1
|
Souque C, González Ojeda I, Baym M. From Petri Dishes to Patients to Populations: Scales and Evolutionary Mechanisms Driving Antibiotic Resistance. Annu Rev Microbiol 2024; 78:361-382. [PMID: 39141706 DOI: 10.1146/annurev-micro-041522-102707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Tackling the challenge created by antibiotic resistance requires understanding the mechanisms behind its evolution. Like any evolutionary process, the evolution of antimicrobial resistance (AMR) is driven by the underlying variation in a bacterial population and the selective pressures acting upon it. Importantly, both selection and variation will depend on the scale at which resistance evolution is considered (from evolution within a single patient to the host population level). While laboratory experiments have generated fundamental insights into the mechanisms underlying antibiotic resistance evolution, the technological advances in whole genome sequencing now allow us to probe antibiotic resistance evolution beyond the lab and directly record it in individual patients and host populations. Here we review the evolutionary forces driving antibiotic resistance at each of these scales, highlight gaps in our current understanding of AMR evolution, and discuss future steps toward evolution-guided interventions.
Collapse
Affiliation(s)
- Célia Souque
- Departments of Biomedical Informatics and Microbiology, Harvard Medical School, Boston, Massachusetts, USA; ,
| | - Indra González Ojeda
- Departments of Biomedical Informatics and Microbiology, Harvard Medical School, Boston, Massachusetts, USA; ,
| | - Michael Baym
- Departments of Biomedical Informatics and Microbiology, Harvard Medical School, Boston, Massachusetts, USA; ,
| |
Collapse
|
2
|
Chakraborty S, Baindara P, Mondal SK, Roy D, Mandal SM. Synthesis of a tetralone derivative of ampicillin to control ampicillin-resistant Staphylococcusaureus. Biochem Biophys Res Commun 2024; 714:149974. [PMID: 38663094 DOI: 10.1016/j.bbrc.2024.149974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024]
Abstract
Due to the rapid emergence of antibiotic resistant new bacterial strains and new infections, there is an urgent need for novel or newly modified and efficient alternatives of treatment. However, conventional antibiotics are still used in therapeutic settings but their efficacy is uncertain due to the rapid evolution of drug resistance. In the present study, we have synthesized a new derivative of conventional antibiotic ampicillin using SN2-type substitution reaction. NMR and mass analysis of the newly synthesized derivative of ampicillin confirmed it as ampicillin-bromo-methoxy-tetralone (ABMT). Importantly, ABMT is revealed to have efficient activity against Staphylococcus aureus (S. aureus) with a MIC value of 32 μg ml-1 while ampicillin was not effective, even at 64 μg ml-1 of concentration. Electron microscopy results confirmed the membrane-specific killing of S. aureus at 1 h of treatment. Additionally, molecular docking analysis revealed a strong binding affinity of ABMT with β-lactamase via the formation of a closed compact bridge. Our findings, avail a new derivative of ampicillin that could be a potential alternative to fight ampicillin-resistant bacteria possibly by neutralizing the β-lactamase action.
Collapse
Affiliation(s)
- Sourav Chakraborty
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
| | - Piyush Baindara
- Animal Sciences Research Center, Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Suresh K Mondal
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
| | - Dinata Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram 796004, India
| | - Santi M Mandal
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India.
| |
Collapse
|
3
|
Duarte DJ, Zillien C, Kox M, Oldenkamp R, van der Zaan B, Roex E, Ragas AMJ. Characterization of urban sources of antibiotics and antibiotic-resistance genes in a Dutch sewer catchment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167439. [PMID: 37774886 DOI: 10.1016/j.scitotenv.2023.167439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
A one year study was conducted in the city of Nijmegen, The Netherlands, to characterize various urban sources of antibiotics and antibiotic resistant genes (ARGs) in wastewater within a single sewer catchment. Prevalence of ermB, tet(W), sul1, sul2, intl1, and 16S rRNA gene was determined at 10 locations within the city. Sampling locations included a nursing home, a student residence, a hospital and an industrial area, among others. Wastewater concentrations of 23 antibiotics were measured using passive sampling. Additionally, excreted loads of 22 antibiotics were estimated based on ambulatory prescription and clinical usage data. Genes sul1 and intl1 were most abundant across most locations. Ciprofloxacin and amoxicillin together contributed over 92 % of the total estimated antibiotic selective pressure at all sampling points. The present study highlights the prominent role that hospitals can have in the prevalence and proliferation of ARGs in urban wastewater. Furthermore, results suggest that even short-term changes in the therapeutic regimen prescribed in hospitals may translate into shifting ARG abundance patterns in hospital wastewater. The methods applied present an opportunity to identify emission hotspots and prioritize intervention options to limit ARG spread from urban wastewater to the environment.
Collapse
Affiliation(s)
- Daniel J Duarte
- Radboud University Nijmegen, Radboud Institute for Biological and Environmental Sciences, Department of Environmental Science, 6500 GL Nijmegen, Netherlands
| | - Caterina Zillien
- Radboud University Nijmegen, Radboud Institute for Biological and Environmental Sciences, Department of Environmental Science, 6500 GL Nijmegen, Netherlands.
| | - Martine Kox
- Deltares, Subsurface and Groundwater Systems, Daltonlaan 600, 3584 KB Utrecht, the Netherlands
| | - Rik Oldenkamp
- Department of Global Health-Amsterdam Institute for Global Health and Development, Amsterdam UMC, University of Amsterdam, Paasheuvelweg 25, 1105 BP Amsterdam, the Netherlands
| | - Bas van der Zaan
- Deltares, Subsurface and Groundwater Systems, Daltonlaan 600, 3584 KB Utrecht, the Netherlands
| | - Erwin Roex
- National Institute for Public Health and the Environment (RIVM), Centre for Zoonoses and Environmental Microbiology, 3721 MA Bilthoven, the Netherlands
| | - Ad M J Ragas
- Radboud University Nijmegen, Radboud Institute for Biological and Environmental Sciences, Department of Environmental Science, 6500 GL Nijmegen, Netherlands
| |
Collapse
|
4
|
Sanz-García F, Gil-Gil T, Laborda P, Blanco P, Ochoa-Sánchez LE, Baquero F, Martínez JL, Hernando-Amado S. Translating eco-evolutionary biology into therapy to tackle antibiotic resistance. Nat Rev Microbiol 2023; 21:671-685. [PMID: 37208461 DOI: 10.1038/s41579-023-00902-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 05/21/2023]
Abstract
Antibiotic resistance is currently one of the most important public health problems. The golden age of antibiotic discovery ended decades ago, and new approaches are urgently needed. Therefore, preserving the efficacy of the antibiotics currently in use and developing compounds and strategies that specifically target antibiotic-resistant pathogens is critical. The identification of robust trends of antibiotic resistance evolution and of its associated trade-offs, such as collateral sensitivity or fitness costs, is invaluable for the design of rational evolution-based, ecology-based treatment approaches. In this Review, we discuss these evolutionary trade-offs and how such knowledge can aid in informing combination or alternating antibiotic therapies against bacterial infections. In addition, we discuss how targeting bacterial metabolism can enhance drug activity and impair antibiotic resistance evolution. Finally, we explore how an improved understanding of the original physiological function of antibiotic resistance determinants, which have evolved to reach clinical resistance after a process of historical contingency, may help to tackle antibiotic resistance.
Collapse
Affiliation(s)
- Fernando Sanz-García
- Departamento de Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, Zaragoza, Spain
| | - Teresa Gil-Gil
- Centro Nacional de Biotecnología, CSIC, Darwin 3, Madrid, Spain
- Programa de Doctorado en Biociencias Moleculares, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pablo Laborda
- Centro Nacional de Biotecnología, CSIC, Darwin 3, Madrid, Spain
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
- Department of Clinical Microbiology, 9301, Rigshospitalet, Copenhagen, Denmark
| | - Paula Blanco
- Molecular Basis of Adaptation, Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense Madrid, Madrid, Spain
| | | | - Fernando Baquero
- Department of Microbiology, Hospital Universitario Ramón y Cajal (IRYCIS), CIBER en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | | |
Collapse
|
5
|
Wollein Waldetoft K, Sundius S, Kuske R, Brown SP. Defining the Benefits of Antibiotic Resistance in Commensals and the Scope for Resistance Optimization. mBio 2023; 14:e0134922. [PMID: 36475750 PMCID: PMC9972992 DOI: 10.1128/mbio.01349-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Antibiotic resistance is a major medical and public health challenge, characterized by global increases in the prevalence of resistant strains. The conventional view is that all antibiotic resistance is problematic, even when not in pathogens. Resistance in commensal bacteria poses risks, as resistant organisms can provide a reservoir of resistance genes that can be horizontally transferred to pathogens or may themselves cause opportunistic infections in the future. While these risks are real, we propose that commensal resistance can also generate benefits during antibiotic treatment of human infection, by promoting continued ecological suppression of pathogens. To define and illustrate this alternative conceptual perspective, we use a two-species mathematical model to identify the necessary and sufficient ecological conditions for beneficial resistance. We show that the benefits are limited to species (or strain) interactions where commensals suppress pathogen growth and are maximized when commensals compete with, rather than prey on or otherwise exploit pathogens. By identifying benefits of commensal resistance, we propose that rather than strictly minimizing all resistance, resistance management may be better viewed as an optimization problem. We discuss implications in two applied contexts: bystander (nontarget) selection within commensal microbiomes and pathogen treatment given polymicrobial infections. IMPORTANCE Antibiotic resistance is commonly viewed as universally costly, regardless of which bacterial cells express resistance. Here, we derive an opposing logic, where resistance in commensal bacteria can lead to reductions in pathogen density and improved outcomes on both the patient and public health scales. We use a mathematical model of commensal-pathogen interactions to define the necessary and sufficient conditions for beneficial resistance, highlighting the importance of reciprocal ecological inhibition to maximize the benefits of resistance. More broadly, we argue that determining the benefits as well as the costs of resistances in human microbiomes can transform resistance management from a minimization to an optimization problem. We discuss applied contexts and close with a review of key resistance optimization dimensions, including the magnitude, spectrum, and mechanism of resistance.
Collapse
Affiliation(s)
- Kristofer Wollein Waldetoft
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Torsby Hospital, Torsby, Sweden
| | - Sarah Sundius
- Interdisciplinary Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Rachel Kuske
- School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Sam P. Brown
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Wang S, Cui D, Lv Y, Yan Z, Zhang J. Cangpu Oral Liquid as a Possible Alternative to Antibiotics for the Control of Undifferentiated Calf Diarrhea. Front Vet Sci 2022; 9:879857. [PMID: 35573407 PMCID: PMC9100688 DOI: 10.3389/fvets.2022.879857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/08/2022] [Indexed: 11/21/2022] Open
Abstract
Antibiotics are essential in the prevention of calf diarrhea epidemics. As more antibiotics become ineffective due to drug-resistant bacteria, attention must be directed toward alternative treatments for calf diarrhea. Natural antibiotic alternatives, such as Chinese herbal medicine, have become a research hotspot in the clinical treatment of diseases such as calf diarrhea due to their characteristics of fewer side effects, low cost, little residue, and no drug resistance. The Cangpu Oral Liquid (CP) was modified from a traditional herbal formula that had been widely used in ancient China to treat gastrointestinal diseases in animals. In order to evaluate the treatment effect of CP on neonatal calf diarrhea, a randomized controlled field trial was performed. Two hundred and forty-six diarrheal Holstein calves of 2–15 days old were selected and randomly divided into two treatment groups receiving either apramycin or CP. 101 out of 123 calves recovered from diarrhea in the CP group, whereas 77 out of 123 calves showed recovery after antibiotic therapy. There were no differences in initial weight between both groups, while the final weight was significantly different (P = 0.892, P = 0.025, respectively). The mean average daily gain (ADG) of calves (211.45 gram/day) in the CP group was significantly higher compared to the antibiotic group (164.56 gram/day) (P = 0.001). The CP group also showed a shorter recovery time from diarrhea (3.90 days vs. 6.62 days, P = 0.001). The current results indicate that the CP has a beneficial clinical effect on the treatment of diarrhea in neonatal calves and is an effective alternative treatment option.
Collapse
|
7
|
Smith DR, Temime L, Opatowski L. Microbiome-pathogen interactions drive epidemiological dynamics of antibiotic resistance: A modeling study applied to nosocomial pathogen control. eLife 2021; 10:68764. [PMID: 34517942 PMCID: PMC8560094 DOI: 10.7554/elife.68764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
The human microbiome can protect against colonization with pathogenic antibiotic-resistant bacteria (ARB), but its impacts on the spread of antibiotic resistance are poorly understood. We propose a mathematical modeling framework for ARB epidemiology formalizing within-host ARB-microbiome competition, and impacts of antibiotic consumption on microbiome function. Applied to the healthcare setting, we demonstrate a trade-off whereby antibiotics simultaneously clear bacterial pathogens and increase host susceptibility to their colonization, and compare this framework with a traditional strain-based approach. At the population level, microbiome interactions drive ARB incidence, but not resistance rates, reflecting distinct epidemiological relevance of different forces of competition. Simulating a range of public health interventions (contact precautions, antibiotic stewardship, microbiome recovery therapy) and pathogens (Clostridioides difficile, methicillin-resistant Staphylococcus aureus, multidrug-resistant Enterobacteriaceae) highlights how species-specific within-host ecological interactions drive intervention efficacy. We find limited impact of contact precautions for Enterobacteriaceae prevention, and a promising role for microbiome-targeted interventions to limit ARB spread.
Collapse
Affiliation(s)
- David Rm Smith
- Institut Pasteur, Epidemiology and Modelling of Antibiotic Evasion (EMAE), Paris, France.,Université Paris-Saclay, UVSQ, Inserm, CESP, Anti-infective evasion and pharmacoepidemiology team, Montigny-Le-Bretonneux, France.,Modélisation, épidémiologie et surveillance des risques sanitaires (MESuRS), Conservatoire national des arts et métiers, Paris, France
| | - Laura Temime
- Modélisation, épidémiologie et surveillance des risques sanitaires (MESuRS), Conservatoire national des arts et métiers, Paris, France.,PACRI unit, Institut Pasteur, Conservatoire national des arts et métiers, Paris, France
| | - Lulla Opatowski
- Institut Pasteur, Epidemiology and Modelling of Antibiotic Evasion (EMAE), Paris, France.,Université Paris-Saclay, UVSQ, Inserm, CESP, Anti-infective evasion and pharmacoepidemiology team, Montigny-Le-Bretonneux, France
| |
Collapse
|