1
|
Luciani M, Del Monte F. Insights from Second-Line Treatments for Idiopathic Dilated Cardiomyopathy. J Cardiovasc Dev Dis 2017; 4:jcdd4030012. [PMID: 29367542 PMCID: PMC5715707 DOI: 10.3390/jcdd4030012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/18/2017] [Accepted: 08/19/2017] [Indexed: 12/20/2022] Open
Abstract
Background: Dilated cardiomyopathy (DCM) is an independent nosographic entity characterized by left ventricular dilatation and contractile dysfunction leading to heart failure (HF). The idiopathic form of DCM (iDCM) occurs in the absence of coronaropathy or other known causes of DCM. Despite being different from other forms of HF for demographic, clinical, and prognostic features, its current pharmacological treatment does not significantly diverge. Methods: In this study we performed a Pubmed library search for placebo-controlled clinical investigations and a post-hoc analysis recruiting iDCM from 1985 to 2016. We searched for second-line pharmacologic treatments to reconsider drugs for iDCM management and pinpoint pathological mechanisms. Results: We found 33 clinical studies recruiting a total of 3392 patients of various durations and sizes, as well as studies that tested different drug classes (statins, pentoxifylline, inotropes). A metanalysis was unfeasible, although a statistical significance for changes upon treatment for molecular results, morphofunctional parameters, and clinical endpoints was reported. Statins appeared to be beneficial in light of their pleiotropic effects; inotropes might be tolerated more for longer times in iDCM compared to ischemic patients. General anti-inflammatory therapies do not significantly improve outcomes. Metabolic and growth modulation remain appealing fields to be investigated. Conclusions: The evaluation of drug effectiveness based on direct clinical benefit is an inductive method providing evidence-based insights. This backward approach sheds light on putative and underestimated pathologic mechanisms and thus therapeutic targets for iDCM management.
Collapse
Affiliation(s)
- Marco Luciani
- Department of Cardiovascular Sciences, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 8, 00168 Rome, Italy.
| | - Federica Del Monte
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
2
|
Weintraub RG, Semsarian C, Macdonald P. Dilated cardiomyopathy. Lancet 2017; 390:400-414. [PMID: 28190577 DOI: 10.1016/s0140-6736(16)31713-5] [Citation(s) in RCA: 399] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 09/09/2016] [Accepted: 09/14/2016] [Indexed: 12/18/2022]
Abstract
Dilated cardiomyopathy is defined by the presence of left ventricular dilatation and contractile dysfunction. Genetic mutations involving genes that encode cytoskeletal, sarcomere, and nuclear envelope proteins, among others, account for up to 35% of cases. Acquired causes include myocarditis and exposure to alcohol, drugs and toxins, and metabolic and endocrine disturbances. The most common presenting symptoms relate to congestive heart failure, but can also include circulatory collapse, arrhythmias, and thromboembolic events. Secondary neurohormonal changes contribute to reverse remodelling and ongoing myocyte damage. The prognosis is worst for individuals with the lowest ejection fractions or severe diastolic dysfunction. Treatment of chronic heart failure comprises medications that improve survival and reduce hospital admission-namely, angiotensin converting enzyme inhibitors and β blockers. Other interventions include enrolment in a multidisciplinary heart failure service, and device therapy for arrhythmia management and sudden death prevention. Patients who are refractory to medical therapy might benefit from mechanical circulatory support and heart transplantation. Treatment of preclinical disease and the potential role of stem-cell therapy are being investigated.
Collapse
Affiliation(s)
- Robert G Weintraub
- Department of Cardiology, Royal Children's Hospital, Melbourne, VIC, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia.
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute and Sydney Medical School, University of Sydney, Sydney, NSW, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Peter Macdonald
- St Vincent's Hospital, Sydney, NSW, Australia; Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| |
Collapse
|
3
|
Wysoczynski M, Dassanayaka S, Zafir A, Ghafghazi S, Long BW, Noble C, DeMartino AM, Brittian KR, Bolli R, Jones SP. A New Method to Stabilize C-Kit Expression in Reparative Cardiac Mesenchymal Cells. Front Cell Dev Biol 2016; 4:78. [PMID: 27536657 PMCID: PMC4971111 DOI: 10.3389/fcell.2016.00078] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 07/13/2016] [Indexed: 11/13/2022] Open
Abstract
Cell therapy improves cardiac function. Few cells have been investigated more extensively or consistently shown to be more effective than c-kit sorted cells; however, c-kit expression is easily lost during passage. Here, our primary goal was to develop an improved method to isolate c-kit(pos) cells and maintain c-kit expression after passaging. Cardiac mesenchymal cells (CMCs) from wild-type mice were selected by polystyrene adherence properties. CMCs adhering within the first hours are referred to as rapidly adherent (RA); CMCs adhering subsequently are dubbed slowly adherent (SA). Both RA and SA CMCs were c-kit sorted. SA CMCs maintained significantly higher c-kit expression than RA cells; SA CMCs also had higher expression endothelial markers. We subsequently tested the relative efficacy of SA vs. RA CMCs in the setting of post-infarct adoptive transfer. Two days after coronary occlusion, vehicle, RA CMCs, or SA CMCs were delivered percutaneously with echocardiographic guidance. SA CMCs, but not RA CMCs, significantly improved cardiac function compared to vehicle treatment. Although the mechanism remains to be elucidated, the more pronounced endothelial phenotype of the SA CMCs coupled with the finding of increased vascular density suggest a potential pro-vasculogenic action. This new method of isolating CMCs better preserves c-kit expression during passage. SA CMCs, but not RA CMCs, were effective in reducing cardiac dysfunction. Although c-kit expression was maintained, it is unclear whether maintenance of c-kit expression per se was responsible for improved function, or whether the differential adherence property itself confers a reparative phenotype independently of c-kit.
Collapse
Affiliation(s)
- Marcin Wysoczynski
- Institute of Molecular Cardiology, University of Louisville School of MedicineLouisville, KY, USA; Diabetes and Obesity Center, University of Louisville School of MedicineLouisville, KY, USA
| | - Sujith Dassanayaka
- Institute of Molecular Cardiology, University of Louisville School of MedicineLouisville, KY, USA; Diabetes and Obesity Center, University of Louisville School of MedicineLouisville, KY, USA
| | - Ayesha Zafir
- Institute of Molecular Cardiology, University of Louisville School of MedicineLouisville, KY, USA; Diabetes and Obesity Center, University of Louisville School of MedicineLouisville, KY, USA
| | - Shahab Ghafghazi
- Institute of Molecular Cardiology, University of Louisville School of MedicineLouisville, KY, USA; Diabetes and Obesity Center, University of Louisville School of MedicineLouisville, KY, USA
| | - Bethany W Long
- Institute of Molecular Cardiology, University of Louisville School of MedicineLouisville, KY, USA; Diabetes and Obesity Center, University of Louisville School of MedicineLouisville, KY, USA
| | - Camille Noble
- Institute of Molecular Cardiology, University of Louisville School of MedicineLouisville, KY, USA; Diabetes and Obesity Center, University of Louisville School of MedicineLouisville, KY, USA
| | - Angelica M DeMartino
- Institute of Molecular Cardiology, University of Louisville School of MedicineLouisville, KY, USA; Diabetes and Obesity Center, University of Louisville School of MedicineLouisville, KY, USA
| | - Kenneth R Brittian
- Institute of Molecular Cardiology, University of Louisville School of MedicineLouisville, KY, USA; Diabetes and Obesity Center, University of Louisville School of MedicineLouisville, KY, USA
| | - Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville School of MedicineLouisville, KY, USA; Diabetes and Obesity Center, University of Louisville School of MedicineLouisville, KY, USA
| | - Steven P Jones
- Institute of Molecular Cardiology, University of Louisville School of MedicineLouisville, KY, USA; Diabetes and Obesity Center, University of Louisville School of MedicineLouisville, KY, USA
| |
Collapse
|