1
|
Kocsmár É, Kocsmár I, Elamin F, Pápai L, Jakab Á, Várkonyi T, Glasz T, Rácz G, Pesti A, Danics K, Kiss A, Röst G, Belicza É, Schaff Z, Lotz G. Autopsy findings in cancer patients infected with SARS-CoV-2 show a milder presentation of COVID-19 compared to non-cancer patients. GeroScience 2024; 46:6101-6114. [PMID: 38691298 PMCID: PMC11493920 DOI: 10.1007/s11357-024-01163-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/12/2024] [Indexed: 05/03/2024] Open
Abstract
COVID-19, caused by SARS-CoV-2, manifests with differing severity across distinct patient subgroups, with outcomes influenced by underlying comorbidities such as cancer, which may cause functional and compositional alterations of the immune system during tumor progression. We aimed to investigate the association of SARS-CoV-2 infection and its complications with cancer in a large autopsy series and the role of COVID-19 in the fatal sequence leading to death. A total of 2641 adult autopsies were investigated, 539 of these were positive for SARS-CoV-2. Among the total number of patients analyzed, 829 had active cancer. Overall, the cohort included 100 patients who simultaneously had cancer and SARS-CoV-2 infection. The course of COVID-19 was less severe in cancer patients, including a significantly lower incidence of viral and bacterial pneumonia, occurring more frequently as a contributory disease or coexisting morbidity, or as SARS-CoV-2 positivity without viral disease. SARS-CoV-2 positivity was more frequent among non-metastatic than metastatic cancer cases, and in specific tumor types including hematologic malignancies. COVID-19 was more frequently found to be directly involved in the fatal sequence in patients undergoing active anticancer therapy, but less frequently in perioperative status, suggesting that the underlying malignancy and consequent surgery are more important factors leading to death perioperatively than viral disease. The course of COVID-19 in cancer patients was milder and balanced during the pandemic. This may be due to relative immunosuppressed status, and the fact that even early/mild viral infections can easily upset their condition, leading to death from their underlying cancer or its complications.
Collapse
Affiliation(s)
- Éva Kocsmár
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary.
| | - Ildikó Kocsmár
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Flóra Elamin
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Laura Pápai
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Ákos Jakab
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Tibor Várkonyi
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Tibor Glasz
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Gergely Rácz
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Adrián Pesti
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Krisztina Danics
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - András Kiss
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Gergely Röst
- National Laboratory for Health Security, University of Szeged, Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary
| | - Éva Belicza
- Health Services Management Training Centre, Faculty of Health and Public Administration, Semmelweis University, Budapest, Hungary
| | - Zsuzsa Schaff
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Gábor Lotz
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
2
|
Awaya T, Hara H, Moroi M. Cytokine Storms and Anaphylaxis Following COVID-19 mRNA-LNP Vaccination: Mechanisms and Therapeutic Approaches. Diseases 2024; 12:231. [PMID: 39452475 PMCID: PMC11507195 DOI: 10.3390/diseases12100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Acute adverse reactions to COVID-19 mRNA vaccines are a major concern, as autopsy reports indicate that deaths most commonly occur on the same day of or one day following vaccination. These acute reactions may be due to cytokine storms triggered by lipid nanoparticles (LNPs) and anaphylaxis induced by polyethene glycol (PEG), both of which are vital constituents of the mRNA-LNP vaccines. Kounis syndrome, in which anaphylaxis triggers acute coronary syndrome (ACS), may also be responsible for these cardiovascular events. Furthermore, COVID-19 mRNA-LNP vaccines encompass adjuvants, such as LNPs, which trigger inflammatory cytokines, including interleukin (IL)-1β and IL-6. These vaccines also produce spike proteins which facilitate the release of inflammatory cytokines. Apart from this, histamine released from mast cells during allergic reactions plays a critical role in IL-6 secretion, which intensifies inflammatory responses. In light of these events, early reduction of IL-1β and IL-6 is imperative for managing post-vaccine cytokine storms, ACS, and myocarditis. Corticosteroids can restrict inflammatory cytokines and mitigate allergic responses, while colchicine, known for its IL-1β-reducing capabilities, could also prove effective. The anti-IL-6 antibody tocilizumab also displays promising treatment of cytokine release syndrome. Aside from its significance for treating anaphylaxis, epinephrine can induce coronary artery spasms and myocardial ischemia in Kounis syndrome, making accurate diagnosis essential. The upcoming self-amplifying COVID-19 mRNA-LNP vaccines also contain LNPs. Given that these vaccines can cause a cytokine storm and allergic reactions post vaccination, it is crucial to consider corticosteroids and measure IL-6 levels for effective management.
Collapse
Affiliation(s)
- Toru Awaya
- Department of Cardiovascular Medicine, Toho University Ohashi Medical Center, 2-22-36, Ohashi Meguro-ku, Tokyo 153-8515, Japan
| | - Hidehiko Hara
- Department of Cardiovascular Medicine, Toho University Ohashi Medical Center, 2-22-36, Ohashi Meguro-ku, Tokyo 153-8515, Japan
| | - Masao Moroi
- Department of Cardiovascular Medicine, Toho University Ohashi Medical Center, 2-22-36, Ohashi Meguro-ku, Tokyo 153-8515, Japan
- Department of Internal Medicine, Misato Central General Hospital, Saitama 341-8526, Japan
| |
Collapse
|
3
|
Zhou Z, Mukundan N, Zhang JA, Wu Y, Zhang Q, Wang D, Fang RH, Gao W, Zhang L. Macrophage-Mimicking Cellular Nanoparticles Scavenge Proinflammatory Cytokines in Specimens of Patients with Inflammatory Disorders. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401423. [PMID: 38884169 PMCID: PMC11336921 DOI: 10.1002/advs.202401423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/18/2024] [Indexed: 06/18/2024]
Abstract
Effectively neutralizing inflammatory cytokines is crucial for managing a variety of inflammatory disorders. Current techniques that target only a subset of cytokines often fall short due to the intricate nature of redundant and compensatory cytokine networks. A promising solution to this challenge is using cell membrane-coated nanoparticles (CNPs). These nanoparticles replicate the complex interactions between cells and cytokines observed in disease pathology, providing a potential avenue for multiplex cytokine scavenging. While the development of CNPs using experimental animal models has shown great promise, their effectiveness in scavenging multiple cytokines in human diseases has yet to be demonstrated. To bridge this gap, this study selected macrophage membrane-coated CNPs (MФ-CNPs) and assessed their ability to scavenge inflammatory cytokines in serum samples from patients with COVID-19, sepsis, acute pancreatitis, or type-1 diabetes, along with synovial fluid samples from patients with rheumatoid arthritis. The results show that MФ-CNPs effectively scavenge critical inflammatory cytokines, including interleukin (IL)-6, IL-8, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α, in a dose-dependent manner. Overall, this study demonstrates MФ-CNPs as a multiplex cytokine scavenging formulation with promising applications in clinical settings to treat a range of inflammatory disorders.
Collapse
Affiliation(s)
- Zhidong Zhou
- Department of Nanoengineering and Chemical Engineering ProgramUniversity of California San DiegoLa JollaCA92093USA
| | - Nilesh Mukundan
- Department of Nanoengineering and Chemical Engineering ProgramUniversity of California San DiegoLa JollaCA92093USA
| | - Jiayuan Alex Zhang
- Department of Nanoengineering and Chemical Engineering ProgramUniversity of California San DiegoLa JollaCA92093USA
| | - You‐Ting Wu
- Department of Nanoengineering and Chemical Engineering ProgramUniversity of California San DiegoLa JollaCA92093USA
| | - Qiangzhe Zhang
- Department of Nanoengineering and Chemical Engineering ProgramUniversity of California San DiegoLa JollaCA92093USA
| | - Dan Wang
- Department of Nanoengineering and Chemical Engineering ProgramUniversity of California San DiegoLa JollaCA92093USA
| | - Ronnie H. Fang
- Department of Nanoengineering and Chemical Engineering ProgramUniversity of California San DiegoLa JollaCA92093USA
| | - Weiwei Gao
- Department of Nanoengineering and Chemical Engineering ProgramUniversity of California San DiegoLa JollaCA92093USA
| | - Liangfang Zhang
- Department of Nanoengineering and Chemical Engineering ProgramUniversity of California San DiegoLa JollaCA92093USA
| |
Collapse
|
4
|
Bornbusch SL, Power ML, Schulkin J, Drea CM, Maslanka MT, Muletz-Wolz CR. Integrating microbiome science and evolutionary medicine into animal health and conservation. Biol Rev Camb Philos Soc 2024; 99:458-477. [PMID: 37956701 DOI: 10.1111/brv.13030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
Microbiome science has provided groundbreaking insights into human and animal health. Similarly, evolutionary medicine - the incorporation of eco-evolutionary concepts into primarily human medical theory and practice - is increasingly recognised for its novel perspectives on modern diseases. Studies of host-microbe relationships have been expanded beyond humans to include a wide range of animal taxa, adding new facets to our understanding of animal ecology, evolution, behaviour, and health. In this review, we propose that a broader application of evolutionary medicine, combined with microbiome science, can provide valuable and innovative perspectives on animal care and conservation. First, we draw on classic ecological principles, such as alternative stable states, to propose an eco-evolutionary framework for understanding variation in animal microbiomes and their role in animal health and wellbeing. With a focus on mammalian gut microbiomes, we apply this framework to populations of animals under human care, with particular relevance to the many animal species that suffer diseases linked to gut microbial dysfunction (e.g. gut distress and infection, autoimmune disorders, obesity). We discuss diet and microbial landscapes (i.e. the microbes in the animal's external environment), as two factors that are (i) proposed to represent evolutionary mismatches for captive animals, (ii) linked to gut microbiome structure and function, and (iii) potentially best understood from an evolutionary medicine perspective. Keeping within our evolutionary framework, we highlight the potential benefits - and pitfalls - of modern microbial therapies, such as pre- and probiotics, faecal microbiota transplants, and microbial rewilding. We discuss the limited, yet growing, empirical evidence for the use of microbial therapies to modulate animal gut microbiomes beneficially. Interspersed throughout, we propose 12 actionable steps, grounded in evolutionary medicine, that can be applied to practical animal care and management. We encourage that these actionable steps be paired with integration of eco-evolutionary perspectives into our definitions of appropriate animal care standards. The evolutionary perspectives proposed herein may be best appreciated when applied to the broad diversity of species under human care, rather than when solely focused on humans. We urge animal care professionals, veterinarians, nutritionists, scientists, and others to collaborate on these efforts, allowing for simultaneous care of animal patients and the generation of valuable empirical data.
Collapse
Affiliation(s)
- Sally L Bornbusch
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, 3001 Connecticut Ave. NW, Washington, DC, 20008, USA
- Department of Nutrition Science, Smithsonian's National Zoo and Conservation Biology Institute, 3001 Connecticut Ave. NW, Washington, DC, 20008, USA
| | - Michael L Power
- Center for Species Survival, Smithsonian's National Zoo and Conservation Biology Institute, Washington, 3001 Connecticut Ave. NW, Washington, DC, 20008, USA
| | - Jay Schulkin
- Department of Obstetrics & Gynecology, University of Washington School of Medicine, 1959 NE Pacific St., Box 356460, Seattle, WA, 98195, USA
| | - Christine M Drea
- Department of Evolutionary Anthropology, Duke University, 104 Biological Sciences, Campus Box 90383, Durham, NC, 27708, USA
| | - Michael T Maslanka
- Department of Nutrition Science, Smithsonian's National Zoo and Conservation Biology Institute, 3001 Connecticut Ave. NW, Washington, DC, 20008, USA
| | - Carly R Muletz-Wolz
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, 3001 Connecticut Ave. NW, Washington, DC, 20008, USA
| |
Collapse
|
5
|
Aldunate F, Fajardo A, Ibañez N, Rammauro F, Daghero H, Arce R, Ferla D, Pereira-Gomez M, Salazar C, Iraola G, Pritsch O, Hurtado J, Tenzi J, Bollati-Fogolín M, Bianchi S, Nin N, Moratorio G, Moreno P. What have we learned from a case of convalescent plasma treatment in a two-time kidney transplant recipient COVID-19 patient? A case report from the perspective of viral load evolution and immune response. FRONTIERS IN NEPHROLOGY 2023; 3:1132763. [PMID: 37675346 PMCID: PMC10479756 DOI: 10.3389/fneph.2023.1132763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 06/05/2023] [Indexed: 09/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19), an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, can have a wide range of clinical manifestations, ranging from asymptomatic disease to potentially life-threatening complications. Convalescent plasma therapy has been proposed as an effective alternative for the treatment of severe cases. The aim of this study was to follow a two-time renal transplant patient with severe COVID-19 treated with convalescent plasma over time from an immunologic and virologic perspective. A 42-year-old female patient, who was a two-time kidney transplant recipient, was hospitalized with COVID-19. Due to worsening respiratory symptoms, she was admitted to the intensive care unit, where she received two doses of convalescent plasma. We analyzed the dynamics of viral load in nasopharyngeal swab, saliva, and tracheal aspirate samples, before and after convalescent plasma transfusion. The levels of pro-inflammatory cytokines and antibody titers were also measured in serum samples. A significant decrease in viral load was observed after treatment in the saliva and nasopharyngeal swab samples, and a slight decrease was observed in tracheal aspirate samples. In addition, we found evidence of an increase in antibody titers after transfusion, accompanied by a decrease in the levels of several cytokines responsible for cytokine storm.
Collapse
Affiliation(s)
- Fabian Aldunate
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Alvaro Fajardo
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Natalia Ibañez
- Laboratorio de Inmunovirología, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Florencia Rammauro
- Laboratorio de Inmunovirología, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Hellen Daghero
- Cell Biology Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Rodrigo Arce
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Diego Ferla
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Marianoel Pereira-Gomez
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Cecilia Salazar
- Laboratorio de Genómica Microbiana, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Gregorio Iraola
- Laboratorio de Genómica Microbiana, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Otto Pritsch
- Laboratorio de Inmunovirología, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Javier Hurtado
- Unidad de Cuidados Intensivos, Hospital Español “Juan José Crottoggini”, Administración de Servicios de Salud del Estado, Montevideo, Uruguay
| | - Jordan Tenzi
- Unidad de Cuidados Intensivos, Hospital Español “Juan José Crottoggini”, Administración de Servicios de Salud del Estado, Montevideo, Uruguay
| | | | - Sergio Bianchi
- Laboratorio de Biomarcadores Moleculares, Departamento de Fisiopatología, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Genómica Funcional, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Nicolas Nin
- Unidad de Cuidados Intensivos, Hospital Español “Juan José Crottoggini”, Administración de Servicios de Salud del Estado, Montevideo, Uruguay
| | - Gonzalo Moratorio
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Pilar Moreno
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur Montevideo, Montevideo, Uruguay
| |
Collapse
|
6
|
Bansal A, Kumar S, Rai N, Kumari S, Kumar V, Kumar A, Chandra NC. A Pilot Study on Blood Components in COVID-19 Affected Subjects: A Correlation to UPR Signalling and ER-Stress. Indian J Clin Biochem 2023; 38:374-384. [PMCID: PMC9997434 DOI: 10.1007/s12291-023-01121-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/20/2023] [Indexed: 03/12/2023]
Abstract
Abstract The endoplasmic reticulum (ER) is the site for protein synthesis, its folding and secretion. An intricate set of signalling pathways, called UPR pathways, have been evolved by ER in mammalian cells, to allow the cell to respond the presence of misfolded proteins within the ER. Breaching of these signalling systems by disease oriented accumulation of unfolded proteins may develop cellular stress. The aim of this study is to explore whether COVID-19 infection is responsible for developing this kind of endoplasmic reticulum related stress (ER-stress). ER-stress was evaluated by checking the expression of ER-stress markers e.g. PERK (adapting) and TRAF2 (alarming). ER-stress was correlated to several blood parameters viz. IgG, pro- and anti-inflammatory cytokines, leukocytes, lymphocytes, RBC, haemoglobin and PaO2/FiO2 ratio (ratio of arterial oxygen partial pressure to fractional inspired oxygen) in COVID-19 affected subjects. COVID-19 infection was found to be a state of protein homeostasis (proteostasis) collapse. Changes in IgG levels showed very poor immune response by the infected subjects. At the initial phase of the disease, pro-inflammatory cytokine levels were high and anti-inflammatory cytokines levels were low; though they were partly compromised at later phase of the disease. Total leukocyte concentration increased over the period of time; while percentage of lymphocytes were dropped. No significant changes were observed in cases of RBC counts and haemoglobin (Hb) levels. Both RBC and Hb were maintained at their normal range. In mildly stressed group, PaO2/FiO2 ratio (oxygenation status) was in the higher side of normal range; whereas in other two groups the ratio was in respiratory distress syndrome mode. Virus could induce mild to severe ER-stress, which could be the cause of cellular death and systemic dysfunction introducing fatal consequences. Graphical Abstract Schematic representation of SARS-CoV-2 infection and related consequences.![]()
Collapse
Affiliation(s)
- Akash Bansal
- Department of Biochemistry, All India Institute of Medical Sciences, Patna, 801507 India
| | - Sushil Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Patna, 801507 India
| | - Neha Rai
- Department of Biochemistry, All India Institute of Medical Sciences, Patna, 801507 India
| | - Shilpi Kumari
- Department of Biochemistry, School of Basic Applied Sciences, Galgotias University, Greater Noida, Gautam Budh Nagar, Uttar Pradesh 201301 India
| | - Visesh Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Patna, 801507 India
| | - Ajeet Kumar
- Department of Anesthesiology, All India Institute of Medical Sciences, Patna, 801507 India
| | - Nimai Chand Chandra
- Department of Biochemistry, All India Institute of Medical Sciences, Patna, 801507 India ,Present Address: Department of Biochemistry, SGT University, Budhera, Gurugram, Haryana 122505 India
| |
Collapse
|
7
|
Nunn CL. COVID-19 and Evolution, Medicine, and Public Health. Evol Med Public Health 2023; 11:41-43. [PMID: 36908697 PMCID: PMC9993055 DOI: 10.1093/emph/eoad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Charles L Nunn
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
- Duke Global Health Institute, Duke University, Durham, NC 27708, USA
- Triangle Center for Evolutionary Medicine (TriCEM), Duke University, Durham, NC 27708, USA
| |
Collapse
|
8
|
Nanda D, Ragireddy A, Das R, Mallick B. An unusual course of pneumonia in a term neonate with suspected multisystem inflammatory syndrome secondary to severe acute respiratory syndrome coronavirus 2 infection. J Clin Neonatol 2023. [DOI: 10.4103/jcn.jcn_96_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
9
|
Konlaan Y, Asamoah Sakyi S, Kumi Asare K, Amoah Barnie P, Opoku S, Nakotey GK, Victor Nuvor S, Amoani B. Evaluating immunohaematological profile among COVID-19 active infection and recovered patients in Ghana. PLoS One 2022; 17:e0273969. [PMID: 36094915 PMCID: PMC9467340 DOI: 10.1371/journal.pone.0273969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 08/18/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction The rapid spread of COVID-19 has been a global public health problem and it is yet to be put under control. Active COVID-19 is associated with unrestrained secretion of pro-inflammatory cytokines and imbalances in haematological profile including anaemia, leukocytosis and thrombocytopaenia. However, the haematological profile and immune status following recovery from COVID-19 has not been recognized. We evaluated the immunohaematological profile among COVID-19 patients with active infection, recovered cases and unexposed healthy individuals in the Ashanti region of Ghana. Methodology A total of 95 adult participants, consisting of 35 positive, 30 recovered and 30 unexposed COVID-19 negative individuals confirmed by RT-PCR were recruited for the study. All the patients had the complete blood count performed using the haematological analyzer Sysmex XN-1500. Their plasma cytokine levels of interleukin (IL)-1β, IL-6, IL-10, IL-17, tumour necrosis factor-alpha (TNF-α) and interferon gamma (IFN-γ) were analysed using ELISA. Statistical analyses were performed on R statistical software. Result The Patients with COVID-19 active infection had significantly higher levels of IL10 (181±6.14 pg/mL vs 155.00±14.32 pg/mL vs 158.80±11.70 pg/mL, p = 0.038), WBC count (5.5±0.4 x109 /L vs 4.5±0.6 x109 /L vs 3.8±0.5, p < 0.0001) and percentage basophil (1.8±0.1% vs 0.8±0.3% vs 0.7±0.2%, p = 0.0040) but significantly lower levels of IFN-γ (110.10±9.52 pg/mL vs 142.80±5.46 pg/mL vs 140.80±6.39 pg/mL, p = 0.021), haematocrit (24.1±3.7% vs 38.3± 3.0% vs 38.5±2.2%, p < 0.0001), haemoglobin concentration (9.4±0.1g/dl vs 12.5± 5.0g/dl vs 12.7±0.8, p < 0.0001) and MPV (9.8±0.2fL vs 11.1±0.5fL vs 11.6±0.3fL, p < 0.0001) compared to recovered and unexposed controls respectively. There were significant association between IL-1β & neutrophils (r = 0.42, p<0.05), IL-10 & WBC (r = 0.39, p<0.05), IL-10 & Basophils (r = -0.51, p<0.01), IL-17 & Neutrophil (r = 0.39, p<0.05) in the active COVID-19 cases. Conclusion COVID-19 active infection is associated with increased IL-10 and WBC with a concomitant decrease in IFN-γ and haemoglobin concentration. However, recovery from the disease is associated with immune recovery with appareantly normal haematological profile.
Collapse
Affiliation(s)
- Yatik Konlaan
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Samuel Asamoah Sakyi
- Department of Molecular Medicine, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kwame Kumi Asare
- Department of Biomedical Sciences, College of Health and Allied Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Prince Amoah Barnie
- Department of Forensic Science, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Stephen Opoku
- Department of Molecular Medicine, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Gideon Kwesi Nakotey
- Department of Biomedical Sciences, College of Health and Allied Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Samuel Victor Nuvor
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Benjamin Amoani
- Department of Biomedical Sciences, College of Health and Allied Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
10
|
Rhoades R, Solomon S, Johnson C, Teng S. Impact of SARS-CoV-2 on Host Factors Involved in Mental Disorders. Front Microbiol 2022; 13:845559. [PMID: 35444632 PMCID: PMC9014212 DOI: 10.3389/fmicb.2022.845559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/14/2022] [Indexed: 11/23/2022] Open
Abstract
COVID-19, caused by SARS-CoV-2, is a systemic illness due to its multiorgan effects in patients. The disease has a detrimental impact on respiratory and cardiovascular systems. One early symptom of infection is anosmia or lack of smell; this implicates the involvement of the olfactory bulb in COVID-19 disease and provides a route into the central nervous system. However, little is known about how SARS-CoV-2 affects neurological or psychological symptoms. SARS-CoV-2 exploits host receptors that converge on pathways that impact psychological symptoms. This systemic review discusses the ways involved by coronavirus infection and their impact on mental health disorders. We begin by briefly introducing the history of coronaviruses, followed by an overview of the essential proteins to viral entry. Then, we discuss the downstream effects of viral entry on host proteins. Finally, we review the literature on host factors that are known to play critical roles in neuropsychiatric symptoms and mental diseases and discuss how COVID-19 could impact mental health globally. Our review details the host factors and pathways involved in the cellular mechanisms, such as systemic inflammation, that play a significant role in the development of neuropsychological symptoms stemming from COVID-19 infection.
Collapse
Affiliation(s)
- Raina Rhoades
- Department of Biology, Howard University, Washington, DC, United States
| | - Sarah Solomon
- Department of Biology, Howard University, Washington, DC, United States
| | - Christina Johnson
- Department of Biology, Howard University, Washington, DC, United States
| | | |
Collapse
|