. We constructed a green fluorescent protein (GFP) fusion of CeHCF and studied localisation after ectopic expression under the control of a heat shock protein promoter. The CeHCF-GFP protein accumulated in the cell nuclei at every stage of development and in a wide variety of cell types. Nuclear accumulation with nucleolar sparing was evident on the larvae and adult stages, but not earlier in development in which the protein accumulated diffusely in the nucleoplasm. Surprisingly the same protein accumulated in the mitochondria of a stable HeLa cell line, suggesting a differential localisation of CeHCF in mammalian cells. Furthermore, when overexpressed in transient transfection the CeHCF accumulated in both nuclear and mitochondrial compartments. We have refined the targeting determinants of CeHCF to the last 23 amino acids at the extreme C-terminus and show that they contain interdigitated amino acids involved in both nuclear and mitochondrial targeting. This novel targeting signal is sufficient to redirect HCF-2 into mitochondria. It can also be transferred to an unrelated protein, resulting in its targeting to both the mitochondrial and nuclear compartments.
Collapse
Affiliation(s)
- Ander Izeta
- Marie Curie Research Institute, The Chart, Oxted, Surrey, UK
| | | | | | | | | |
Collapse
|
15
|
Sun X, Zhang H, Wang D, Ma D, Shen Y, Shang Y. DLP, a novel Dim1 family protein implicated in pre-mRNA splicing and cell cycle progression. J Biol Chem 2004; 279:32839-47. [PMID: 15161931 DOI: 10.1074/jbc.m402522200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In eukaryotes, primary transcripts undergo a splicing process that removes intronic sequences by a macromolecular enzyme known as the spliceosome. Both genetic and biochemical studies have revealed that essential components of the spliceosome include five small RNAs, U1, U2, U4, U5, and U6, and as many as 300 distinct proteins. Here we report the molecular cloning and functional analysis of a novel cDNA encoding for a protein of 149 amino acids. This protein has 38% amino acid sequence identity with and is evolutionally related to yeast Dim1 protein. Hence we named this protein DLP for Dim1-like protein. We showed that DLP is required for S/G(2) transition. We also demonstrated that DLP functions in cell nucleus and interacts with the U5-102-kDa protein subunit of the spliceosome, and blocking DLP protein activity led to an insufficient pre-mRNA splicing, suggesting that DLP is yet another protein component involved in pre-mRNA splicing. Collectively, our experiments indicated that DLP is implicated in not only cell cycle progression but also in a more specific molecular process such as pre-mRNA splicing.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Base Sequence
- Blotting, Northern
- Blotting, Western
- Cell Cycle
- Cell Cycle Proteins/chemistry
- Cell Cycle Proteins/metabolism
- Cell Division
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Cloning, Molecular
- Computational Biology
- DNA, Complementary/metabolism
- Genome
- Glutathione Transferase/metabolism
- HeLa Cells
- Humans
- Microscopy, Confocal
- Microscopy, Fluorescence
- Models, Genetic
- Molecular Sequence Data
- Nuclear Proteins
- Phylogeny
- Plasmids/metabolism
- Precipitin Tests
- Protein Binding
- RNA/metabolism
- RNA Splicing
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
- Spliceosomes/metabolism
- Transfection
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- Xiaojing Sun
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, 38 Xue Yuan Road, Beijing 100083, China
| | | | | | | | | | | |
Collapse
|
16
|
Nogueira ML, Wang VEH, Tantin D, Sharp PA, Kristie TM. Herpes simplex virus infections are arrested in Oct-1-deficient cells. Proc Natl Acad Sci U S A 2004; 101:1473-8. [PMID: 14745036 PMCID: PMC341744 DOI: 10.1073/pnas.0307300101] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Expression of the herpes simplex virus (HSV) immediate early (IE) genes is regulated by a multiprotein complex that is assembled on the TAATGARAT enhancer core element. The complex contains the cellular POU domain protein Oct-1, the viral transactivator VP16, and the cellular cofactor host cell factor 1. The current model suggests that the assembly depends on recognition of the core element by Oct-1. Here, HSV infection of Oct-1-deficient mouse embryonic fibroblast cells demonstrates that Oct-1 is critical for IE gene expression at low multiplicities of infection (moi). However, the protein is not essential for IE gene expression at high moi, indicating that VP16-mediated transcriptional induction through other IE regulatory elements is also important. This induction depends, at least in part, on the GA-binding protein binding elements that are present in each IE enhancer domain. Surprisingly, whereas the viral IE genes are expressed after high moi infection of Oct-1-deficient cells, the assembly of viral replication factories is severely impaired, revealing a second critical role for Oct-1 in HSV replication. The results have implications for both the HSV lytic and latency-reactivation cycles.
Collapse
Affiliation(s)
- Mauricio L Nogueira
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 4-131, 4 Center Drive, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
17
|
Ajuh P, Lamond AI. Identification of peptide inhibitors of pre-mRNA splicing derived from the essential interaction domains of CDC5L and PLRG1. Nucleic Acids Res 2003; 31:6104-16. [PMID: 14576297 PMCID: PMC275459 DOI: 10.1093/nar/gkg817] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
CDC5L and PLRG1 are both spliceosomal proteins that are highly conserved across species. They have both been shown to be part of sub- spliceosomal protein complexes that are essential for pre-mRNA splicing in yeast and humans. CDC5L and PLRG1 interact directly in vitro. This interaction is mediated by WD40 regions in PLRG1 and the C-terminal domain of CDC5L. In order to determine whether this interaction is important for the splicing mechanism, we have designed peptides corresponding to highly conserved sequences in the interaction domains of both proteins. These peptides were used in in vitro splicing experiments as competitors to the cognate sequences in the endogenous proteins. Certain peptides derived from the binding domains of both proteins were found to inhibit in vitro splicing. This splicing inhibition could be prevented by preincubating the peptides with the corresponding partner protein that had been expressed in Escherichia coli. The results from this study indicate that the interaction between CDC5L and PLRG1 is essential for pre-mRNA splicing and further demonstrate that small peptides can be used as effective splicing inhibitors.
Collapse
Affiliation(s)
- Paul Ajuh
- The University of Dundee, School of Life Sciences, Wellcome Trust Biocentre, Dow Street, Dundee DD1 5EH, UK
| | | |
Collapse
|
18
|
Abstract
HCF-1 is a transcriptional cofactor required for activation of herpes simplex virus immediate-early genes by VP16 as well as less clearly defined roles in cell proliferation, cytokinesis, and spliceosome formation. It is expressed as a large precursor that undergoes proteolysis to yield two subunits that remain stably associated. VP16 uses a degenerate 4-amino acid sequence, known as the HCF-binding motif, to bind to a six-bladed beta-propeller domain at the N terminus of HCF-1. Functional HCF-binding motifs are also found in LZIP and Zhangfei, two cellular bZIP transcription factors of unknown function. Here we show that the HCF-binding motif occurs in a wide spectrum of DNA-binding proteins and transcriptional cofactors. Three well characterized examples were further analyzed for their ability to use HCF-1 as a coactivator. Krox20, a zinc finger transcription factor required for Schwann cell differentiation, and E2F4, a cell cycle regulator, showed a strong requirement for functional HCF-1 to activate transcription. In contrast, activation by estrogen receptor-alpha did not display HCF dependence. In Krox20, the HCF-binding motif lies within the N-terminal activation domain and mutation of this sequence diminishes both transactivation and association with the HCF-1 beta-propeller. The activation domain in the C-terminal subunit of HCF-1 contributes to activation by Krox20, possibly through recruitment of p300. These results suggest that HCF-1 is recruited by many different classes of cellular transcription factors and is therefore likely to be required for a variety of cellular processes including cell cycle progression and development.
Collapse
Affiliation(s)
| | - Angus C. Wilson
- To whom correspondence should be addressed: Dept. of Microbiology, 550 First Ave., New York, NY 10016. Tel.: 212-263-0206; Fax: 212-263-8276;
| |
Collapse
|
19
|
Julien E, Herr W. Proteolytic processing is necessary to separate and ensure proper cell growth and cytokinesis functions of HCF-1. EMBO J 2003; 22:2360-9. [PMID: 12743030 PMCID: PMC156000 DOI: 10.1093/emboj/cdg242] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
HCF-1 is a highly conserved and abundant chromatin-associated host cell factor required for transcriptional activation of herpes simplex virus immediate-early genes by the virion protein VP16. HCF-1 exists as a heterodimeric complex of associated N- (HCF-1(N)) and C- (HCF-1(C)) terminal subunits that result from proteolytic processing of a precursor protein. We have used small-interfering RNA (siRNA) to inactivate HCF-1 in an array of normal and transformed mammalian cells to identify its cellular functions. Our results show that HCF-1 is a broadly acting regulator of two stages of the cell cycle: exit from mitosis, where it ensures proper cytokinesis, and passage through the G(1) phase, where it promotes cell cycle progression. Proteolytic processing is necessary to separate and ensure these two HCF-1 activities, which are performed by separate HCF-1 subunits: the HCF-1(N) subunit promotes passage through the G(1) phase whereas the HCF-1(C) subunit is involved in proper exit from mitosis. These results suggest that HCF-1 links the regulation of exit from mitosis and the G(1) phase of cell growth, possibly to coordinate the reactivation of gene expression after mitosis.
Collapse
Affiliation(s)
- Eric Julien
- Cold Spring Harbor Laboratory, NY 11724, USA
| | | |
Collapse
|