1
|
Chang X, Guo Y, Wang J, Liu J, Ma Y, Lu Q, Han Y. Heart-type fatty acid binding protein (H-FABP) as an early biomarker in sepsis-induced cardiomyopathy: a prospective observational study. Lipids Health Dis 2024; 23:283. [PMID: 39232765 PMCID: PMC11373395 DOI: 10.1186/s12944-024-02264-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/18/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Sepsis-induced cardiomyopathy (SICM) is a common and life-threatening complication of sepsis, significantly contributing to elevated mortality. This study aimed to identify crucial indicators for the prompt and early assessment of SICM. METHODS Patients diagnosed with sepsis or SICM within 24 h of intensive care unit (ICU) admission were enrolled in this prospective observational study. Patients were assigned to the training set, validation set and external test set. The primary endpoint was 7-day ICU mortality, and the secondary endpoint was 28-day ICU mortality. Three machine learning algorithms were utilized to identify relevant indicators for diagnosing SICM, incorporating 64 indicators including serum biomarkers associated with cardiac, renal, and liver function, lipid metabolism, coagulation, and inflammation. Internal and external validations were performed on the screening results. Patients were then stratified based on the cut-off value of the most diagnostically effective biomarker identified, and their prognostic outcomes were observed and analyzed. RESULTS A total of 270 patients were included in the training and validation set, and 52 patients were included in the external test set. Age, sex, and comorbidities did not significantly differ between the sepsis and SICM groups (P > 0.05). The support vector machine (SVM) algorithm identified six indicators with an accuracy of 84.5%, the random forest (RF) algorithm identified six indicators with an accuracy of 81.9%, and the logistic regression (LR) algorithm screened out seven indicators. Following rigorous selection, a diagnostic model for sepsis-induced cardiomyopathy was established based on heart-type fatty acid binding protein (H-FABP) (OR 1.308, 95% CI 1.170-1.462, P < 0.001) and retinol-binding protein (RBP) (OR 1.020, 95% CI 1.006-1.034, P < 0.05). H-FABP alone exhibited the highest diagnostic performance in both the internal (AUROC 0.689, P < 0.05) and external sets (AUROC 0.845, P < 0.05). Patients with SICM were further stratified based on an H-FABP diagnostic cut-off value of 8.335 ng/mL. Kaplan-Meier curve analysis demonstrated that elevated H-FABP levels at admission were associated with higher 7-day ICU mortality in patients with SICM (P < 0.05). CONCLUSIONS This study revealed that H-FABP concentrations measured within 24 h of patient admission could serve as a crucial biomarker for the early and rapid diagnosis and short-term prognostic evaluation of SICM.
Collapse
Affiliation(s)
- Xinyi Chang
- Nanjing Medical University, 101 Longmian Avenue, Nanjing, China
| | - Yue Guo
- Nanjing Medical University, 101 Longmian Avenue, Nanjing, China
| | - Jiawei Wang
- Nanjing Medical University, 101 Longmian Avenue, Nanjing, China
| | - Jun Liu
- Nanjing Medical University, 101 Longmian Avenue, Nanjing, China
| | - Yuanze Ma
- Nanjing Medical University, 101 Longmian Avenue, Nanjing, China
| | - Qiulun Lu
- China Pharmaceutical University, 639 Longmian Avenue, Nanjing, China
| | - Yi Han
- Nanjing Medical University, 101 Longmian Avenue, Nanjing, China.
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Huang X, Bai S, Luo Y. Advances in research on biomarkers associated with acute myocardial infarction: A review. Medicine (Baltimore) 2024; 103:e37793. [PMID: 38608048 PMCID: PMC11018244 DOI: 10.1097/md.0000000000037793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/14/2024] [Indexed: 04/14/2024] Open
Abstract
Acute myocardial infarction (AMI), the most severe cardiovascular event in clinical settings, imposes a significant burden with its annual increase in morbidity and mortality rates. However, it is noteworthy that mortality due to AMI in developed countries has experienced a decline, largely attributable to the advancements in medical interventions such as percutaneous coronary intervention. This trend highlights the importance of accurate diagnosis and effective treatment to preserve the myocardium at risk and improve patient outcomes. Conventional biomarkers such as myoglobin, creatine kinase isoenzymes, and troponin have been instrumental in the diagnosis of AMI. However, recent years have witnessed the emergence of new biomarkers demonstrating the potential to further enhance the accuracy of AMI diagnosis. This literature review focuses on the recent advancements in biomarker research in the context of AMI diagnosis.
Collapse
Affiliation(s)
| | - Suwen Bai
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen, China
| | - Yumei Luo
- Guangdong Medical University, Zhanjiang, China
- Cardiology Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen, China
| |
Collapse
|
3
|
Soliman C, Faircloth J, Tu D, Mabbott S, Maitland K, Coté G. Exploring the Clinical Utility of Raman Spectroscopy for Point-of-Care Cardiovascular Disease Biomarker Detection. APPLIED SPECTROSCOPY 2023; 77:1181-1193. [PMID: 37487187 DOI: 10.1177/00037028231187963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
A variety of innovative point-of-care (POC) solutions using Raman systems have been explored. However, the vast effort is in assay development, while studies of the characteristics required for Raman spectrometers to function in POC applications are lacking. In this study, we tested and compared the performance of eight commercial Raman spectrometers ranging in size from benchtop Raman microscopes to portable and handheld Raman spectrometers using paper fluidic cartridges, including their ability to detect cardiac troponin I and heart fatty acid binding protein, both of which are well-established biomarkers for evaluating cardiovascular health. Each spectrometer was evaluated in terms of excitation wavelength, laser characteristics, and ease of use to investigate POC utility. We found that the Raman spectrometers equipped with 780 and 785 nm laser sources exhibited a reduced background signal and provided higher sensitivity compared to those with 633 and 638 nm laser sources. Furthermore, the spectrometer equipped with the single acquisition line readout functionality showed improved performance when compared to the point scan spectrometers and allowed measurements to be made faster and easier. The portable and handheld spectrometers also showed similar detection sensitivity to the gold standard instrument. Lastly, we reduced the laser power for the spectrometer with single acquisition line readout capability to explore the system performance at a laser power that change the classification from a Class 3B laser device to a Class 3R device and found that it showed comparable performance. Overall, these findings show that portable Raman spectrometers have the potential to be used in POC settings with accuracy comparable to laboratory-grade instruments, are relatively low-cost, provide fast signal readout, are easy to use, and can facilitate access for underserved communities.
Collapse
Affiliation(s)
- Cyril Soliman
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | | | - Dandan Tu
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Samuel Mabbott
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
- Texas A&M Engineering Experiment Station, Center for Remote Health Technologies and Systems, College Station, Texas, USA
| | - Kristen Maitland
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
- Texas A&M Engineering Experiment Station, Center for Remote Health Technologies and Systems, College Station, Texas, USA
- Imaging Program, Chan Zuckerberg Initiative, Redwood City, California, USA
| | - Gerard Coté
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
- Texas A&M Engineering Experiment Station, Center for Remote Health Technologies and Systems, College Station, Texas, USA
| |
Collapse
|
4
|
Zhao Y, Zhuang L, Tian P, Ma M, Wu G, Zhang Y. Rapid diagnosis of acute myocardial infarction based on reverse transcription-accelerated strand exchange amplification of miR-208a. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4442-4451. [PMID: 37610127 DOI: 10.1039/d3ay01116j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Acute myocardial infarction (AMI) is a prevalent cardiovascular disease associated with high morbidity and mortality, posing a significant threat to human health. Therefore, early diagnosis of AMI has become a focal point of research. MiR-208 is specifically expressed in the heart and is involved in the regulation of cardiomyocyte hypertrophy, cardiac fibrosis, and other myocardial gene expressions. It is expected to be applied in the clinical detection of AMI due to its release by damaged myocardial cells within 3 hours of AMI. In this study, we developed a denatured bubble-mediated reverse transcription-accelerated strand exchange amplification (RT-ASEA) method to detect the early biomarker miR-208a of AMI. The novel approach allowed rapid amplification of miR-208a in 15 minutes, with good performance in terms of repeatability (CV < 6%), determination limit (1 × 100 pmol L-1), and linearity (R2 = 0.9690). Based on the analysis of 42 clinical samples, a strong correlation was observed between the Ct value of miR-208a detected by the RT-ASEA method and the cTnI concentration, considered the gold standard for diagnosis of AMI. The research suggested that the RT-ASEA method could be applied to distinguish between AMI and healthy groups. The area under the receiver operating characteristic curve (AUC) was 0.9976, with a sensitivity of 96% and a specificity of 100%. Optimized RT-ASEA is a reliable and efficient method for miRNA detection. Furthermore, this study provides crucial data support for the development of miR-208a as an early biomarker for AMI, which is of great significance in life and health.
Collapse
Affiliation(s)
- Ying Zhao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210096, P. R. China.
| | - Linlin Zhuang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210096, P. R. China.
| | - Peilong Tian
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210096, P. R. China.
| | - Ming Ma
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210096, P. R. China.
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, P. R. China.
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210096, P. R. China.
| |
Collapse
|
5
|
Zhu L, Fu W, Zhu B, Feng Q, Ying X, Li S, Chen J, Xie X, Pan C, Liu J, Chen C, Chen X, Zhu D. An integrated microfluidic electrochemiluminescence device for point-of-care testing of acute myocardial infarction. Talanta 2023; 262:124626. [PMID: 37244239 DOI: 10.1016/j.talanta.2023.124626] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/29/2023]
Abstract
Heart-type fatty acid binding protein (H-FABP) is an early biomarker for acute myocardial infarction. The concentration of H-FABP in circulation sharply increases during myocardial injury. Therefore, fast and accurate detection of H-FABP is of vital significance. In this study, we developed an electrochemiluminescence device integrated with microfluidic chip (designed as m-ECL device) for on-site detection of H-FABP. The m-ECL device is consisted of a microfluidic chip that enable easy liquid handling as well as an integrated electronic system for voltage supply and photon detection. A sandwich-type ECL immunoassay strategy was employed for H-FABP detection by using Ru (bpy)32+ loaded mesoporous silica nanoparticles as ECL probes. This device can directly detect H-FABP in human serum without any pre-treatment, with a wide linear range of 1-100 ng/mL and a low limit of detection of 0.72 ng/mL. The clinical usability of this device was evaluated using clinical serum samples from patients. The results obtained from m-ECL device are well matched with those obtained from ELISA assays. We believe this m-ECL device has extensive application prospects for point-of-care testing of acute myocardial infarction.
Collapse
Affiliation(s)
- Lihang Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine; Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310003, Zhejiang, China; Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education of China, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Wenxuan Fu
- Institute of Analytical Chemistry, Department of Chemistry, Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Boyu Zhu
- Institute of Analytical Chemistry, Department of Chemistry, Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Qian Feng
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Xudong Ying
- Institute of Analytical Chemistry, Department of Chemistry, Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Shuang Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072, Tianjin, China
| | - Jing Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Xiaoya Xie
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education of China, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Chenying Pan
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education of China, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Jun Liu
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education of China, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Chao Chen
- GuoZhen Health Technology Co., Ltd, 100142, Beijing, China
| | - Xing Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine; Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310003, Zhejiang, China; Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education of China, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, Zhejiang, China.
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine; Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
6
|
Gumus E, Bingol H, Zor E. Lateral flow assays for detection of disease biomarkers. J Pharm Biomed Anal 2023; 225:115206. [PMID: 36586382 DOI: 10.1016/j.jpba.2022.115206] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Early diagnosis saves lives in many diseases. In this sense, monitoring of biomarkers is crucial for the diagnosis of diseases. Lateral flow assays (LFAs) have attracted great attention among paper-based point-of-care testing (POCT) due to their low cost, user-friendliness, and time-saving advantages. Developments in the field of health have led to an increase of interest in these rapid tests. LFAs are used in the diagnosis and monitoring of many diseases, thanks to biomarkers that can be observed in body fluids. This review covers the recent advances dealing with the design and strategies for the development of LFA for the detection of biomarkers used in clinical applications in the last 5 years. We focus on various strategies such as choosing the nanoparticle type, single or multiple test approaches, and equipment for signal transducing for the detection of the most common biomarkers in different diseases such as cancer, cardiovascular, infectious, and others including Parkinson's and Alzheimer's diseases. We expect that this study will contribute to the different approaches in LFA and pave the way for other clinical applications.
Collapse
Affiliation(s)
- Eda Gumus
- Biomaterials and Biotechnology Laboratory, Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42140 Konya, Turkey
| | - Haluk Bingol
- Biomaterials and Biotechnology Laboratory, Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42140 Konya, Turkey; Department of Chemistry Education, A.K. Education Faculty, Necmettin Erbakan University, 42090 Konya, Turkey
| | - Erhan Zor
- Biomaterials and Biotechnology Laboratory, Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42140 Konya, Turkey; Department of Science Education, A.K. Education Faculty, Necmettin Erbakan University, 42090 Konya, Turkey.
| |
Collapse
|
7
|
Mei W, Zhou Y, Xia L, Liu X, Huang W, Wang H, Zou L, Wang Q, Yang X, Wang K. DNA Tetrahedron-Based Valency Controlled Signal Probes for Tunable Protein Detection. ACS Sens 2023; 8:381-387. [PMID: 36600539 DOI: 10.1021/acssensors.2c02476] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Combined detection of multiple markers related to the same disease could improve the accuracy of disease diagnosis. However, the abundance levels of multiple markers of the same disease varied widely in real samples, making it difficult for the traditional detection method to meet the requirements of a wide detection range. Herein, three kinds of cardiac biomarkers, cardiac troponin I (cTnI), myoglobin (Myo), and C-reaction protein (CRP), which were from the pM level to the μM level in real samples, were selected as model targets. Valency-controlled signal probes based on DNA tetrahedron nanostructures (DTNs) and platinum nanoparticles (PtNPs) were constructed for tunable cardiac biomarker detection. PtNPs with high horseradish peroxidase-like activity and stability served as signal molecules, and DTNs with unique spatial structure and sequence specificity were used for precisely controlling the number of connected PtNPs. By controlling the number of PtNPs connected to DTNs, monovalent, bivalent, and trivalent signal probes were obtained and were used for the detection of cardiac markers in different concentration ranges. The limit of detection of cTnI, Myo, and CRP was 3.0 pM, 0.4 nM, and 6.7 nM, respectively. Furthermore, it performed satisfactorily for the detection of cardiac markers in 10% human serum. It was anticipated that the design of valency-controlled signal probes based on DTNs and nanozymes could be extended to the construction of other multi-target detection platforms, thus providing a basis for the development of a new precision medical detection platform.
Collapse
Affiliation(s)
- Wenjing Mei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Yuan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Ling Xia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaofeng Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Weixuanzi Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Hongqiang Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Liyuan Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| |
Collapse
|
8
|
Mohan IK, Baba KSSS, Iyyapu R, Thirumalasetty S, Satish OS. Advances in congestive heart failure biomarkers. Adv Clin Chem 2022; 112:205-248. [PMID: 36642484 DOI: 10.1016/bs.acc.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Congestive heart failure (CHF) is the leading cause of morbidity and mortality in the elderly worldwide. Although many biomarkers associated with in heart failure, these are generally prognostic and identify patients with moderate and severe disease. Unfortunately, the role of biomarkers in decision making for early and advanced heart failure remains largely unexplored. Previous studies suggest the natriuretic peptides have the potential to improve the diagnosis of heart failure, but they still have significant limitations related to cut-off values. Although some promising cardiac biomarkers have emerged, comprehensive data from large cohort studies is lacking. The utility of multiple biomarkers that reflect various pathophysiologic pathways are increasingly being explored in heart failure risk stratification and to diagnose disease conditions promptly and accurately. MicroRNAs serve as mediators and/or regulators of renin-angiotensin-induced cardiac remodeling by directly targeting enzymes, receptors and signaling molecules. The role of miRNA in HF diagnosis is a promising area of research and further exploration may offer both diagnostic and prognostic applications and phenotype-specific targets. In this review, we provide insight into the classification of different biochemical and molecular markers associated with CHF, examine clinical usefulness in CHF and highlight the most clinically relevant.
Collapse
Affiliation(s)
| | - K S S Sai Baba
- Nizam's Institute of Medical Sciences, Panjagutta, Hyderabad, Telangana, India
| | - Rohit Iyyapu
- Katuri Medical College & Hospital, Guntur, Andhra Pradesh, India
| | | | - O Sai Satish
- Nizam's Institute of Medical Sciences, Panjagutta, Hyderabad, Telangana, India
| |
Collapse
|
9
|
Schneider MP, Schmid M, Nadal J, Wanner C, Krane V, Floege J, Saritas T, Busch M, Sitter T, Friedrich N, Stockmann H, Meiselbach H, Nauck M, Kronenberg F, Eckardt KU. Heart-Type Fatty Acid Binding Protein, Cardiovascular Outcomes, and Death: Findings From the German CKD Cohort Study. Am J Kidney Dis 2022; 80:483-494.e1. [PMID: 35288215 DOI: 10.1053/j.ajkd.2022.01.424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/05/2022] [Indexed: 02/02/2023]
Abstract
RATIONALE & OBJECTIVE Heart-type fatty acid binding protein (H-FABP) is a biomarker that has been shown to provide long-term prognostic information in patients with coronary artery disease independently of high-sensitivity troponin T (hs-TNT). We examined the independent associations of H-FABP with cardiovascular outcomes in patients with chronic kidney disease (CKD). STUDY DESIGN Prospective cohort study. SETTING & PARTICIPANTS 4,951 patients enrolled in the German Chronic Kidney Disease (GCKD) study with an estimated glomerular filtration rate of 30-60 mL/min/1.73 m2 or overt proteinuria (urinary albumin-creatinine ratio > 300 mg/g or equivalent). EXPOSURE Serum levels of H-FABP and hs-TNT were measured at study entry. OUTCOME Noncardiovascular (non-CV) death, CV death, combined major adverse CV events (MACE), and hospitalization for congestive heart failure (CHF). ANALYTICAL APPROACH Hazard ratios (HRs) for associations of H-FABP and hs-TNT with outcomes were estimated using Cox regression analyses adjusted for established risk factors. RESULTS During a maximum follow-up of 6.5 years, 579 non-CV deaths, 190 CV deaths, 522 MACE, and 381 CHF hospitalizations were observed. In Cox regression analyses adjusted for established risk factors, H-FABP was associated with all 4 outcomes, albeit with lower HRs than those found for hs-TNT. After further adjustment for hs-TNT levels, H-FABP was found to be associated with non-CV death (HR, 1.57 [95% CI, 1.14-2.18]) and MACE (HR, 1.40 [95% CI, 1.02-1.92]) but with neither CV death (HR, 1.64 [95% CI, 0.90-2.99]) nor CHF hospitalizations (HR, 1.02 [95% CI, 0.70-1.49]). LIMITATIONS Single-point measurements of H-FABP and hs-TNT. Uncertain generalizability to non-European populations. CONCLUSIONS In this large cohort of patients with CKD, H-FABP was associated with non-CV death and MACE, even after adjustment for hs-TNT. Whether measurement of H-FABP improves cardiovascular disease risk prediction in these patients warrants further studies.
Collapse
Affiliation(s)
- Markus P Schneider
- Department of Nephrology and Hypertension, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Matthias Schmid
- Department of Medical Biometry, Informatics, and Epidemiology (IMBIE), University Hospital Bonn, Bonn, Germany
| | - Jennifer Nadal
- Department of Medical Biometry, Informatics, and Epidemiology (IMBIE), University Hospital Bonn, Bonn, Germany
| | - Christoph Wanner
- Department of Medicine 1, Division of Nephrology, University Hospital Würzburg, Würzburg, Germany
| | - Vera Krane
- Department of Medicine 1, Division of Nephrology, University Hospital Würzburg, Würzburg, Germany
| | - Jürgen Floege
- Department of Nephrology and Clinical Immunology, University Hospital RWTH Aachen, Aachen, Germany
| | - Turgay Saritas
- Department of Nephrology and Clinical Immunology, University Hospital RWTH Aachen, Aachen, Germany
| | - Martin Busch
- Department of Internal Medicine III, University Hospital Jena, Friedrich-Schiller Universität, Jena, Germany
| | - Thomas Sitter
- Department of Nephrology, University Hospital, Ludwig-Maximilians-Universität München, München, Germany
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine, Greifswald, Germany
| | - Helena Stockmann
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Heike Meiselbach
- Department of Nephrology and Hypertension, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine, Greifswald, Germany
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Austria
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany; Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
10
|
Kankra M, Mehta A, Sawhney JPS, Solanki S, Bhargava S, Ahirwar A, Manocha A, Singla P, Sharma A, Sharma M. Improving the ACS Triage-Using High Sensitivity TroponinI and Copeptin for Early 'Rule-Out' of AMI. Indian J Clin Biochem 2022; 37:449-457. [PMID: 36262786 PMCID: PMC9573839 DOI: 10.1007/s12291-021-01015-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022]
Abstract
Rule-out of acute myocardial infarction (AMI) in patients presenting with acute chest pain at the emergency department (ED) is a major challenge across the globe. Patients presenting very early with chest pain may provide a diagnostic challenge even when using a cardiac necrosis specific biomarker, high sensitivity troponin (hs-Tn) as they are elevated at 3-6 h after the symptom onset. Copeptin is a marker of acute hemodynamic stress which is released within few minutes of the occurrence of MI and is elevated immediately at the presentation of patients with AMI. This indicates a complementary pathophysiology and kinetics of these two biomarkers. Hence, we evaluated whether or not a protocol with combined testing of copeptin and hs-TnI at admission in patients presenting with chest pain within 6 h in low to intermediate risk and suspected ACS leads to an earlier diagnosis of AMI and thereby, aids to prevent a higher proportion of major adverse cardiac events than the current standard protocol followed in ED. A total of 148 patients as per the inclusion criterion were recruited for the study. The dual biomarker copeptin and hs-TnI allows a rule-out of AMI at presentation with a sensitivity of 100% and NPV of 99.8%. Hence, the use of dual biomarker in conjunction with clinical assessment may obviate the need for a prolonged stay in the ED and retesting hs-TnI after 2 h (for delta check) in more than two-thirds of the patients. The inclusion of these tests could have an impact on the economic burden of the ED without jeopardizing the outcome for the patient.
Collapse
Affiliation(s)
- M. Kankra
- Department of Biochemistry, Sir Ganga Ram Hospital, New Delhi, 110060 India
| | - A. Mehta
- Department of Cardiology, Sir Ganga Ram Hospital, New Delhi, India
| | - J. P. S. Sawhney
- Department of Cardiology, Sir Ganga Ram Hospital, New Delhi, India
| | - S. Solanki
- Department of Emergency Medicine, Sir Ganga Ram Hospital, New Delhi, India
| | - S. Bhargava
- Department of Biochemistry, Sir Ganga Ram Hospital, New Delhi, 110060 India
| | - A. Ahirwar
- Department of Biochemistry, Sir Ganga Ram Hospital, New Delhi, 110060 India
| | - A. Manocha
- Department of Biochemistry, Sir Ganga Ram Hospital, New Delhi, 110060 India
| | - P. Singla
- Department of Biochemistry, Sir Ganga Ram Hospital, New Delhi, 110060 India
| | - A. Sharma
- Department of Biochemistry, Sir Ganga Ram Hospital, New Delhi, 110060 India
| | - M. Sharma
- Department of Biochemistry, Sir Ganga Ram Hospital, New Delhi, 110060 India
| |
Collapse
|
11
|
Multiplexed sensing techniques for cardiovascular disease biomarkers - A review. Biosens Bioelectron 2022; 216:114680. [DOI: 10.1016/j.bios.2022.114680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 01/02/2023]
|
12
|
Omran F, Kyrou I, Osman F, Lim VG, Randeva HS, Chatha K. Cardiovascular Biomarkers: Lessons of the Past and Prospects for the Future. Int J Mol Sci 2022; 23:5680. [PMID: 35628490 PMCID: PMC9143441 DOI: 10.3390/ijms23105680] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) are a major healthcare burden on the population worldwide. Early detection of this disease is important in prevention and treatment to minimise morbidity and mortality. Biomarkers are a critical tool to either diagnose, screen, or provide prognostic information for pathological conditions. This review discusses the historical cardiac biomarkers used to detect these conditions, discussing their application and their limitations. Identification of new biomarkers have since replaced these and are now in use in routine clinical practice, but still do not detect all disease. Future cardiac biomarkers are showing promise in early studies, but further studies are required to show their value in improving detection of CVD above the current biomarkers. Additionally, the analytical platforms that would allow them to be adopted in healthcare are yet to be established. There is also the need to identify whether these biomarkers can be used for diagnostic, prognostic, or screening purposes, which will impact their implementation in routine clinical practice.
Collapse
Affiliation(s)
- Farah Omran
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; (F.O.); (I.K.); (F.O.); (V.G.L.); (H.S.R.)
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Clinical Sciences Research Laboratories, University Hospitals Coventry and Warwickshire, Coventry CV2 2DX, UK
| | - Ioannis Kyrou
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; (F.O.); (I.K.); (F.O.); (V.G.L.); (H.S.R.)
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Centre of Applied Biological & Exercise Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Faizel Osman
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; (F.O.); (I.K.); (F.O.); (V.G.L.); (H.S.R.)
- Department of Cardiology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Ven Gee Lim
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; (F.O.); (I.K.); (F.O.); (V.G.L.); (H.S.R.)
- Department of Cardiology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Harpal Singh Randeva
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; (F.O.); (I.K.); (F.O.); (V.G.L.); (H.S.R.)
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Clinical Sciences Research Laboratories, University Hospitals Coventry and Warwickshire, Coventry CV2 2DX, UK
| | - Kamaljit Chatha
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; (F.O.); (I.K.); (F.O.); (V.G.L.); (H.S.R.)
- Biochemistry and Immunology Department, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| |
Collapse
|
13
|
Ghimire A, Giri S, Khanal N, Rayamajhi S, Thapa A, Bist A, Devkota S. Diagnostic accuracy of glycogen phosphorylase BB for myocardial infarction: A systematic review and meta-analysis. J Clin Lab Anal 2022; 36:e24368. [PMID: 35325479 PMCID: PMC9102511 DOI: 10.1002/jcla.24368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/04/2022] [Accepted: 03/13/2022] [Indexed: 11/12/2022] Open
Abstract
PURPOSE We tried to investigate the diagnostic accuracy of glycogen phosphorylase BB as a cardiac marker for myocardial infarction. METHODS We searched through different electronic databases (PubMed, Google-scholar, Embase, and Cochrane Library) to locate relevant articles. Studies, with sufficient data to reconstruct a 2 × 2 contingency table, met our inclusion criteria were included. Three reviewers independently screened the articles. Discrepancies were resolved by other reviewers. Unpublished data were requested from the authors of the study via email. Subsequently, data extraction was done using a standardized form and quality assessment of studies using the QUADAS-2 tool. Meta-analysis was done using a bivariate model using R software. RESULTS Fourteen studies were selected for the final evaluation, which yielded the summary points: pooled sensitivity 87.77% (77.52%-93.72%, I2 = 86%), pooled specificity 88.45% (75.59%-94.99%, I2 = 88%), pooled DOR 49.37(14.53-167.72, I2 = 89%), and AUC of SROC was 0.923. The lambda value of the HSROC curve was 3.670. The Fagan plot showed that GPBB increases the pretest probability of myocardial infarction from 46% to 81% when positive, and it lowers the same probability to 12% when negative. CONCLUSION With these results, we can conclude that GPBB has modest accuracy in screening myocardial infarction, but the limitations of the study warrant further high-quality studies to confirm its usefulness in predicting myocardial infarction (MI).
Collapse
Affiliation(s)
- Anup Ghimire
- Maharajgunj Medical CampusInstitute of MedicineTribhuvan UniversityKathmanduNepal
| | - Subarna Giri
- Maharajgunj Medical CampusInstitute of MedicineTribhuvan UniversityKathmanduNepal
| | - Niharika Khanal
- Maharajgunj Medical CampusInstitute of MedicineTribhuvan UniversityKathmanduNepal
| | - Shivani Rayamajhi
- Maharajgunj Medical CampusInstitute of MedicineTribhuvan UniversityKathmanduNepal
| | - Anjila Thapa
- Maharajgunj Medical CampusInstitute of MedicineTribhuvan UniversityKathmanduNepal
| | - Anil Bist
- Maharajgunj Medical CampusInstitute of MedicineTribhuvan UniversityKathmanduNepal
| | - Surya Devkota
- Department of CardiologyManmohan Cardiothoracic Vascular and Transplant CenterKathmanduNepal
| |
Collapse
|
14
|
Positron Emission Tomography (PET) with 18F-FGA for Diagnosis of Myocardial Infarction in a Coronary Artery Ligation Model. Mol Imaging 2022; 2022:9147379. [PMID: 35250392 PMCID: PMC8865857 DOI: 10.1155/2022/9147379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/03/2022] [Indexed: 11/17/2022] Open
Abstract
Location and extent of necrosis are valuable information in the management of myocardial infarction (MI). Methods. We investigated 2-deoxy-2-18F-fluoro glucaric acid (FGA), a novel infarct-avid agent, for positron emission tomography (PET) of MI. We synthesized FGA from commercially available 18F-fluoro-2-deoxy-2-D-glucose (FDG). MI was induced in mice by permanently occluding the left anterior descending coronary artery. Biodistribution of FGA was assessed 1 h after FGA injection (11 MBq). PET/CT was conducted 1 h, 6 h, 1 d, 3 d, and 4 d after MI. Subcellular compartment of FGA accumulation in necrosis was studied by tracing the uptake of biotin-labeled glucaric acid with streptavidin-HRP in H2O2-treated H9c2 cardiomyoblasts. Streptavidin-reactive protein bands were identified by LC-MS/MS. Results. We obtained a quantitative yield of FGA from FDG within 7 min (
). Cardiac uptake of FGA was significantly higher in MI mice than that in control mice. Imaging after 1 h of FGA injection delineated MI for 3 days after MI induction, with negligible background signal from surrounding tissues. Myocardial injury was verified by tetrazolium staining and plasma troponin (47.63 pg/mL control versus 311.77 pg/mL MI). In necrotic H9c2 myoblasts, biotinylated glucaric acid accumulated in nuclear fraction. LC-MS/MS primarily identified fibronectin in necrotic cells as a putative high fidelity target of glucaric acid. Conclusion. FGA/PET detects infarct early after onset of MI and FGA accumulation in infarct persists for 3 days. Its retention in necrotic cells appears to be a result of interaction with fibronectin that is known to accumulate in injured cardiac tissue.
Collapse
|
15
|
Kott KA, Bishop M, Yang CHJ, Plasto TM, Cheng DC, Kaplan AI, Cullen L, Celermajer DS, Meikle PJ, Vernon ST, Figtree GA. Biomarker Development in Cardiology: Reviewing the Past to Inform the Future. Cells 2022; 11:588. [PMID: 35159397 PMCID: PMC8834296 DOI: 10.3390/cells11030588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 02/05/2022] [Indexed: 12/29/2022] Open
Abstract
Cardiac biomarkers have become pivotal to the clinical practice of cardiology, but there remains much to discover that could benefit cardiology patients. We review the discovery of key protein biomarkers in the fields of acute coronary syndrome, heart failure, and atherosclerosis, giving an overview of the populations they were studied in and the statistics that were used to validate them. We review statistical approaches that are currently in use to assess new biomarkers and overview a framework for biomarker discovery and evaluation that could be incorporated into clinical trials to evaluate cardiovascular outcomes in the future.
Collapse
Affiliation(s)
- Katharine A. Kott
- Cardiovascular Discovery Group, Kolling Institute of Medical Research, University of Sydney, St Leonards 2065, Australia; (K.A.K.); (S.T.V.)
- Department of Cardiology, Royal North Shore Hospital, St Leonards 2065, Australia
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia; (C.H.J.Y.); (T.M.P.); (D.C.C.); (A.I.K.); (D.S.C.)
| | - Michael Bishop
- School of Medicine and Public Health, University of Newcastle, Kensington 2033, Australia;
| | - Christina H. J. Yang
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia; (C.H.J.Y.); (T.M.P.); (D.C.C.); (A.I.K.); (D.S.C.)
| | - Toby M. Plasto
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia; (C.H.J.Y.); (T.M.P.); (D.C.C.); (A.I.K.); (D.S.C.)
| | - Daniel C. Cheng
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia; (C.H.J.Y.); (T.M.P.); (D.C.C.); (A.I.K.); (D.S.C.)
| | - Adam I. Kaplan
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia; (C.H.J.Y.); (T.M.P.); (D.C.C.); (A.I.K.); (D.S.C.)
| | - Louise Cullen
- Emergency and Trauma Centre, Royal Brisbane and Women’s Hospital, Herston 4029, Australia;
| | - David S. Celermajer
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia; (C.H.J.Y.); (T.M.P.); (D.C.C.); (A.I.K.); (D.S.C.)
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown 2050, Australia
- The Heart Research Institute, Newtown 2042, Australia
| | - Peter J. Meikle
- Baker Heart and Diabetes Institute, Melbourne 3004, Australia;
| | - Stephen T. Vernon
- Cardiovascular Discovery Group, Kolling Institute of Medical Research, University of Sydney, St Leonards 2065, Australia; (K.A.K.); (S.T.V.)
- Department of Cardiology, Royal North Shore Hospital, St Leonards 2065, Australia
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia; (C.H.J.Y.); (T.M.P.); (D.C.C.); (A.I.K.); (D.S.C.)
| | - Gemma A. Figtree
- Cardiovascular Discovery Group, Kolling Institute of Medical Research, University of Sydney, St Leonards 2065, Australia; (K.A.K.); (S.T.V.)
- Department of Cardiology, Royal North Shore Hospital, St Leonards 2065, Australia
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia; (C.H.J.Y.); (T.M.P.); (D.C.C.); (A.I.K.); (D.S.C.)
| |
Collapse
|
16
|
Spectrally multiplexed assay using gap enhanced nanoparticle for detection of a myocardial infarction biomarker panel. Anal Chim Acta 2022; 1198:339562. [DOI: 10.1016/j.aca.2022.339562] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 01/21/2023]
|
17
|
Haider A, Khwaja IA, Khan AH, Yousaf MS, Zaneb H, Qureshi AB, Rehman H. Efficacy of Whole-Blood Del Nido Cardioplegia Compared with Diluted Del Nido Cardioplegia in Coronary Artery Bypass Grafting: A Retrospective Monocentric Analysis of Pakistan. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:918. [PMID: 34577841 PMCID: PMC8470719 DOI: 10.3390/medicina57090918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 01/02/2023]
Abstract
Background and Objectives: Cardioplegia is one of the most significant components used to protect the myocardium during cardiac surgery. There is a paucity of evidence regarding the utilization of whole-blood Del Nido cardioplegia (WB-DNC) on clinical outcomes in coronary artery bypass grafting (CABG). The purpose of this retrospective cross-sectional study is to compare the effectiveness of diluted (blood to crystalloid; 1:4) Del Nido cardioplegia (DNC) with WB-DNC in patients who underwent elective CABG in a tertiary care hospital in Lahore-Pakistan. Materials and Methods: This was a retrospective descriptive study conducted at the Department of Cardiovascular Surgery, King Edward Medical University, Lahore. The medical database of all consecutive patients admitted from January 2018 to March 2020 and who fulfilled the inclusion criteria were reviewed. Results: Out of 471 patients admitted during the study period, 450 underwent various elective cardiac surgeries. Out of 450, 321 patients (71.33%) were operated on for CABG. Only 234/321 (72.89%) CABG patients fulfilled our inclusion criteria; 120 (51.28%) patients received WB-DNC, while 114 (48.71%) patients were administered with DNC. The former group presented with better clinical outcomes compared with the latter in terms of lesser requirements of inotropic support, low degree of hemodilution, shorter in-hospital stay, improved renal function, and cost-effectiveness. Peak values of serum Troponin-T (Trop-T), creatine kinase-myocardial band (CK-MB) release, and activated clotting time (ACT) were also lower in the WB-DNC group compared with the DNC group. Conclusions: The WB-DNC conferred better myocardial protection, improved early clinical outcomes, and also proved to be economical for patients undergoing elective CABG compared with classical crystalloid cardioplegia solution.
Collapse
Affiliation(s)
- Adnan Haider
- Department of Physiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (A.H.); (M.S.Y.)
- Department of Cardiovascular Surgery, King Edward Medical University, Lahore 54000, Pakistan;
| | - Irfan Azmatullah Khwaja
- Department of Cardiovascular Surgery, King Edward Medical University, Lahore 54000, Pakistan;
| | - Ammar Hameed Khan
- Department of Cardiovascular Surgery, Shalamar Medical and Dental College, Lahore 54812, Pakistan;
| | - Muhammad Shahbaz Yousaf
- Department of Physiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (A.H.); (M.S.Y.)
| | - Hafsa Zaneb
- Department of Anatomy and Histology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan;
| | - Abdul Basit Qureshi
- Department of Surgery, Services Institute of Medical Sciences, Lahore 54810, Pakistan;
| | - Habib Rehman
- Department of Physiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (A.H.); (M.S.Y.)
| |
Collapse
|
18
|
Wang J, Jiang C, Jin J, Huang L, Yu W, Su B, Hu J. Ratiometric Fluorescent Lateral Flow Immunoassay for Point‐of‐Care Testing of Acute Myocardial Infarction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jing Wang
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 PR China
| | - Chenxing Jiang
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 PR China
| | - Jiening Jin
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 PR China
| | - Liang Huang
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 PR China
| | - Wenbo Yu
- College of Veterinary Medicine China Agricultural University Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety Beijing Laboratory for Food Quality and Safety Beijing 100193 PR China
| | - Bin Su
- Institute of Analytical Chemistry Department of Chemistry Zhejiang University Hangzhou 310058 PR China
| | - Jun Hu
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 PR China
| |
Collapse
|
19
|
Wang J, Jiang C, Jin J, Huang L, Yu W, Su B, Hu J. Ratiometric Fluorescent Lateral Flow Immunoassay for Point-of-Care Testing of Acute Myocardial Infarction. Angew Chem Int Ed Engl 2021; 60:13042-13049. [PMID: 33793060 DOI: 10.1002/anie.202103458] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Indexed: 12/12/2022]
Abstract
We report the development of a highly sensitive ratiometric fluorescent lateral flow immunoassay (RFLFIA) strip for rapid and accurate detection of acute myocardial infarction biomarker, namely heart-type fatty acid binding protein (H-FABP). The RFLFIA strip works in terms of ratiometric change of fluorescence signal, arising from blending of fluorescence emitted by two composite nanostructures conjugated to capture and probe antibodies and inner filter effect of gold nanoparticles. In conjunction with using custom smartphone-based analytical device and tonality analysis, quantitative detection of H-FABP was achieved with a low limit of detection at 0.21 ng mL-1 . The RFLFIA strip can generate a visually distinguishable green-to-red color change around the threshold concentration of H-FABP (6.2 ng mL-1 ), thus allowing the semi-quantitative diagnosis by the naked eye.
Collapse
Affiliation(s)
- Jing Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Chenxing Jiang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Jiening Jin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Liang Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Wenbo Yu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing, 100193, PR China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Jun Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| |
Collapse
|
20
|
Sanati A, Siavash Moakhar R, I. Hosseini I, Raeissi K, Karimzadeh F, Jalali M, Kharaziha M, Sheibani S, Shariati L, Presley JF, Vali H, Mahshid S. Gold Nano/Micro-Islands Overcome the Molecularly Imprinted Polymer Limitations to Achieve Ultrasensitive Protein Detection. ACS Sens 2021; 6:797-807. [PMID: 33464874 DOI: 10.1021/acssensors.0c01701] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Here, we report on an electrochemical biosensor based on core-shell structure of gold nano/micro-islands (NMIs) and electropolymerized imprinted ortho-phenylenediamine (o-PD) for detection of heart-fatty acid binding protein (H-FABP). The shape and distribution of NMIs (the core) were tuned by controlled electrodeposition of gold on a thin layer of electrochemically reduced graphene oxide (ERGO). NMIs feature a large active surface area to achieve a low detection limit (2.29 fg mL-1, a sensitivity of 1.34 × 1013 μA mM-1) and a wide linear range of detection (1 fg mL-1 to 100 ng mL-1) in PBS. Facile template H-FABP removal from the layer (the shell) in less than 1 min, high specificity against interference from myoglobin and troponin T, great stability at ambient temperature, and rapidity in detection of H-FABP (approximately 30 s) are other advantages of this biomimetic biosensor. The electrochemical measurements in human serum, human plasma, and bovine serum showed acceptable recovery (between 91.1 ± 1.7 and 112.9 ± 2.1%) in comparison with the ELISA method. Moreover, the performance of the biosensor in clinical serum showed lower detection time and limit of detection against lateral flow assay (LFA) rapid test kits, as a reference method. Ultimately, the proposed biosensor based on the core-shell structure of gold NMIs and MIP opens interesting avenues in the detection of proteins with low cost, high sensitivity and significantstability for clinical applications.
Collapse
Affiliation(s)
- Alireza Sanati
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | | | - Imman I. Hosseini
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | - Keyvan Raeissi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Fathallah Karimzadeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mahsa Jalali
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Sara Sheibani
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology, and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
- Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - John F. Presley
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Sara Mahshid
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| |
Collapse
|
21
|
Moon MG, Yoon CH, Lee K, Kang SH, Youn TJ, Chae IH. Evaluation of Heart-type Fatty Acid-binding Protein in Early Diagnosis of Acute Myocardial Infarction. J Korean Med Sci 2021; 36:e61. [PMID: 33650337 PMCID: PMC7921368 DOI: 10.3346/jkms.2021.36.e61] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/16/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Although electrocardiography and cardiac troponin play important roles in the diagnosis of acute coronary syndrome (ACS), there remain unmet clinical needs. Heart-type fatty acid-binding protein (H-FABP) has been identified as an early diagnostic marker of acute myocardial infarction (AMI). In this study, we examined the diagnostic and prognostic value of H-FABP in patients suspected with ACS. METHODS We conducted an observational single-center cohort study, including 89 adults aged 30 years or older, who presented to the emergency room (ER) within 24 hours after the onset of chest pain and/or dyspnea. We performed laboratory analysis and point-of-care testing (POCT) for cardiac markers, including H-FABP, troponin I, and creatine kinase-myocardial band. We also evaluated the correlation between cardiac markers and left ventricular (LV) dysfunction and extent of coronary artery disease (CAD). RESULTS In patients presented to ER within 4 hours after symptom onset (n = 49), the diagnostic accuracy of H-FABP for AMI, as quantified by the area under the receiver operating characteristic curve, was higher (0.738; 95% confidence interval [CI], 0.591-0.885) than other cardiac markers. In POCT, the diagnostic accuracy of H-FABP (56%; 95% CI, 45-67) was significantly higher than other cardiac markers. H-FABP was correlated with not extent of CAD but post-AMI LV dysfunction. CONCLUSION H-FABP is a useful cardiac marker for the early diagnosis of AMI and prediction of myocardia injury. Difference in the circulatory release timeline of cardiac markers could explain its utility in early-stage of myocardial injury.
Collapse
Affiliation(s)
- Mi Gil Moon
- Cardiovascular Center, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Chang Hwan Yoon
- Cardiovascular Center, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, College of Medicine, Seoul National University, Seoul, Korea.
| | - Kyunghoon Lee
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Laboratory Medicine, College of Medicine, Seoul National University, Seoul, Korea
| | - Si Hyuck Kang
- Cardiovascular Center, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, College of Medicine, Seoul National University, Seoul, Korea
| | - Tae Jin Youn
- Cardiovascular Center, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, College of Medicine, Seoul National University, Seoul, Korea
| | - In Ho Chae
- Cardiovascular Center, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, College of Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
22
|
Shin M, Park SH, Mun S, Lee J, Kang HG. Biomarker Discovery of Acute Coronary Syndrome Using Proteomic Approach. Molecules 2021; 26:molecules26041136. [PMID: 33672727 PMCID: PMC7924321 DOI: 10.3390/molecules26041136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 11/17/2022] Open
Abstract
Acute coronary syndrome (ACS) is a condition in which the coronary artery supplying blood to the heart is infarcted via formation of a plaque and thrombus, resulting in abnormal blood supply and high mortality and morbidity. Therefore, the prompt and efficient diagnosis of ACS and the need for new ACS diagnostic biomarkers are important. In this study, we aimed to identify new ACS diagnostic biomarkers with high sensitivity and specificity using a proteomic approach. A discovery set with samples from 20 patients with ACS and 20 healthy controls was analyzed using mass spectrometry. Among the proteins identified, those showing a significant difference between each group were selected. Functional analysis of these proteins was conducted to confirm their association with functions in the diseased state. To determine ACS diagnostic biomarkers, standard peptides of the selected protein candidates from the discovery set were quantified, and these protein candidates were validated in a validation set consisting of the sera of 50 patients with ACS and 50 healthy controls. We showed that hemopexin, leucine-rich α-2-glycoprotein, and vitronectin levels were upregulated, whereas fibronectin level was downregulated, in patients with ACS. Thus, the use of these biomarkers may increase the accuracy of ACS diagnosis.
Collapse
Affiliation(s)
- Miji Shin
- Department of Senior Healthcare, Graduate School, Eulji University, Seongnam 13135, Korea; (M.S.); (S.M.)
| | - Sang Hyun Park
- Department of Internal Medicine, School of Medicine, Eulji University, Daejeon 34824, Korea;
| | - Sora Mun
- Department of Senior Healthcare, Graduate School, Eulji University, Seongnam 13135, Korea; (M.S.); (S.M.)
| | - Jiyeong Lee
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Uijeongbu 11759, Korea
- Correspondence: (J.L.); (H.-G.K.); Tel.: +82-42-259-1752 (J.L.); +82-31-740-7315 (H.-G.K.)
| | - Hee-Gyoo Kang
- Department of Senior Healthcare, Graduate School, Eulji University, Seongnam 13135, Korea; (M.S.); (S.M.)
- Department of Biomedical Laboratory Science, College of Health Sciences, Eulji University, Seongnam 13135, Korea
- Correspondence: (J.L.); (H.-G.K.); Tel.: +82-42-259-1752 (J.L.); +82-31-740-7315 (H.-G.K.)
| |
Collapse
|
23
|
Bona M, Wyss RK, Arnold M, Méndez-Carmona N, Sanz MN, Günsch D, Barile L, Carrel TP, Longnus SL. Cardiac Graft Assessment in the Era of Machine Perfusion: Current and Future Biomarkers. J Am Heart Assoc 2021; 10:e018966. [PMID: 33522248 PMCID: PMC7955334 DOI: 10.1161/jaha.120.018966] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Heart transplantation remains the treatment of reference for patients experiencing end‐stage heart failure; unfortunately, graft availability through conventional donation after brain death is insufficient to meet the demand. Use of extended‐criteria donors or donation after circulatory death has emerged to increase organ availability; however, clinical protocols require optimization to limit or prevent damage in hearts possessing greater susceptibility to injury than conventional grafts. The emergence of cardiac ex situ machine perfusion not only facilitates the use of extended‐criteria donor and donation after circulatory death hearts through the avoidance of potentially damaging ischemia during graft storage and transport, it also opens the door to multiple opportunities for more sensitive monitoring of graft quality. With this review, we aim to bring together the current knowledge of biomarkers that hold particular promise for cardiac graft evaluation to improve precision and reliability in the identification of hearts for transplantation, thereby facilitating the safe increase in graft availability. Information about the utility of potential biomarkers was categorized into 5 themes: (1) functional, (2) metabolic, (3) hormone/prohormone, (4) cellular damage/death, and (5) inflammatory markers. Several promising biomarkers are identified, and recommendations for potential improvements to current clinical protocols are provided.
Collapse
Affiliation(s)
- Martina Bona
- Department of Cardiovascular Surgery InselspitalBern University Hospital Bern Switzerland.,Department for BioMedical Research University of Bern Switzerland
| | - Rahel K Wyss
- Department of Cardiovascular Surgery InselspitalBern University Hospital Bern Switzerland.,Department for BioMedical Research University of Bern Switzerland
| | - Maria Arnold
- Department of Cardiovascular Surgery InselspitalBern University Hospital Bern Switzerland.,Department for BioMedical Research University of Bern Switzerland
| | - Natalia Méndez-Carmona
- Department of Cardiovascular Surgery InselspitalBern University Hospital Bern Switzerland.,Department for BioMedical Research University of Bern Switzerland
| | - Maria N Sanz
- Department of Cardiovascular Surgery InselspitalBern University Hospital Bern Switzerland.,Department for BioMedical Research University of Bern Switzerland
| | - Dominik Günsch
- Department of Anesthesiology and Pain Medicine/Institute for Diagnostic, Interventional and Paediatric Radiology Bern University HospitalInselspitalUniversity of Bern Switzerland
| | - Lucio Barile
- Laboratory for Cardiovascular Theranostics Cardiocentro Ticino Foundation and Faculty of Biomedical Sciences Università Svizzera Italiana Lugano Switzerland
| | - Thierry P Carrel
- Department of Cardiovascular Surgery InselspitalBern University Hospital Bern Switzerland.,Department for BioMedical Research University of Bern Switzerland
| | - Sarah L Longnus
- Department of Cardiovascular Surgery InselspitalBern University Hospital Bern Switzerland.,Department for BioMedical Research University of Bern Switzerland
| |
Collapse
|
24
|
Ouyang M, Tu D, Tong L, Sarwar M, Bhimaraj A, Li C, Coté GL, Di Carlo D. A review of biosensor technologies for blood biomarkers toward monitoring cardiovascular diseases at the point-of-care. Biosens Bioelectron 2021; 171:112621. [PMID: 33120234 DOI: 10.1016/j.bios.2020.112621] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 09/06/2020] [Accepted: 09/14/2020] [Indexed: 01/03/2023]
Abstract
Cardiovascular diseases (CVDs) cause significant mortality globally. Notably, CVDs disproportionately negatively impact underserved populations, such as those that are economically disadvantaged and often located in remote regions. Devices to measure cardiac biomarkers have traditionally been focused on large instruments in a central laboratory but the development of affordable, portable devices that measure multiple cardiac biomarkers at the point-of-care (POC) are needed to improve clinical outcomes for patients, especially in underserved populations. Considering the enormity of the global CVD problem, complexity of CVDs, and the large candidate pool of biomarkers, it is of great interest to evaluate and compare biomarker performance and identify potential multiplexed panels that can be used in combination with affordable and robust biosensors at the POC toward improved patient care. This review focuses on describing the known and emerging CVD biosensing technologies for analysis of cardiac biomarkers from blood. Initially, the global burden of CVDs and the standard of care for the primary CVD categories, namely heart failure (HF) and acute coronary syndrome (ACS) including myocardial infarction (MI) are discussed. The latest United States, Canadian and European society guidelines recommended standalone, emerging, and add-on cardiac biomarkers, as well as their combinations are then described for the prognosis, diagnosis, and risk stratification of CVDs. Finally, both commercial in vitro biosensing devices and recent state-of-art techniques for detection of cardiac biomarkers are reviewed that leverage single and multiplexed panels of cardiac biomarkers with a view toward affordable, compact devices with excellent performance for POC diagnosis and monitoring.
Collapse
Affiliation(s)
- Mengxing Ouyang
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Dandan Tu
- Department of Biomedical Engineering, Texas A&M University, 400 Bizzell St, College Station, TX, 77843, USA
| | - Lin Tong
- Nanobioengineering/Bioelectronics Lab, Department of Biomedical Engineering, Florida International University, 10555 West Flagler Street, Miami, FL, 33174, USA
| | - Mehenur Sarwar
- Nanobioengineering/Bioelectronics Lab, Department of Biomedical Engineering, Florida International University, 10555 West Flagler Street, Miami, FL, 33174, USA
| | - Arvind Bhimaraj
- Department of Cardiology, Houston Methodist J.C. Walter Transplant Center, Houston Methodist Hospital, 6550 Fannin St., Houston, TX, 77030, USA
| | - Chenzhong Li
- Nanobioengineering/Bioelectronics Lab, Department of Biomedical Engineering, Florida International University, 10555 West Flagler Street, Miami, FL, 33174, USA.
| | - Gerard L Coté
- Department of Biomedical Engineering, Texas A&M University, 400 Bizzell St, College Station, TX, 77843, USA; Center for Remote Health Technologies & Systems, Texas A&M Engineering Experiment Station, 101 Bizzell St, College Station, TX, 77840, USA.
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA, 90095, USA.
| |
Collapse
|
25
|
Goel H, Melot J, Krinock MD, Kumar A, Nadar SK, Lip GYH. Heart-type fatty acid-binding protein: an overlooked cardiac biomarker. Ann Med 2020; 52:444-461. [PMID: 32697102 PMCID: PMC7877932 DOI: 10.1080/07853890.2020.1800075] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cardiac troponins (cTn) are currently the standard of care for the diagnosis of acute coronary syndromes (ACS) in patients presenting to the emergency department (ED) with chest pain (CP). However, their plasma kinetics necessitate a prolonged ED stay or overnight hospital admission, especially in those presenting early after CP onset. Moreover, ruling out ACS in low-risk patients requires prolonged ED observation or overnight hospital admission to allow serial measurements of c-Tn, adding cost. Heart-type fatty acid-binding protein (H-FABP) is a novel marker of myocardial injury with putative advantages over cTn. Being present in abundance in the myocellular cytoplasm, it is released rapidly (<1 h) after the onset of myocardial injury and could potentially play an important role in both earlier diagnosis of high-risk patients presenting early after CP onset, as well as in risk-stratifying low-risk patients rapidly. Like cTn, H-FABP also has a potential role as a prognostic marker in other conditions where the myocardial injury occurs, such as acute congestive heart failure (CHF) and acute pulmonary embolism (PE). This review provides an overview of the evidence examining the role of H-FABP in early diagnosis and risk stratification of patients with CP and in non-ACS conditions associated with myocardial injury. Key messages Heart-type fatty acid-binding protein is a biomarker that is elevated early in myocardial injury The routine use in the emergency department complements the use of troponins in ruling out acute coronary syndromes in patients presenting early with chest pain It also is useful in risk stratifying patients with other conditions such as heart failure and acute pulmonary embolism.
Collapse
Affiliation(s)
- Harsh Goel
- Department of Medicine, St. Luke's University Hospital, Bethlehem, PA, USA.,Luis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Joshua Melot
- Department of Medicine, St. Luke's University Hospital, Bethlehem, PA, USA
| | - Matthew D Krinock
- Department of Medicine, St. Luke's University Hospital, Bethlehem, PA, USA
| | - Ashish Kumar
- Department of Medicine, Wellspan York Hospital, York, PA, USA
| | - Sunil K Nadar
- Department of Medicine, Sultan Qaboos University, Muscat, Oman
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
26
|
Moady G, Shtern D, Atar S. The additive diagnostic value of heart-type fatty acid binding protein in patients presenting early with chest pain. Eur J Intern Med 2020; 81:104-105. [PMID: 32646658 DOI: 10.1016/j.ejim.2020.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/30/2020] [Accepted: 06/25/2020] [Indexed: 11/24/2022]
Affiliation(s)
- Gassan Moady
- Department of Cardiology, Galilee Medical Center, Nahariya, Israel; Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Daisy Shtern
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Shaul Atar
- Department of Cardiology, Galilee Medical Center, Nahariya, Israel; Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
| |
Collapse
|
27
|
Xin Y, Yang R, Qu Y, Liu H, Feng Y, Li L, Shi W, Liu Q. Novel, Highly Sensitive, and Specific Assay to Monitor Acute Myocardial Infarction (AMI) by the Determination of Cardiac Troponin I (cTnI) and Heart-Type Fatty Acid Binding Protein (H-FABP) by a Colloidal Gold-Based Immunochromatographic Test Strip. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1802594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Yuanrong Xin
- School of Pharmacy, Jiangsu University, Zhenjiang, China
- Jiangsu Sunan Pharmaceutical Industrial Co., Ltd, Zhenjiang, Jiangsu, China
| | - Renlong Yang
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Yang Qu
- School of Pharmacy, Jiangsu University, Zhenjiang, China
- Chia Tai Qingjiang Pharmaceutical Industry Co., Ltd, Huaian, China
| | - Hongfei Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, China
- School of Medical Technology, Zhenjiang college, Zhenjiang, Jiangsu, China
| | - Yingshu Feng
- School of Medical Technology, Zhenjiang college, Zhenjiang, Jiangsu, China
| | - Lin Li
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Wenjing Shi
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Qiang Liu
- Department of Medical Laboratory, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
28
|
Using the SYNTAX score to predict myocardial injury early after on-pump coronary artery bypass surgery: a single-centre experience analysis. POLISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2020; 17:76-82. [PMID: 32728369 PMCID: PMC7379221 DOI: 10.5114/kitp.2020.97263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/25/2020] [Indexed: 12/02/2022]
Abstract
Introduction Marked isolated elevation of cardiac biomarkers (CK-MB, cardiac troponin I, heart-type fatty acid binding protein, hFABP) within 48 hours after coronary artery bypass surgery (CABG), even in the absence of electrocardiographic/angiographic evidence of myocardial infarction (MI), indicates prognostically significant cardiac procedural myocardial injury. There are no data exploring the relationship between the complexity of coronary atherosclerotic burden and early post-CABG myocardial injury. Aim To analyse correlations and predictive strength of the SYNTAX score (SS) for early myocardial injury after on-pump CABG. Material and methods One hundred and twenty consecutive patients undergoing CABG were included in the analysis. We obtained data on demographics, medical history, cardiovascular risk factors and echocardiography. Cardiac biomarkers were assessed at 6 hours after CABG. Multivariate linear regression analysis was performed to evaluate independent variables correlated with cardiac biomarkers. Results The most significant predictor for myocardial injury was SS, strongly correlated with the rise of all cardiac biomarkers (p < 0.001). Hypertension and creatinine clearance were associated with cTnI and hFABP. Diabetes was corelated with hFABP. In a multivariate analysis including all significant predictors, SS remained an independent predictor for myocardial injury, strongly associated with hFABP (p < 0.001, OR = 5.79, 95% CI: 3.59–7.98), cTnI (p < 0.001, OR = 6.49, 95% CI: 4.78–8.20), but not with CK-MB (95% CI: 0.61–1.07). Conclusions Defining myocardial injury as elevation of cardiac biomarkers between normal values and the cut-off for MI has a tremendous clinical significance as patients maintain high negative prognostic rates. SS could be used to predict post-operative rise of cardiac biomarkers, the correlation between SS and myocardial injury being very solid.
Collapse
|
29
|
Wang X, Tian L, Sun Q. Diagnostic and prognostic value of circulating miRNA-499 and miRNA-22 in acute myocardial infarction. J Clin Lab Anal 2020; 34:2410-2417. [PMID: 32529742 PMCID: PMC7439427 DOI: 10.1002/jcla.23332] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Currently, acute myocardial infarction (AMI) represents a serious cardiovascular disease with high morbidity and mortality. Therefore, this study aimed to systematically evaluate the roles of miRNA-499 and miRNA-22 as potential biomarkers for AMI. METHODS According to the inclusion and exclusion criteria, we measured circulating levels of miRNAs in 50 AMI patients and 50 non-MI populations. The expression levels of plasma miRNA-499 and miRNA-22 were analyzed by real-time fluorescent quantitative polymerase chain reaction (qRT-PCR). A statistical analysis of clinical data of AMI patients was conducted by 90-day follow-up. RESULTS Real-time PCR analysis showed that the relative expression level of miRNA-499 increased gradually among the three groups (P < .05). However, the expression of miRNA-22 showed a downward trend (P < .05). According to logistic analysis, the relative levels of miRNA-499 and miRNA-22 were important predictors of AMI. When the miRNA-499 and miRNA-22 levels were 0.377 and 0.946 separately, the diagnostic value of miRNA-499 and miRNA-22 for AMI was 86.00% and 86.00% for sensitivity, and 98.00% and 94.00% for specificity, respectively. In addition, compared to the baseline GRACE scoring system, the combination of miRNA-499, miRNA-22, and GRACE scores had a stronger discriminating power for MACE occurrence, with a sensitivity of 100.00% and a specificity of 79.40%. CONCLUSIONS The results showed that plasma miRNA-499 and miRNA-22 were more sensitive and specific for the diagnosis of AMI, suggesting that they can be used as potential biomarkers for clinical diagnosis of AMI.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Clinical Laboratory, Hospital Affiliated to Chengde Medical University, Chengde, China
| | - Lu Tian
- Clinical Laboratory, Hospital Affiliated to Chengde Medical University, Chengde, China
| | - Qiyu Sun
- Clinical Laboratory, Hospital Affiliated to Chengde Medical University, Chengde, China
| |
Collapse
|
30
|
Sharma A, Bhardwaj J, Jang J. Label-Free, Highly Sensitive Electrochemical Aptasensors Using Polymer-Modified Reduced Graphene Oxide for Cardiac Biomarker Detection. ACS OMEGA 2020; 5:3924-3931. [PMID: 32149219 PMCID: PMC7057319 DOI: 10.1021/acsomega.9b03368] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/05/2020] [Indexed: 05/24/2023]
Abstract
Acute myocardial infarction (AMI), also recognized as a "heart attack," is one leading cause of death globally, and cardiac myoglobin (cMb), an important cardiac biomarker, is used for the early assessment of AMI. This paper presents an ultrasensitive, label-free electrochemical aptamer-based sensor (aptasensor) for cMb detection using polyethylenimine (PEI)-functionalized reduced graphene oxide (PEI-rGO) thin films. PEI, a cationic polymer, was used as a reducing agent for graphene oxide (GO), providing highly positive charges on the rGO surface and allowing direct immobilization of negatively charged single-strand DNA aptamers against cMb via electrostatic interaction without any linker or coupling chemistry. The presence of cMb was detected on Mb aptamer-modified electrodes using differential pulse voltammetry via measuring the current change due to the direct electron transfer between the electrodes and cMb proteins (Fe3+/Fe2+). The limits of detection were 0.97 pg mL-1 (phosphate-buffered saline) and 2.1 pg mL-1 (10-fold-diluted human serum), with a linear behavior with logarithmic cMb concentration. The specificity and reproducibility of the aptasensors were also examined. This electrochemical aptasensor using polymer-modified rGO shows potential for the early assessment of cMb in point-of-care testing applications.
Collapse
Affiliation(s)
- Abhinav Sharma
- School
of Materials Science and Engineering, Ulsan
National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jyoti Bhardwaj
- Department
of Biomedical Engineering, UNIST, Ulsan 44919, Republic of Korea
| | - Jaesung Jang
- Department
of Biomedical Engineering, UNIST, Ulsan 44919, Republic of Korea
- School
of Mechanical, Aerospace and Nuclear Engineering, UNIST, Ulsan 44919, Republic of Korea
| |
Collapse
|
31
|
Huang D, Gao W, Wu R, Zhong X, Qian J, Ge J. D-dimer level predicts in-hospital adverse outcomes after primary PCI for ST-segment elevation myocardial infarction. Int J Cardiol 2020; 305:1-4. [PMID: 32057475 DOI: 10.1016/j.ijcard.2020.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Use of D-dimer for prognostication of patients with ST-segment elevation myocardial infarction (STEMI) remains controversial and undefined among those with angiographically evident thrombus or no-reflow phenomenon. METHODS We retrospectively analyzed consecutive STEMI patients who received primary percutaneous coronary intervention (PCI) at Zhongshan Hospital Fudan University from January 2008 to December 2018. Outcomes were in-hospital major adverse cardiovascular events (MACE: cardiac death, non-fatal acute myocardial infarction, re-vascularization and stroke), peak troponin T and NT-proBNP levels, left ventricular ejection fraction (LVEF) and hospitalization duration. RESULTS Among 1165 patients, those with increased (≥0.8 mg/L, n = 224, 19.2%) vs. normal (n = 941, 80.8%) D-dimer level were older; more often women and non-smokers. Increased D-dimer group had similar frequency of AET (58.7% vs. 62.1%, P = .353), more frequently no-reflow phenomenon (13.1% vs. 18.8%, P = .028), higher peak values of troponin T (3.5 [0.9-7.0] vs. 4.5 [1.8-8.7], P = .001) and NT-proBNP (903.3 [532.3-2098.5] vs. 2070.0 [859.1-4378.0], p < .001). In increased D-dimer group, LVEF (53.3 ± 8.3 vs. 48.8 ± 9.8, P < .001) was lower, hospitalization was longer (8.0 ± 4.9 vs. 10.5 ± 6.9 days, P < .001) and risk of developing in-hospital MACE (1.5% vs. 12.1%, P < .001) was greater. D-dimer level was an independent risk factor for MACE (OR 8.408, 95%CI 4.065-17.392, P < .001), including the angiographically evident thrombus (OR 6.939, 95% CI 2.944-16.355, P < .001) and the no-reflow (OR 8.114, 95% CI 1.598-41.196, P = .012) subgroups. CONCLUSIONS Increased D-dimer level was an independent risk factor for in-hospital MACE in STEMI patients undergoing primary PCI, including those with angiographically evident thrombus and no-reflow phenomenon. D-dimer was not associated to no-reflow phenomenon in STEMI patients.
Collapse
Affiliation(s)
- Dong Huang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Wei Gao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Runda Wu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Xin Zhong
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Juying Qian
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China.
| |
Collapse
|
32
|
Tan Y, Ji X, Mo Z, Zhou Y. Serum YKL-40 positively correlates with MMP-9 and CRP in patients with acute ST segment elevation myocardial infarction following emergency treatment. Medicine (Baltimore) 2019; 98:e17950. [PMID: 31764795 PMCID: PMC6882559 DOI: 10.1097/md.0000000000017950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE To investigate the role of YKL-40 in ST segment elevation myocardial infarction (STEMI) and its relationship to C-reactive protein (CRP) and matrix metalloproteinase-9 (MMP-9). METHODS This prospective study included 358 STEMI patients who were sent to the Emergency Department of our hospital from April 2014 to December 2017. Serum levels of YKL-40, CRP and MMP-9 were determined using commercially available Enzyme linked immunosorbent assay (ELISA) kits. Major adverse cardiovascular events (MACE) and overall survival time were analyzed. RESULTS GRACE scores (P < .001) and the levels of YKL-40 (P < .001), MMP-9 (P < .001), and CRP (P < .001) were significantly higher in deceased patients compared to those that survived. The levels of CRP (P = .007) and MMP-9 (P = .022) were significantly higher in the high YKL-40 group. The GRACE scores were also significantly elevated (P = .011, 95% CI 2.1 (-9.7 to -1.3)). Cumulative MACE rates and cardiac death rates were significantly higher in the high YKL-40 group (P < .001, 95% CI 3.9 (1.9-8.2)). Overall survival times were significantly longer in patients with lower YKL-40 levels (P < .0001). CONCLUSION Elevated YKL-40 levels positively correlate with CRP and MMP-9 levels and are associated with clinical outcomes including MACE and 6-month survival in STEMI patients.
Collapse
|
33
|
Crapnell RD, Canfarotta F, Czulak J, Johnson R, Betlem K, Mecozzi F, Down MP, Eersels K, van Grinsven B, Cleij TJ, Law R, Banks CE, Peeters M. Thermal Detection of Cardiac Biomarkers Heart-Fatty Acid Binding Protein and ST2 Using a Molecularly Imprinted Nanoparticle-Based Multiplex Sensor Platform. ACS Sens 2019; 4:2838-2845. [PMID: 31571480 DOI: 10.1021/acssensors.9b01666] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This manuscript describes the production of molecularly imprinted polymer nanoparticles (nanoMIPs) for the cardiac biomarkers heart-fatty acid binding protein (H-FABP) and ST2 by solid-phase synthesis, and their use as synthetic antibodies in a multiplexed sensing platform. Analysis by surface plasmon resonance (SPR) shows that the affinity of the nanoMIPs is similar to that of commercially available antibodies. The particles are coated onto the surface of thermocouples and inserted into 3D-printed flow cells of different multiplexed designs. We demonstrate that it is possible to selectively detect both cardiac biomarkers within the physiologically relevant range. Furthermore, the developed sensor platform is the first example of a multiplex format of this thermal analysis technique which enables simultaneous measurements of two different compounds with minimal cross selectivity. The format where three thermocouples are positioned in parallel exhibits the highest sensitivity, which is explained by modeling the heat flow distribution within the flow cell. This design is used in further experiments and proof-of-application of the sensor platform is provided by measuring spiked fetal bovine serum samples. Because of the high selectivity, short measurement time, and low cost of this array format, it provides an interesting alternative to traditional immunoassays. The use of nanoMIPs enables a multimarker strategy, which has the potential to contribute to sustainable healthcare by improving the reliability of cardiac biomarker testing.
Collapse
Affiliation(s)
- Robert D. Crapnell
- Department of Natural Sciences, Manchester Metropolitan University, John Dalton Building, Chester Street, M1 5GD Manchester, U.K
| | - Francesco Canfarotta
- MIP Diagnostics Ltd., The Exchange Building, Colworth Park, Sharnbrook, MK44 1LQ Bedford, U.K
| | - Joanna Czulak
- MIP Diagnostics Ltd., The Exchange Building, Colworth Park, Sharnbrook, MK44 1LQ Bedford, U.K
| | - Rhiannon Johnson
- MIP Diagnostics Ltd., The Exchange Building, Colworth Park, Sharnbrook, MK44 1LQ Bedford, U.K
| | - Kai Betlem
- Department of Natural Sciences, Manchester Metropolitan University, John Dalton Building, Chester Street, M1 5GD Manchester, U.K
| | - Francesco Mecozzi
- Department of Natural Sciences, Manchester Metropolitan University, John Dalton Building, Chester Street, M1 5GD Manchester, U.K
| | - Michael P. Down
- Department of Natural Sciences, Manchester Metropolitan University, John Dalton Building, Chester Street, M1 5GD Manchester, U.K
| | - Kasper Eersels
- Sensor Engineering, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Bart van Grinsven
- Sensor Engineering, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Thomas J. Cleij
- Sensor Engineering, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Richard Law
- School of Engineering, Newcastle University, Merz Court, NE1 7RU Newcastle Upon Tyne, U.K
| | - Craig E. Banks
- Department of Natural Sciences, Manchester Metropolitan University, John Dalton Building, Chester Street, M1 5GD Manchester, U.K
| | - Marloes Peeters
- School of Engineering, Newcastle University, Merz Court, NE1 7RU Newcastle Upon Tyne, U.K
| |
Collapse
|
34
|
The role of coronary CT angiography for acute chest pain in the era of high-sensitivity troponins. J Cardiovasc Comput Tomogr 2019; 13:267-273. [PMID: 31235403 DOI: 10.1016/j.jcct.2019.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 11/22/2022]
Abstract
Accurate and efficient diagnostic triage for acute chest pain (ACP) remains one of the most challenging problems in the emergency department (ED). While the proportion of patients that present with myocardial infarction (MI), aortic dissection, or pulmonary embolism is relatively low, a missed diagnosis can be life threatening. Coronary computed tomography angiography (CCTA) has developed into a robust diagnostic tool in the triage of ACP over the past decade, with several trials showing that it can reliably identify patients at low risk of major adverse cardiovascular events, shorten the length of stay in the ED, and reduce cost associated with the triage of patients with undifferentiated chest pain. Recently, however, high-sensitivity troponin assays have been increasingly incorporated as a rapid and efficient diagnostic test in the triage of ACP due to their higher sensitivity and negative predictive value of myocardial infarction. As more EDs adopt high-sensitivity troponin assays into routine clinical practice, the role of CCTA will likely change. In this review, we provide an overview of CCTA and high-sensitivity troponins for evaluation of patients with suspected ACS in the ED. Moreover, we discuss the changing role of CCTA in the era of high-sensitivity troponins.
Collapse
|
35
|
Xue S, Zhu W, Liu D, Su Z, Zhang L, Chang Q, Li P. Circulating miR-26a-1, miR-146a and miR-199a-1 are potential candidate biomarkers for acute myocardial infarction. Mol Med 2019; 25:18. [PMID: 31092195 PMCID: PMC6521554 DOI: 10.1186/s10020-019-0086-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 04/22/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) was considered to be one of the major causes of morbidity and mortality worldwide. In order to manage the acute myocardial infarction outbreaks, accurate biomarkers for risk prediction are needed. Circulating microRNAs (miRNAs) may act as diagnostic and prognostic biomarkers for cardiovascular events. METHODS This study aimed to determine the possibility of circulating miRNAs used as biomarkers for AMI and their dynamic expression levels before and after percutaneous coronary intervention (PCI) in patients. Circulating miR-26a-1, miR-27a, miR-30d, miR-146a, miR-199a-1 and miR-423 were selected and validated in 31 AMI patients and 27 matched controls by quantitative real-time PCR (qPCR). RESULTS The expression levels of plasma miR-26a-1, miR-146a and miR-199a-1 were significantly increased in AMI patients. Receiver operating characteristic (ROC) analysis indicated that miR-26a-1, miR-146a and miR-199a-1 showed considerable diagnostic efficiency for predicting AMI. Furthermore, we demonstrated that the combination of miR-26a-1, miR-146a and miR-199a-1 facilitated AMI diagnosis. CONCLUSIONS Our findings suggest that circulating miR-26a-1, miR-146a and miR-199a-1 have the potential to be used as biomarkers for AMI diagnosis.
Collapse
Affiliation(s)
- Sheng Xue
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021 China
| | - Wenjie Zhu
- Affiliated Hospital of Qingdao University. Qingdao University, Qingdao, 266003 China
| | - Dacheng Liu
- Affiliated Hospital of Qingdao University. Qingdao University, Qingdao, 266003 China
| | - Zhe Su
- Affiliated Hospital of Qingdao University. Qingdao University, Qingdao, 266003 China
| | - Liwei Zhang
- Affiliated Hospital of Qingdao University. Qingdao University, Qingdao, 266003 China
| | - Qing Chang
- Affiliated Hospital of Qingdao University. Qingdao University, Qingdao, 266003 China
| | - Peifeng Li
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021 China
| |
Collapse
|
36
|
Zhou P, Liu H, Gong L, Tang B, Shi Y, Yang C, Han Z. A faster detection method for high-sensitivity cardiac troponin-POCT quantum dot fluorescence immunoassay. J Thorac Dis 2019; 11:1506-1513. [PMID: 31179093 DOI: 10.21037/jtd.2019.03.25] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background High-sensitivity cardiac troponin (hs-cTn) is a significant biomarker of myocardial injury and necrosis, and has momentous clinical significance for the diagnosis and risk stratification of acute myocardial infarction (AMI). The purpose of this study is to determine the accuracy and sensitivity of hs-cTn detection in whole blood samples with a new faster method-Point of Care Testing (POCT) quantum dot fluorescence immunoassay. Methods Blood samples from 415 patients with chest pain suggestive of AMI from August to November 2017 in The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University were analyzed. We first performed hs-cTnI test with anticoagulated whole blood by POCT quantum dot fluorescence immunoassay. After the sample was centrifuged, the plasma sample was taken for detection of hs-cTnT by electrochemiluminescence immunoassay. The final diagnosis was determined by two independent cardiologists. Results Firstly, by measuring the receiver operating characteristic curve (ROC curve) and the area under the curve (AUC) of 32 patients with AMI, it was found that the measurement accuracy of the POCT quantum dot fluorescence immunoassay was relative high (AUC was 0.866, 95% confidence interval is 0.783 to 0.949). There was no statistical difference between POCT quantum dot fluorescence immunoassay and electrochemiluminescence troponin assay [Z value =1.527, P value =(0.063, 0.064)]. In addition, the study also calculated the performance evaluation index of POCT quantum dot fluorescence immunoassay (critical value 0.04 ng/mL) and analyzed the ROC curve to compare the diagnostic accuracy of both for cardiogenic diseases and the diagnostic efficacy of patients with AMI. Our study found that the new method-POCT quantum dot fluorescence immunoassay had high diagnostic efficiency, which was similar to the traditional electrochemiluminescence method. Conclusions The measurements of hs-cTn by the method of Vazyme POCT quantum dot immunofluorescence and Roche electrochemiluminescence method have a good correlation (Y=37.419+131.009X, r=0.935), and also have a good consistency in the diagnosis of AMI. In addition, compared with the traditional electrochemiluminescence method, quantum dot immunofluorescence is faster and more suitable for clinical needs.
Collapse
Affiliation(s)
- Peiling Zhou
- Department of Cardiology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Haohao Liu
- Department of Laboratory Medicine, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Lan Gong
- Department of Laboratory Medicine, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Bo Tang
- Vazyme Biotechnology Company, Nanjing 210004, China
| | - Yabing Shi
- Vazyme Biotechnology Company, Nanjing 210004, China
| | - Chengjian Yang
- Department of Cardiology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Zhijun Han
- Department of Laboratory Medicine, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi 214002, China
| |
Collapse
|
37
|
Development of a Quantitative Detection Card for Heart-type Fatty Acid-binding Protein based on Background Fluorescence Quenching Immune Chromatography. J Med Biochem 2019; 38:172-180. [PMID: 30867645 PMCID: PMC6410999 DOI: 10.2478/jomb-2018-0017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/23/2018] [Indexed: 11/21/2022] Open
Abstract
Background To establish a fast and simple quantitative method for detection of heart-type fatty acid-binding protein (H-FABP) in serum based on a background fluorescence quenching immunochromatographic assay. Methods A detection card based on the double-antibody sandwich double-antibody method with background fluorescence quenching was developed for quantitative measurement of H-FABP in serum. The optimal concentrations of control for coating the test and control lines were determined as well as the concentrations of gold-labeled antibodies used in preparing the detection system. The detection method for H-FABP in serum was established and validated using real-world clinical samples. Results The optimal concentrations of labeling antibody and coating antibody were 5.0 μg/mL and 1.0 mg/mL, respectively. The test card had a sensitivity of 1.15 ng/mL over a linear concentration range of 0–100 ng/mL. Based on three batches prepared for testing the card, the relative standard deviation (RSD) within batches was less than 15% without a significant difference (P=0.942). The detection method was tested against common interfering substances in serum, such as bilirubin, triglyceride and serum anticoagulants ethylenediamine tetraacetic acid (EDTA), heparin, and sodium citrate, and no significant cross-reaction was detected. The test method was further validated with 50 clinical serum samples, and the test results were comparable with standard reference detection methods with good correlation (R=0.95). Conclusion Our study presents a new method with strong specificity and sensitivity for the detection of H-FABP in serum, which could promote H-FABP detection in a broad range of applications.
Collapse
|
38
|
Xue S, Liu D, Zhu W, Su Z, Zhang L, Zhou C, Li P. Circulating MiR-17-5p, MiR-126-5p and MiR-145-3p Are Novel Biomarkers for Diagnosis of Acute Myocardial Infarction. Front Physiol 2019; 10:123. [PMID: 30833907 PMCID: PMC6387945 DOI: 10.3389/fphys.2019.00123] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/31/2019] [Indexed: 12/15/2022] Open
Abstract
Ischemic heart disease including myocardial infarction (MI) is a major cause of mortality and morbidity worldwide. In order to manage the acute myocardial infarction (AMI) outbreaks, novel biomarkers for risk prediction are needed. Recent studies have shown that circulating microRNAs (miRNAs) are promising biomarkers for cardiovascular diseases prediction. This study aimed to determine the possibility of circulating miRNAs used as biomarkers for AMI. The dynamic expression levels of miRNAs were examined before and after percutaneous coronary intervention (PCI) in patients. Circulating miR-17-5p, miR-126-5p, and miR-145-3p were selected and validated in 29 patients with AMI and 21 matched controls by quantitative real-time PCR. The expression levels of plasma miR-17-5p, miR-126-5p, and miR-145-3p were significantly increased in AMI patients. Receiver Operating Characteristic (ROC) analysis indicated that miR-17-5p, miR-126-5p, and miR-145-3p showed considerable diagnostic efficiency for AMI. Furthermore, we demonstrated that the combination of these three miRNAs managed to provide more accurate diagnosing of AMI.
Collapse
Affiliation(s)
- Sheng Xue
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China
| | - Dacheng Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wenjie Zhu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Zhe Su
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Liwei Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Changyong Zhou
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
39
|
Haybar H, Assareh AR, Mohammadzadeh M, Hovyzian SA. Relationship Between Level of Heart Type Fatty Acid Binding Protein (Before and after Procedures) with Acute Renal Failure after PCI in Patients Under PCI. Cardiovasc Hematol Disord Drug Targets 2019; 20:41-46. [PMID: 30727924 DOI: 10.2174/1871529x19666190206153012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 01/16/2019] [Accepted: 01/22/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND & OBJECTIVE Acute renal failure (AKI) is one of the most important complications of PCI. Due to delay in creatinine increase, we need specific factors to detect AKI earlier. The aim of this study is to evaluate the valuable factors by focusing on HFAB-P that can be predictive for AKI after Percutaneous Coronary Intervention (PCI). METHODS This prospective study was performed on 95 patients (55 males and 44 females aged between 49-78 years) under PCI in Golestan and Imam Khomeini hospitals in Ahvaz. Patients were divided into three groups based on the development of AKI after the procedure: no AKI, severe AKI (doubling of serum creatinine or needing dialysis) and any type of AKI (increased creatinine ≥ 0/3 mg/dl or a 50% increase in the means of 1/5 times serum creatinine). The demographic and clinical characteristics of the patients, the medical history and the results of the HFABP marker, GFR, and creatinine before and after PCI were evaluated for all patients. RESULTS The progenies showed 6 patients with severe AKI, 17 patients with any type of AKI, and 72 patients without AKI. Diabetes (P = 0.003), hypertension (P = 0.027), gender of patients (P = 0.025) and hospital admission days (P <0.001) were significantly different among the groups. Patients' age and positive troponin were significantly higher in patients with AKI. HFABP was the only factor that had significant changes before and after PCI (P <0.001). The cut-off value of HFABP was 4.69 with 95.6% sensitivity and 84.7% specificity. It has a good negative predictive value of 98.39% which suggests it to be a good test for the AKI prediction. Glomerular Filtration Rate (GFR) and creatinine (Cr) were significantly different after PCI (P <0.001). CONCLUSION HFABP can be considered as a predictor for AKI after PCI. Moreover, our study suggests that evaluating several parameters such as Cr and GFR before and after PCI can predict the AKI development after PCI.
Collapse
Affiliation(s)
- Habib Haybar
- Cardiovascular Angioplasty Fellowship, Atheroclerosis Research Center, Department of Cardiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad R Assareh
- Interventional Adult Cardiovascular Fellowship, Atheroclerosis Research Center, Department of Cardiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mina Mohammadzadeh
- Atheroclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shahla A Hovyzian
- Atheroclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
40
|
Layer-by-layer electrochemical biosensors configuring xanthine oxidase and carbon nanotubes/graphene complexes for hypoxanthine and uric acid in human serum solutions. Biosens Bioelectron 2018; 121:265-271. [DOI: 10.1016/j.bios.2018.08.074] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 01/15/2023]
|
41
|
Lyngbakken MN, Myhre PL, Røsjø H, Omland T. Novel biomarkers of cardiovascular disease: Applications in clinical practice. Crit Rev Clin Lab Sci 2018; 56:33-60. [DOI: 10.1080/10408363.2018.1525335] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Magnus Nakrem Lyngbakken
- Division of Medicine, Akershus University Hospital, Lørenskog, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Peder Langeland Myhre
- Division of Medicine, Akershus University Hospital, Lørenskog, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Helge Røsjø
- Division of Medicine, Akershus University Hospital, Lørenskog, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Torbjørn Omland
- Division of Medicine, Akershus University Hospital, Lørenskog, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
| |
Collapse
|
42
|
El-Kased RF. Immuno-analytical approach and its application for cardiac disease marker detection. J Immunoassay Immunochem 2018; 39:538-550. [PMID: 30212265 DOI: 10.1080/15321819.2018.1518241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cardiac troponin-I is a promising diagnostic marker for cardiovascular diseases. Troponin-I immunoassays rely on monoclonal antibodies, while polyclonal antibodies, cheaper to manufacture, are uncommonly used. The current study established an immuno-analytical assay using a polyclonal antibody capable of mapping troponin-I antigenic determinant. Proteolytic digestion of troponin-I was performed. Antigenic determinant was assigned by separation of fragments using gel electrophoresis followed by Western blot and high-performance liquid chromatography followed by dot blot. The antigenic determinant region appeared within amino acid sequence 30-90. This robust procedure is suitable for early prognosis of diseases, stratification of patients, and possibly individualized therapy.
Collapse
Affiliation(s)
- Reham F El-Kased
- a Microbiology and Immunology, Faculty of Pharmacy , The British University in Egypt (BUE) , Cairo , Egypt
| |
Collapse
|
43
|
Persistently elevated plasma heart-type fatty acid binding protein concentration is related with poor outcome in acute decompensated heart failure patients. Clin Chim Acta 2018; 487:48-53. [PMID: 30194932 DOI: 10.1016/j.cca.2018.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND The aim of the study was to determine clinical and prognostic role of repeated heart-type fatty acid binding protein (hFABP) measurements in acute decompensated HF (ADHF) patients. METHODS In seventy-seven ADHF patients (III and IV NYHA class, mean age 70 ± 12.7 years, mean left ventricle ejection fraction [LVEF] 29.73 ± 13.3%) plasma hFABPs concentrations (SunRed Biological Technology) were measured twice - on admission and at discharge (mean time of hospitalization 10.7 ± 4.9 days). Combined end point (CEP), assessed after mean 9.2 ± 7.3 months, was defined as death or the need of HF re-hospitalization. RESULTS Median hFABP concentration on admission was significantly lower than at discharge. hFABP concentrations on admission significantly correlated with echocardiographic parameters of LV remodeling. Among fifty-six patients (72.7%) who reached CEP, significantly higher admission and discharge hFABP concentrations were found. Patients with plasma discharge hFABP concentrations higher than 7.8 ng/mL were at higher risk of CEP (log-rank test, p = 0.01). Logistic stepwise regression analysis revealed discharge hFABP, LVEF and left ventricle mass index independent and significant predictors of CEP (p < 0.05). CONCLUSIONS In ADHF patients plasma hFABP admission concentrations are related with LV remodeling. Persistently elevated hFABP concentrations have prognostic value, as may reflect continuous myocardial damage despite effective treatment and clinical improvement.
Collapse
|
44
|
Chen W, Wang K, Liu S. Molecular cloning and tissue distribution of fatty acid binding protein-3 in goldfish (Carassius auratus) and its mRNA expression in response to cadmium and PAMPs. Comp Biochem Physiol A Mol Integr Physiol 2018; 224:68-75. [PMID: 30008387 DOI: 10.1016/j.cbpa.2018.06.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022]
Abstract
Fatty acid binding proteins (FABPs) are members of the conserved, multigene family of intracellular lipid binding proteins. In this study, the full-length cDNA of goldfish (Carassius auratus) FABP-3 (gfFABP-3) was successfully cloned. gfFABP-3 had an open reading frame of 402 bp and encoded a 133 amino acid polypeptide. The predicted gfFABP-3 protein included a lipocalin domain and displayed typical conserved FABP tertiary structures. Reverse transcription-PCR (RT-PCR) revealed that the gfFABP-3 gene was expressed in all tested tissues, with higher levels of expression in the testis, liver, heart, fat and kidney. After 24 h of cadmium exposure, gfFABP-3 was significantly upregulated in the gill, liver and spleen, but downregulated in the intestine, as compared to unexposed controls. gfFABP-3 expression was significantly downregulated in the spleen in goldfish challenged with LPS and Poly I:C. Our study provides a molecular characterization of goldfish FABP-3 and indicated that gfFABP-3 was potentially associated with the toxic effects of cadmium on lipid metabolism, and with the immune response to pathogenic infection.
Collapse
Affiliation(s)
- Wenbo Chen
- Department of Biology, Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, Henan, China.
| | - Kaimeng Wang
- Department of Biology, Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, Henan, China
| | - Shiyu Liu
- Department of Biology, Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, Henan, China
| |
Collapse
|
45
|
Heart-type fatty acid binding protein (H-FABP) as a biomarker for acute myocardial injury and long-term post-ischemic prognosis. Acta Pharmacol Sin 2018; 39:1155-1163. [PMID: 29770799 DOI: 10.1038/aps.2018.37] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 02/28/2018] [Indexed: 12/11/2022] Open
Abstract
Acute myocardial infarction (AMI) is a life-threatening event. Even with timely treatment, acute ischemic myocardial injury and ensuing ischemia reperfusion injury (IRI) can still be difficult issues to tackle. Apart from radiological and other auxiliary examinations, laboratory tests of applicable cardiac biomarkers are also necessary for early diagnosis and close monitoring of this disorder. Heart-type fatty acid binding protein (H-FABP), which mainly exists inside cardiomyocytes, has recently emerged as a potentially promising biomarker for myocardial injury. In this review we discuss the sensitivity and specificity of H-FABP in the assessment of myocardial injury and IRI, especially in the early stage, and its long-term prognostic value in comparison with other commonly used cardiac biomarkers, including myoglobin (Mb), cardiac troponin I (cTnI), creatine kinase MB (CK-MB), C-reactive protein (CRP), glycogen phosphorylase isoenzyme BB (GPBB), and high-sensitivity cardiac troponin T (hs-cTnT). The potential and value of combined application of H-FABP with other biomarkers are also discussed. Finally, the prospect of H-FABP is summarized; several technical issues are discussed to facilitate wider application of H-FABP in clinical practice.
Collapse
|
46
|
Su J, Gao C, Wang R, Xiao C, Yang M. Genes associated with inflammation and the cell cycle may serve as biomarkers for the diagnosis and prognosis of acute myocardial infarction in a Chinese population. Mol Med Rep 2018; 18:1311-1322. [PMID: 29845217 PMCID: PMC6072145 DOI: 10.3892/mmr.2018.9077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 04/03/2018] [Indexed: 12/22/2022] Open
Abstract
The present study aimed to identify biomarkers for the clinical diagnosis of acute myocardial infarction (AMI) in a Chinese population using microarray data collected from the Gene Expression Omnibus database under accession number GSE97320. This included the peripheral blood samples of three patients with AMI and three controls. Differentially expressed genes (DEGs) were identified using the limma package and protein-protein interaction networks were constructed using data from the Search Tool for the Retrieval of Interacting Genes database, followed by module analysis to screen for hub genes. Functional enrichment analyses were performed using the Database for Annotation, Visualization and Integrated Discovery. The identified genes were verified by overlapping with the target genes of microRNAs (miRs) known to be associated with AMI, as well as the DEGs identified in other AMI datasets, including GSE24519, GSE34198 and GSE48060. As a result, 752 DEGs (449 upregulated and 303 downregulated) were identified in the GSE97320 dataset. The upregulated DEGs were predicted to participate in inflammatory pathways, including the toll-like receptor (TLR) signaling pathway, including ras-related C3 botulinum toxin substrate 1 (RAC1), TLR4, C-C motif chemokine receptor (CCR)1; cytokine-cytokine receptor interaction, including signal transducer and activator of transcription (STAT)3; chemokine signaling pathway, including CCR10; pathways associated with cancer, including colony stimulating factor 3 receptor (CSF3R); and leukocyte transendothelial migration, including matrix metallopeptidase 9 (MMP9). The downregulated DEGs were associated with the cell cycle, including alstrom syndrome protein 1 (ALMS1). These conclusions were made following functional analysis of the genes in the three identified modules. MMP9, TLR4, STAT3, CCR1 and ALMS1 were regulated by miR-21-5p, whereas RAC1 was regulated by miR-30c-5p. A comparison among the four datasets confirmed the roles of CSF3R and CCR10. HtrA serine peptidase 1 (HTRA1) was the only gene associated with both mortality and recurrence. In conclusion, inflammation-associated genes, including STAT3, CCR1, RAC1, MMP9, CCR10, CSF3R and HTRA1, as well as cell cycle-associated genes such as ALMS1, may be biomarkers for the diagnosis and prognosis of AMI in Chinese people.
Collapse
Affiliation(s)
- Jiang Su
- Department of Cardiovascular Surgery, Chinese PLA General Hospital, Beijing 100039, P.R. China
| | - Changqing Gao
- Department of Cardiovascular Surgery, Chinese PLA General Hospital, Beijing 100039, P.R. China
| | - Rong Wang
- Department of Cardiovascular Surgery, Chinese PLA General Hospital, Beijing 100039, P.R. China
| | - Cangsong Xiao
- Department of Cardiovascular Surgery, Chinese PLA General Hospital, Beijing 100039, P.R. China
| | - Ming Yang
- Department of Cardiovascular Surgery, Chinese PLA General Hospital, Beijing 100039, P.R. China
| |
Collapse
|
47
|
Yang S, Chatterjee S, Cipollo J. The Glycoproteomics-MS for Studying Glycosylation in Cardiac Hypertrophy and Heart Failure. Proteomics Clin Appl 2018; 12:e1700075. [PMID: 29424483 DOI: 10.1002/prca.201700075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 11/10/2017] [Indexed: 12/13/2022]
Abstract
With recent advancements of analytical techniques and mass spectrometric instrumentations, proteomics has been widely exploited to study the regulation of protein expression associated with disease states. Many proteins may undergo abnormal change in response to the stimulants, leading to regulation of posttranslationally modified proteins. In this review, the physiological and pathological roles of protein glycosylation in cardiac hypertrophy is discussed, and how the signal pathways regulate heart function and leading to heart failure. The analytical methods for analysis of protein glycosylation, including glycans, glycosite, occupancy, and heterogeneity is emphasized. The rationale on glycoproteins as disease biomarkers is also discussed. The authors also propose potential research in this field and challenges in the diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Shuang Yang
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Subroto Chatterjee
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - John Cipollo
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
48
|
Parizadeh SM, Ferns GA, Ghandehari M, Hassanian SM, Ghayour-Mobarhan M, Parizadeh SMR, Avan A. The diagnostic and prognostic value of circulating microRNAs in coronary artery disease: A novel approach to disease diagnosis of stable CAD and acute coronary syndrome. J Cell Physiol 2018; 233:6418-6424. [PMID: 29215707 DOI: 10.1002/jcp.26324] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/30/2017] [Indexed: 12/22/2022]
Abstract
Coronary artery disease (CAD) is the most common manifestation of CVD and the acute coronary syndrome (ACS) is associated with a substantial morbidity and mortality in most populations globally. There are several biomarkers for diagnosis of MI. Troponin is routinely used as a biomarker in patients with chest pain, but it lacks sensitivity in the first hours of onset of symptoms, and so there is still a clinical need for new biomarkers for the diagnosis of CAD events. Recent studies have shown that miRNAs are involved in atherosclerotic plaque formation and their expression is altered during CAD events. Whilst studies have shown that several miRNAs are not superior to troponin in the diagnosis of a MI, they may be useful in the early diagnosis and prognosis of patients with CAD, however further studies are required. In this review we have summarized the recent studies investigating circulating miRNAs as novel biomarkers for the early detection of MI, CVD risk stratification and in the assessment of the prognosis of patients with ACS.
Collapse
Affiliation(s)
- Seyed Mostafa Parizadeh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, UK
| | - Maryam Ghandehari
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Reza Parizadeh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
49
|
Kip MM, Steuten LM, Koffijberg H, IJzerman MJ, Kusters R. Using expert elicitation to estimate the potential impact of improved diagnostic performance of laboratory tests: a case study on rapid discharge of suspected non-ST elevation myocardial infarction patients. J Eval Clin Pract 2018; 24:31-41. [PMID: 27761961 DOI: 10.1111/jep.12626] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 07/11/2016] [Accepted: 07/11/2016] [Indexed: 12/26/2022]
Abstract
Early health technology assessment can provide insight in the potential cost-effectiveness of new tests to guide further development decisions. This can increase their potential benefit but often requires evidence which is lacking in early test development stages. Then, expert elicitation may be used to generate evidence on the impact of tests on patient management. This is illustrated in a case study on a new triple biomarker test (copeptin, heart-type fatty acid binding protein, and high-sensitivity troponin [HsTn]) at hospital admission. The elicited evidence enables estimation of the impact of using the triple biomarker on time to exclusion of non-ST elevation myocardial infarction compared with current serial HsTn measurement (performed 0, 2, and 6 h after admission). Cardiologists were asked to estimate the effect of the triple biomarker on patient's discharge rates and interventions performed, depending on its diagnostic performance. This elicited evidence was combined with Dutch reimbursement data and published evidence into a decision analytic model. Direct hospital costs and patients' discharge rates were assessed for 3 testing strategies including this triple biomarker (ie, only at admission or combined with HsTn measurements after 2 and 6 h). Direct hospital costs of suspected non-ST elevation myocardial infarction patients using serial HsTn measurements are estimated at €1825 per patient. Combining this triple biomarker with HsTn measurements after 2 and 6 hours is expected to be the most cost-effective strategy. Depending on the diagnostic performance of the triple biomarker, this strategy is estimated to reduce costs with €66 to €205 per patient (ie, 3.6%-11.3% reduction). Expert elicitation can be a valuable tool for early health technology assessment to provide an initial estimate of the cost-effectiveness of new tests prior to their implementation in clinical practice. As demonstrated in our case study, improved diagnostic performance of the triple biomarker may have benefits that should be further explored.
Collapse
Affiliation(s)
- Michelle Ma Kip
- MIRA institute for Biomedical Technology and Technical Medicine, department of Health Technology and Services Research, University of Twente, Enschede, Overijssel, The Netherlands
| | - Lotte Mg Steuten
- Fred Hutchinson Cancer Research Center, Seattle, USA.,Panaxea bv, Amsterdam, Noord-Holland, The Netherlands
| | - Hendrik Koffijberg
- MIRA institute for Biomedical Technology and Technical Medicine, department of Health Technology and Services Research, University of Twente, Enschede, Overijssel, The Netherlands
| | - Maarten J IJzerman
- MIRA institute for Biomedical Technology and Technical Medicine, department of Health Technology and Services Research, University of Twente, Enschede, Overijssel, The Netherlands
| | - Ron Kusters
- MIRA institute for Biomedical Technology and Technical Medicine, department of Health Technology and Services Research, University of Twente, Enschede, Overijssel, The Netherlands.,Laboratory for Clinical Chemistry and Haematology, Jeroen Bosch Ziekenhuis, Den Bosch, Noord-Brabant, The Netherlands
| |
Collapse
|
50
|
Tang Z, Shen Q, Xie H, Zhou X, Li J, Feng J, Liu H, Wang W, Zhang S, Ni S. Elevated expression of FABP3 and FABP4 cooperatively correlates with poor prognosis in non-small cell lung cancer (NSCLC). Oncotarget 2018; 7:46253-46262. [PMID: 27323829 PMCID: PMC5216795 DOI: 10.18632/oncotarget.10086] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 05/29/2016] [Indexed: 12/20/2022] Open
Abstract
Fatty acid binding proteins (FABPs) are intracellular lipid-binding proteins that are involved in a variety of biological cellular processes, including tumorigenesis. In this study, we explored the expression pattern of FABP3 and FABP4 in non-small cell lung cancer (NSCLC) as well as their roles in prognosis. We determined mRNA expression of FABP3 and FABP4 in matched pairs of cancerous and non-cancerous fresh frozen tissues from 30 NSCLC patients. Tissue microarray immunohistochemical analysis (TMA-IHC) was applied to determine the protein expression of FABP3 and FABP4 in 281 cancerous and 121 matched adjacent non-cancerous tissue samples. Our results showed that both mRNA and protein expression of FABP3 and FABP4 were significantly higher in cancerous tissues when compared to non-cancerous tissues. Furthermore, high expression of FABP3 or FABP4 in NSCLC was significantly associated with advanced tumor node metastasis (TNM) stage and had a negative impact on the overall survival of NSCLC patients. Concurrent high expression of FABP3 and FABP4 was significantly related to TNM stage. In conclusion, our research demonstrated that high FABP3 or FABP4 expression had strong prognostic value for overall survival in NSCLC. Detection of FABP3 and FABP4 cooperatively was helpful to predict the prognosis of NSCLC.
Collapse
Affiliation(s)
- Zhiyuan Tang
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Qin Shen
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Hao Xie
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Xiaoyu Zhou
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Jun Li
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Jian Feng
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Hua Liu
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Wei Wang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Shu Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Songshi Ni
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| |
Collapse
|