1
|
Santovito D, Fan Y, Elia L, Tan JTM, van der Vorst EPC. Editorial: Emerging roles of miRNAs in cardiovascular disease. Front Cardiovasc Med 2023; 10:1144849. [PMID: 36926041 PMCID: PMC10011631 DOI: 10.3389/fcvm.2023.1144849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Affiliation(s)
- Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.,Institute for Genetic and Biomedical Research, Unit of Milan, National Research Council, Milan, Italy
| | - Yuhua Fan
- Department of Basic Medical College, Harbin Medical University (Daqing), Daqing, China
| | - Leonardo Elia
- IRCCS Humanitas Research Hospital, Rozzano, MI, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Joanne T M Tan
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Emiel P C van der Vorst
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.,Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), Interdisciplinary Center for Clinical Research (IZKF) and Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
| |
Collapse
|
2
|
Brandão-Lima PN, de Carvalho GB, Payolla TB, Sarti FM, Rogero MM. Circulating microRNA Related to Cardiometabolic Risk Factors for Metabolic Syndrome: A Systematic Review. Metabolites 2022; 12:1044. [PMID: 36355127 PMCID: PMC9692352 DOI: 10.3390/metabo12111044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 01/04/2024] Open
Abstract
MicroRNA regulates multiple pathways in inflammatory response, adipogenesis, and glucose and lipid metabolism, which are involved in metabolic syndrome (MetS). Thus, this systematic review aimed at synthesizing the evidence on the relationships between circulating microRNA and risk factors for MetS. The systematic review was registered in the PROSPERO database (CRD42020168100) and included 24 case-control studies evaluating microRNA expression in serum/plasma of individuals ≥5 years old. Most of the studies focused on 13 microRNAs with higher frequency and there were robust connections between miR-146a and miR-122 with risk factors for MetS, based on average weighted degree. In addition, there was an association of miR-222 with adiposity, lipid metabolism, glycemic metabolism, and chronic inflammation and an association of miR-126, miR-221, and miR-423 with adiposity, lipid, and glycemic metabolism. A major part of circulating microRNA was upregulated in individuals with risk factors for MetS, showing correlations with glycemic and lipid markers and body adiposity. Circulating microRNA showed distinct expression profiles according to the clinical condition of individuals, being particularly linked with increased body fat. However, the exploration of factors associated with variations in microRNA expression was limited by the variety of microRNAs investigated by risk factor in diverse studies identified in this systematic review.
Collapse
Affiliation(s)
- Paula N. Brandão-Lima
- Department of Nutrition, School of Public Health, University of Sao Paulo, 715 Dr Arnaldo Avenue, Pacaembu, Sao Paulo 01246-904, SP, Brazil
| | - Gabrielli B. de Carvalho
- Department of Nutrition, School of Public Health, University of Sao Paulo, 715 Dr Arnaldo Avenue, Pacaembu, Sao Paulo 01246-904, SP, Brazil
| | - Tanyara B. Payolla
- Department of Nutrition, School of Public Health, University of Sao Paulo, 715 Dr Arnaldo Avenue, Pacaembu, Sao Paulo 01246-904, SP, Brazil
| | - Flavia M. Sarti
- School of Arts, Sciences and Humanities, University of Sao Paulo, 1000 Arlindo Bettio Avenue, Sao Paulo 03828-000, SP, Brazil
| | - Marcelo M. Rogero
- Department of Nutrition, School of Public Health, University of Sao Paulo, 715 Dr Arnaldo Avenue, Pacaembu, Sao Paulo 01246-904, SP, Brazil
| |
Collapse
|
3
|
Gager GM, Eyileten C, Postula M, Gasecka A, Jarosz-Popek J, Gelbenegger G, Jilma B, Lang I, Siller-Matula J. Association Between the Expression of MicroRNA-125b and Survival in Patients With Acute Coronary Syndrome and Coronary Multivessel Disease. Front Cardiovasc Med 2022; 9:948006. [PMID: 35872885 PMCID: PMC9304571 DOI: 10.3389/fcvm.2022.948006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundMicroRNAs (miRNA, miR) have an undeniable physiological and pathophysiological significance and act as promising novel biomarkers. The aim of the study was to investigate blood-derived miRNAs and their association with long-term all-cause mortality in patients with multivessel disease (MVD) suffering from acute coronary syndrome (ACS).Materials and MethodsThis study was an observational prospective study, which included 90 patients with MVD and ACS. Expression of miR-125a, miR-125b, and miR-223 was analysed by polymerase chain reaction (PCR). Patients were followed-up for a median of 7.5 years. All-cause mortality was considered as the primary endpoint. Adjusted Cox-regression analysis was performed for prediction of events.ResultsElevated expression of miR-125b (>4.6) at the time-point of ACS was associated with increased long-term all-cause mortality (adjusted [adj.] hazard ratio [HR] = 11.26, 95% confidence interval [95% CI]: 1.15–110.38; p = 0.038). The receiver operating characteristic (ROC) analysis showed a satisfactory c-statistics for miR-125b for the prediction of long-term all-cause mortality (area under the curve [AUC] = 0.76, 95% CI: 0.61–0.91; p = 0.034; the negative predictive value of 98%). Kaplan–Meier time to event analysis confirmed an early separation of the survival curves between patients with high vs low expression of miR-125b (p = 0.003). An increased expression of miR-125a and miR-223 was found in patients with non-ST-segment elevation ACS (NSTE-ACS) as compared to those with ST-segment elevation myocardial infarction (STEMI) (p = 0.043 and p = 0.049, respectively) with no difference in the expression of miR-125b between the type of ACS.ConclusionIn this hypothesis generating study, lower values of miR-125b were related to improved long-term survival in patients with ACS and MVD. Larger studies are needed to investigate whether miR-125b can be used as a suitable predictor for long-term all-cause mortality.
Collapse
Affiliation(s)
- Gloria M. Gager
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, Warsaw, Poland
- Genomics Core Facility, Center of New Technologies (CeNT), University of Warsaw, Warsaw, Poland
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Gasecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Jarosz-Popek
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Georg Gelbenegger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Irene Lang
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Jolanta Siller-Matula
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, Warsaw, Poland
- *Correspondence: Jolanta Siller-Matula,
| |
Collapse
|
4
|
Santovito D, Weber C. Non-canonical features of microRNAs: paradigms emerging from cardiovascular disease. Nat Rev Cardiol 2022; 19:620-638. [PMID: 35304600 DOI: 10.1038/s41569-022-00680-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 02/08/2023]
Abstract
Research showing that microRNAs (miRNAs) are versatile regulators of gene expression has instigated tremendous interest in cardiovascular research. The overwhelming majority of studies are predicated on the dogmatic notion that miRNAs regulate the expression of specific target mRNAs by inhibiting mRNA translation or promoting mRNA decay in the RNA-induced silencing complex (RISC). These efforts mostly identified and dissected contributions of multiple regulatory networks of miRNA-target mRNAs to cardiovascular pathogenesis. However, evidence from studies in the past decade indicates that miRNAs also operate beyond this canonical paradigm, featuring non-conventional regulatory functions and cellular localizations that have a pathophysiological role in cardiovascular disease. In this Review, we highlight the functional relevance of atypical miRNA biogenesis and localization as well as RISC heterogeneity. Moreover, we delineate remarkable non-canonical examples of miRNA functionality, including direct interactions with proteins beyond the Argonaute family and their role in transcriptional regulation in the nucleus and in mitochondria. We scrutinize the relevance of non-conventional biogenesis and non-canonical functions of miRNAs in cardiovascular homeostasis and pathology, and contextualize how uncovering these non-conventional properties can expand the scope of translational research in the cardiovascular field and beyond.
Collapse
Affiliation(s)
- Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU), Munich, Germany. .,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany. .,Institute for Genetic and Biomedical Research (IRGB), Unit of Milan, National Research Council, Milan, Italy.
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU), Munich, Germany. .,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany. .,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
5
|
Chen S, Ji L, Chen M, Yang D, Zhou J, Zheng Y. Weighted miRNA co-expression network reveals potential roles of apoptosis related pathways and crucial genes in thoracic aortic aneurysm. J Thorac Dis 2021; 13:2776-2789. [PMID: 34164170 PMCID: PMC8182548 DOI: 10.21037/jtd-20-3601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Thoracic aortic aneurysm (TAA) is a potentially life-threatening disease for which few medical therapies are available. Thus, it is critically important to investigate the underlying molecular mechanisms of TAA, and identify potential targets for TAA treatment. Methods Differentially expressed miRNAs (DEMs) and differentially expressed genes (DEGs) were screened, and a weighted correlation network analysis (WGCNA) was employed to construct a weighted miRNA co-expression network using GSE110527. The DEMs were then mapped into the whole co-expression network of all samples, and a DEM coexpression network was created. Molecular Complex Detection (MCODE) was used to identify crucial miRNAs. Target genes were predicted using the miRTarbase database, and further screened by identifying genes that overlapped with the DEGs of GSE26155. The screened target genes were validated using GSE9106, and the successfully validated genes were considered as crucial genes. Finally, a miRNA risk score for diagnosing TAA was calculated by undertaking a least absolute shrinkage and selection operator (LASSO) regression. Results The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) signaling pathway was found in DEM functional enrichment. Crucial miRNAs were identified and target genes were predicted and associated with the regulation of the TRAIL signaling pathway. Next, 113 important target genes were identified as overlapping with the DEGs of GSE26155. These genes were further validated, and 5 successfully validated genes were considered as crucial genes. Finally, the miRNA risk score calculated by the LASSO regression was shown to have potential diagnostic value. Conclusions We performed a WGCNA analysis to construct a weighted miRNA co-expression network, predicted target genes of crucial miRNAs, identified crucial genes, and finally calculated a miRNA risk score. The results showed that pathways and genes associated with apoptosis appear to play an important role in TAA pathogenesis, and that medications targeting apoptosis might slow TAA progression. Future in vitro and in vivo experimental studies need to be undertaken to further validate our findings and investigate the mechanistic details of these crucial miRNAs and crucial genes.
Collapse
Affiliation(s)
- Siliang Chen
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Ji
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengyin Chen
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Yang
- Department of Computational Biology and Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiawei Zhou
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuehong Zheng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Henderson JM, Weber C, Santovito D. Beyond Self-Recycling: Cell-Specific Role of Autophagy in Atherosclerosis. Cells 2021; 10:cells10030625. [PMID: 33799835 PMCID: PMC7998923 DOI: 10.3390/cells10030625] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial vessel wall and underlies the development of cardiovascular diseases, such as myocardial infarction and ischemic stroke. As such, atherosclerosis stands as the leading cause of death and disability worldwide and intensive scientific efforts are made to investigate its complex pathophysiology, which involves the deregulation of crucial intracellular pathways and intricate interactions between diverse cell types. A growing body of evidence, including in vitro and in vivo studies involving cell-specific deletion of autophagy-related genes (ATGs), has unveiled the mechanistic relevance of cell-specific (endothelial, smooth-muscle, and myeloid cells) defective autophagy in the processes of atherogenesis. In this review, we underscore the recent insights on autophagy's cell-type-dependent role in atherosclerosis development and progression, featuring the relevance of canonical catabolic functions and emerging noncanonical mechanisms, and highlighting the potential therapeutic implications for prevention and treatment of atherosclerosis and its complications.
Collapse
Affiliation(s)
- James M. Henderson
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), D-80336 Munich, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, D-80336 Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), D-80336 Munich, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, D-80336 Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
- Munich Cluster for Systems Neurology (SyNergy), D-80336 Munich, Germany
- Correspondence: (C.W.); (D.S.)
| | - Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), D-80336 Munich, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, D-80336 Munich, Germany
- Institute for Genetic and Biomedical Research, UoS of Milan, National Research Council, I-09042 Milan, Italy
- Correspondence: (C.W.); (D.S.)
| |
Collapse
|
7
|
Dharma S, Dakota I, Wijaya S, Ekawati E, Sukmawan R, Siswanto BB. Association of microRNA-224-3p and microRNA-155-5p expressions with plasma long pentraxin 3 concentration and coronary microvascular obstruction following primary angioplasty for acute ST-segment elevation myocardial infarction. BMC Res Notes 2020; 13:499. [PMID: 33121529 PMCID: PMC7597037 DOI: 10.1186/s13104-020-05329-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/09/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Pro-inflammatory stimuli induce a variety set of microRNAs (miRs) expression that regulate long pentraxin-3 (PTX3) protein, which associates with a procoagulant state in the endothelial cells. We evaluated, for the first time in human, the association of miR-224-3p and miR-155-5p expressions with plasma PTX3 concentration and coronary microvascular obstruction (MVO) in patients with acute ST-segment elevation myocardial infarction (STEMI) with symptom onset ≤ 12 h and treated by primary angioplasty. Blood samples for miRs and PTX3 measurement were drawn at emergency department presentation, and were measured by TaqMan real-time PCR and human ELISA kit, respectively. RESULTS Of the 217 patients (median age: 54 years, male: 88%), 130 (60%) had angiographic MVO. Spearman analysis showed no correlation between miR-224-3p and miR-155-5p expressions with plasma PTX3 concentration. After adjustment with sex, age, diabetes mellitus, and plasma PTX3 concentration, miR-224-3p ≥ median group was associated with angiographic MVO (odds ratio, 2.60; 95% confidence interval, 1.24 to 5.44, p = 0.01). This study suggests that miR-224-3p and miR-155-5p expressions did not correlate with plasma PTX3 concentration. However, miR-224-3p expression associates with angiographic MVO following primary angioplasty for STEMI. Future studies are needed to identify the specific gene/protein related with miR-224-3p expression in MVO.
Collapse
Affiliation(s)
- Surya Dharma
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, University of Indonesia, Indonesian Cardiovascular Research Center, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia.
| | - Iwan Dakota
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, University of Indonesia, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| | - Shoma Wijaya
- Indonesian Cardiovascular Research Center, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| | - Elok Ekawati
- Indonesian Cardiovascular Research Center, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| | - Renan Sukmawan
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, University of Indonesia, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| | - Bambang Budi Siswanto
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, University of Indonesia, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| |
Collapse
|
8
|
Zhang R, Song B, Hong X, Shen Z, Sui L, Wang S. microRNA-9 Inhibits Vulnerable Plaque Formation and Vascular Remodeling via Suppression of the SDC2-Dependent FAK/ERK Signaling Pathway in Mice With Atherosclerosis. Front Physiol 2020; 11:804. [PMID: 32765295 PMCID: PMC7378740 DOI: 10.3389/fphys.2020.00804] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
microRNAs (miRNAs or miRs) play important roles in modulating the occurrence and progression of atherosclerosis and acute coronary syndrome (ACS). Herein, this study aimed to investigate the possible role of miR-9 in the development of atherosclerosis. Initially, the differentially expressed genes associated with ACS were screened and miRNAs that regulate syndecan-2 (SDC2) were predicted using microarray analysis. Furthermore, the biological functions of miR-9 and SDC2 on aortic plaque area, proliferation of collagen fibers, Mac-3-labeled macrophages, inflammatory response, and levels of the focal adhesion kinase/extracellular signal-regulated kinase (FAK/ERK) signaling pathway-related proteins in atherosclerosis were evaluated after ectopic miR-9 expression or SDC2 depletion in ACS mice using oil red O staining, Masson’s trichrome staining, immunohistochemistry, and Western blot analysis, respectively. SDC2 was highly-expressed, while miR-9 was poorly-expressed in atherosclerosis. Additionally, miR-9 targeted SDC2 and negatively-regulated its expression. Up-regulation of miR-9 reduced aortic plaque area, the proliferation of collagen fibers, Mac-3-labeled macrophages and levels of IL-6, IL-1β, and TNF-α by suppressing SDC2 and the FAK/ERK signaling pathway, thereby ameliorating atherosclerosis in ACS mice. In conclusion, the current study provides evidence that miR-9 retards atherosclerosis by repressing SDC2 and the FAK/ERK signaling pathway, highlighting a new theoretical basis for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Ruihong Zhang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Beibei Song
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaojian Hong
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhiyuan Shen
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li Sui
- Department of Emergency, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Siyu Wang
- Department of Medical Oncology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
9
|
Peters LJF, Biessen EAL, Hohl M, Weber C, van der Vorst EPC, Santovito D. Small Things Matter: Relevance of MicroRNAs in Cardiovascular Disease. Front Physiol 2020; 11:793. [PMID: 32733281 PMCID: PMC7358539 DOI: 10.3389/fphys.2020.00793] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are short sequences of non-coding RNA that play an important role in the regulation of gene expression and thereby in many physiological and pathological processes. Furthermore, miRNAs are released in the extracellular space, for example in vesicles, and are detectable in various biological fluids, such as serum, plasma, and urine. Over the last years, it has been shown that miRNAs are crucial in the development of several cardiovascular diseases (CVDs). This review discusses the (patho)physiological implications of miRNAs in CVD, ranging from cardiovascular risk factors (i.e., hypertension, diabetes, dyslipidemia), to atherosclerosis, myocardial infarction, and cardiac remodeling. Moreover, the intriguing possibility of their use as disease-specific diagnostic and prognostic biomarkers for human CVDs will be discussed in detail. Finally, as several approaches have been developed to alter miRNA expression and function (i.e., mimics, antagomirs, and target-site blockers), we will highlight the miRNAs with the most promising therapeutic potential that may represent suitable candidates for therapeutic intervention in future translational studies and ultimately in clinical trials. All in all, this review gives a comprehensive overview of the most relevant miRNAs in CVD and discusses their potential use as biomarkers and even therapeutic targets.
Collapse
Affiliation(s)
- Linsey J. F. Peters
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, Netherlands
- Interdisciplinary Center for Clinical Research, RWTH Aachen University, Aachen, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Erik A. L. Biessen
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Mathias Hohl
- Klinik für Innere Medizin III, Universität des Saarlandes, Homburg, Germany
| | - Christian Weber
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, Netherlands
- Munich Cluster for Systems Neurology, Munich, Germany
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, Netherlands
- Interdisciplinary Center for Clinical Research, RWTH Aachen University, Aachen, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Donato Santovito
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
10
|
Inflammation-Related MicroRNAs Are Associated with Plaque Stability Calculated by IVUS in Coronary Heart Disease Patients. J Interv Cardiol 2019; 2019:9723129. [PMID: 31866771 PMCID: PMC6915018 DOI: 10.1155/2019/9723129] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 08/24/2019] [Accepted: 09/24/2019] [Indexed: 02/08/2023] Open
Abstract
Objectives This study aimed to investigate the association between inflammation-related microRNAs (miR-21, 146a, 155) and the plaque stability in coronary artery disease patients. Methods The expression of miR-21, 146a, and 155 was measured by real-time PCR in 310 consecutive patients. The level of hs-CRP, IL-6, and IL-8 was measured by ELISA. The plaque stability of coronary stenotic lesions was evaluated with intravascular ultrasound (IVUS). Results (1) The levels of hs-CRP, IL-6, and IL-8 were significantly increased in the UAP and AMI groups compared with the CPS group (P < 0.01). (2) The expression of miR-21 and miR-146a in peripheral blood mononuclear cells (PBMCs) and plasma was significantly higher in CAD patients compared with non-CAD patients, whereas the miR-155 expression in PBMCs and plasma was significantly lower in patients with CAD. (3) The miR-21 expression in PBMCs was higher in UAP and AMI groups compared with CPS group. The miR-146a expression in PBMCs was higher in SAP, UAP, and AMI groups than in CPS group. Although the level of miR-155 in PBMCs was lower in SAP, UAP, and AMI groups than in CPS group. The expression patterns of miR-21, miR-146a, and miR-155 in plasma were consistent with those of PBMCs. (4) The expressions of miR-21 and miR-146a in PBMCs and plasma were significantly higher in the vulnerable plaque group than those in stable plaque group. While miR-155 in PBMCs and plasma was significantly lower in vulnerable plaque group compared with stable plaque group. (5) The levels of miR-21 and miR-146a in PBMCs and plasma were significantly higher in soft plaque group than in fibrous plaque group and calcified plaque group. However, miR-155 in PBMCs and plasma was significantly lower in soft plaque group. Conclusions The expression of miR-21 and miR-146a are associated with the plaque stability in coronary stenotic lesions, whereas miR-155 expression is inversely associated with the plaque stability.
Collapse
|
11
|
Silverman MG, Yeri A, Moorthy MV, Camacho Garcia F, Chatterjee NA, Glinge CSA, Tfelt-Hansen J, Salvador AM, Pico AR, Shah R, Albert CM, Das S. Circulating miRNAs and Risk of Sudden Death in Patients With Coronary Heart Disease. JACC Clin Electrophysiol 2019; 6:70-79. [PMID: 31971908 DOI: 10.1016/j.jacep.2019.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 02/08/2023]
Abstract
OBJECTIVES This study evaluated whether plasma miRNAs were specifically associated with sudden cardiac and/or arrhythmic death (SCD) in a cohort of patients with coronary heart disease (CHD), most of whom were without primary prevention implantable cardioverter-defibrillators. BACKGROUND Novel biomarkers for sudden death risk stratification are needed in patients with CHD to more precisely target preventive therapies, such as implantable cardioverter-defibrillators. miRNAs have been implicated in regulating inflammation and cardiac fibrosis in cells, and plasma miRNAs have been shown to predict cardiovascular death in patients with CHD. METHODS We performed a nested case control study within a multicenter cohort of 5,956 patients with CHD followed prospectively for SCD. Plasma levels of 18 candidate miRNAs previously associated with cardiac remodeling were measured in 129 SCD cases and 258 control subjects matched on age, sex, race, and left ventricular ejection fraction. RESULTS miR-150-5p, miR-29a-3p, and miR-30a-5p were associated with increased SCD risk (odds ratios and 95% confidence intervals: 2.03 [1.12 to 3.67]; p = 0.02; 1.93 [1.07 to 3.50]; p = 0.02; 0.55 [0.31 to 0.97]; p = 0.04, respectively, for third vs. first tertile miRNA level). Unfavorable levels of all 3 miRNAs was associated with a 4.8-fold increased SCD risk (1.59 to 14.51; p = 0.006). A bioinformatics-based approach predicted miR-150-5p, miR-29a-3p, and miR-30a-5p to be involved in apoptosis, fibrosis, and inflammation. CONCLUSIONS These findings suggest that plasma miRNAs may regulate pathways important for remodeling and may be useful in identifying patients with CHD at increased risk of SCD.
Collapse
Affiliation(s)
- Michael G Silverman
- Cardiology Division and Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ashish Yeri
- Cardiology Division and Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - M Vinayaga Moorthy
- Center for Arrhythmia Prevention, Divisions of Preventive and Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Fernando Camacho Garcia
- Cardiology Division and Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Neal A Chatterjee
- Cardiology Division and Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Cardiology Division, University of Washington Medical Center, Seattle, Washington, USA
| | - Charlotte S A Glinge
- Department of Cardiology, Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jacob Tfelt-Hansen
- Department of Cardiology, Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ane M Salvador
- Cardiology Division and Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alexander R Pico
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, California, USA
| | - Ravi Shah
- Cardiology Division and Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christine M Albert
- Center for Arrhythmia Prevention, Divisions of Preventive and Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Saumya Das
- Cardiology Division and Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
12
|
Identification of Candidate Genes and MicroRNAs for Acute Myocardial Infarction by Weighted Gene Coexpression Network Analysis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5742608. [PMID: 30886860 PMCID: PMC6388335 DOI: 10.1155/2019/5742608] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/11/2018] [Accepted: 01/13/2019] [Indexed: 12/31/2022]
Abstract
Background Identification of potential molecular targets of acute myocardial infarction is crucial to our comprehensive understanding of the disease mechanism. However, studies of gene coexpression analysis via jointing multiple microarray data of acute myocardial infarction still remain restricted. Methods Microarray data of acute myocardial infarction (GSE48060, GSE66360, GSE97320, and GSE19339) were downloaded from Gene Expression Omnibus database. Three data sets without heterogeneity (GSE48060, GSE66360, and GSE97320) were subjected to differential expression analysis using MetaDE package. Differentially expressed genes having upper 25% variation across samples were imported in weighted gene coexpression network analysis. Functional and pathway enrichment analyses were conducted for genes in the most significant module using DAVID. The predicted microRNAs to regulate target genes in the most significant module were identified using TargetScan. Moreover, subpathway analyses using iSubpathwayMiner package and GenCLiP 2.0 were performed on hub genes with high connective weight in the most significant module. Results A total of 1027 differentially expressed genes and 33 specific modules were screened out between acute myocardial infarction patients and control samples. Ficolin (collagen/fibrinogen domain containing) 1 (FCN1), CD14 molecule (CD14), S100 calcium binding protein A9 (S100A9), and mitochondrial aldehyde dehydrogenase 2 (ALDH2) were identified as critical target molecules; hsa-let-7d, hsa-let-7b, hsa-miR-124-3, and hsa-miR-9-1 were identified as potential regulators of the expression of the key genes in the two biggest modules. Conclusions FCN1, CD14, S100A9, ALDH2, hsa-let-7d, hsa-let-7b, hsa-miR-124-3, and hsa-miR-9-1 were identified as potential candidate regulators in acute myocardial infarction. These findings might provide new comprehension into the underlying molecular mechanism of disease.
Collapse
|
13
|
Tian X, Yu C, Shi L, Li D, Chen X, Xia D, Zhou J, Xu W, Ma C, Gu L, An Y. MicroRNA-199a-5p aggravates primary hypertension by damaging vascular endothelial cells through inhibition of autophagy and promotion of apoptosis. Exp Ther Med 2018; 16:595-602. [PMID: 30116316 PMCID: PMC6090226 DOI: 10.3892/etm.2018.6252] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 04/13/2018] [Indexed: 12/19/2022] Open
Abstract
The present study investigated the expression of microRNA (miRNA or miR)-199a-5p in the peripheral blood of patients with primary hypertension, and examined its mechanism of action in vascular endothelial cell injury induced by hypertension. A total of 57 patients with primary hypertension, who were treated at the Affiliated Hospital of Qingdao University (Qingdao, China) between December 2014 and November 2015 were included in the present study. Peripheral blood was collected from all patients. The expression of miR-199a-5p was measured using reverse-transcription quantitative polymerase chain reaction analysis. Human umbilical vein endothelial cells (HUVECs) were divided into negative control, miR-199a-5p mimics and rescue (co-transfected with miR-199a-5p mimics and inhibitor) groups. After transfection, the proliferation and apoptosis of HUVECs were evaluated by a Cell Counting Kit-8 assay, a bromodeoxyuridine incorporation assay and flow cytometry. Western blot analysis was used to determine the expression of proteins involved in autophagy-associated and adenosine monophosphate kinase (AMPK)/unc-51 like autophagy activating kinase 1 (ULK1) signaling pathways. Laser scanning confocal microscopy and electron microscopy were used to observe the autophagy of HUVECs. The expression of miR-199a-5p was elevated in peripheral blood of patients with hypertension, and was correlated with the progression of hypertension. Overexpression of miR-199a-5p inhibited the proliferation and promoted the apoptosis of HUVECs. Upon expression of miR-199a-5p, the transition between microtubule-associated proteins 1A/1B light chain 3B (LC3B)I and LC3BII proteins was inhibited, the expression of p62 protein was upregulated. In addition, miR-199a-5p decreased the numbers of autophagosomes and autolysosomes in HUVECs. The present study demonstrated that expression of miR-199a-5p is positively correlated with the severity of hypertension. Expression of miR-199a-5p aggravated vascular endothelial injury by inhibiting autophagy and promoting the apoptosis of HUVECs via downregulation of the AMPK/ULK1 signaling pathway.
Collapse
Affiliation(s)
- Xintao Tian
- Department of Emergency Internal Medicine, Laoshan District of The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, P.R. China
| | - Chunpeng Yu
- Department of Intervention, Laoshan District of The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, P.R. China
| | - Lei Shi
- Department of Emergency Internal Medicine, Laoshan District of The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, P.R. China
| | - Dan Li
- Department of Cardiovascular Medicine, Laoshan District of The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, P.R. China
| | - Xiaoxue Chen
- Department of Emergency Internal Medicine, Laoshan District of The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, P.R. China
| | - Di Xia
- Department of Emergency Internal Medicine, Laoshan District of The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, P.R. China
| | - Jingwei Zhou
- Department of Emergency Internal Medicine, Laoshan District of The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, P.R. China
| | - Wanqun Xu
- Department of Emergency Internal Medicine, Laoshan District of The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, P.R. China
| | - Chengtai Ma
- Department of Emergency Internal Medicine, Laoshan District of The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, P.R. China
| | - Lihua Gu
- Department of Emergency Internal Medicine, Laoshan District of The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, P.R. China
| | - Yi An
- Department of Cardiovascular Medicine, Laoshan District of The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, P.R. China
| |
Collapse
|
14
|
Pordzik J, Pisarz K, De Rosa S, Jones AD, Eyileten C, Indolfi C, Malek L, Postula M. The Potential Role of Platelet-Related microRNAs in the Development of Cardiovascular Events in High-Risk Populations, Including Diabetic Patients: A Review. Front Endocrinol (Lausanne) 2018; 9:74. [PMID: 29615970 PMCID: PMC5869202 DOI: 10.3389/fendo.2018.00074] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 02/19/2018] [Indexed: 12/13/2022] Open
Abstract
Platelet activation plays a pivotal role in the development and progression of atherosclerosis, which often leads to potentially fatal ischemic events at later stages of the disease. Platelets and platelet microvesicles (PMVs) contain large amounts of microRNA (miRNA), which contributes largely to the pool of circulating miRNAs. Hence, they represent a promising option for the development of innovative diagnostic biomarkers, that can be specific for the underlying etiology. Circulating miRNAs can be responsible for intracellular communication and may have a biological effect on target cells. As miRNAs associated to both cardiovascular diseases (CVD) and diabetes mellitus can be measured by means of a wide array of techniques, they can be exploited as an innovative class of smart disease biomarkers. In this manuscript, we provide an outline of miRNAs associated with platelet function and reactivity (miR-223, miR-126, miR-197, miR-191, miR-21, miR-150, miR-155, miR-140, miR-96, miR-98) that should be evaluated as novel biomarkers to improve diagnostics and treatment of CVD.
Collapse
Affiliation(s)
- Justyna Pordzik
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Pisarz
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
| | - Salvatore De Rosa
- Division of Cardiology, Department of Medical and Surgical Sciences, “Magna Graecia” University, Catanzaro, Italy
| | - Axel Dyve Jones
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
| | - Ceren Eyileten
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
| | - Ciro Indolfi
- Division of Cardiology, Department of Medical and Surgical Sciences, “Magna Graecia” University, Catanzaro, Italy
- URT-CNR, Department of Medicine, Consiglio Nazionale delle Ricerche of IFC, Catanzaro, Italy
| | - Lukasz Malek
- Faculty of Rehabilitation, University of Physical Education, Warsaw, Poland
| | - Marek Postula
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
- *Correspondence: Marek Postula,
| |
Collapse
|
15
|
Kränkel N, Blankenberg S, Zeller T. Early detection of myocardial infarction-microRNAs right at the time? ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:502. [PMID: 28149864 DOI: 10.21037/atm.2016.12.12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Nicolle Kränkel
- Department of Cardiology, Charité Universitätsmedizin, Campus Benjamin Franklin, Berlin, Germany; ; German Center for Cardiovascular Research, partner site Berlin, Berlin, Germany
| | - Stefan Blankenberg
- Univeristy Heart Center Hamburg, Clinic for General and Interventional Cardiology, Hamburg, Germany; ; German Center for Cardiovascular Research, partner site Hamburg/Lübeck/Kiel, Hamburg, Germany
| | - Tanja Zeller
- Univeristy Heart Center Hamburg, Clinic for General and Interventional Cardiology, Hamburg, Germany; ; German Center for Cardiovascular Research, partner site Hamburg/Lübeck/Kiel, Hamburg, Germany
| |
Collapse
|