1
|
Thiene G, Basso C, Pilichou K, Bueno Marinas M. Desmosomal Arrhythmogenic Cardiomyopathy: The Story Telling of a Genetically Determined Heart Muscle Disease. Biomedicines 2023; 11:2018. [PMID: 37509658 PMCID: PMC10377062 DOI: 10.3390/biomedicines11072018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The history of arrhythmogenic cardiomyopathy (AC) as a genetically determined desmosomal disease started since the original discovery by Lancisi in a four-generation family, published in 1728. Contemporary history at the University of Padua started with Dalla Volta, who haemodynamically investigated patients with "auricularization" of the right ventricle, and with Nava, who confirmed familiarity. The contemporary knowledge advances consisted of (a) AC as a heart muscle disease with peculiar electrical instability of the right ventricle; (b) the finding of pathological substrates, in keeping with a myocardial dystrophy; (c) the inclusion of AC in the cardiomyopathies classification; (d) AC as the main cause of sudden death in athletes; (e) the discovery of the culprit genes coding proteins of the intercalated disc (desmosome); (f) progression in clinical diagnosis with specific ECG abnormalities, angiocardiography, endomyocardial biopsy, 2D echocardiography, electron anatomic mapping and cardiac magnetic resonance; (g) the discovery of left ventricular AC; (h) prevention of SCD with the invention and application of the lifesaving implantable cardioverter defibrillator and external defibrillator scattered in public places and playgrounds as well as the ineligibility for competitive sport activity for AC patients; (i) genetic screening of the proband family to unmask asymptomatic carriers. Nondesmosomal ACs, with a phenotype overlapping desmosomal AC, are also treated, including genetics: Transmembrane protein 43, SCN5A, Desmin, Phospholamban, Lamin A/C, Filamin C, Cadherin 2, Tight junction protein 1.
Collapse
Affiliation(s)
- Gaetano Thiene
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Medical School, University of Padua, 35121 Padova, Italy
| | - Cristina Basso
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Medical School, University of Padua, 35121 Padova, Italy
| | - Kalliopi Pilichou
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Medical School, University of Padua, 35121 Padova, Italy
| | - Maria Bueno Marinas
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Medical School, University of Padua, 35121 Padova, Italy
| |
Collapse
|
2
|
The Exciting Realities and Possibilities of iPS-Derived Cardiomyocytes. Bioengineering (Basel) 2023; 10:bioengineering10020237. [PMID: 36829731 PMCID: PMC9952364 DOI: 10.3390/bioengineering10020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) have become a prevalent topic after their discovery, advertised as an ethical alternative to embryonic stem cells (ESCs). Due to their ability to differentiate into several kinds of cells, including cardiomyocytes, researchers quickly realized the potential for differentiated cardiomyocytes to be used in the treatment of heart failure, a research area with few alternatives. This paper discusses the differentiation process for human iPSC-derived cardiomyocytes and the possible applications of said cells while answering some questions regarding ethical issues.
Collapse
|
3
|
Arrhythmogenic Right Ventricular Cardiomyopathy. JACC Clin Electrophysiol 2022; 8:533-553. [PMID: 35450611 DOI: 10.1016/j.jacep.2021.12.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 01/21/2023]
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) encompasses a group of conditions characterized by right ventricular fibrofatty infiltration, with a predominant arrhythmic presentation. First described in the late 1970s and early 1980s, it is now frequently recognized to have biventricular involvement. The prevalence is ∼1:2,000 to 1:5,000, depending on geographic location, and it has a slight male predominance. The diagnosis of ARVC is determined on the basis of fulfillment of task force criteria incorporating electrophysiological parameters, cardiac imaging findings, genetic factors, and histopathologic features. Risk stratification of patients with ARVC aims to identify those who are at increased risk of sudden cardiac death or sustained ventricular tachycardia. Factors including age, sex, electrophysiological features, and cardiac imaging investigations all contribute to risk stratification. The current management of ARVC includes exercise restriction, β-blocker therapy, consideration for implantable cardioverter-defibrillator insertion, and catheter ablation. This review summarizes our current understanding of ARVC and provides clinicians with a practical approach to diagnosis and management.
Collapse
|
4
|
Atomic Force Microscopy (AFM) Applications in Arrhythmogenic Cardiomyopathy. Int J Mol Sci 2022; 23:ijms23073700. [PMID: 35409059 PMCID: PMC8998711 DOI: 10.3390/ijms23073700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited heart muscle disorder characterized by progressive replacement of cardiomyocytes by fibrofatty tissue, ventricular dilatation, cardiac dysfunction, arrhythmias, and sudden cardiac death. Interest in molecular biomechanics for these disorders is constantly growing. Atomic force microscopy (AFM) is a well-established technic to study the mechanobiology of biological samples under physiological and pathological conditions at the cellular scale. However, a review which described all the different data that can be obtained using the AFM (cell elasticity, adhesion behavior, viscoelasticity, beating force, and frequency) is still missing. In this review, we will discuss several techniques that highlight the potential of AFM to be used as a tool for assessing the biomechanics involved in ACM. Indeed, analysis of genetically mutated cells with AFM reveal abnormalities of the cytoskeleton, cell membrane structures, and defects of contractility. The higher the Young’s modulus, the stiffer the cell, and it is well known that abnormal tissue stiffness is symptomatic of a range of diseases. The cell beating force and frequency provide information during the depolarization and repolarization phases, complementary to cell electrophysiology (calcium imaging, MEA, patch clamp). In addition, original data is also presented to emphasize the unique potential of AFM as a tool to assess fibrosis in cardiac tissue.
Collapse
|
5
|
Pathology of sudden death, cardiac arrhythmias, and conduction system. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
6
|
Palmisano A, Darvizeh F, Cundari G, Rovere G, Ferrandino G, Nicoletti V, Cilia F, De Vizio S, Palumbo R, Esposito A, Francone M. Advanced cardiac imaging in athlete's heart: unravelling the grey zone between physiologic adaptation and pathology. LA RADIOLOGIA MEDICA 2021; 126:1518-1531. [PMID: 34420142 PMCID: PMC8380417 DOI: 10.1007/s11547-021-01411-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/06/2021] [Indexed: 12/11/2022]
Abstract
Over the last decades, interest toward athlete's heart has progressively increased, leading to improve the knowledge on exercise-induced heart modifications. Sport may act as a trigger for life-threatening arrhythmias in patients with structural or electrical abnormalities, hence requiring to improve the diagnostic capability to differentiate physiological from pathological remodeling. Pathological alterations are often subtle at the initial stages; therefore, the challenge is to promptly identify athletes at risk of sudden cardiac death during the pre-participation screening protocols. Advanced imaging modalities such as coronary computed tomography angiography (CCTA) and cardiac magnetic resonance (CMR) can non-invasively depict coronary vessels and provide a deep morpho-functional and structural characterization of the myocardium, in order to rule out pathological life threatening alterations, which may overlap with athletes' heart remodeling. The purpose of the present narrative review is to provide an overview of most frequent diagnostic challenges, defining the boundaries between athlete's heart remodeling and pathological structural alteration with a focus on the role and importance of CCTA and CMR.
Collapse
Affiliation(s)
- Anna Palmisano
- Experimental Imaging Center, Radiology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Fatemeh Darvizeh
- Experimental Imaging Center, Radiology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Giulia Cundari
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Rovere
- Department of Radiological and Hematological Sciences -Section of Radiology, Università Cattolica Sacro Cuore, Fondazione, Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | | | - Valeria Nicoletti
- Experimental Imaging Center, Radiology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco Cilia
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Silvia De Vizio
- Department of Radiological and Hematological Sciences -Section of Radiology, Università Cattolica Sacro Cuore, Fondazione, Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Roberto Palumbo
- School of Radiology, Campus BioMedico Univerisity, Rome, Italy
| | - Antonio Esposito
- Experimental Imaging Center, Radiology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy.
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy.
| | - Marco Francone
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
7
|
Abstract
It has been nearly 15 years since the discovery of human-induced pluripotent stem cells (iPSCs). During this time, differentiation methods to targeted cells have dramatically improved, and many types of cells in the human body can be currently generated at high efficiency. In the cardiovascular field, the ability to generate human cardiomyocytes in vitro with the same genetic background as patients has provided a great opportunity to investigate human cardiovascular diseases at the cellular level to clarify the molecular mechanisms underlying the diseases and discover potential therapeutics. Additionally, iPSC-derived cardiomyocytes have provided a powerful platform to study drug-induced cardiotoxicity and identify patients at high risk for the cardiotoxicity; thus, accelerating personalized precision medicine. Moreover, iPSC-derived cardiomyocytes can be sources for cardiac cell therapy. Here, we review these achievements and discuss potential improvements for the future application of iPSC technology in cardiovascular diseases.
Collapse
|
8
|
Marian AJ, Asatryan B, Wehrens XHT. Genetic basis and molecular biology of cardiac arrhythmias in cardiomyopathies. Cardiovasc Res 2021; 116:1600-1619. [PMID: 32348453 DOI: 10.1093/cvr/cvaa116] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/09/2020] [Accepted: 04/21/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiac arrhythmias are common, often the first, and sometimes the life-threatening manifestations of hereditary cardiomyopathies. Pathogenic variants in several genes known to cause hereditary cardiac arrhythmias have also been identified in the sporadic cases and small families with cardiomyopathies. These findings suggest a shared genetic aetiology of a subset of hereditary cardiomyopathies and cardiac arrhythmias. The concept of a shared genetic aetiology is in accord with the complex and exquisite interplays that exist between the ion currents and cardiac mechanical function. However, neither the causal role of cardiac arrhythmias genes in cardiomyopathies is well established nor the causal role of cardiomyopathy genes in arrhythmias. On the contrary, secondary changes in ion currents, such as post-translational modifications, are common and contributors to the pathogenesis of arrhythmias in cardiomyopathies through altering biophysical and functional properties of the ion channels. Moreover, structural changes, such as cardiac hypertrophy, dilatation, and fibrosis provide a pro-arrhythmic substrate in hereditary cardiomyopathies. Genetic basis and molecular biology of cardiac arrhythmias in hereditary cardiomyopathies are discussed.
Collapse
Affiliation(s)
- Ali J Marian
- Department of Medicine, Center for Cardiovascular Genetics, Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston, 6770 Bertner Street, Suite C900A, Houston, TX 77030, USA
| | - Babken Asatryan
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Xander H T Wehrens
- Department of Biophysics and Molecular Physiology, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
9
|
Rouhi L, Fan S, Cheedipudi SM, Braza-Boïls A, Molina MS, Yao Y, Robertson MJ, Coarfa C, Gimeno JR, Molina P, Gurha P, Zorio E, Marian AJ. The EP300/TP53 pathway, a suppressor of the Hippo and canonical WNT pathways, is activated in human hearts with arrhythmogenic cardiomyopathy in the absence of overt heart failure. Cardiovasc Res 2021; 118:1466-1478. [PMID: 34132777 DOI: 10.1093/cvr/cvab197] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/07/2021] [Accepted: 06/14/2021] [Indexed: 12/21/2022] Open
Abstract
AIM Arrhythmogenic cardiomyopathy (ACM) is a primary myocardial disease that typically manifests with cardiac arrhythmias, progressive heart failure and sudden cardiac death (SCD). ACM is mainly caused by mutations in genes encoding desmosome proteins. Desmosomes are cell-cell adhesion structures and hubs for mechanosensing and mechanotransduction. The objective was to identify the dysregulated molecular and biological pathways in human ACM in the absence of overt heart failure. METHODS AND RESULTS Transcriptomes in the right ventricular endomyocardial biopsy samples from three independent individuals carrying truncating mutations in the DSP gene and 5 control samples were analyzed by RNA-Seq (discovery group). These cases presented with cardiac arrhythmias and had a normal right ventricular function. The RNA-Seq analysis identified ∼5,000 differentially expressed genes (DEGs), which predicted suppression of the Hippo and canonical WNT pathways, among others.Dysregulated genes and pathways, identified by RNA-Seq, were tested for validation in the right and left ventricular tissues from 5 independent autopsy-confirmed ACM cases with defined mutations (validation group), who were victims of SCD and had no history of heart failure. Protein levels and nuclear localization of the cWNT and Hippo pathway transcriptional regulators were reduced in the right and left ventricular validation samples. In contrast, levels of acetyltransferase EP300, known to suppress the Hippo and canonical WNT pathways, were increased and its bona fide target TP53 was acetylated. RNA-Seq data identified apical junction, reflective of cell-cell attachment, as the most disrupted biological pathway, which was corroborated by disrupted desmosomes and intermediate filament structures. Moreover, the DEGs also predicted dysregulation of over a dozen canonical signal transduction pathways, including the Tec kinase and integrin signaling pathways. The changes were associated with increased apoptosis and fibro-adipogenesis in the ACM hearts. CONCLUSION Altered apical junction structures is associated with activation of the EP300-TP53 and suppression of the Hippo/cWNT pathways in human ACM caused by defined mutations in the absence of an overt heart failure. The findings implicate altered mechanotransduction in the pathogenesis of ACM. TRANSLATIONAL PERSPECTIVE The findings suggest that altered mechanosensing at the cell-cell junction instigates a cascade of molecular events through the activation of acetyltransferase EP300/TP53 and suppression of gene expression through the Hippo/canonical WNT pathways in human arrhythmogenic cardiomyopathy (ACM) caused by defined mutations. These molecular changes occur early and in the absence of overt heart failure. Consequently, one may envision cell type-specific interventions to target the dysregulated transcriptional, mechanosensing, and mechanotransduction pathways to prevent the evolving phenotype in human ACM.
Collapse
Affiliation(s)
- Leila Rouhi
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston, Texas, 77030
| | - Siyang Fan
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston, Texas, 77030
| | - Sirisha M Cheedipudi
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston, Texas, 77030
| | - Aitana Braza-Boïls
- Unidad de Cardiopatías Familiares, Muerte Súbita y Mecanismos de Enfermedad (CaFaMuSMe)., Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Center for Biomedical Network Research on Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Maria Sabater Molina
- Cardiogenetic Laboratory, Instituto Murciano de Investigación Biosanitaria. Murcia. Spain
| | - Yan Yao
- Fuwai Hospital, Peking Union Medical College, Beijing, PR China
| | | | - Cristian Coarfa
- Department of Cell Biology. Baylor College of Medicine, Houston, TX, 77030
| | - Juan R Gimeno
- Center for Biomedical Network Research on Cardiovascular Diseases (CIBERCV), Madrid, Spain.,Unidad CSUR Cardiopatias Familiares, Hospital Universitario Virgen de la Arrixaca. Murcia
| | - Pilar Molina
- Unidad de Cardiopatías Familiares, Muerte Súbita y Mecanismos de Enfermedad (CaFaMuSMe)., Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Instituto de Medicina Legal y Ciencias Forenses de Valencia, and Histology Unit at the Universitat de València, Spain
| | - Priyatansh Gurha
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston, Texas, 77030
| | - Esther Zorio
- Unidad de Cardiopatías Familiares, Muerte Súbita y Mecanismos de Enfermedad (CaFaMuSMe)., Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Center for Biomedical Network Research on Cardiovascular Diseases (CIBERCV), Madrid, Spain.,Unidad de Cardiopatías Familiares, Servicio de Cardiología, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - A J Marian
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston, Texas, 77030
| |
Collapse
|
10
|
Crea F. Challenges in heart failure: quality of life, chronic kidney disease, and secondary mitral regurgitation. Eur Heart J 2021; 42:1185-1189. [PMID: 33792670 DOI: 10.1093/eurheartj/ehab154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Filippo Crea
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
11
|
Ren J, Tsilafakis K, Chen L, Lekkos K, Kostavasili I, Varela A, Cokkinos DV, Davos CH, Sun X, Song J, Mavroidis M. Crosstalk between coagulation and complement activation promotes cardiac dysfunction in arrhythmogenic right ventricular cardiomyopathy. Theranostics 2021; 11:5939-5954. [PMID: 33897891 PMCID: PMC8058736 DOI: 10.7150/thno.58160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
Aims: We previously found that complement components are upregulated in the myocardium of patients with arrhythmogenic right ventricular cardiomyopathy (ARVC), and inhibiting the complement receptor C5aR reduces disease severity in desmin knockout (Des-/- ) mice, a model for ARVC. Here, we examined the mechanism underlying complement activation in ARVC, revealing a potential new therapeutic target. Methods: First, immunostaining, RT-PCR and western blot were used to detect the expression levels of complement and coagulation factors. Second, we knocked out the central complement component C3 in Des-/- mice (ARVC model) by crossing Des-/- mice with C3-/- mice to explore whether complement system activation occurs independently of the conventional pathway. Then, we evaluated whether a targeted intervention to coagulation system is effective to reduce myocardium injury. Finally, the plasma sC5b9 level was assessed to investigate the role in predicting adverse cardiac events in the ARVC cohort. Results: The complement system is activated in the myocardium in ARVC. Autoantibodies against myocardial proteins provided a possible mechanism underlying. Moreover, we found increased levels of myocardial C5 and the serum C5a in Des-/-C3-/- mice compared to wild-type mice, indicating that C5 is activated independently from the conventional pathway, presumably via the coagulation system. Crosstalk between the complement and coagulation systems exacerbated the myocardial injury in ARVC mice, and this injury was reduced by using the thrombin inhibitor lepirudin. In addition, we found significantly elevated plasma levels of sC5b9 and thrombin in patients, and this increase was correlated with all-cause mortality. Conclusions: These results suggest that crosstalk between the coagulation and complement systems plays a pathogenic role in cardiac dysfunction in ARVC. Thus, understanding this crosstalk may have important clinical implications with respect to diagnosing and treating ARVC.
Collapse
Affiliation(s)
- Jie Ren
- Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | | | - Liang Chen
- Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Konstantinos Lekkos
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Ioanna Kostavasili
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Aimilia Varela
- Clinical, Experimental Surgery & Translational Research Center, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Dennis V. Cokkinos
- Clinical, Experimental Surgery & Translational Research Center, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Constantinos H. Davos
- Clinical, Experimental Surgery & Translational Research Center, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Xiaogang Sun
- Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Jiangping Song
- Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Manolis Mavroidis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| |
Collapse
|
12
|
Beffagna G, Sommariva E, Bellin M. Mechanotransduction and Adrenergic Stimulation in Arrhythmogenic Cardiomyopathy: An Overview of in vitro and in vivo Models. Front Physiol 2020; 11:568535. [PMID: 33281612 PMCID: PMC7689294 DOI: 10.3389/fphys.2020.568535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/19/2020] [Indexed: 01/09/2023] Open
Abstract
Arrhythmogenic Cardiomyopathy (AC) is a rare inherited heart disease, manifesting with progressive myocardium degeneration and dysfunction, and life-threatening arrhythmic events that lead to sudden cardiac death. Despite genetic determinants, most of AC patients admitted to hospital are athletes or very physically active people, implying the existence of other disease-causing factors. It is recognized that AC phenotypes are enhanced and triggered by strenuous physical activity, while excessive mechanical stretch and load, and repetitive adrenergic stimulation are mechanisms influencing disease penetrance. Different approaches have been undertaken to recapitulate and study both mechanotransduction and adrenergic signaling in AC, including the use of in vitro cellular and tissue models, and the development of in vivo models (particularly rodents but more recently also zebrafish). However, it remains challenging to reproduce mechanical load stimuli and physical activity in laboratory experimental settings. Thus, more work to drive the innovation of advanced AC models is needed to recapitulate these subtle physiological influences. Here, we review the state-of-the-art in this field both in clinical and laboratory-based modeling scenarios. Specific attention will be focused on highlighting gaps in the knowledge and how they may be resolved by utilizing novel research methodology.
Collapse
Affiliation(s)
- Giorgia Beffagna
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy.,Department of Biology, University of Padua, Padua, Italy
| | - Elena Sommariva
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Milena Bellin
- Department of Biology, University of Padua, Padua, Italy.,Veneto Institute of Molecular Medicine, Padua, Italy.,Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
13
|
Chen L, Song J, Chen X, Chen K, Ren J, Zhang N, Rao M, Hu Z, Zhang Y, Gu M, Zhao H, Tang H, Yang Z, Hu S. A novel genotype-based clinicopathology classification of arrhythmogenic cardiomyopathy provides novel insights into disease progression. Eur Heart J 2020; 40:1690-1703. [PMID: 30945739 DOI: 10.1093/eurheartj/ehz172] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/23/2018] [Accepted: 03/17/2019] [Indexed: 11/13/2022] Open
Abstract
AIMS Arrhythmogenic cardiomyopathy (AC) shows large heterogeneity in its clinical, genetic, and pathological presentation. This study aims to provide a comprehensive atlas of end-stage AC and illustrate the relationships among clinical characteristics, genotype, and pathological profiles of patients with this disease. METHODS AND RESULTS We collected 60 explanted AC hearts and performed standard pathology examinations. The clinical characteristics of patients, their genotype and cardiac magnetic resonance imaging findings were assessed along with pathological characteristics. Masson staining of six representative sections of each heart were performed. Digital pathology combined with image segmentation was developed to calculate distribution of myocardium, fibrosis, and adipose tissue. An unsupervised clustering based on fibrofatty distribution containing four subtypes was constructed. Patients in Cluster 1 mainly carried desmosomal mutations (except for desmoplakin) and were subjected to transplantation at early age; this group was consistent with classical 'desmosomal cardiomyopathy'. Cluster 2 mostly had non-desmosomal mutations and showed regional fibrofatty replacement in right ventricle. Patients in Cluster 3 showed parallel progression, and included patients with desmoplakin mutations. Cluster 4 is typical left-dominant AC, although the genetic background of these patients is not yet clear. Multivariate regression analysis revealed precordial QRS voltage as an independent indicator of the residual myocardium of right ventricle, which was validated in predicting death and transplant events in the validation cohort (n = 92). CONCLUSION This study provides a novel classification of AC with distinct genetic backgrounds indicating different potential pathogenesis. Cluster 1 is distinct in genotype and clinicopathology and can be defined as 'desmosomal cardiomyopathy'. Precordial QRS amplitude is an independent indicator reflecting the right ventricular remodelling, which may be able to predict transplant/death events for AC patients.
Collapse
Affiliation(s)
- Liang Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, China
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, China
| | - Xiao Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, China.,Department of Pathology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kai Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, China
| | - Jie Ren
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, China
| | - Ningning Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, China
| | - Man Rao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, China
| | - Zhenliang Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, China
| | - Yan Zhang
- Department of Radiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Gu
- The Cardiac Arrhythmia Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Zhao
- Department of Pathology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hanwei Tang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, China
| | - Zhongfa Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, China
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, China
| |
Collapse
|
14
|
Miles C, Finocchiaro G, Papadakis M, Gray B, Westaby J, Ensam B, Basu J, Parry-Williams G, Papatheodorou E, Paterson C, Malhotra A, Robertus JL, Ware JS, Cook SA, Asimaki A, Witney A, Ster IC, Tome M, Sharma S, Behr ER, Sheppard MN. Sudden Death and Left Ventricular Involvement in Arrhythmogenic Cardiomyopathy. Circulation 2020; 139:1786-1797. [PMID: 30700137 PMCID: PMC6467560 DOI: 10.1161/circulationaha.118.037230] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Arrhythmogenic cardiomyopathy (ACM) is an inherited heart muscle disorder characterized by myocardial fibrofatty replacement and an increased risk of sudden cardiac death (SCD). Originally described as a right ventricular disease, ACM is increasingly recognized as a biventricular entity. We evaluated pathological, genetic, and clinical associations in a large SCD cohort. METHODS We investigated 5205 consecutive cases of SCD referred to a national cardiac pathology center between 1994 and 2018. Hearts and tissue blocks were examined by expert cardiac pathologists. After comprehensive histological evaluation, 202 cases (4%) were diagnosed with ACM. Of these, 15 (7%) were diagnosed antemortem with dilated cardiomyopathy (n=8) or ACM (n=7). Previous symptoms, medical history, circumstances of death, and participation in competitive sport were recorded. Postmortem genetic testing was undertaken in 24 of 202 (12%). Rare genetic variants were classified according to American College of Medical Genetics and Genomics criteria. RESULTS Of 202 ACM decedents (35.4±13.2 years; 82% male), no previous cardiac symptoms were reported in 157 (78%). Forty-one decedents (41/202; 20%) had been participants in competitive sport. The adjusted odds of dying during physical exertion were higher in men than in women (odds ratio, 4.58; 95% CI, 1.54-13.68; P=0.006) and in competitive athletes in comparison with nonathletes (odds ratio, 16.62; 95% CI, 5.39-51.24; P<0.001). None of the decedents with an antemortem diagnosis of dilated cardiomyopathy fulfilled definite 2010 Task Force criteria. The macroscopic appearance of the heart was normal in 40 of 202 (20%) cases. There was left ventricular histopathologic involvement in 176 of 202 (87%). Isolated right ventricular disease was seen in 13%, isolated left ventricular disease in 17%, and biventricular involvement in 70%. Among whole hearts, the most common areas of fibrofatty infiltration were the left ventricular posterobasal (68%) and anterolateral walls (58%). Postmortem genetic testing yielded pathogenic variants in ACM-related genes in 6 of 24 (25%) decedents. CONCLUSIONS SCD attributable to ACM affects men predominantly, most commonly occurring during exertion in athletic individuals in the absence of previous reported cardiac symptoms. Left ventricular involvement is observed in the vast majority of SCD cases diagnosed with ACM at autopsy. Current Task Force criteria may fail to diagnose biventricular ACM before death.
Collapse
Affiliation(s)
- Chris Miles
- Cardiology Clinical Academic Group, St George's University Hospitals' NHS Foundation Trust and Molecular and Clinical Sciences Institute, St George's University of London, United Kingdom (C.M., G.F., M.P., B.G., J.W., B.E., J.B., G.P.-W., E.P. C.P., A.M., A.A., M.T., S.S., E.R.B., M.N.S.)
| | - Gherardo Finocchiaro
- Cardiology Clinical Academic Group, St George's University Hospitals' NHS Foundation Trust and Molecular and Clinical Sciences Institute, St George's University of London, United Kingdom (C.M., G.F., M.P., B.G., J.W., B.E., J.B., G.P.-W., E.P. C.P., A.M., A.A., M.T., S.S., E.R.B., M.N.S.)
| | - Michael Papadakis
- Cardiology Clinical Academic Group, St George's University Hospitals' NHS Foundation Trust and Molecular and Clinical Sciences Institute, St George's University of London, United Kingdom (C.M., G.F., M.P., B.G., J.W., B.E., J.B., G.P.-W., E.P. C.P., A.M., A.A., M.T., S.S., E.R.B., M.N.S.)
| | - Belinda Gray
- Cardiology Clinical Academic Group, St George's University Hospitals' NHS Foundation Trust and Molecular and Clinical Sciences Institute, St George's University of London, United Kingdom (C.M., G.F., M.P., B.G., J.W., B.E., J.B., G.P.-W., E.P. C.P., A.M., A.A., M.T., S.S., E.R.B., M.N.S.)
| | - Joseph Westaby
- Cardiology Clinical Academic Group, St George's University Hospitals' NHS Foundation Trust and Molecular and Clinical Sciences Institute, St George's University of London, United Kingdom (C.M., G.F., M.P., B.G., J.W., B.E., J.B., G.P.-W., E.P. C.P., A.M., A.A., M.T., S.S., E.R.B., M.N.S.)
| | - Bode Ensam
- Cardiology Clinical Academic Group, St George's University Hospitals' NHS Foundation Trust and Molecular and Clinical Sciences Institute, St George's University of London, United Kingdom (C.M., G.F., M.P., B.G., J.W., B.E., J.B., G.P.-W., E.P. C.P., A.M., A.A., M.T., S.S., E.R.B., M.N.S.)
| | - Joyee Basu
- Cardiology Clinical Academic Group, St George's University Hospitals' NHS Foundation Trust and Molecular and Clinical Sciences Institute, St George's University of London, United Kingdom (C.M., G.F., M.P., B.G., J.W., B.E., J.B., G.P.-W., E.P. C.P., A.M., A.A., M.T., S.S., E.R.B., M.N.S.)
| | - Gemma Parry-Williams
- Cardiology Clinical Academic Group, St George's University Hospitals' NHS Foundation Trust and Molecular and Clinical Sciences Institute, St George's University of London, United Kingdom (C.M., G.F., M.P., B.G., J.W., B.E., J.B., G.P.-W., E.P. C.P., A.M., A.A., M.T., S.S., E.R.B., M.N.S.)
| | - Efstathios Papatheodorou
- Cardiology Clinical Academic Group, St George's University Hospitals' NHS Foundation Trust and Molecular and Clinical Sciences Institute, St George's University of London, United Kingdom (C.M., G.F., M.P., B.G., J.W., B.E., J.B., G.P.-W., E.P. C.P., A.M., A.A., M.T., S.S., E.R.B., M.N.S.)
| | - Casey Paterson
- Cardiology Clinical Academic Group, St George's University Hospitals' NHS Foundation Trust and Molecular and Clinical Sciences Institute, St George's University of London, United Kingdom (C.M., G.F., M.P., B.G., J.W., B.E., J.B., G.P.-W., E.P. C.P., A.M., A.A., M.T., S.S., E.R.B., M.N.S.)
| | - Aneil Malhotra
- Cardiology Clinical Academic Group, St George's University Hospitals' NHS Foundation Trust and Molecular and Clinical Sciences Institute, St George's University of London, United Kingdom (C.M., G.F., M.P., B.G., J.W., B.E., J.B., G.P.-W., E.P. C.P., A.M., A.A., M.T., S.S., E.R.B., M.N.S.)
| | - Jan Lukas Robertus
- Department of Pathology, Royal Brompton and Harefield NHS Foundation Trust, Imperial College London, United Kingdom (J.L.R.)
| | - James S Ware
- National Heart and Lung Institute & MRC London Institute of Medical Sciences, Imperial College London, and Royal Brompton and Harefield NHS Foundation Trust, United Kingdom (J.S.W., S.A.C.)
| | - Stuart A Cook
- National Heart and Lung Institute & MRC London Institute of Medical Sciences, Imperial College London, and Royal Brompton and Harefield NHS Foundation Trust, United Kingdom (J.S.W., S.A.C.)
| | - Angeliki Asimaki
- Cardiology Clinical Academic Group, St George's University Hospitals' NHS Foundation Trust and Molecular and Clinical Sciences Institute, St George's University of London, United Kingdom (C.M., G.F., M.P., B.G., J.W., B.E., J.B., G.P.-W., E.P. C.P., A.M., A.A., M.T., S.S., E.R.B., M.N.S.)
| | - Adam Witney
- Institute of Infection and Immunity, St George's University of London, United Kingdom (A.W., I.C.S.)
| | - Irina Chis Ster
- Institute of Infection and Immunity, St George's University of London, United Kingdom (A.W., I.C.S.)
| | - Maite Tome
- Cardiology Clinical Academic Group, St George's University Hospitals' NHS Foundation Trust and Molecular and Clinical Sciences Institute, St George's University of London, United Kingdom (C.M., G.F., M.P., B.G., J.W., B.E., J.B., G.P.-W., E.P. C.P., A.M., A.A., M.T., S.S., E.R.B., M.N.S.)
| | - Sanjay Sharma
- Cardiology Clinical Academic Group, St George's University Hospitals' NHS Foundation Trust and Molecular and Clinical Sciences Institute, St George's University of London, United Kingdom (C.M., G.F., M.P., B.G., J.W., B.E., J.B., G.P.-W., E.P. C.P., A.M., A.A., M.T., S.S., E.R.B., M.N.S.)
| | - Elijah R Behr
- Cardiology Clinical Academic Group, St George's University Hospitals' NHS Foundation Trust and Molecular and Clinical Sciences Institute, St George's University of London, United Kingdom (C.M., G.F., M.P., B.G., J.W., B.E., J.B., G.P.-W., E.P. C.P., A.M., A.A., M.T., S.S., E.R.B., M.N.S.)
| | - Mary N Sheppard
- Cardiology Clinical Academic Group, St George's University Hospitals' NHS Foundation Trust and Molecular and Clinical Sciences Institute, St George's University of London, United Kingdom (C.M., G.F., M.P., B.G., J.W., B.E., J.B., G.P.-W., E.P. C.P., A.M., A.A., M.T., S.S., E.R.B., M.N.S.)
| |
Collapse
|
15
|
Rizzo S, Carturan E, De Gaspari M, Pilichou K, Thiene G, Basso C. Update on cardiomyopathies and sudden cardiac death. Forensic Sci Res 2019; 4:202-210. [PMID: 31489386 PMCID: PMC6713087 DOI: 10.1080/20961790.2019.1631957] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
Sudden cardiac death (SCD) remains a leading mode of death in western countries. Since SCD can be the first and last clinical presentation of the underlying disease, autopsy could be the only medical examination available for early diagnosis and it should be performed according to the guidelines of the Association for European Cardiovascular Pathology. Although the vast majority of SCD are due to coronary artery disease, non-ischemic causes of SCD do exist and are prevalent in young people with structural (i.e. arrhythmogenic, hypertrophic and inflammatory cardiomyopathy) and non-structural (ion channel diseases) cardiomyopathies, accounting for up to one half of cases. A standardized autopsy protocol, in combination with blood sampling to ensure feasibility of postmortem molecular testing if needed, is mandatory. The pathologist is called to provide the correct diagnosis and to advice the relatives on the need of a cascade clinical and genetic screening in the presence of a heredo-familial disease.
Collapse
Affiliation(s)
- Stefania Rizzo
- Cardiovascular Pathology, Department of Cardio-Thoracic-Vascular Sciences & Public Health and Azienda Ospedaliera, University of Padua Medical School, Padua, Italy
| | - Elisa Carturan
- Cardiovascular Pathology, Department of Cardio-Thoracic-Vascular Sciences & Public Health and Azienda Ospedaliera, University of Padua Medical School, Padua, Italy
| | - Monica De Gaspari
- Cardiovascular Pathology, Department of Cardio-Thoracic-Vascular Sciences & Public Health and Azienda Ospedaliera, University of Padua Medical School, Padua, Italy
| | - Kalliopi Pilichou
- Cardiovascular Pathology, Department of Cardio-Thoracic-Vascular Sciences & Public Health and Azienda Ospedaliera, University of Padua Medical School, Padua, Italy
| | - Gaetano Thiene
- Cardiovascular Pathology, Department of Cardio-Thoracic-Vascular Sciences & Public Health and Azienda Ospedaliera, University of Padua Medical School, Padua, Italy
| | - Cristina Basso
- Cardiovascular Pathology, Department of Cardio-Thoracic-Vascular Sciences & Public Health and Azienda Ospedaliera, University of Padua Medical School, Padua, Italy
| |
Collapse
|
16
|
Giuliodori A, Beffagna G, Marchetto G, Fornetto C, Vanzi F, Toppo S, Facchinello N, Santimaria M, Vettori A, Rizzo S, Della Barbera M, Pilichou K, Argenton F, Thiene G, Tiso N, Basso C. Loss of cardiac Wnt/β-catenin signalling in desmoplakin-deficient AC8 zebrafish models is rescuable by genetic and pharmacological intervention. Cardiovasc Res 2019. [PMID: 29522173 DOI: 10.1093/cvr/cvy057] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aims Arrhythmogenic cardiomyopathy (AC) is an inherited heart disease characterized by life-threatening ventricular arrhythmias and fibro-fatty replacement of the myocardium. More than 60% of AC patients show pathogenic mutations in genes encoding for desmosomal proteins. By focusing our attention on the AC8 form, linked to the junctional protein desmoplakin (DSP), we present here a zebrafish model of DSP deficiency, exploited to identify early changes of cell signalling in the cardiac region. Methods and results To obtain an embryonic model of Dsp deficiency, we first confirmed the orthologous correspondence of zebrafish Dsp genes (dspa and dspb) to the human DSP counterpart. Then, we verified their cardiac expression, at embryonic and adult stages, and subsequently we targeted them by antisense morpholino strategy, confirming specific and disruptive effects on desmosomes, like those identified in AC patients. Finally, we exploited our Dsp-deficient models for an in vivo cell signalling screen, using pathway-specific reporter transgenes. Out of nine considered, three pathways (Wnt/β-catenin, TGFβ/Smad3, and Hippo/YAP-TAZ) were significantly altered, with Wnt as the most dramatically affected. Interestingly, under persistent Dsp deficiency, Wnt signalling is rescuable both by a genetic and a pharmacological approach. Conclusion Our data point to Wnt/β-catenin as the final common pathway underlying different desmosomal AC forms and support the zebrafish as a suitable model for detecting early signalling pathways involved in the pathogenesis of DSP-associated diseases, possibly responsive to pharmacological or genetic rescue.
Collapse
Affiliation(s)
- Alice Giuliodori
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, via A. Gabelli, 61, Padova 35121, Italy
| | - Giorgia Beffagna
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, via A. Gabelli, 61, Padova 35121, Italy
| | - Giulia Marchetto
- European Laboratory for Non-Linear Spectroscopy, via N. Carrara, 1, Sesto Fiorentino (FI) 50019, Italy
| | - Chiara Fornetto
- European Laboratory for Non-Linear Spectroscopy, via N. Carrara, 1, Sesto Fiorentino (FI) 50019, Italy
| | - Francesco Vanzi
- European Laboratory for Non-Linear Spectroscopy, via N. Carrara, 1, Sesto Fiorentino (FI) 50019, Italy.,Department of Biology, University of Florence, via Madonna del Piano, 6, Sesto Fiorentino (FI) 50019, Italy
| | - Stefano Toppo
- Department of Molecular Medicine University of Padova, viale G. Colombo, 3, Padova 35131, Italy; and
| | - Nicola Facchinello
- Department of Biology, University of Padova, via U. Bassi, 58/B, Padova 35131, Italy
| | - Mattia Santimaria
- Department of Biology, University of Padova, via U. Bassi, 58/B, Padova 35131, Italy
| | - Andrea Vettori
- Department of Biology, University of Padova, via U. Bassi, 58/B, Padova 35131, Italy
| | - Stefania Rizzo
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, via A. Gabelli, 61, Padova 35121, Italy
| | - Mila Della Barbera
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, via A. Gabelli, 61, Padova 35121, Italy
| | - Kalliopi Pilichou
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, via A. Gabelli, 61, Padova 35121, Italy
| | - Francesco Argenton
- Department of Biology, University of Padova, via U. Bassi, 58/B, Padova 35131, Italy
| | - Gaetano Thiene
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, via A. Gabelli, 61, Padova 35121, Italy
| | - Natascia Tiso
- Department of Biology, University of Padova, via U. Bassi, 58/B, Padova 35131, Italy
| | - Cristina Basso
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, via A. Gabelli, 61, Padova 35121, Italy
| |
Collapse
|
17
|
Chen SN, Taylor M, Mestroni L. Unraveling Missing Genes and Missing Inheritance in Arrhythmogenic Cardiomyopathy. Circ Arrhythm Electrophysiol 2019; 10:CIRCEP.117.005813. [PMID: 29038109 DOI: 10.1161/circep.117.005813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 11/16/2022]
Affiliation(s)
- Suet Nee Chen
- From the Cardiovascular Institute, University of Colorado and Adult Medical Genetics, Aurora
| | - Matthew Taylor
- From the Cardiovascular Institute, University of Colorado and Adult Medical Genetics, Aurora
| | - Luisa Mestroni
- From the Cardiovascular Institute, University of Colorado and Adult Medical Genetics, Aurora.
| |
Collapse
|
18
|
Muresan L, Cismaru G, Martins RP, Bataglia A, Rosu R, Puiu M, Gusetu G, Mada RO, Muresan C, Ispas DR, Le Bouar R, Diene LL, Rugina E, Levy J, Klein C, Sellal JM, Poull IM, Laurent G, de Chillou C. Recommendations for the use of electrophysiological study: Update 2018. Hellenic J Cardiol 2018; 60:82-100. [PMID: 30278230 DOI: 10.1016/j.hjc.2018.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 08/31/2018] [Accepted: 09/24/2018] [Indexed: 12/16/2022] Open
Abstract
The field of cardiac electrophysiology has greatly developed during the past decades. Consequently, the use of electrophysiological studies (EPSs) in clinical practice has also significantly augmented, with a progressively increasing number of certified electrophysiology centers and specialists. Since Zipes et al published the Guidelines for Clinical Intracardiac Electrophysiology and Catheter Ablation Procedures in 1995, no official document summarizing current EPS indications has been published. The current paper focuses on summarizing all relevant data of the role of EPS in patients with different types of cardiac pathologies and provides up-to-date recommendations on this topic. For this purpose, the PubMed database was screened for relevant articles in English up to December 2018 and ESC and ACC/AHA Clinical Practice Guidelines, and EHRA/HRS/APHRS position statements related to the current topic were analyzed. Current recommendations for the use of EPS in clinical practice are discussed and presented in 17 distinct cardiac pathologies. A short rationale, evidence, and indications are provided for each cardiac disease/group of diseases. In conclusion, because of its capability to establish a diagnosis in patients with a variety of cardiac pathologies, the EPS remains a useful tool in the evaluation of patients with cardiac arrhythmias and conduction disorders and is capable of establishing indications for cardiac device implantation and guide catheter ablation procedures.
Collapse
Affiliation(s)
- Lucian Muresan
- "Emile Muller" Hospital, Cardiology Department, 68100 Mulhouse, France.
| | - Gabriel Cismaru
- Rehabilitation Hospital, Cardiology Department, 400347 Cluj-Napoca, Romania
| | - Raphaël Pedro Martins
- Centre Hospitalier Universitaire de Rennes, Cardiology Department, 35000 Rennes, France
| | - Alberto Bataglia
- Institut Lorrain du Coeur et des Vaisseaux « Louis Mathieu », Cardiology Department, Electrophysiology Department, 54000 Vandoeuvre-les-Nancy, France
| | - Radu Rosu
- Rehabilitation Hospital, Cardiology Department, 400347 Cluj-Napoca, Romania
| | - Mihai Puiu
- Rehabilitation Hospital, Cardiology Department, 400347 Cluj-Napoca, Romania
| | - Gabriel Gusetu
- Rehabilitation Hospital, Cardiology Department, 400347 Cluj-Napoca, Romania
| | - Razvan Olimpiu Mada
- "Niculae Stancioiu" Heart Institute, Cardiology Department, 400005 Cluj-Napoca, Romania
| | - Crina Muresan
- "Emile Muller" Hospital, Cardiology Department, 68100 Mulhouse, France
| | - Daniel Radu Ispas
- Rehabilitation Hospital, Cardiology Department, 400347 Cluj-Napoca, Romania
| | - Ronan Le Bouar
- "Emile Muller" Hospital, Cardiology Department, 68100 Mulhouse, France
| | | | - Elena Rugina
- "Emile Muller" Hospital, Cardiology Department, 68100 Mulhouse, France
| | - Jacques Levy
- "Emile Muller" Hospital, Cardiology Department, 68100 Mulhouse, France
| | - Cedric Klein
- Centre Hospitalier Universitaire de Lille, Cardiology Department, 59000 Lille, France
| | - Jean Marc Sellal
- Institut Lorrain du Coeur et des Vaisseaux « Louis Mathieu », Cardiology Department, Electrophysiology Department, 54000 Vandoeuvre-les-Nancy, France
| | - Isabelle Magnin Poull
- Institut Lorrain du Coeur et des Vaisseaux « Louis Mathieu », Cardiology Department, Electrophysiology Department, 54000 Vandoeuvre-les-Nancy, France
| | - Gabriel Laurent
- Centre Hospitalier Universitaire de Dijon, Cardiology Department, 21000 Dijon, France
| | - Christian de Chillou
- Institut Lorrain du Coeur et des Vaisseaux « Louis Mathieu », Cardiology Department, Electrophysiology Department, 54000 Vandoeuvre-les-Nancy, France
| |
Collapse
|
19
|
Sramko M, Hoogendoorn JC, Glashan CA, Zeppenfeld K. Advancement in cardiac imaging for treatment of ventricular arrhythmias in structural heart disease. Europace 2018; 21:383-403. [DOI: 10.1093/europace/euy150] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/23/2018] [Indexed: 12/28/2022] Open
Affiliation(s)
- Marek Sramko
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, ZA, Leiden, The Netherlands
| | - Jarieke C Hoogendoorn
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, ZA, Leiden, The Netherlands
| | - Claire A Glashan
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, ZA, Leiden, The Netherlands
| | - Katja Zeppenfeld
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, ZA, Leiden, The Netherlands
| |
Collapse
|
20
|
Abstract
The nonischemic cardiomyopathies are a diverse group of cardiac disorders that frequently cause heart failure and death and are now recognized with increasing frequency. There has been substantial progress in the clinical recognition and understanding of the natural history of these conditions. Well-established and new techniques of cardiac imaging are also helpful in this regard. Basic scientists are elucidating the pathogenesis and pathobiology of individual cardiomyopathies. In this compendium, some of the most important advances in this field are reviewed. Scientific opportunities to enhance further collaborative research to accelerate progress are identified.
Collapse
Affiliation(s)
- Eugene Braunwald
- From the TIMI Study Group, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.
| |
Collapse
|
21
|
Pilichou K, Lazzarini E, Rigato I, Celeghin R, De Bortoli M, Perazzolo Marra M, Cason M, Jongbloed J, Calore M, Rizzo S, Regazzo D, Poloni G, Iliceto S, Daliento L, Delise P, Corrado D, Van Tintelen JP, Thiene G, Rampazzo A, Basso C, Bauce B, Lorenzon A, Occhi G. Large Genomic Rearrangements of Desmosomal Genes in Italian Arrhythmogenic Cardiomyopathy Patients. Circ Arrhythm Electrophysiol 2017; 10:CIRCEP.117.005324. [DOI: 10.1161/circep.117.005324] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/23/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Kalliopi Pilichou
- From the Departments of Cardiac, Thoracic, and Vascular Sciences (K.P., E.L., I.R., R.C., M.P.M., M.C., S.R., S.I., L.D., D.C., G. T., C.B., B.B.) and Medicine (D.R.), University of Padua, Italy; Department of Biology, University of Padua, Italy (M.D.B., M.C., G.P., A.R., A.L., G.O.); University Medical Center Groningen, University of Groningen, The Netherlands (J.J.); Cardiology Division, Casa di Cura Pederzoli, Peschiera del Garda, Italy (P.D.); and Department of Clinical Genetics, University of
| | - Elisabetta Lazzarini
- From the Departments of Cardiac, Thoracic, and Vascular Sciences (K.P., E.L., I.R., R.C., M.P.M., M.C., S.R., S.I., L.D., D.C., G. T., C.B., B.B.) and Medicine (D.R.), University of Padua, Italy; Department of Biology, University of Padua, Italy (M.D.B., M.C., G.P., A.R., A.L., G.O.); University Medical Center Groningen, University of Groningen, The Netherlands (J.J.); Cardiology Division, Casa di Cura Pederzoli, Peschiera del Garda, Italy (P.D.); and Department of Clinical Genetics, University of
| | - Ilaria Rigato
- From the Departments of Cardiac, Thoracic, and Vascular Sciences (K.P., E.L., I.R., R.C., M.P.M., M.C., S.R., S.I., L.D., D.C., G. T., C.B., B.B.) and Medicine (D.R.), University of Padua, Italy; Department of Biology, University of Padua, Italy (M.D.B., M.C., G.P., A.R., A.L., G.O.); University Medical Center Groningen, University of Groningen, The Netherlands (J.J.); Cardiology Division, Casa di Cura Pederzoli, Peschiera del Garda, Italy (P.D.); and Department of Clinical Genetics, University of
| | - Rudy Celeghin
- From the Departments of Cardiac, Thoracic, and Vascular Sciences (K.P., E.L., I.R., R.C., M.P.M., M.C., S.R., S.I., L.D., D.C., G. T., C.B., B.B.) and Medicine (D.R.), University of Padua, Italy; Department of Biology, University of Padua, Italy (M.D.B., M.C., G.P., A.R., A.L., G.O.); University Medical Center Groningen, University of Groningen, The Netherlands (J.J.); Cardiology Division, Casa di Cura Pederzoli, Peschiera del Garda, Italy (P.D.); and Department of Clinical Genetics, University of
| | - Marzia De Bortoli
- From the Departments of Cardiac, Thoracic, and Vascular Sciences (K.P., E.L., I.R., R.C., M.P.M., M.C., S.R., S.I., L.D., D.C., G. T., C.B., B.B.) and Medicine (D.R.), University of Padua, Italy; Department of Biology, University of Padua, Italy (M.D.B., M.C., G.P., A.R., A.L., G.O.); University Medical Center Groningen, University of Groningen, The Netherlands (J.J.); Cardiology Division, Casa di Cura Pederzoli, Peschiera del Garda, Italy (P.D.); and Department of Clinical Genetics, University of
| | - Marina Perazzolo Marra
- From the Departments of Cardiac, Thoracic, and Vascular Sciences (K.P., E.L., I.R., R.C., M.P.M., M.C., S.R., S.I., L.D., D.C., G. T., C.B., B.B.) and Medicine (D.R.), University of Padua, Italy; Department of Biology, University of Padua, Italy (M.D.B., M.C., G.P., A.R., A.L., G.O.); University Medical Center Groningen, University of Groningen, The Netherlands (J.J.); Cardiology Division, Casa di Cura Pederzoli, Peschiera del Garda, Italy (P.D.); and Department of Clinical Genetics, University of
| | - Marco Cason
- From the Departments of Cardiac, Thoracic, and Vascular Sciences (K.P., E.L., I.R., R.C., M.P.M., M.C., S.R., S.I., L.D., D.C., G. T., C.B., B.B.) and Medicine (D.R.), University of Padua, Italy; Department of Biology, University of Padua, Italy (M.D.B., M.C., G.P., A.R., A.L., G.O.); University Medical Center Groningen, University of Groningen, The Netherlands (J.J.); Cardiology Division, Casa di Cura Pederzoli, Peschiera del Garda, Italy (P.D.); and Department of Clinical Genetics, University of
| | - Jan Jongbloed
- From the Departments of Cardiac, Thoracic, and Vascular Sciences (K.P., E.L., I.R., R.C., M.P.M., M.C., S.R., S.I., L.D., D.C., G. T., C.B., B.B.) and Medicine (D.R.), University of Padua, Italy; Department of Biology, University of Padua, Italy (M.D.B., M.C., G.P., A.R., A.L., G.O.); University Medical Center Groningen, University of Groningen, The Netherlands (J.J.); Cardiology Division, Casa di Cura Pederzoli, Peschiera del Garda, Italy (P.D.); and Department of Clinical Genetics, University of
| | - Martina Calore
- From the Departments of Cardiac, Thoracic, and Vascular Sciences (K.P., E.L., I.R., R.C., M.P.M., M.C., S.R., S.I., L.D., D.C., G. T., C.B., B.B.) and Medicine (D.R.), University of Padua, Italy; Department of Biology, University of Padua, Italy (M.D.B., M.C., G.P., A.R., A.L., G.O.); University Medical Center Groningen, University of Groningen, The Netherlands (J.J.); Cardiology Division, Casa di Cura Pederzoli, Peschiera del Garda, Italy (P.D.); and Department of Clinical Genetics, University of
| | - Stefania Rizzo
- From the Departments of Cardiac, Thoracic, and Vascular Sciences (K.P., E.L., I.R., R.C., M.P.M., M.C., S.R., S.I., L.D., D.C., G. T., C.B., B.B.) and Medicine (D.R.), University of Padua, Italy; Department of Biology, University of Padua, Italy (M.D.B., M.C., G.P., A.R., A.L., G.O.); University Medical Center Groningen, University of Groningen, The Netherlands (J.J.); Cardiology Division, Casa di Cura Pederzoli, Peschiera del Garda, Italy (P.D.); and Department of Clinical Genetics, University of
| | - Daniela Regazzo
- From the Departments of Cardiac, Thoracic, and Vascular Sciences (K.P., E.L., I.R., R.C., M.P.M., M.C., S.R., S.I., L.D., D.C., G. T., C.B., B.B.) and Medicine (D.R.), University of Padua, Italy; Department of Biology, University of Padua, Italy (M.D.B., M.C., G.P., A.R., A.L., G.O.); University Medical Center Groningen, University of Groningen, The Netherlands (J.J.); Cardiology Division, Casa di Cura Pederzoli, Peschiera del Garda, Italy (P.D.); and Department of Clinical Genetics, University of
| | - Giulia Poloni
- From the Departments of Cardiac, Thoracic, and Vascular Sciences (K.P., E.L., I.R., R.C., M.P.M., M.C., S.R., S.I., L.D., D.C., G. T., C.B., B.B.) and Medicine (D.R.), University of Padua, Italy; Department of Biology, University of Padua, Italy (M.D.B., M.C., G.P., A.R., A.L., G.O.); University Medical Center Groningen, University of Groningen, The Netherlands (J.J.); Cardiology Division, Casa di Cura Pederzoli, Peschiera del Garda, Italy (P.D.); and Department of Clinical Genetics, University of
| | - Sabino Iliceto
- From the Departments of Cardiac, Thoracic, and Vascular Sciences (K.P., E.L., I.R., R.C., M.P.M., M.C., S.R., S.I., L.D., D.C., G. T., C.B., B.B.) and Medicine (D.R.), University of Padua, Italy; Department of Biology, University of Padua, Italy (M.D.B., M.C., G.P., A.R., A.L., G.O.); University Medical Center Groningen, University of Groningen, The Netherlands (J.J.); Cardiology Division, Casa di Cura Pederzoli, Peschiera del Garda, Italy (P.D.); and Department of Clinical Genetics, University of
| | - Luciano Daliento
- From the Departments of Cardiac, Thoracic, and Vascular Sciences (K.P., E.L., I.R., R.C., M.P.M., M.C., S.R., S.I., L.D., D.C., G. T., C.B., B.B.) and Medicine (D.R.), University of Padua, Italy; Department of Biology, University of Padua, Italy (M.D.B., M.C., G.P., A.R., A.L., G.O.); University Medical Center Groningen, University of Groningen, The Netherlands (J.J.); Cardiology Division, Casa di Cura Pederzoli, Peschiera del Garda, Italy (P.D.); and Department of Clinical Genetics, University of
| | - Pietro Delise
- From the Departments of Cardiac, Thoracic, and Vascular Sciences (K.P., E.L., I.R., R.C., M.P.M., M.C., S.R., S.I., L.D., D.C., G. T., C.B., B.B.) and Medicine (D.R.), University of Padua, Italy; Department of Biology, University of Padua, Italy (M.D.B., M.C., G.P., A.R., A.L., G.O.); University Medical Center Groningen, University of Groningen, The Netherlands (J.J.); Cardiology Division, Casa di Cura Pederzoli, Peschiera del Garda, Italy (P.D.); and Department of Clinical Genetics, University of
| | - Domenico Corrado
- From the Departments of Cardiac, Thoracic, and Vascular Sciences (K.P., E.L., I.R., R.C., M.P.M., M.C., S.R., S.I., L.D., D.C., G. T., C.B., B.B.) and Medicine (D.R.), University of Padua, Italy; Department of Biology, University of Padua, Italy (M.D.B., M.C., G.P., A.R., A.L., G.O.); University Medical Center Groningen, University of Groningen, The Netherlands (J.J.); Cardiology Division, Casa di Cura Pederzoli, Peschiera del Garda, Italy (P.D.); and Department of Clinical Genetics, University of
| | - J. Peter Van Tintelen
- From the Departments of Cardiac, Thoracic, and Vascular Sciences (K.P., E.L., I.R., R.C., M.P.M., M.C., S.R., S.I., L.D., D.C., G. T., C.B., B.B.) and Medicine (D.R.), University of Padua, Italy; Department of Biology, University of Padua, Italy (M.D.B., M.C., G.P., A.R., A.L., G.O.); University Medical Center Groningen, University of Groningen, The Netherlands (J.J.); Cardiology Division, Casa di Cura Pederzoli, Peschiera del Garda, Italy (P.D.); and Department of Clinical Genetics, University of
| | - Gaetano Thiene
- From the Departments of Cardiac, Thoracic, and Vascular Sciences (K.P., E.L., I.R., R.C., M.P.M., M.C., S.R., S.I., L.D., D.C., G. T., C.B., B.B.) and Medicine (D.R.), University of Padua, Italy; Department of Biology, University of Padua, Italy (M.D.B., M.C., G.P., A.R., A.L., G.O.); University Medical Center Groningen, University of Groningen, The Netherlands (J.J.); Cardiology Division, Casa di Cura Pederzoli, Peschiera del Garda, Italy (P.D.); and Department of Clinical Genetics, University of
| | - Alessandra Rampazzo
- From the Departments of Cardiac, Thoracic, and Vascular Sciences (K.P., E.L., I.R., R.C., M.P.M., M.C., S.R., S.I., L.D., D.C., G. T., C.B., B.B.) and Medicine (D.R.), University of Padua, Italy; Department of Biology, University of Padua, Italy (M.D.B., M.C., G.P., A.R., A.L., G.O.); University Medical Center Groningen, University of Groningen, The Netherlands (J.J.); Cardiology Division, Casa di Cura Pederzoli, Peschiera del Garda, Italy (P.D.); and Department of Clinical Genetics, University of
| | - Cristina Basso
- From the Departments of Cardiac, Thoracic, and Vascular Sciences (K.P., E.L., I.R., R.C., M.P.M., M.C., S.R., S.I., L.D., D.C., G. T., C.B., B.B.) and Medicine (D.R.), University of Padua, Italy; Department of Biology, University of Padua, Italy (M.D.B., M.C., G.P., A.R., A.L., G.O.); University Medical Center Groningen, University of Groningen, The Netherlands (J.J.); Cardiology Division, Casa di Cura Pederzoli, Peschiera del Garda, Italy (P.D.); and Department of Clinical Genetics, University of
| | - Barbara Bauce
- From the Departments of Cardiac, Thoracic, and Vascular Sciences (K.P., E.L., I.R., R.C., M.P.M., M.C., S.R., S.I., L.D., D.C., G. T., C.B., B.B.) and Medicine (D.R.), University of Padua, Italy; Department of Biology, University of Padua, Italy (M.D.B., M.C., G.P., A.R., A.L., G.O.); University Medical Center Groningen, University of Groningen, The Netherlands (J.J.); Cardiology Division, Casa di Cura Pederzoli, Peschiera del Garda, Italy (P.D.); and Department of Clinical Genetics, University of
| | - Alessandra Lorenzon
- From the Departments of Cardiac, Thoracic, and Vascular Sciences (K.P., E.L., I.R., R.C., M.P.M., M.C., S.R., S.I., L.D., D.C., G. T., C.B., B.B.) and Medicine (D.R.), University of Padua, Italy; Department of Biology, University of Padua, Italy (M.D.B., M.C., G.P., A.R., A.L., G.O.); University Medical Center Groningen, University of Groningen, The Netherlands (J.J.); Cardiology Division, Casa di Cura Pederzoli, Peschiera del Garda, Italy (P.D.); and Department of Clinical Genetics, University of
| | - Gianluca Occhi
- From the Departments of Cardiac, Thoracic, and Vascular Sciences (K.P., E.L., I.R., R.C., M.P.M., M.C., S.R., S.I., L.D., D.C., G. T., C.B., B.B.) and Medicine (D.R.), University of Padua, Italy; Department of Biology, University of Padua, Italy (M.D.B., M.C., G.P., A.R., A.L., G.O.); University Medical Center Groningen, University of Groningen, The Netherlands (J.J.); Cardiology Division, Casa di Cura Pederzoli, Peschiera del Garda, Italy (P.D.); and Department of Clinical Genetics, University of
| |
Collapse
|
22
|
Wada Y, Ohno S, Aiba T, Horie M. Unique genetic background and outcome of non-Caucasian Japanese probands with arrhythmogenic right ventricular dysplasia/cardiomyopathy. Mol Genet Genomic Med 2017; 5:639-651. [PMID: 29178656 PMCID: PMC5702570 DOI: 10.1002/mgg3.311] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 05/13/2017] [Accepted: 05/16/2017] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) is an inherited cardiomyopathy mainly caused by desmosomal gene mutation. More than half of Caucasian probands have desmosomal mutations, which lead to earlier onset of ventricular arrhythmias. Among non-Caucasians, the genetic background of ARVD/C probands and its prognostic impact remain unclear. METHODS AND RESULTS We genotyped 99 unrelated Japanese ARVD/C probands for plakophilin 2 (PKP2), desmoglein 2 (DSG2), desmoplakin (DSP), and desmocollin 2 (DSC2) between 2005 and 2014. Seventy-five probands who fulfilled "definite" category according to the 2010 Task Force Criteria (TFC) were enrolled and followed up for 6.4 years. Sixty-four percent of probands had desmosomal mutations; DSG2 was predominant (48% of mutations) followed by PKP2 (38%). DSG2 mutations were almost missense, whereas over 90% of PKP2 mutations were truncating mutations. Lethal ventricular arrhythmias (VAs, sustained ventricular tachycardia/fibrillation) occurred in 57% of probands as the first manifestation and 71% at the end of follow-up. Five died during follow-up. Truncating mutation carriers exhibited earlier lethal VAs onset compared to missense mutation carriers or mutation negatives (age at onset 35 ± 12, 49 ± 16, and 50 ± 19 years, respectively, P < 0.05 in each). Cox proportional hazard analysis revealed for the first time that, compared to mutation negatives, truncating mutation carriers had higher risk for lethal VAs, and especially for onset by their 40s, in an age-dependent manner (RR = 4.6, P < 0.01 by their 40s; RR = 2.9, P = 0.01 by their 50s). CONCLUSION The genetic background of Japanese ARVD/C probands is distinct from that of Caucasian probands, leading to distinct prognosis. The most affected gene mutations in Japanese probands were missense mutations in DSG2 leading to modest outcome, whereas PKP2 truncating mutations were the second most and might be a strong marker for lethal VAs in non-Caucasian Japanese ARVD/C probands.
Collapse
Affiliation(s)
- Yuko Wada
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Seiko Ohno
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Takeshi Aiba
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Minoru Horie
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
23
|
Marian AJ, van Rooij E, Roberts R. Genetics and Genomics of Single-Gene Cardiovascular Diseases: Common Hereditary Cardiomyopathies as Prototypes of Single-Gene Disorders. J Am Coll Cardiol 2017; 68:2831-2849. [PMID: 28007145 DOI: 10.1016/j.jacc.2016.09.968] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 01/05/2023]
Abstract
This is the first of 2 review papers on genetics and genomics appearing as part of the series on "omics." Genomics pertains to all components of an organism's genes, whereas genetics involves analysis of a specific gene or genes in the context of heredity. The paper provides introductory comments, describes the basis of human genetic diversity, and addresses the phenotypic consequences of genetic variants. Rare variants with large effect sizes are responsible for single-gene disorders, whereas complex polygenic diseases are typically due to multiple genetic variants, each exerting a modest effect size. To illustrate the clinical implications of genetic variants with large effect sizes, 3 common forms of hereditary cardiomyopathies are discussed as prototypic examples of single-gene disorders, including their genetics, clinical manifestations, pathogenesis, and treatment. The genetic basis of complex traits is discussed in a separate paper.
Collapse
Affiliation(s)
- Ali J Marian
- Center for Cardiovascular Genetics, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, and Texas Heart Institute, Houston, Texas.
| | - Eva van Rooij
- Hubrecht Institute, KNAW and University Medical Center Utrecht, Utrecht, the Netherlands; Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Robert Roberts
- University of Arizona College of Medicine, Phoenix, Arizona
| |
Collapse
|
24
|
Pilichou K, Thiene G, Bauce B, Rigato I, Lazzarini E, Migliore F, Perazzolo Marra M, Rizzo S, Zorzi A, Daliento L, Corrado D, Basso C. Arrhythmogenic cardiomyopathy. Orphanet J Rare Dis 2016; 11:33. [PMID: 27038780 PMCID: PMC4818879 DOI: 10.1186/s13023-016-0407-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/16/2016] [Indexed: 01/16/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (AC) is a heart muscle disease clinically characterized by life-threatening ventricular arrhythmias and pathologically by an acquired and progressive dystrophy of the ventricular myocardium with fibro-fatty replacement. Due to an estimated prevalence of 1:2000-1:5000, AC is listed among rare diseases. A familial background consistent with an autosomal-dominant trait of inheritance is present in most of AC patients; recessive variants have also been reported, either or not associated with palmoplantar keratoderma and woolly hair. AC-causing genes mostly encode major components of the cardiac desmosome and up to 50 % of AC probands harbor mutations in one of them. Mutations in non-desmosomal genes have been also described in a minority of AC patients, predisposing to the same or an overlapping disease phenotype. Compound/digenic heterozygosity was identified in up to 25 % of AC-causing desmosomal gene mutation carriers, in part explaining the phenotypic variability. Abnormal trafficking of intercellular proteins to the intercalated discs of cardiomyocytes and Wnt/beta catenin and Hippo signaling pathways have been implicated in disease pathogenesis. AC is a major cause of sudden death in the young and in athletes. The clinical picture may include a sub-clinical phase; an overt electrical disorder; and right ventricular or biventricular pump failure. Ventricular fibrillation can occur at any stage. Genotype-phenotype correlation studies led to identify biventricular and dominant left ventricular variants, thus supporting the use of the broader term AC. Since there is no “gold standard” to reach the diagnosis of AC, multiple categories of diagnostic information have been combined and the criteria recently updated, to improve diagnostic sensitivity while maintaining specificity. Among diagnostic tools, contrast enhanced cardiac magnetic resonance is playing a major role in detecting left dominant forms of AC, even preceding morpho-functional abnormalities. The main differential diagnoses are idiopathic right ventricular outflow tract tachycardia, myocarditis, sarcoidosis, dilated cardiomyopathy, right ventricular infarction, congenital heart diseases with right ventricular overload and athlete heart. A positive genetic test in the affected AC proband allows early identification of asymptomatic carriers by cascade genetic screening of family members. Risk stratification remains a major clinical challenge and antiarrhythmic drugs, catheter ablation and implantable cardioverter defibrillator are the currently available therapeutic tools. Sport disqualification is life-saving, since effort is a major trigger not only of electrical instability but also of disease onset and progression. We review the current knowledge of this rare cardiomyopathy, suggesting a flowchart for primary care clinicians and geneticists.
Collapse
Affiliation(s)
- Kalliopi Pilichou
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - Gaetano Thiene
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - Barbara Bauce
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - Ilaria Rigato
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - Elisabetta Lazzarini
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - Federico Migliore
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | | | - Stefania Rizzo
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - Alessandro Zorzi
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - Luciano Daliento
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - Domenico Corrado
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - Cristina Basso
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy.
| |
Collapse
|
25
|
Lüscher TF. Heart failure and comorbidities: renal failure, diabetes, atrial fibrillation, and inflammation. Eur Heart J 2016; 36:1415-7. [PMID: 26074620 DOI: 10.1093/eurheartj/ehv156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Thomas F Lüscher
- Editor-in-Chief, Zurich Heart House, Careum Campus, Moussonstrasse 4, 8091 Zurich, Switzerland
| |
Collapse
|
26
|
Rigato I, Corrado D, Basso C, Zorzi A, Pilichou K, Bauce B, Thiene G. Pharmacotherapy and other therapeutic modalities for managing Arrhythmogenic Right Ventricular Cardiomyopathy. Cardiovasc Drugs Ther 2016; 29:171-7. [PMID: 25894016 DOI: 10.1007/s10557-015-6583-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC) is a genetically determined rare cardiomyopathy (1 in 5000 to 1 in 2000 in the general population), which can lead to ventricular arrhythmias and sudden death (SD). The classic form of the disease has a predilection for the right ventricle (RV), but recognition of left-dominant and biventricular variants led to the broader term "Arrhythmogenic Cardiomyopathy". The disease affects men more frequently than women and becomes clinically overt usually from the second to the fourth decade of life. Treatment consists of restriction of physical exercise, antiarrhythmic drugs, catheter ablation and ICD implantation. These treatments have the potential to change the natural history of the disease by protecting against SD and offering a good-quality and nearly normal life-expectancy. Antiarrhythmic drugs play an important role in terms of reduction of both the number and the complexity of arrhythmias, but they do not reduce the risk of SD. The results of catheter ablation are poor because of the high rate of VT recurrence. ICD should be reserved to selected patients after an accurate risk stratification. The clinical challenge is to improve risk stratification for better identification of those patients who most benefit from the above therapies. Unfortunately, a curative therapy is not yet available.
Collapse
Affiliation(s)
- Ilaria Rigato
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
Siqueira WC, da Cruz SG, Asimaki A, Saffitz JE, Moreira MDCV, Brasileiro G, Rocha LOS. Cardiac sarcoidosis with severe involvement of the right ventricle: a case report. AUTOPSY AND CASE REPORTS 2015; 5:53-63. [PMID: 26894046 PMCID: PMC4757920 DOI: 10.4322/acr.2015.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 11/30/2015] [Indexed: 11/23/2022] Open
Abstract
We present the case of a patient who underwent cardiac transplantation with the diagnosis of idiopathic dilated cardiomyopathy. Once the explanted heart was examined, a type of granulomatous myocarditis compatible with cardiac sarcoidosis was observed. However, there was severe involvement of the right ventricle, with markedly reduced width of the muscular layer and extensive fibrofatty replacement, findings similar to the ones encountered in cases of arrhythmogenic right ventricular cardiomyopathy (ARVC). Confocal immunofluorescence analysis revealed a reduced signal for plakoglobin and desmoplakin at the cardiac intercalated disks. The immunoreactive signal for desmin showed the typical sarcomeric distribution but not a concentrated signal at the intercalated disks, a pattern previously seen in an 11-year-old girl with Carvajal syndrome bearing a C-terminal truncating mutation in the desmoplakin gene. This case illustrates the difficult and challenging work involved in performing a differential diagnosis among idiopathic dilated cardiomyopathy, isolated cardiac sarcoidosis, and ARVC, all of which are clinical entities known to masquerade as one another.
Collapse
Affiliation(s)
- Weverton César Siqueira
- Internal Medicine Department - Faculty of Medicine - Federal University of Minas Gerais, Belo Horizonte/MG - Brazil
| | - Samuel Gonçalves da Cruz
- Internal Medicine Department - Faculty of Medicine - Federal University of Minas Gerais, Belo Horizonte/MG - Brazil
| | - Angeliki Asimaki
- Department of Pathology - Beth Israel Deaconess Medical Center - Harvard Medical School, Boston/MA - USA
| | - Jeffrey Ern Saffitz
- Department of Pathology - Beth Israel Deaconess Medical Center - Harvard Medical School, Boston/MA - USA
| | | | - Geraldo Brasileiro
- Pathology and Forensic Department - Faculty of Medicine - Federal University of Minas Gerais, Belo Horizonte/MG - Brazil
| | - Luiz Otávio Savassi Rocha
- Internal Medicine Department - Faculty of Medicine - Federal University of Minas Gerais, Belo Horizonte/MG - Brazil
| |
Collapse
|
28
|
Manuguerra R, Callegari S, Corradi D. Inherited Structural Heart Diseases With Potential Atrial Fibrillation Occurrence. J Cardiovasc Electrophysiol 2015; 27:242-52. [PMID: 26519209 DOI: 10.1111/jce.12872] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 10/06/2015] [Accepted: 10/08/2015] [Indexed: 12/16/2022]
Abstract
Inherited cardiac diseases inducing structural remodeling of the myocardium sometimes develop arrhythmias of various kinds. Among these rhythm disturbances, atrial fibrillation is well known to frequently worsen the prognosis of the primary disorder by increasing morbidity and mortality, especially because of a higher rate of heart failure. In this manuscript, we have reviewed the literature on the most important inherited structural cardiac diseases in whose clinical history atrial fibrillation may occur fairly often.
Collapse
Affiliation(s)
- Roberta Manuguerra
- Department of Biomedical, Biotechnological, and Translational Sciences (S.Bi.Bi.T.), Unit of Pathology, University of Parma, Parma, Italy
| | - Sergio Callegari
- Azienda Unità Sanitaria Locale, Unit of Cardiology, Parma, Italy
| | - Domenico Corradi
- Department of Biomedical, Biotechnological, and Translational Sciences (S.Bi.Bi.T.), Unit of Pathology, University of Parma, Parma, Italy
| |
Collapse
|
29
|
Haugaa KH, Haland TF, Leren IS, Saberniak J, Edvardsen T. Arrhythmogenic right ventricular cardiomyopathy, clinical manifestations, and diagnosis. Europace 2015; 18:965-72. [PMID: 26498164 DOI: 10.1093/europace/euv340] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 09/09/2015] [Indexed: 12/17/2022] Open
Abstract
This review aims to give an update on the pathogenesis, clinical manifestations, and diagnosis of arrhythmogenic right ventricular cardiomyopathy (ARVC). Arrhythmogenic right ventricular cardiomyopathy is mainly an autosomal dominant inherited disease linked to mutations in genes encoding desmosomes or desmosome-related proteins. Classic symptoms include palpitations, cardiac syncope, and aborted cardiac arrest due to ventricular arrhythmias. Heart failure may develop in later stages. Diagnosis is based on the presence of major and minor criteria from the Task Force Criteria revised in 2010 (TFC 2010), which includes evaluation of findings from six different diagnostic categories. Based on this, patients are classified as having possible, borderline, or definite ARVC. Imaging is important in ARVC diagnosis, including both echocardiography and cardiac magnetic resonance imaging for detecting structural and functional abnormalities, but importantly these findings may occur after electrical alterations and ventricular arrhythmias. Electrocardiograms (ECGs) and signal-averaged ECGs are analysed for depolarization and repolarization abnormalities, including T-wave inversions as the most common ECG alteration. Ventricular arrhythmias are common in ARVC and are considered a major diagnostic criterion if originating from the RV inferior wall or apex. Family history of ARVC and detection of an ARVC-related mutation are included in the TFC 2010 and emphasize the importance of family screening. Electrophysiological studies are not included in the diagnostic criteria, but may be important for differential diagnosis including RV outflow tract tachycardia. Further differential diagnoses include sarcoidosis, congenital abnormalities, myocarditis, pulmonary hypertension, dilated cardiomyopathy, and athletic cardiac adaptation, which may mimic ARVC.
Collapse
Affiliation(s)
- Kristina H Haugaa
- Department of Cardiology and Center for Cardiological Innovation, Oslo University Hospital, Rikshospitalet, Sognsvannsveien 20, Oslo 0372, Norway Institute for Surgical Research, Oslo University Hospital, Rikshospitalet, Sognsvannsveien 20, Oslo 0372, Norway University of Oslo, PO Box 1072 Blindern, Oslo 0316, Norway
| | - Trine F Haland
- Department of Cardiology and Center for Cardiological Innovation, Oslo University Hospital, Rikshospitalet, Sognsvannsveien 20, Oslo 0372, Norway Institute for Surgical Research, Oslo University Hospital, Rikshospitalet, Sognsvannsveien 20, Oslo 0372, Norway University of Oslo, PO Box 1072 Blindern, Oslo 0316, Norway
| | - Ida S Leren
- Department of Cardiology and Center for Cardiological Innovation, Oslo University Hospital, Rikshospitalet, Sognsvannsveien 20, Oslo 0372, Norway University of Oslo, PO Box 1072 Blindern, Oslo 0316, Norway
| | - Jørg Saberniak
- Department of Cardiology and Center for Cardiological Innovation, Oslo University Hospital, Rikshospitalet, Sognsvannsveien 20, Oslo 0372, Norway Institute for Surgical Research, Oslo University Hospital, Rikshospitalet, Sognsvannsveien 20, Oslo 0372, Norway University of Oslo, PO Box 1072 Blindern, Oslo 0316, Norway
| | - Thor Edvardsen
- Department of Cardiology and Center for Cardiological Innovation, Oslo University Hospital, Rikshospitalet, Sognsvannsveien 20, Oslo 0372, Norway Institute for Surgical Research, Oslo University Hospital, Rikshospitalet, Sognsvannsveien 20, Oslo 0372, Norway University of Oslo, PO Box 1072 Blindern, Oslo 0316, Norway
| |
Collapse
|
30
|
Tavazzi G, Via G, Turco A, Mojoli F. Right Ventricular Arrhythmogenic Dysplasia in Cardiac Arrest. An Echocardiographic Pattern Not to Forget. Am J Respir Crit Care Med 2015; 192:e46-8. [DOI: 10.1164/rccm.201503-0528im] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Guido Tavazzi
- University of Pavia, Anesthesia, Intensive Care and Pain Therapy, Pavia, Italy
- Anesthesia and Intensive Care, Emergency Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy; and
| | - Gabriele Via
- Anesthesia and Intensive Care, Emergency Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy; and
| | - Annalisa Turco
- Foundazione Policlinico San Matteo, Istituti di Ricovero e Cura a Carattere Scientifico, Cardiology Unit, Pavia, Italy
| | - Francesco Mojoli
- University of Pavia, Anesthesia, Intensive Care and Pain Therapy, Pavia, Italy
- Anesthesia and Intensive Care, Emergency Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy; and
| |
Collapse
|
31
|
Lüscher TF. Towards personalized prevention in special patient populations. Eur Heart J 2015; 36:1699-701. [PMID: 26173933 DOI: 10.1093/eurheartj/ehv232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Thomas F Lüscher
- Editor-in-Chief, Zurich Heart House, Careum Campus, Moussonstrasse 4, 8091 Zurich, Switzerland
| |
Collapse
|
32
|
Perazzolo Marra M, Rizzo S, Bauce B, De Lazzari M, Pilichou K, Corrado D, Thiene G, Iliceto S, Basso C. Arrhythmogenic right ventricular cardiomyopathy. Herz 2015; 40:600-6. [DOI: 10.1007/s00059-015-4228-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Luscher TF. Arrhythmias, syncopy, and sudden death. Eur Heart J 2015; 36:829-31. [DOI: 10.1093/eurheartj/ehv057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|