1
|
Gautam S, Fenner JL, Wang B, Range RC. Evolutionarily conserved Wnt/Sp5 signaling is critical for anterior-posterior axis patterning in sea urchin embryos. iScience 2024; 27:108616. [PMID: 38179064 PMCID: PMC10765061 DOI: 10.1016/j.isci.2023.108616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/30/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Studies across a diverse group of metazoan embryos indicate that Wnt signaling often activates the transcription factor Sp5, forming a signaling 'cassette' that plays critical roles in many developmental processes. This study explores the role of Wnt/Sp5 signaling during the specification and patterning of the primary germ layers during early anterior-posterior axis formation in the deuterostome sea urchin embryo. Our functional analyses show that Sp5 is critical for endomesoderm specification downstream of Wnt/β-catenin in posterior cells as well as anterior neuroectoderm patterning downstream of non-canonical Wnt/JNK signaling in anterior cells. Interestingly, expression and functional data comparisons show that Wnt/Sp5 signaling often plays similar roles in posterior endomesoderm as well as neuroectoderm patterning along the AP axis of several deuterostome embryos, including vertebrates. Thus, our findings provide strong support for the idea that Wnt-Sp5 signaling cassettes were critical for the establishment of early germ layers in the common deuterostome ancestor.
Collapse
Affiliation(s)
- Sujan Gautam
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jennifer L. Fenner
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Boyuan Wang
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Ryan C. Range
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
2
|
Tan AL, Mohanty S, Guo J, Lekven AC, Riley BB. Pax2a, Sp5a and Sp5l act downstream of Fgf and Wnt to coordinate sensory-neural patterning in the inner ear. Dev Biol 2022; 492:139-153. [PMID: 36244503 DOI: 10.1016/j.ydbio.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/25/2022] [Accepted: 10/10/2022] [Indexed: 01/21/2023]
Abstract
In zebrafish, sensory epithelia and neuroblasts of the inner ear form simultaneously in abutting medial and lateral domains, respectively, in the floor of the otic vesicle. Previous studies support regulatory roles for Fgf and Wnt, but how signaling is coordinated is poorly understood. We investigated this problem using pharmacological and transgenic methods to alter Fgf or Wnt signaling from early placodal stages to evaluate later changes in growth and patterning. Blocking Fgf at any stage reduces proliferation of otic tissue and terminates both sensory and neural specification. Wnt promotes proliferation in the otic vesicle but is not required for sensory or neural development. However, sustained overactivation of Wnt laterally expands sensory epithelia and blocks neurogenesis. pax2a, sp5a and sp5l are coregulated by Fgf and Wnt and show overlapping expression in the otic placode and vesicle. Gain- and loss-of-function studies show that these genes are together required for Wnt's suppression of neurogenesis, as well as some aspects of sensory development. Thus, pax2a, sp5a and sp5l are critical for mediating Fgf and Wnt signaling to promote spatially localized sensory and neural development.
Collapse
Affiliation(s)
- Amy L Tan
- Biology Department, Texas A&M University, College Station, TX, United States
| | - Saurav Mohanty
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Jinbai Guo
- Biology Department, Texas A&M University, College Station, TX, United States
| | - Arne C Lekven
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Bruce B Riley
- Biology Department, Texas A&M University, College Station, TX, United States.
| |
Collapse
|
3
|
Zheng X, Xiang L, Liang J, Xie L, Zhang R. Pf-Sp8/9, a novel member of the specificity protein family in Pinctada fucata, potentially participates in biomineralization. J Struct Biol 2016; 196:119-126. [DOI: 10.1016/j.jsb.2016.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 02/07/2023]
|
4
|
Park DS, Seo JH, Hong M, Bang W, Han JK, Choi SC. Role of Sp5 as an essential early regulator of neural crest specification in xenopus. Dev Dyn 2013; 242:1382-94. [PMID: 24038420 DOI: 10.1002/dvdy.24034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 07/29/2013] [Accepted: 08/14/2013] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND The neural crest (NC) is a multipotent embryonic cell population, which is induced by an integration of secreted signals including BMP, Wnt, and FGF and, subsequently, NC cell fates are specified by a regulatory network of specific transcription factors. This study was undertaken to identify a role of Sp5 transcription factor in vertebrates. RESULTS Xenopus Sp5 is expressed in the prospective neural crest regions from gastrulation through the tadpole stages in early development. Knockdown of Sp5 caused severe defects in craniofacial cartilage, pigmentation, and dorsal fin. Gain- and loss-of-function of Sp5 led to up- and down-regulation of the expression of NC markers in the neural fold, respectively. In contrast, Sp5 had no effect on neural induction and patterning. Sp5 regulated the expression of neural plate border (NPB) specifiers, Msx1 and Pax3, and these regulatory factors recovered the expression of NC marker in the Sp5-deficient embryos. Depletion of Sp5 impaired NC induction by Wnt/β-catenin or FGF signal, whereas its co-expression rescued NC markers in embryos in which either signal was blocked. CONCLUSIONS These results suggest that Sp5 functions as a critical early factor in the genetic cascade to regulate NC induction downstream of Wnt and FGF pathways.
Collapse
Affiliation(s)
- Dong-Seok Park
- Department of Biomedical Sciences, University of Ulsan, College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
5
|
GRG5/AES interacts with T-cell factor 4 (TCF4) and downregulates Wnt signaling in human cells and zebrafish embryos. PLoS One 2013; 8:e67694. [PMID: 23840876 PMCID: PMC3698143 DOI: 10.1371/journal.pone.0067694] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 05/22/2013] [Indexed: 12/27/2022] Open
Abstract
Transcriptional control by TCF/LEF proteins is crucial in key developmental processes such as embryo polarity, tissue architecture and cell fate determination. TCFs associate with β-catenin to activate transcription in the presence of Wnt signaling, but in its absence act as repressors together with Groucho-family proteins (GRGs). TCF4 is critical in vertebrate intestinal epithelium, where TCF4-β-catenin complexes are necessary for the maintenance of a proliferative compartment, and their abnormal formation initiates tumorigenesis. However, the extent of TCF4-GRG complexes' roles in development and the mechanisms by which they repress transcription are not completely understood. Here we characterize the interaction between TCF4 and GRG5/AES, a Groucho family member whose functional relationship with TCFs has been controversial. We map the core GRG interaction region in TCF4 to a 111-amino acid fragment and show that, in contrast to other GRGs, GRG5/AES-binding specifically depends on a 4-amino acid motif (LVPQ) present only in TCF3 and some TCF4 isoforms. We further demonstrate that GRG5/AES represses Wnt-mediated transcription both in human cells and zebrafish embryos. Importantly, we provide the first evidence of an inherent repressive function of GRG5/AES in dorsal-ventral patterning during early zebrafish embryogenesis. These results improve our understanding of TCF-GRG interactions, have significant implications for models of transcriptional repression by TCF-GRG complexes, and lay the groundwork for in depth direct assessment of the potential role of Groucho-family proteins in both normal and abnormal development.
Collapse
|
6
|
Characterization and expressional analysis of Dleu7 during Xenopus tropicalis embryogenesis. Gene 2012; 509:77-84. [PMID: 22939871 DOI: 10.1016/j.gene.2012.08.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 08/06/2012] [Accepted: 08/15/2012] [Indexed: 02/07/2023]
Abstract
We characterized the genomic structure and developmental expression of the Dleu7 (deleted in lymphocytic leukemia, 7) gene in Xenopus tropicalis and the evolution of the gene across species. Within the protein-coding sequence (CDS) region, X. tropicalis Dleu7 consists of two exons and one intron. However, bioinformatic analysis indicates that this 211-amino-acid protein contains no obvious functional domains or known motifs. Reverse-transcription polymerase chain reaction and whole-mount in situ hybridization results revealed that, in addition to its expression in the blood island region, some regions of the central nervous system, and subdomains of the neural tube, X. tropicalis Dleu7 is zygotically expressed primarily in mesoderm tissues such as notochord and muscles during early embryogenesis. Expression in notochord is consistent with results from genome-wide association studies suggesting that DLEU7 is related to human adult height. Expression in the blood island region, where blood cell precursors (including B cells) are generated, implies a potential conserved role for Dleu7 in B-cell development between amphibians and mammals. Expression of Dleu7 in some regions of the central nervous system and subdomains of the neural tube also suggests other functions in development. Phylogenetic analysis indicated that Dleu7 is a vertebrate-specific gene and undergoes strong selective pressure in lower vertebrates but is functionally constrained in higher mammals. When subcellular localization was examined by overexpression of enhanced green fluorescent protein fusion protein, Dleu7 showed centrosome localization with main distribution in cytoplasm. Treating gastrula embryos with SU5402, a small molecular inhibitor of the fibroblast growth factor (FGF) receptor, confirmed that Dleu7 expression in mesoderm is regulated by FGF signaling. Our data provide important clues for pathogenesis and physiology during development from the perspective of evolutionary conservation.
Collapse
|
7
|
Miyake A, Nihno S, Murakoshi Y, Satsuka A, Nakayama Y, Itoh N. Neucrin, a novel secreted antagonist of canonical Wnt signaling, plays roles in developing neural tissues in zebrafish. Mech Dev 2012; 128:577-90. [PMID: 22265871 DOI: 10.1016/j.mod.2012.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 12/21/2011] [Accepted: 01/05/2012] [Indexed: 02/06/2023]
Abstract
Wnt signaling plays crucial roles in neural development. We previously identified Neucrin, a neural-specific secreted antagonist of canonical Wnt/β-catenin signaling, in humans and mice. Neucrin has one cysteine-rich domain, in which the positions of 10 cysteine residues are similar to those in the second cysteine-rich domain of Dickkopfs, secreted Wnt antagonists. Here, we have identified zebrafish neucrin to understand its roles in vivo. Zebrafish Neucrin also has one cysteine-rich domain, which is significantly similar to that of mouse Neucrin. Zebrafish neucrin was also predominantly expressed in developing neural tissues. To examine roles of neucrin in neural development, we analyzed neucrin knockdown embryos. Neural development in zebrafish embryos was impaired by the knockdown of neucrin. The knockdown of neucrin caused increased expression of the Wnt/β-catenin target genes. In contrast, overexpression of neucrin reduced the expression of the Wnt/β-catenin target genes. The knockdown of neucrin affected specification of dorsal region in the midbrain and hindbrain. The knockdown of neucrin also suppressed neuronal differentiation and caused increased cell proliferation and apoptosis in developing neural tissues. Neucrin is a unique secreted Wnt antagonist that is predominantly expressed in developing neural tissues and plays roles in neural development in zebrafish.
Collapse
Affiliation(s)
- Ayumi Miyake
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto 606-8501, Japan.
| | | | | | | | | | | |
Collapse
|
8
|
Fujii T, Tsunesumi SI, Yamaguchi K, Watanabe S, Furukawa Y. Smyd3 is required for the development of cardiac and skeletal muscle in zebrafish. PLoS One 2011; 6:e23491. [PMID: 21887258 PMCID: PMC3160858 DOI: 10.1371/journal.pone.0023491] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 07/19/2011] [Indexed: 01/17/2023] Open
Abstract
Modifications of histone tails are involved in the regulation of a wide range of biological processes including cell cycle, cell survival, cell division, and cell differentiation. Among the modifications, histone methylation plays a critical role in cardiac and skeletal muscle differentiation. In our earlier studies, we found that SMYD3 has methyltransferase activity to histone H3 lysine 4, and that its up-regulation is involved in the tumorigenesis of human colon, liver, and breast. To clarify the role of Smyd3 in development, we have studied its expression patterns in zebrafish embryos and the effect of its suppression on development using Smyd3-specific antisense morpholino-oligonucleotides. We here show that transcripts of smyd3 were expressed in zebrafish embryos at all developmental stages examined and that knockdown of smyd3 in embryos resulted in pericardial edema and defects in the trunk structure. In addition, these phenotypes were associated with abnormal expression of three heart-chamber markers including cmlc2, amhc and vmhc, and abnormal expression of myogenic regulatory factors including myod and myog. These data suggest that Smyd3 plays an important role in the development of heart and skeletal muscle.
Collapse
Affiliation(s)
- Tomoaki Fujii
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Japan
| | - Shin-ichiro Tsunesumi
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Japan
| | - Sumiko Watanabe
- Division of Molecular Developmental Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Japan
- * E-mail:
| |
Collapse
|
9
|
Zhao J, Sun H, Deng W, Li D, Liu Y, Lu Y, Liu Y, Tao D, Zhang S, Ma Y. Piwi-like 2 mediates fibroblast growth factor signaling during gastrulation of zebrafish embryo. TOHOKU J EXP MED 2011; 222:63-8. [PMID: 20814180 DOI: 10.1620/tjem.222.63] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Piwi (P-element-induced wimpy testis) proteins have been shown to play important roles in maintenance of germ line stem cells, germ cell proliferation and differentiation, and control of Piwi-interacting RNAs (PiRNAs). PiRNAs comprise a broad class of small noncoding RNAs that function as an endogenous defense system against transposable elements. Fibroblast growth factor (Fgf) signals, mediated partly by no tail gene (ntl), are responsible for patterning embryo and mesoderm formation. To understand the function of Piwi proteins, we used zebrafish as a model system. In zebrafish, piwi-like 2 gene (piwil2) is also required for germ cell differentiation and meiosis. Here we report that piwil2 knockdown is able to inhibit the expression of fibroblast growth factor 8a (fgf8a). In contrast, injection with piwil2 mRNA enhances fgf8a expression. Knockdown of piwil2 reduces the inductive effect of fgf8a on dorsalized phenotype, in which embryos extend to an oval shape at the end of epiboly stage. Coinjection with fgf8a and piwil2 mRNAs led to more seriously dorsalized phenotype than coinjection with fgf8a mRNA and piwil2-cMO. In addition, knockdown of piwil2 inhibits the inductive effect of fgf8a on ntl, whereas overexpression of piwil2 enhances the inductive effect of fgf8a on ntl. We also demonstrate that piwil2 positively regulates ntl expression at bud stage, while piwil2 negatively regulates ntl expression at 24 hours post-fertilization. Thus, the functional consequences of piwil2 expression vary during early development of zebrafish embryo. Taken together, we suggest that zebrafish piwil2 is a mediator of Fgf signals in gastrula period.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Medical Genetics & Division of Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Li L, Jing N. Pluripotent stem cell studies elucidate the underlying mechanisms of early embryonic development. Genes (Basel) 2011; 2:298-312. [PMID: 24710192 PMCID: PMC3924820 DOI: 10.3390/genes2020298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/08/2011] [Accepted: 03/21/2011] [Indexed: 01/02/2023] Open
Abstract
Early embryonic development is a multi-step process that is intensively regulated by various signaling pathways. Because of the complexity of the embryo and the interactions between the germ layers, it is very difficult to fully understand how these signals regulate embryo patterning. Recently, pluripotent stem cell lines derived from different developmental stages have provided an in vitro system for investigating molecular mechanisms regulating cell fate decisions. In this review, we summarize the major functions of the BMP, FGF, Nodal and Wnt signaling pathways, which have well-established roles in vertebrate embryogenesis. Then, we highlight recent studies in pluripotent stem cells that have revealed the stage-specific roles of BMP,FGF and Nodal pathways during neural differentiation. These findings enhance our understanding of the stepwise regulation of embryo patterning by particular signaling pathways and provide new insight into the mechanisms underlying early embryonic development.
Collapse
Affiliation(s)
- Lingyu Li
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China.
| | - Naihe Jing
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China.
| |
Collapse
|
11
|
Yan B, Neilson KM, Moody SA. Microarray identification of novel downstream targets of FoxD4L1/D5, a critical component of the neural ectodermal transcriptional network. Dev Dyn 2011; 239:3467-80. [PMID: 21069826 DOI: 10.1002/dvdy.22485] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
FoxD4L1/D5 is a forkhead transcription factor that functions as both a transcriptional activator and repressor. FoxD4L1/D5 acts upstream of several other neural transcription factors to maintain neural fate, regulate neural plate patterning, and delay the expression of neural differentiation factors. To identify a more complete list of downstream genes that participate in these earliest steps of neural ectodermal development, we carried out a microarray analysis comparing gene expression in control animal cap ectodermal explants (ACs), which will form epidermis, to that in FoxD4L1/D5-expressing ACs. Forty-four genes were tested for validation by RT-PCR of ACs and/or in situ hybridization assays in embryos; 86% of those genes up-regulated and 100% of those genes down-regulated in the microarray were altered accordingly in one of these independent assays. Eleven of these 44 genes are of unknown function, and we provide herein their developmental expression patterns to begin to reveal their roles in ectodermal development.
Collapse
Affiliation(s)
- Bo Yan
- Department of Anatomy and Regenerative Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | | | | |
Collapse
|
12
|
Schaeper ND, Prpic NM, Wimmer EA. A clustered set of three Sp-family genes is ancestral in the Metazoa: evidence from sequence analysis, protein domain structure, developmental expression patterns and chromosomal location. BMC Evol Biol 2010; 10:88. [PMID: 20353601 PMCID: PMC3087555 DOI: 10.1186/1471-2148-10-88] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 03/30/2010] [Indexed: 12/28/2022] Open
Abstract
Background The Sp-family of transcription factors are evolutionarily conserved zinc finger proteins present in many animal species. The orthology of the Sp genes in different animals is unclear and their evolutionary history is therefore controversially discussed. This is especially the case for the Sp gene buttonhead (btd) which plays a key role in head development in Drosophila melanogaster, and has been proposed to have originated by a recent gene duplication. The purpose of the presented study was to trace orthologs of btd in other insects and reconstruct the evolutionary history of the Sp genes within the metazoa. Results We isolated Sp genes from representatives of a holometabolous insect (Tribolium castaneum), a hemimetabolous insect (Oncopeltus fasciatus), primitively wingless hexapods (Folsomia candida and Thermobia domestica), and an amphipod crustacean (Parhyale hawaienis). We supplemented this data set with data from fully sequenced animal genomes. We performed phylogenetic sequence analysis with the result that all Sp factors fall into three monophyletic clades. These clades are also supported by protein domain structure, gene expression, and chromosomal location. We show that clear orthologs of the D. melanogaster btd gene are present even in the basal insects, and that the Sp5-related genes in the genome sequence of several deuterostomes and the basal metazoans Trichoplax adhaerens and Nematostella vectensis are also orthologs of btd. Conclusions All available data provide strong evidence for an ancestral cluster of three Sp-family genes as well as synteny of this Sp cluster and the Hox cluster. The ancestral Sp gene cluster already contained a Sp5/btd ortholog, which strongly suggests that btd is not the result of a recent gene duplication, but directly traces back to an ancestral gene already present in the metazoan ancestor.
Collapse
Affiliation(s)
- Nina D Schaeper
- Georg-August-Universität, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung Entwicklungsbiologie, GZMB, Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | | | | |
Collapse
|
13
|
Xie J, Yin H, Nichols TD, Yoder JA, Horowitz JM. Sp2 is a maternally inherited transcription factor required for embryonic development. J Biol Chem 2009; 285:4153-4164. [PMID: 19959469 DOI: 10.1074/jbc.m109.078881] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Sp family of transcription factors is required for the expression of cell cycle- and developmentally regulated genes, and the deregulated expression of a handful of family members is associated with human tumorigenesis. Sp2 is a relatively poorly characterized member of the Sp family that, although widely expressed, exhibits little or no DNA binding or transcriptional activity in human and mouse cell lines. To begin to address the role(s) played by Sp2 in early metazoan development we have cloned and characterized Sp2 from zebrafish (Danio rerio). We report that 1) the intron/exon organization and amino acid sequence of zebrafish Sp2 is closely conserved with its mammalian orthologues, 2) zebrafish Sp2 weakly stimulates an Sp-dependent promoter in vitro and associates with the nuclear matrix in a DNA-independent fashion, 3) zebrafish Sp2 is inherited as a maternal transcript, is transcribed in zebrafish embryos and adult tissues, and is required for completion of gastrulation, and 4) zebrafish lines carrying transgenes regulated by the Sp2 promoter recapitulate patterns of endogenous Sp2 expression.
Collapse
Affiliation(s)
- Jianzhen Xie
- From the Department of Molecular Biomedical Sciences and the Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 27606
| | - Haifeng Yin
- From the Department of Molecular Biomedical Sciences and the Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 27606
| | - Teresa D Nichols
- From the Department of Molecular Biomedical Sciences and the Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 27606
| | - Jeffrey A Yoder
- From the Department of Molecular Biomedical Sciences and the Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 27606
| | - Jonathan M Horowitz
- From the Department of Molecular Biomedical Sciences and the Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 27606.
| |
Collapse
|
14
|
Tian T, Zhao L, Zhao X, Zhang M, Meng A. A zebrafish gene trap line expresses GFP recapturing expression pattern of foxj1b. J Genet Genomics 2009; 36:581-9. [DOI: 10.1016/s1673-8527(08)60150-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 07/15/2009] [Accepted: 07/20/2009] [Indexed: 11/25/2022]
|
15
|
Zhang Y, Li X, Qi J, Wang J, Liu X, Zhang H, Lin SC, Meng A. Rock2 controls TGFbeta signaling and inhibits mesoderm induction in zebrafish embryos. J Cell Sci 2009; 122:2197-207. [PMID: 19509062 DOI: 10.1242/jcs.040659] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The Rho-associated serine/threonine kinases Rock1 and Rock2 play important roles in cell contraction, adhesion, migration, proliferation and apoptosis. Here we report that Rock2 acts as a negative regulator of the TGFbeta signaling pathway. Mechanistically, Rock2 binds to and accelerates the lysosomal degradation of TGFbeta type I receptors internalized from the cell surface in mammalian cells. The inhibitory effect of Rock2 on TGFbeta signaling requires its kinase activity. In zebrafish embryos, injection of rock2a mRNA attenuates the expression of mesodermal markers during late blastulation and blocks the induction of mesoderm by ectopic Nodal signals. By contrast, overexpression of a dominant negative form of zebrafish rock2a, dnrock2a, has an opposite effect on mesoderm induction, suggesting that Rock2 proteins are endogenous inhibitors for mesoderm induction. Thus, our data have unraveled previously unidentified functions of Rock2, in controlling TGFbeta signaling as well as in regulating embryonic patterning.
Collapse
Affiliation(s)
- Yu Zhang
- Protein Science Laboratory of Ministry of Education, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
A gene regulatory network directed by zebrafish No tail accounts for its roles in mesoderm formation. Proc Natl Acad Sci U S A 2009; 106:3829-34. [PMID: 19225104 DOI: 10.1073/pnas.0808382106] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using chromatin immunoprecipitation combined with genomic microarrays we have identified targets of No tail (Ntl), a zebrafish Brachyury ortholog that plays a central role in mesoderm formation. We show that Ntl regulates a downstream network of other transcription factors and identify an in vivo Ntl binding site that resembles the consensus T-box binding site (TBS) previously identified by in vitro studies. We show that the notochord-expressed gene floating head (flh) is a direct transcriptional target of Ntl and that a combination of TBSs in the flh upstream region are required for Ntl-directed expression. Using our genome-scale data we have assembled a preliminary gene regulatory network that begins to describe mesoderm formation and patterning in the early zebrafish embryo.
Collapse
|
17
|
Lu Z, Liu W, Huang H, He Y, Han Y, Rui Y, Wang Y, Li Q, Ruan K, Ye Z, Low BC, Meng A, Lin SC. Protein encoded by the Axin(Fu) allele effectively down-regulates Wnt signaling but exerts a dominant negative effect on c-Jun N-terminal kinase signaling. J Biol Chem 2008; 283:13132-9. [PMID: 18316368 DOI: 10.1074/jbc.m710595200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Axin plays an architectural role in many important signaling pathways that control various aspects of development and tumorigenesis, including the Wnt, transforming growth factor-beta, MAP kinase pathways, as well as p53 activation cascades. It is encoded by the mouse Fused (Fu) locus; the Axin(Fu) allele is caused by insertion of an IAP transposon. Axin(Fu/Fu) mice display varying phenotypes ranging from embryonic lethality to relatively normal adulthood with kinky tails. However, the protein product(s) has not been identified or characterized. In the present study, we conducted immunoprecipitation using brain extracts from the Axin(Fu) mice with specific antibodies against different regions of Axin and found that a truncated Axin containing amino acids 1-596 (designated as Axin(Fu-NT)) and the full-length complement of Axin (Axin(WT)) can both be generated from the Axin(Fu) allele. When tested for functionality changes, Axin(Fu-NT) was found to abolish Axin-mediated activation of JNK, which plays a critical role in dorsoventral patterning. Together with a proteomics approach, we found that Axin(Fu-NT) contains a previously uncharacterized dimerization domain and can form a heterodimeric interaction with Axin(WT). The Axin(Fu-NT)/Axin(WT) is not conducive to JNK activation, providing a molecular explanation for the dominant negative effect of Axin(Fu-NT) on JNK activation by wild-type Axin. Importantly, Axin(Fu-NT) exhibits no difference in the inhibition of Wnt signaling compared with Axin(WT) as determined by reporter gene assays, interaction with key Wnt regulators, and expression of Wnt marker genes in zebrafish embryos, suggesting that altered JNK signaling contributes, at least in part, to the developmental defects seen in Axin(Fu) mice.
Collapse
Affiliation(s)
- Zailian Lu
- School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Jia S, Ren Z, Li X, Zheng Y, Meng A. smad2 and smad3 Are Required for Mesendoderm Induction by Transforming Growth Factor-β/Nodal Signals in Zebrafish. J Biol Chem 2008; 283:2418-26. [DOI: 10.1074/jbc.m707578200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
19
|
Rui Y, Xu Z, Xiong B, Cao Y, Lin S, Zhang M, Chan SC, Luo W, Han Y, Lu Z, Ye Z, Zhou HM, Han J, Meng A, Lin SC. A beta-catenin-independent dorsalization pathway activated by Axin/JNK signaling and antagonized by aida. Dev Cell 2007; 13:268-82. [PMID: 17681137 DOI: 10.1016/j.devcel.2007.07.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2007] [Revised: 04/16/2007] [Accepted: 07/12/2007] [Indexed: 12/16/2022]
Abstract
Axin is a scaffold protein that controls multiple important pathways, including the canonical Wnt pathway and JNK signaling. Here we have identified an Axin-interacting protein, Aida, which blocks Axin-mediated JNK activation by disrupting Axin homodimerization. During investigation of in vivo functions of Axin/JNK signaling and aida in development, it was found that Axin, besides ventralizing activity by facilitating beta-catenin degradation, possesses a dorsalizing activity that is mediated by Axin-induced JNK activation. This dorsalizing activity is repressed when aida is overexpressed in zebrafish embryos. Whereas Aida-MO injection leads to dorsalized embryos, JNK-MO and MKK4-MO can ventralize embryos. The anti-dorsalization activity of aida is conferred by its ability to block Axin-mediated JNK activity. We further demonstrate that dorsoventral patterning regulated by Axin/JNK signaling is independent of maternal or zygotic Wnt signaling. We have thus identified a dorsalization pathway that is exerted by Axin/JNK signaling and its inhibitor Aida during vertebrate embryogenesis.
Collapse
Affiliation(s)
- Yanning Rui
- Key Laboratory of Ministry of Education for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361005, Xiamen, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Huang H, Lu FI, Jia S, Meng S, Cao Y, Wang Y, Ma W, Yin K, Wen Z, Peng J, Thisse C, Thisse B, Meng A. Amotl2 is essential for cell movements in zebrafish embryo and regulates c-Src translocation. Development 2007; 134:979-88. [PMID: 17293535 DOI: 10.1242/dev.02782] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Angiomotin (Amot), the founding member of the Motin family, is involved in angiogenesis by regulating endothelial cell motility, and is required for visceral endoderm movement in mice. However, little is known about biological functions of the other two members of the Motin family, Angiomotin-like1(Amotl1) and Angiomotin-like2 (Amotl2). Here, we have identified zebrafish amotl2 as an Fgf-responsive gene. Zebrafish amotl2 is expressed maternally and in restricted cell types zygotically. Knockdown of amotl2 expression delays epiboly and impairs convergence and extension movement, and amotl2-deficient cells in mosaic embryos fail to migrate properly. This coincides with loss of membrane protrusions and disorder of F-actin. Amotl2 partially co-localizes with RhoB-or EEA1-positive endosomes and the non-receptor tyrosine kinase c-Src. We further demonstrate that Amotl2 interacts preferentially with and facilitates outward translocation of the phosphorylated c-Src, which may in turn regulate the membrane architecture. These data provide the first evidence that amotl2 is essential for cell movements in vertebrate embryos.
Collapse
Affiliation(s)
- Huizhe Huang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Xiong B, Rui Y, Zhang M, Shi K, Jia S, Tian T, Yin K, Huang H, Lin S, Zhao X, Chen Y, Chen YG, Lin SC, Meng A. Tob1 controls dorsal development of zebrafish embryos by antagonizing maternal beta-catenin transcriptional activity. Dev Cell 2006; 11:225-38. [PMID: 16890162 DOI: 10.1016/j.devcel.2006.06.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2006] [Revised: 05/15/2006] [Accepted: 06/26/2006] [Indexed: 01/22/2023]
Abstract
Maternal beta-catenin and Nodal signals are essential for the formation of the dorsal organizer, which, in turn, induces neural and other dorsal tissue development in vertebrate embryos. Tob (Transducer of ErbB2) proteins possess antiproliferative properties and are known to influence BMP signaling, but their relationship to other signaling pathways and to embryonic patterning in general was unclear. In this study, we demonstrate that zebrafish tob1a is required for correct dorsoventral patterning. Mechanistically, Tob1a inhibits beta-catenin transcriptional activity by physically associating with beta-catenin and preventing the formation of beta-catenin/LEF1 complexes. Although Tob1a can also inhibit the transcriptional activity of the Nodal effector Smad3, its role in limiting dorsal development is executed primarily by antagonizing the beta-catenin signal. We further demonstrate that Tob family members across species share similar biochemical properties and biological activities.
Collapse
Affiliation(s)
- Bo Xiong
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Protein Sciences Laboratory of the Ministry of Education, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Poulain M, Fürthauer M, Thisse B, Thisse C, Lepage T. Zebrafish endoderm formation is regulated by combinatorial Nodal, FGF and BMP signalling. Development 2006; 133:2189-200. [PMID: 16672336 DOI: 10.1242/dev.02387] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the zebrafish embryo, the mesoderm and endoderm originate from common precursors and segregate during gastrulation by mechanisms that are largely unknown. Understanding how the signalling pathways that regulate endoderm and mesoderm formation interact is crucial to understanding how the germ layers are established. Here, we have analysed how the FGF and BMP pathways interact with Nodal signalling during the process of endoderm formation. We found that activation of the FGF/ERK pathway disrupts endoderm formation in the embryo and antagonizes the ability of an activated form of Tar/Acvr1b to induce endoderm at the animal pole. By contrast, inhibition of FGF signalling increases the number of endodermal precursors and potentiates the ability of Tar*/Acvr1b to induce endoderm at the animal pole. Using a pharmacological inhibitor of the FGF receptor, we show that reducing FGF signalling partially rescues the deficit of endoderm precursors in bon mutant embryos. Furthermore, we found that overexpression of BMPs compromises endoderm formation, suggesting that formation of endoderm precursors is negatively regulated by BMPs on the ventral side. We show that simultaneous inhibition of the FGF/Ras and BMP pathways results in a dramatic increase in the number of endoderm precursors. Taken together, these data strongly suggest that BMP and FGF-ERK pathways cooperate to restrict the number of endodermal progenitors induced in response to Nodal signalling. Finally, we investigated the molecular basis for the FGF-MAPK-dependent repression of endoderm formation. We found that FGF/ERK signalling causes phosphorylation of Casanova/Sox32, an important regulator of endoderm determination, and provide evidence that this phosphorylation attenuates its ability to induce sox17. These results identify a molecular mechanism whereby FGF attenuates Nodal-induced endodermal transcription factors and highlight a potential mechanism whereby mesoderm and endoderm fates could segregate from each other.
Collapse
Affiliation(s)
- Morgane Poulain
- National Institute for Medical Research, Division of Developmental Biology, The Ridgeway, Mill Hill, London, UK
| | | | | | | | | |
Collapse
|
23
|
Zhao C, He X, Tian C, Meng A. Two GC-rich boxes in huC promoter play distinct roles in controlling its neuronal specific expression in zebrafish embryos. Biochem Biophys Res Commun 2006; 342:214-20. [PMID: 16472769 DOI: 10.1016/j.bbrc.2006.01.134] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2006] [Accepted: 01/24/2006] [Indexed: 10/25/2022]
Abstract
HuC, a vertebrate ortholog of Drosophila elav gene, encodes an RNA binding protein and is involved in early neurogenesis. Zebrafish huC is expressed in distinct neurons, including Rohon-Beard (RB) sensory neurons, interneurons and motoneurons, during primary neurogenesis, and in all neurons later during secondary neurogenesis. In this study, we identify two GC-rich box elements, proximal GC (p-GC) box from -172 to -149 and distal GC (d-GC) box from -218 to -208, in zebrafish huC promoter. Using transgenic approach, we demonstrate that deletion of the p-GC box from the promoter results in loss of expression of the reporter GFP in neurons while deletion of the d-GC box leads to GFP expression only in dorsal RB sensory neurons. These results suggest that the p-GC box alone confers transcriptional activity of huC promoter in primary RB neurons and the d-GC is required for huC transcription in the full spectrum of spinal cord neurons. Further studies are needed to identify specific Sp1-like transcription factors that bind to these GC boxes and activate huC transcription.
Collapse
Affiliation(s)
- Chengtian Zhao
- Protein Science Laboratory of Ministry of Education of China, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | | | | | | |
Collapse
|
24
|
Lv P, Jia HT, Gao XJ. Immunohistochemical localization of transcription factor Sp3 during dental enamel development in rat tooth germ. Eur J Oral Sci 2006; 114:93-5. [PMID: 16460348 DOI: 10.1111/j.1600-0722.2006.00270.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Sp3, a member of the Sp family of transcription factors, has previously been thought to be ubiquitously expressed, and its expression pattern in tooth development is not clear. This study was carried out to investigate the immunolocalization of Sp3 during the development of rat tooth germs. Sprague-Dawley rats at ages of 1, 3, 7, 10, and 14 d were used to represent different stages of tooth development. First mandibular molar tooth germs were sectioned and studied by immunohistochemistry. Sp3 was found to be localized within the nuclei of cells in developing tooth germs; however, ameloblast nuclei showed variable intensities at different developmental stages. At the same time, the positive signals in odontoblast nuclei remained stable. The results suggest that Sp3 may play a role in the development of teeth, specifically in the transcription of enamel-specific genes.
Collapse
Affiliation(s)
- Ping Lv
- Department of Cariology and Endodontology, Peking University, School of Stomatology, Haidan, Beijing 100081, China
| | | | | |
Collapse
|
25
|
Sun Z, Zhao J, Zhang Y, Meng A. Sp5l is a mediator of Fgf signals in anteroposterior patterning of the neuroectoderm in zebrafish embryo. Dev Dyn 2006; 235:2999-3006. [PMID: 16958103 DOI: 10.1002/dvdy.20945] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The neuroectoderm is patterned along the anterior-posterior axis in vertebrate embryos. Fgf signals are required to induce the posterior neuroectodermal fates, but they repress the anterior fate. Sp5l/Spr2, an Sp1-like transcription factor family member, has been shown to be required for development of mesoderm and posterior neuroectoderm. We demonstrate here that repression of the anterior neuroectodermal markers fez and otx1 by fgf17b or fgf3 coincides with induction of sp5l in the anterior neuroectoderm, and that this repression is efficiently rescued by simultaneous sp5l knockdown. On the other hand, sp5l knockdown is able to inhibit inductive activity of ectopic Fgf signals on the expression of the posterior neuroectodermal markers gbx2, hoxb1b, and krox20. Furthermore, effect of overexpression of a dominant negative Fgf receptor on anteroposterior patterning of the neuroectoderm is rescued by sp5l overexpression. Taken together, these data suggest that sp5l mediates the functions of Fgf signals in anteroposterior patterning of the neuroectoderm during zebrafish embryogenesis.
Collapse
Affiliation(s)
- Zhihui Sun
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China
| | | | | | | |
Collapse
|
26
|
Thisse B, Thisse C. Functions and regulations of fibroblast growth factor signaling during embryonic development. Dev Biol 2005; 287:390-402. [PMID: 16216232 DOI: 10.1016/j.ydbio.2005.09.011] [Citation(s) in RCA: 360] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 07/29/2005] [Accepted: 09/05/2005] [Indexed: 11/28/2022]
Abstract
Fibroblast growth factors (FGF) are secreted molecules which function through the activation of specific tyrosine kinases receptors, the FGF receptors that transduce the signal by activating different pathways including the Ras/MAP kinase and the phospholipase-C gamma pathways. FGFs are involved in the regulation of many developmental processes including patterning, morphogenesis, differentiation, cell proliferation or migration. Such a diverse set of activities requires a tight control of the transduction signal which is achieved through the induction of different feedback inhibitors such as the Sproutys, Sef and MAP kinase phosphatase 3 which are responsible for the attenuation of FGF signals, limiting FGF activities in time and space.
Collapse
Affiliation(s)
- Bernard Thisse
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, CNRS/INSERM/ULP, 1 rue Laurent Fries, BP 10142, CU de Strasbourg, 67404 ILLKIRCH cedex, France
| | | |
Collapse
|
27
|
Nakamura M, Runko AP, Sagerström CG. A novel subfamily of zinc finger genes involved in embryonic development. J Cell Biochem 2005; 93:887-95. [PMID: 15449319 DOI: 10.1002/jcb.20255] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
C2H2 zinc finger proteins make up one of the largest protein families in eukaryotic organisms. Recent study in several different systems has identified a set of novel zinc finger proteins that appear to form a distinct subfamily that we have named the NET family. Members of the NET family (Noc, Nlz, Elbow, and Tlp-1) share two protein motifs--a buttonhead box and an Sp motif--with zinc finger proteins from the Sp family. However, the NET family is uniquely characterized by a single atypical C2H2 zinc finger, in contrast to the Sp family that contains three tandem C2H2 fingers. Here, we review current information about the biochemical function and in vivo role for members of this subfamily. In general, NET family proteins are required during embryonic development. They appear to act by regulating transcription, most likely as repressors, although they are unlikely to bind DNA directly. In the future, it will be important to directly test if NET family proteins control transcription of specific target genes, perhaps via interactions with DNA-binding transcription factors, as well as to further explore their function in vivo.
Collapse
Affiliation(s)
- Mako Nakamura
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605-2324, USA
| | | | | |
Collapse
|
28
|
Zhao C, Meng A. Sp1-like transcription factors are regulators of embryonic development in vertebrates. Dev Growth Differ 2005; 47:201-11. [PMID: 15921495 DOI: 10.1111/j.1440-169x.2005.00797.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sp1-like family is an expanding transcription factor family. Members of this family bind to the GC-box or GT-box elements in the promoter/enhancers and regulate the expression of the target genes. Currently, this family consists of at least nine members, which may act as a transactivator or a repressor on target promoters. Sp1-like transcription factors are expressed during development of vertebrate embryos in ubiquitous or tissue-specific manners and play various roles in embryonic development. This review mainly summarises their expression patterns and functions during vertebrate embryogenesis.
Collapse
Affiliation(s)
- Chengtian Zhao
- Laboratory of Developmental Biology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | | |
Collapse
|
29
|
Weidinger G, Thorpe CJ, Wuennenberg-Stapleton K, Ngai J, Moon RT. The Sp1-related transcription factors sp5 and sp5-like act downstream of Wnt/beta-catenin signaling in mesoderm and neuroectoderm patterning. Curr Biol 2005; 15:489-500. [PMID: 15797017 DOI: 10.1016/j.cub.2005.01.041] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 01/06/2005] [Accepted: 01/07/2005] [Indexed: 01/17/2023]
Abstract
BACKGROUND Wnt/beta-catenin signaling regulates many processes during vertebrate development, including patterning of the mesoderm along the dorso-ventral axis and patterning of the neuroectoderm along the anterior-posterior axis during gastrulation. However, relatively little is known about Wnt target genes mediating these effects. RESULTS Using zebrafish DNA microarrays, we have identified several new targets of Wnt/beta-catenin signaling, including sp5-like (sp5l, previously called spr2), a zinc-finger transcription factor of the Sp1 family. sp5-like is a direct target of Wnt/beta-catenin signaling and acts together with its paralog sp5 (previously called bts1) downstream of wnt8 in patterning of the mesoderm and neuroectoderm because (1) overexpression of sp5-like, like overexpression of wnt8, posteriorizes the neuroectoderm, (2) sp5-like morpholino-mediated knockdown, like wnt8 knockdown, causes anteriorization of the hindbrain, (3) combined knockdown of sp5 and sp5-like, like loss of wnt8, causes expansion of dorsal mesoderm, (4) sp5-like knockdown reduces the defects in mesoderm and neuroectoderm patterning caused by wnt8 overexpression, and (5) inhibition of sp5-like enhances the effects of hypomorphic loss of wnt8. Importantly, (6) overexpression of sp5-like is able to partially restore normal hindbrain patterning in wnt8 morphants. CONCLUSIONS sp5-like is a direct target of Wnt/beta-catenin signaling during gastrulation and, together with sp5, acts as a required mediator of the activities of wnt8 in patterning the mesoderm and neuroectoderm. We conclude that sp5 transcription factors mediate the downstream responses to Wnt/beta-catenin signaling in several developmental processes in zebrafish.
Collapse
Affiliation(s)
- Gilbert Weidinger
- Howard Hughes Medical Institute, Department of Pharmacology and Center for Developmental Biology, University of Washington School of Medicine, Box 357370, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
30
|
Thorpe CJ, Weidinger G, Moon RT. Wnt/beta-catenin regulation of the Sp1-related transcription factor sp5l promotes tail development in zebrafish. Development 2005; 132:1763-72. [PMID: 15772132 DOI: 10.1242/dev.01733] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tail formation in vertebrates involves the specification of a population of multipotent precursors, the tailbud, which will give rise to all of the posterior structures of the embryo. Wnts are signaling proteins that are candidates for promoting tail outgrowth in zebrafish, although which Wnts are involved, what genes they regulate, and whether Wnts are required for initiation or maintenance steps in tail formation has not been resolved. We show here that both wnt3a and wnt8 are expressed in the zebrafish tailbud and that simultaneous inhibition of both wnt3a and wnt8 using morpholino oligonucleotides can completely block tail formation. In embryos injected with wnt3a and wnt8 morpholinos, expression of genes in undifferentiated presomitic mesoderm is initiated, but not maintained. To identify genes that might function downstream of Wnts in tail formation, a DNA microarray screen was conducted, revealing that sp5l, a member of the Sp1 family of zinc-finger transcription factors, is activated by Wnt signaling. Moreover, we show that sp5l expression in the developing tail is dependent on both wnt3a and wnt8 function. Supporting a role for sp5l in tail formation, we find that inhibition of sp5l strongly enhances the effects of wnt3a inhibition, and overexpression of sp5l RNA is able to completely restore normal tail development in wnt3a morphants. These data place sp5l downstream of wnt3a and wnt8 in a Wnt/beta-catenin signaling pathway that controls tail development in zebrafish.
Collapse
Affiliation(s)
- Chris J Thorpe
- Howard Hughes Medical Institute, Department of Pharmacology and Center for Developmental Biology, Box 357750, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | |
Collapse
|
31
|
Abstract
Fibroblast growth factors (FGFs) have been implicated in diverse cellular processes including apoptosis, cell survival, chemotaxis, cell adhesion, migration, differentiation, and proliferation. This review presents our current understanding on the roles of FGF signaling, the pathways employed, and its regulation. We focus on FGF signaling during early embryonic processes in vertebrates, such as induction and patterning of the three germ layers as well as its function in the control of morphogenetic movements.
Collapse
Affiliation(s)
- Ralph T Böttcher
- Division of Molecular Embryology, Deutsches Krebsforschungszentrum, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
32
|
Zhao C, Qi J, Meng A. Characterization and expression pattern of two zebrafishatf7 genes. Dev Dyn 2005; 233:1157-62. [PMID: 15906372 DOI: 10.1002/dvdy.20438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Members of the ATF/CREB (activating transcription factor/cAMP-responsive element binding protein) transcription factor family play diverse roles in controlling cell proliferation, apoptosis, and oncogenesis, as well as in embryonic development of vertebrates. We identified two zebrafish orthologs of human ATF7 gene: atf7a and atf7b. Whole-mount in situ hybridization shows that zebrafish atf7a is first expressed in the notochord precursors at 80% epiboly stage and then in the developing notochord during segmentation. The expression of atf7a is positively regulated by ntl, flh, and spr2, which are involved in development of the notochord. In contrast, atf7b is maternally expressed and during embryogenesis its mRNA is ubiquitously distributed, showing an expression pattern similar to that of mammalian Atf7.
Collapse
Affiliation(s)
- Chengtian Zhao
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China
| | | | | |
Collapse
|
33
|
Stoffel M, Vallier L, Pedersen RA. Navigating the pathway from embryonic stem cells to beta cells. Semin Cell Dev Biol 2004; 15:327-36. [PMID: 15125896 DOI: 10.1016/j.semcdb.2004.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The compelling goal of using in vitro differentiation of stem cells to obtain replacement pancreatic beta cells that are clinically effective in treating diabetes has until now eluded researchers. This difficulty raises the question of whether more effective strategies are available. We propose that the native embryonic pathway leading to the definitive endoderm lineage, and continuing on to the endocrine pancreas, is the one most likely to succeed for the in vitro differentiation of embryonic stem cells. We question however whether gain-of-function approaches involving genes necessary for beta cell development are destined to work effectively, and suggest alternative approaches to identifying conditions sufficient for in vitro beta cell differentiation.
Collapse
Affiliation(s)
- Markus Stoffel
- Laboratory of Metabolic Diseases, The Rockefeller University, New York, NY 10021, USA.
| | | | | |
Collapse
|
34
|
Generation of mutants with developmental defects in zebrafish by ENU mutagenesis. CHINESE SCIENCE BULLETIN-CHINESE 2004. [DOI: 10.1007/bf03185782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Cao Y, Zhao J, Sun Z, Zhao Z, Postlethwait J, Meng A. fgf17b, a novel member of Fgf family, helps patterning zebrafish embryos. Dev Biol 2004; 271:130-43. [PMID: 15196956 DOI: 10.1016/j.ydbio.2004.03.032] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Revised: 03/01/2004] [Accepted: 03/25/2004] [Indexed: 11/20/2022]
Abstract
Fibroblast growth factors (Fgfs) play important roles in the pattern formation of early vertebrate embryos. We have identified a zebrafish ortholog of human FGF17, named fgf17b. The first phase of fgf17b expression occurs in the blastodermal margin of late blastulae and in the embryonic shield of early gastrulae. The second phase starts after the onset of segmentation, mainly in the presomitic mesoderm and newly formed somites. Injection of fgf17b mRNA into one-cell embryos induces expression of the mesodermal marker no tail (ntl) and rescues ntl expression suppressed by overexpression of lefty1 (lft1). Overexpression of fgf17b dorsalizes zebrafish gastrulae by enhancing expression of chordin (chd), which is an antagonist of the ventralizing signals BMPs. In addition, overexpression of fgf17b posteriorizes the neuroectoderm. Simultaneous knockdown of fgf17b and fgf8 with antisense morpholinos results in reduction of chd and ntl. Knockdown of fgf17b can alleviate inhibitory effect of ectopic expression of fgf3 on otx1. These data together suggest that Fgf17b plays a role in early embryonic patterning. We also demonstrate that fgf17b and fgf8 have stronger mesoderm inducting activity than fgf3, whereas fgf17b and fgf3 have stronger activity in posteriorizing the neuroectoderm than fgf8. Like fgf8, activation of fgf17b expression depends on Nodal signaling.
Collapse
Affiliation(s)
- Ying Cao
- Department of Biological Sciences and Biotechnology, State Key Laboratory of Biomembrane & Membrane Biotechnology, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | |
Collapse
|