1
|
Kandi V, Suvvari TK, Vadakedath S, Godishala V. Microbes, Clinical trials, Drug Discovery, and Vaccine Development: The Current Perspectives. BORNEO JOURNAL OF PHARMACY 2021. [DOI: 10.33084/bjop.v4i4.2571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Because of the frequent emergence of novel microbial species and the re-emergence of genetic variants of hitherto known microbes, the global healthcare system, and human health has been thrown into jeopardy. Also, certain microbes that possess the ability to develop multi-drug resistance (MDR) have limited the treatment options in cases of serious infections, and increased hospital and treatment costs, and associated morbidity and mortality. The recent discovery of the novel Coronavirus (n-CoV), the Severe Acute Respiratory Syndrome CoV-2 (SARS-CoV-2) that is causing the CoV Disease-19 (COVID-19) has resulted in severe morbidity and mortality throughout the world affecting normal human lives. The major concern with the current pandemic is the non-availability of specific drugs and an incomplete understanding of the pathobiology of the virus. It is therefore important for pharmaceutical establishments to envisage the discovery of therapeutic interventions and potential vaccines against the novel and MDR microbes. Therefore, this review is attempted to update and explore the current perspectives in microbes, clinical research, drug discovery, and vaccine development to effectively combat the emerging novel and re-emerging genetic variants of microbes.
Collapse
|
2
|
Melnikov SV, Stevens DL, Fu X, Kwok HS, Zhang JT, Shen Y, Sabina J, Lee K, Lee H, Söll D. Exploiting evolutionary trade-offs for posttreatment management of drug-resistant populations. Proc Natl Acad Sci U S A 2020; 117:17924-17931. [PMID: 32661175 PMCID: PMC7395499 DOI: 10.1073/pnas.2003132117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Antibiotic resistance frequently evolves through fitness trade-offs in which the genetic alterations that confer resistance to a drug can also cause growth defects in resistant cells. Here, through experimental evolution in a microfluidics-based turbidostat, we demonstrate that antibiotic-resistant cells can be efficiently inhibited by amplifying the fitness costs associated with drug-resistance evolution. Using tavaborole-resistant Escherichia coli as a model, we show that genetic mutations in leucyl-tRNA synthetase (that underlie tavaborole resistance) make resistant cells intolerant to norvaline, a chemical analog of leucine that is mistakenly used by tavaborole-resistant cells for protein synthesis. We then show that tavaborole-sensitive cells quickly outcompete tavaborole-resistant cells in the presence of norvaline due to the amplified cost of the molecular defect of tavaborole resistance. This finding illustrates that understanding molecular mechanisms of drug resistance allows us to effectively amplify even small evolutionary vulnerabilities of resistant cells to potentially enhance or enable adaptive therapies by accelerating posttreatment competition between resistant and susceptible cells.
Collapse
Affiliation(s)
- Sergey V Melnikov
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520;
| | - David L Stevens
- Department of Chemistry, Yale University, New Haven, CT 06520
| | - Xian Fu
- Guangdong Provincial Key Laboratory of Genome Read and Write, 518120 Shenzhen, China
- BGI-Shenzhen, 518083 Shenzhen, China
- China National Genebank, BGI-Shenzhen, 518120 Shenzhen, China
| | - Hui Si Kwok
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Jin-Tao Zhang
- BGI-Shenzhen, 518083 Shenzhen, China
- China National Genebank, BGI-Shenzhen, 518120 Shenzhen, China
| | - Yue Shen
- Guangdong Provincial Key Laboratory of Genome Read and Write, 518120 Shenzhen, China
- BGI-Shenzhen, 518083 Shenzhen, China
- China National Genebank, BGI-Shenzhen, 518120 Shenzhen, China
| | | | | | | | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520;
- Department of Chemistry, Yale University, New Haven, CT 06520
| |
Collapse
|
3
|
Gurney J, Pradier L, Griffin JS, Gougat-Barbera C, Chan BK, Turner PE, Kaltz O, Hochberg ME. Phage steering of antibiotic-resistance evolution in the bacterial pathogen, Pseudomonas aeruginosa. EVOLUTION MEDICINE AND PUBLIC HEALTH 2020; 2020:148-157. [PMID: 34254028 DOI: 10.1093/emph/eoaa026] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
Abstract
Background and objectives Antimicrobial resistance is a growing global concern and has spurred increasing efforts to find alternative therapeutics. Bacteriophage therapy has seen near constant use in Eastern Europe since its discovery over a century ago. One promising approach is to use phages that not only reduce bacterial pathogen loads but also select for phage resistance mechanisms that trade-off with antibiotic resistance-so called 'phage steering'. Methodology Recent work has shown that the phage OMKO1 can interact with efflux pumps and in so doing select for both phage resistance and antibiotic sensitivity of the pathogenic bacterium Pseudomonas aeruginosa. We tested the robustness of this approach to three different antibiotics in vitro (tetracycline, erythromycin and ciprofloxacin) and one in vivo (erythromycin). Results We show that in vitro OMKO1 can reduce antibiotic resistance of P. aeruginosa (Washington PAO1) even in the presence of antibiotics, an effect still detectable after ca.70 bacterial generations in continuous culture with phage. Our in vivo experiment showed that phage both increased the survival times of wax moth larvae (Galleria mellonella) and increased bacterial sensitivity to erythromycin. This increased antibiotic sensitivity occurred both in lines with and without the antibiotic. Conclusions and implications Our study supports a trade-off between antibiotic resistance and phage sensitivity. This trade-off was maintained over co-evolutionary time scales even under combined phage and antibiotic pressure. Similarly, OMKO1 maintained this trade-off in vivo, again under dual phage/antibiotic pressure. Our findings have implications for the future clinical use of steering in phage therapies. Lay Summary: Given the rise of antibiotic-resistant bacterial infection, new approaches to treatment are urgently needed. Bacteriophages (phages) are bacterial viruses. The use of such viruses to treat infections has been in near-continuous use in several countries since the early 1900s. Recent developments have shown that these viruses are not only effective against routine infections but can also target antibiotic resistant bacteria in a novel, unexpected way. Similar to other lytic phages, these so-called 'steering phages' kill the majority of bacteria directly. However, steering phages also leave behind bacterial variants that resist the phages, but are now sensitive to antibiotics. Treatment combinations of these phages and antibiotics can now be used to greater effect than either one independently. We evaluated the impact of steering using phage OMKO1 and a panel of three antibiotics on Pseudomonas aeruginosa, an important pathogen in hospital settings and in people with cystic fibrosis. Our findings indicate that OMKO1, either alone or in combination with antibiotics, maintains antibiotic sensitivity both in vitro and in vivo, giving hope that phage steering will be an effective treatment option against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- James Gurney
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.,Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Léa Pradier
- CEFE/CNRS, Université de Montpellier Campus du CNRS, 1919, route de Mende, Montpellier 34293, France
| | - Joanne S Griffin
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Claire Gougat-Barbera
- Institute of Evolution Sciences of Montpellier, Université de Montpellier, CNRS, IRD EPHE, Montpellier, France
| | - Benjamin K Chan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - Paul E Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA.,Department is Program in Microbiology, Program in Microbiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Oliver Kaltz
- Institute of Evolution Sciences of Montpellier, Université de Montpellier, CNRS, IRD EPHE, Montpellier, France
| | - Michael E Hochberg
- Institute of Evolution Sciences of Montpellier, Université de Montpellier, CNRS, IRD EPHE, Montpellier, France.,Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
4
|
Steering Phages to Combat Bacterial Pathogens. Trends Microbiol 2019; 28:85-94. [PMID: 31744662 DOI: 10.1016/j.tim.2019.10.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/10/2019] [Accepted: 10/17/2019] [Indexed: 12/21/2022]
|
5
|
Wale N, Jones MJ, Sim DG, Read AF, King AA. The contribution of host cell-directed vs. parasite-directed immunity to the disease and dynamics of malaria infections. Proc Natl Acad Sci U S A 2019; 116:22386-22392. [PMID: 31615885 PMCID: PMC6825298 DOI: 10.1073/pnas.1908147116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hosts defend themselves against pathogens by mounting an immune response. Fully understanding the immune response as a driver of host disease and pathogen evolution requires a quantitative account of its impact on parasite population dynamics. Here, we use a data-driven modeling approach to quantify the birth and death processes underlying the dynamics of infections of the rodent malaria parasite, Plasmodium chabaudi, and the red blood cells (RBCs) it targets. We decompose the immune response into 3 components, each with a distinct effect on parasite and RBC vital rates, and quantify the relative contribution of each component to host disease and parasite density. Our analysis suggests that these components are deployed in a coordinated fashion to realize distinct resource-directed defense strategies that complement the killing of parasitized cells. Early in the infection, the host deploys a strategy reminiscent of siege and scorched-earth tactics, in which it both destroys RBCs and restricts their supply. Late in the infection, a "juvenilization" strategy, in which turnover of RBCs is accelerated, allows the host to recover from anemia while holding parasite proliferation at bay. By quantifying the impact of immunity on both parasite fitness and host disease, we reveal that phenomena often interpreted as immunopathology may in fact be beneficial to the host. Finally, we show that, across mice, the components of the host response are consistently related to each other, even when infections take qualitatively different trajectories. This suggests the existence of simple rules that govern the immune system's deployment.
Collapse
Affiliation(s)
- Nina Wale
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109;
| | - Matthew J Jones
- Center for Infectious Disease Dynamics, Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, PA 16802
| | - Derek G Sim
- Center for Infectious Disease Dynamics, Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, PA 16802
| | - Andrew F Read
- Center for Infectious Disease Dynamics, Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, PA 16802
- Department of Biology, Pennsylvania State University, University Park, PA 16802
- Department of Entomology, Pennsylvania State University, University Park, PA 16802
| | - Aaron A King
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109
- Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI 48109
- Department of Mathematics, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
6
|
Pawar S, Chaudhari A, Prabha R, Shukla R, Singh DP. Microbial Pyrrolnitrin: Natural Metabolite with Immense Practical Utility. Biomolecules 2019; 9:E443. [PMID: 31484394 PMCID: PMC6769897 DOI: 10.3390/biom9090443] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 12/26/2022] Open
Abstract
Pyrrolnitrin (PRN) is a microbial pyrrole halometabolite of immense antimicrobial significance for agricultural, pharmaceutical and industrial implications. The compound and its derivatives have been isolated from rhizospheric fluorescent or non-fluorescent pseudomonads, Serratia and Burkholderia. They are known to confer biological control against a wide range of phytopathogenic fungi, and thus offer strong plant protection prospects against soil and seed-borne phytopathogenic diseases. Although chemical synthesis of PRN has been obtained using different steps, microbial production is still the most useful option for producing this metabolite. In many of the plant-associated isolates of Serratia and Burkholderia, production of PRN is dependent on the quorum-sensing regulation that usually involves N-acylhomoserine lactone (AHL) autoinducer signals. When applied on the organisms as antimicrobial agent, the molecule impedes synthesis of key biomolecules (DNA, RNA and protein), uncouples with oxidative phosphorylation, inhibits mitotic division and hampers several biological mechanisms. With its potential broad-spectrum activities, low phototoxicity, non-toxic nature and specificity for impacts on non-target organisms, the metabolite has emerged as a lead molecule of industrial importance, which has led to developing cost-effective methods for the biosynthesis of PRN using microbial fermentation. Quantum of work narrating focused research efforts in the emergence of this potential microbial metabolite is summarized here to present a consolidated, sequential and updated insight into the chemistry, biology and applicability of this natural molecule.
Collapse
Affiliation(s)
- Shraddha Pawar
- School of Life Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon 425001, India.
| | - Ambalal Chaudhari
- School of Life Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon 425001, India.
| | - Ratna Prabha
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275101, India.
| | - Renu Shukla
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275101, India.
| | - Dhananjaya P Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275101, India.
| |
Collapse
|