1
|
Dehghani K, Stanek A, Bagherabadi A, Atashi F, Beygi M, Hooshmand A, Hamedi P, Farhang M, Bagheri S, Zolghadri S. CCND1 Overexpression in Idiopathic Dilated Cardiomyopathy: A Promising Biomarker? Genes (Basel) 2023; 14:1243. [PMID: 37372424 DOI: 10.3390/genes14061243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Cardiomyopathy, a disorder of electrical or heart muscle function, represents a type of cardiac muscle failure and culminates in severe heart conditions. The prevalence of dilated cardiomyopathy (DCM) is higher than that of other types (hypertrophic cardiomyopathy and restrictive cardiomyopathy) and causes many deaths. Idiopathic dilated cardiomyopathy (IDCM) is a type of DCM with an unknown underlying cause. This study aims to analyze the gene network of IDCM patients to identify disease biomarkers. Data were first extracted from the Gene Expression Omnibus (GEO) dataset and normalized based on the RMA algorithm (Bioconductor package), and differentially expressed genes were identified. The gene network was mapped on the STRING website, and the data were transferred to Cytoscape software to determine the top 100 genes. In the following, several genes, including VEGFA, IGF1, APP, STAT1, CCND1, MYH10, and MYH11, were selected for clinical studies. Peripheral blood samples were taken from 14 identified IDCM patients and 14 controls. The RT-PCR results revealed no significant differences in the expression of the genes APP, MYH10, and MYH11 between the two groups. By contrast, the STAT1, IGF1, CCND1, and VEGFA genes were overexpressed in patients more than in controls. The highest expression was found for VEGFA, followed by CCND1 (p < 0.001). Overexpression of these genes may contribute to disease progression in patients with IDCM. However, more patients and genes need to be analyzed in order to achieve more robust results.
Collapse
Affiliation(s)
- Khatereh Dehghani
- Department of Cardiology, Jahrom University of Medical Sciences, Jahrom 7414846199, Iran
| | - Agata Stanek
- Department and Clinic of Internal Medicine, Angiology and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Batorego 15 Street, 41-902 Bytom, Poland
| | - Arash Bagherabadi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil 5619911367, Iran
| | - Fatemeh Atashi
- Faculty of Medicine, Jahrom University of Medical Sciences, Jahrom 7414846199, Iran
| | - Mohammad Beygi
- Department of Agricultural Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Amirreza Hooshmand
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences & Technology, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran
| | - Pezhman Hamedi
- Research Center, Department of Medical Laboratory Sciences, Faculty of Medicine, Jahrom University of Medical Sciences, Jahrom 7414846199, Iran
| | - Mohsen Farhang
- Molecular Study and Diagnostic Center, Jahrom University of Medical Sciences, Jahrom 7414846199, Iran
| | - Soghra Bagheri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran
| | - Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran
| |
Collapse
|
2
|
Alasmari WA, Hosny S, Fouad H, Quthami KA, Althobiany EAM, Faruk EM. Molecular and Cellular Mechanisms Involved in Adipose-derived stem cell and their extracellular vesicles in an Experimental Model of Cardio- renal Syndrome type 3: Histological and Biochemical Study. Tissue Cell 2022; 77:101842. [DOI: 10.1016/j.tice.2022.101842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
|
3
|
Long-term prognostic value of myocardin expression levels in non-ischemic dilated cardiomyopathy. Heart Vessels 2021; 36:1841-1847. [PMID: 33983455 DOI: 10.1007/s00380-021-01869-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
The mortality of patients with non-ischemic dilated cardiomyopathy (NIDCM) remains substantial. We evaluated gene expression levels of myocardin, an early cardiac gene, in the peripheral blood cells of NIDCM patients as a prognostic biomarker in their long-term outcome and mortality from congestive HF (CHF). We retrospectively analyzed 101 consecutives optimally treated NIDCM patients of Cretan origin who were enrolled from the HF clinic of our hospital from November 2005 to December 2008. Our patient data were either taken from their medical files or recorded during visits to the HF unit or hospitalizations. Follow-up was carried out by telephone interview and by accessing information from general practitioners and cardiologists in private practice. The median follow-up period was 8 years (mean follow-up 7 ± 3.4 years). The overall mortality during follow-up was 61.4%, while mortality due to congestive heart failure (CHF) was 49.5%. Higher CHF and all-cause mortality were observed in patients with myocardin levels < 14.26 (p < 0.001 for both CHF and all-cause mortality). A multivariate Cox regression analysis showed that myocardin level of expression had independent significant prognostic value for the risk of death from CHF (HR 14.5, 95% confidence interval (CI) 5.3-39) in those patients. Peripheral blood cells gene expression of myocardin, an early myocardial marker, may serve as prognostic biomarkers of the long-term outcome of patients with NIDCM. Our findings open new prospects in the risk stratification of these patients.
Collapse
|
4
|
Insight into atrial fibrillation through analysis of the coding transcriptome in humans. Biophys Rev 2020; 12:817-826. [PMID: 32666467 DOI: 10.1007/s12551-020-00735-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Atrial fibrillation is the most common sustained cardiac arrhythmia in humans, and its prevalence continues to increase because of the aging of the world population. Much still needs to be learned about the molecular pathways involved in the development and the persistence of the disease. Analysis of the transcriptome of cardiac tissue has provided valuable insight into diverse aspects of atrial remodeling, in particular concerning electrical remodeling-related to ion channels-and structural remodeling identified by dysregulation of processes linked to inflammation, fibrosis, oxidative stress, and thrombogenesis. The huge amount of data produced by these studies now represents a valuable source for the identification of novel potential therapeutic targets. In addition, the shift from cardiac tissue to peripheral blood as a substrate for transcriptome analysis revealed this strategy as a promising tool for improved diagnosis and therefore better patient care.
Collapse
|
5
|
Simantirakis Ε, Arkolaki E, Kontaraki J, Chlouverakis G, Mavrakis H, Kallergis E, Parthenakis F, Vardas P. The impact of paced QRS duration on the expression of genes related to contractile function of the left ventricle in chronically paced patients from the right ventricular apex. Hellenic J Cardiol 2020; 61:274-278. [DOI: 10.1016/j.hjc.2019.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 10/26/2022] Open
|
6
|
Sardu C, Santulli G, Guerra G, Trotta MC, Santamaria M, Sacra C, Testa N, Ducceschi V, Gatta G, Amico MD, Sasso FC, Paolisso G, Marfella R. Modulation of SERCA in Patients with Persistent Atrial Fibrillation Treated by Epicardial Thoracoscopic Ablation: The CAMAF Study. J Clin Med 2020; 9:E544. [PMID: 32079238 PMCID: PMC7074346 DOI: 10.3390/jcm9020544] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES To evaluate atrial fibrillation (AF) recurrence and Sarcoplasmic Endoplasmic Reticulum Calcium ATPase (SERCA) levels in patients treated by epicardial thoracoscopic ablation for persistent AF. BACKGROUND Reduced levels of SERCA have been reported in the peripheral blood cells of patients with AF. We hypothesize that SERCA levels can predict the response to epicardial ablation. METHODS We designed a prospective, multicenter, observational study to recruit, from October 2014 to June 2016, patients with persistent AF receiving an epicardial thoracoscopic pulmonary vein isolation. RESULTS We enrolled 27 patients. Responders (n = 15) did not present AF recurrence after epicardial ablation at one-year follow-up; these patients displayed a marked remodeling of the left atrium, with a significant reduction of inflammatory cytokines, B type natriuretic peptide (BNP), and increased levels of SERCA compared to baseline and to nonresponders (p < 0.05). Furthermore, mean AF duration (Heart rate (HR) 1.235 (1.037-1.471), p < 0.05), Left atrium volume (LAV) (HR 1.755 (1.126-2.738), p < 0.05), BNP (HR 1.945 (1.895-1.999), p < 0.05), and SERCA (HR 1.763 (1.167-2.663), p < 0.05) were predictive of AF recurrence. CONCLUSIONS Our data indicate for the first time that baseline values of SERCA in patients with persistent AF might be predictive of failure to epicardial ablative approach. Intriguingly, epicardial ablation was associated with increased levels of SERCA in responders. Therefore, SERCA might be an innovative therapeutic target to improve the response to epicardial ablative treatments.
Collapse
Affiliation(s)
- Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.T.); (G.G.); (F.C.S.); (G.P.); (R.M.)
- Department of Medical Sciences, International University of Health and Medical Sciences “Saint Camillus”, 00131Rome, Italy
| | - Gaetano Santulli
- Department of Advanced Biomedical Sciences, International Translational Research and Medical Education Academic Research Unit (ITME), “Federico II” University, 80138 Naples, Italy;
- Department of Medicine, Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Montefiore University Hospital, New York, NY 10461, USA
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, 86010, Campobasso, Italy;
| | - Maria Consiglia Trotta
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.T.); (G.G.); (F.C.S.); (G.P.); (R.M.)
| | - Matteo Santamaria
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.S.); (M.D.A.)
| | - Cosimo Sacra
- Cardiovascular and Arrhythmias Department, Catholic University of Sacred Heart, 86010 Campobasso, Italy; (C.S.); (N.T.)
| | - Nicola Testa
- Cardiovascular and Arrhythmias Department, Catholic University of Sacred Heart, 86010 Campobasso, Italy; (C.S.); (N.T.)
| | - Valentino Ducceschi
- Cardiovascular and Arrhythmias Department, “Vecchio Pellegrini” Hospital; 80138 Naples, Italy;
| | - Gianluca Gatta
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.T.); (G.G.); (F.C.S.); (G.P.); (R.M.)
| | - Michele D’ Amico
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.S.); (M.D.A.)
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.T.); (G.G.); (F.C.S.); (G.P.); (R.M.)
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.T.); (G.G.); (F.C.S.); (G.P.); (R.M.)
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.T.); (G.G.); (F.C.S.); (G.P.); (R.M.)
| |
Collapse
|
7
|
Al Kury LT. Calcium Homeostasis in Ventricular Myocytes of Diabetic Cardiomyopathy. J Diabetes Res 2020; 2020:1942086. [PMID: 33274235 PMCID: PMC7683117 DOI: 10.1155/2020/1942086] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder commonly characterized by high blood glucose levels, resulting from defects in insulin production or insulin resistance, or both. DM is a leading cause of mortality and morbidity worldwide, with diabetic cardiomyopathy as one of its main complications. It is well established that cardiovascular complications are common in both types of diabetes. Electrical and mechanical problems, resulting in cardiac contractile dysfunction, are considered as the major complications present in diabetic hearts. Inevitably, disturbances in the mechanism(s) of Ca2+ signaling in diabetes have implications for cardiac myocyte contraction. Over the last decade, significant progress has been made in outlining the mechanisms responsible for the diminished cardiac contractile function in diabetes using different animal models of type I diabetes mellitus (TIDM) and type II diabetes mellitus (TIIDM). The aim of this review is to evaluate our current understanding of the disturbances of Ca2+ transport and the role of main cardiac proteins involved in Ca2+ homeostasis in the diabetic rat ventricular cardiomyocytes. Exploring the molecular mechanism(s) of altered Ca2+ signaling in diabetes will provide an insight for the identification of novel therapeutic approaches to improve the heart function in diabetic patients.
Collapse
Affiliation(s)
- Lina T. Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, UAE
| |
Collapse
|
8
|
Mittal A, Rana S, Sharma R, Kumar A, Prasad R, Raut SK, Sarkar S, Saikia UN, Bahl A, Dhandapany PS, Khullar M. Myocardin ablation in a cardiac-renal rat model. Sci Rep 2019; 9:5872. [PMID: 30971740 PMCID: PMC6458122 DOI: 10.1038/s41598-019-42009-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/13/2019] [Indexed: 11/09/2022] Open
Abstract
Cardiorenal syndrome is defined by primary heart failure conditions influencing or leading to renal injury or dysfunction. Dilated cardiomyopathy (DCM) is a major co-existing form of heart failure (HF) with renal diseases. Myocardin (MYOCD), a cardiac-specific co-activator of serum response factor (SRF), is increased in DCM porcine and patient cardiac tissues and plays a crucial role in the pathophysiology of DCM. Inhibiting the increased MYOCD has shown to be partially rescuing the DCM phenotype in porcine model. However, expression levels of MYOCD in the cardiac tissues of the cardiorenal syndromic patients and the effect of inhibiting MYOCD in a cardiorenal syndrome model remains to be explored. Here, we analyzed the expression levels of MYOCD in the DCM patients with and without renal diseases. We also explored, whether cardiac specific silencing of MYOCD expression could ameliorate the cardiac remodeling and improve cardiac function in a renal artery ligated rat model (RAL). We observed an increase in MYOCD levels in the endomyocardial biopsies of DCM patients associated with renal failure compared to DCM alone. Silencing of MYOCD in RAL rats by a cardiac homing peptide conjugated MYOCD siRNA resulted in attenuation of cardiac hypertrophy, fibrosis and restoration of the left ventricular functions. Our data suggest hyper-activation of MYOCD in the pathogenesis of the cardiorenal failure cases. Also, MYOCD silencing showed beneficial effects by rescuing cardiac hypertrophy, fibrosis, size and function in a cardiorenal rat model.
Collapse
Affiliation(s)
- Anupam Mittal
- Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, India.,Department of Cardiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Santanu Rana
- Department of Zoology, University of Calcutta, Kolkata, India
| | - Rajni Sharma
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Akhilesh Kumar
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rishikesh Prasad
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Satish K Raut
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Uma Nahar Saikia
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ajay Bahl
- Department of Cardiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Perundurai S Dhandapany
- Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, India. .,The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA. .,Department of Medicine, Oregon Health and Science University, Portland, OR, USA. .,Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA.
| | - Madhu Khullar
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
9
|
Kurano M, Darestani SG, Shinnakasu A, Yamamoto K, Dochi Y, Uemura K, Ikeda Y, Kikuchi A, Hashiguchi H, Deguchi T, Nishio Y. mRNA expression of platelet activating factor receptor (PAFR) in peripheral blood mononuclear cells is associated with albuminuria and vascular dysfunction in patients with type 2 diabetes. Diabetes Res Clin Pract 2018; 136:124-133. [PMID: 29247656 DOI: 10.1016/j.diabres.2017.11.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/27/2017] [Accepted: 11/28/2017] [Indexed: 01/09/2023]
Abstract
AIMS Renal dysfunction in addition to diabetes is a serious risk factor for cardiovascular events. We hypothesized that some of the changes in gene expression in blood cells cause renal dysfunction and macrovascular disease through impaired endothelial function. This study aimed to define which changes in gene expression in peripheral blood mononuclear cells (PBMCs) are related to renal function parameters and endothelial function of large arteries in patients with type 2 diabetes mellitus (T2DM). METHODS We recruited 95 patients with T2DM. After matching for gender, age, BMI and HbA1c levels, the patient cohort included 42 with normoalbuminuria, 28 with microalbuminuria, and 25 with macroalbuminuria. All patients in the three groups were assessed for urinary albumin to creatinine ratio (ACR), estimated glomerular filtration rate (eGFR), flow-mediated dilatation (FMD), and mRNA expression in PBMCs. RESULTS The mRNA expression of platelet activating factor receptor (PAFR) differed most markedly between the three groups and was significantly higher in the macroalbuminuric group (p < 0.001 vs. normoalbuminuric group; p < 0.05 vs. microalbuminuric group). PAFR mRNA expression significantly correlated with log transformed ACR (ρ = 0.424, p < 0.001) but not eGFR. PAFR mRNA expression also had a significant negative correlation with FMD (ρ = -0.379, p < 0.001). Furthermore, the prevalence of macrovascular complications, particularly stroke, was significantly higher in patients with elevated PAFR mRNA expression in PBMCs. CONCLUSIONS PAFR overexpression in PBMCs may link diabetic nephropathy to macroangiopathy through impairment of endothelial function in patients with T2DM.
Collapse
Affiliation(s)
- Mihoko Kurano
- Department of Diabetes and Endocrine Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 8-35-1, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Sahar Ghavidel Darestani
- Department of Diabetes and Endocrine Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 8-35-1, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Atsushi Shinnakasu
- Department of Diabetes and Endocrine Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 8-35-1, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Kiyoaki Yamamoto
- Department of Diabetes and Endocrine Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 8-35-1, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Yukari Dochi
- Department of Diabetes and Endocrine Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 8-35-1, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Kayo Uemura
- Department of Diabetes and Endocrine Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 8-35-1, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Yuko Ikeda
- Department of Diabetes and Endocrine Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 8-35-1, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Akira Kikuchi
- Department of Diabetes and Endocrine Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 8-35-1, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Hiroshi Hashiguchi
- Department of Diabetes and Endocrine Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 8-35-1, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Takahisa Deguchi
- Department of Diabetes and Endocrine Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 8-35-1, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Yoshihiko Nishio
- Department of Diabetes and Endocrine Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 8-35-1, Sakuragaoka, Kagoshima 890-8520, Japan.
| |
Collapse
|
10
|
Luo Y, Xu Y, Liang C, Xing W, Zhang T. The mechanism of myocardial hypertrophy regulated by the interaction between mhrt and myocardin. Cell Signal 2017; 43:11-20. [PMID: 29199045 DOI: 10.1016/j.cellsig.2017.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/17/2017] [Accepted: 11/27/2017] [Indexed: 12/11/2022]
Abstract
As a strong transactivator of promoters containing CarG boxes, myocardin was critical for the cardiac muscle program and necessary for normal cardiogenesis. So it probably represents a viable therapeutic biomarker in the setting of cardiac hypertrophy and failure. In recent years, the studies of regulation of cardiac hypertrophy via myocardin are so common, and the molecular mechanism is becoming more and more clear. Here, we have revealed a kind of interaction between mhrt and myocardin shown as a feedback regulatory mechanism in the regulation of cardiac hypertrophy. That is, the lncRNA mhrt can affect the acetylation of myocardin by HDAC5 to inhibit cardiac hypertrophy induced by myocardin. Moreover, myocardin also can directly activate the mhrt transcription through binding to the CarG box. Thus, mhrt and myocardin form a regulation loop in the process of cardiac hypertrophy. This finding may play a positive role in revealing the complete mechanisms of cardiac hypertrophy.
Collapse
Affiliation(s)
- Ying Luo
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yao Xu
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Chen Liang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Weibing Xing
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Tongcun Zhang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
11
|
Early Right Ventricular Apical Pacing-Induced Gene Expression Alterations Are Associated with Deterioration of Left Ventricular Systolic Function. DISEASE MARKERS 2017; 2017:8405196. [PMID: 28928601 PMCID: PMC5591927 DOI: 10.1155/2017/8405196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 07/04/2017] [Indexed: 01/05/2023]
Abstract
The chronic high-dose right ventricular apical (RVA) pacing may have deleterious effects on left ventricular (LV) systolic function. We hypothesized that the expression changes of genes regulating cardiomyocyte energy metabolism and contractility were associated with deterioration of LV function in patients who underwent chronic RVA pacing. Sixty patients with complete atrioventricular block and preserved ejection fraction (EF) who underwent pacemaker implantation were randomly assigned to either RVA pacing (n = 30) group or right ventricular outflow tract (RVOT) pacing (n = 30) group. The mRNA levels of OPA1 and SERCA2a were significantly lower in the RVA pacing group at 1 month's follow-up (both p < 0.001). Early changes in the expression of selected genes OPA1 and SERCA2a were associated with deterioration in global longitudinal strain (GLS) that became apparent months later (p = 0.002 and p = 0.026, resp.) The altered expressions of genes that regulate cardiomyocyte energy metabolism and contractility measured in the peripheral blood at one month following pacemaker implantation were associated with subsequent deterioration in LV dyssynchrony and function in patients with preserved LVEF, who underwent RVA pacing.
Collapse
|
12
|
Xia XD, Zhou Z, Yu XH, Zheng XL, Tang CK. Myocardin: A novel player in atherosclerosis. Atherosclerosis 2017; 257:266-278. [PMID: 28012646 DOI: 10.1016/j.atherosclerosis.2016.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 12/21/2022]
|
13
|
Mittal A, Sharma R, Prasad R, Bahl A, Khullar M. Role of cardiac TBX20 in dilated cardiomyopathy. Mol Cell Biochem 2016; 414:129-36. [PMID: 26895318 DOI: 10.1007/s11010-016-2666-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/11/2016] [Indexed: 01/27/2023]
Abstract
Dilated cardiomyopathy (DCM) is an important cause of heart failure and sudden cardiac death worldwide. Transcription factor TBX20 has been shown to play a crucial role in cardiac development and maintenance of adult mouse heart. Recent studies suggest that TBX20 may have a role in pathophysiology of DCM. In the present study, we examined TBX20 expression in idiopathic DCM patients and in an animal model of cardiomyopathy, and studied its correlation with echocardiographic indices of LV function. Endomyocardial biopsies (EMBs) from intraventricular septal from the right ventricle region were obtained from idiopathic DCM patients (IDCM, n = 30) and from patients with ventricular septal defect (VSD, n = 14) with normal LVEF who served as controls. An animal model of DCM was developed by right renal artery ligation in Wistar rats. Cardiac TBX20 mRNA levels were measured by real-time PCR in IDCM, controls, and in rats. The role of DNA promoter methylation and copy number variation (CNVs) in regulating TBX20 gene expression was also investigated. Cardiac TBX20 mRNA levels were significantly increased (8.9 fold, p < 0.001) in IDCM patients and in RAL rats as compared to the control group. Cardiac TBX20 expression showed a negative correlation with LVEF (r = -0.71, p < 0.001) and a positive correlation with left ventricular end-systolic volume (r = 0.39, p = 0.038). No significant difference in TBX20 CNVs and promoter methylation was observed between IDCM patients and control group. Our results suggest a potential role of TBX20 in pathophysiology of DCM.
Collapse
Affiliation(s)
- Anupam Mittal
- Department of Cardiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajni Sharma
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rishikesh Prasad
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ajay Bahl
- Department of Cardiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhu Khullar
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
14
|
Arkolaki EG, Simantirakis EN, Kontaraki JE, Chrysostomakis SI, Patrianakos AP, Chlouverakis GI, Nakou ES, Vardas PE. Alterations in the expression of genes related to contractile function and hypertrophy of the left ventricle in chronically paced patients from the right ventricular apex. Europace 2015; 17:1563-70. [PMID: 25851726 DOI: 10.1093/europace/euv071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 02/27/2015] [Indexed: 12/16/2022] Open
Abstract
AIM Long-term right ventricular apical (RVA) pacing may lead to left ventricular (LV) remodelling and heart failure. This study assessed changes in the expression of genes regulating LV contractile function and hypertrophy, after permanent RVA pacing and investigated whether such changes proceed or even predict LV remodelling. METHODS AND RESULTS We enrolled 52 consecutive patients (age 79.1 ± 7.7 years, 34 males) who underwent pacemaker implantation for bradycardic indications: Group A, 24 individuals with atrioventricular conduction disturbances and group B, 28 patients with sinus node disease. In group A, peripheral blood mRNA levels of gene sarcoplasmic reticulum calcium ATPase decreased at 3, 6, and 12 months' follow-up, while α-myosin heavy chain (MHC) decreased and β-MHC increased until 6 months follow-up. In this group, 25% of patients demonstrated significant LV remodelling. At 4 years, LV end-systolic diameter increased from 29.67 ± 3.39 mm at baseline to 35.38 ± 4.22 mm, LV end-diastolic diameter increased from 50 ± 4.95 to 56.71 ± 5.52 mm, and ejection fraction declined from 63.04 ± 10.22 to 52.83 ± 10.81%. Early alterations in gene expression were associated with a deterioration in LV function and geometry that became apparent months later. In group B, echocardiographic indexes and mRNA levels of the evaluated genes demonstrated no statistically significant changes. CONCLUSIONS Permanent RVA pacing in patients with preserved ejection fraction is associated with alterations in the expression of genes regulating LV contractile function and hypertrophy, measured in the peripheral blood. These alterations are traceable at an early stage, before echocardiographic changes are apparent and are associated with LV remodelling that becomes evident in the long term.
Collapse
Affiliation(s)
- Eva G Arkolaki
- University Hospital of Heraklion, PO box 1352, Stavrakia, Heraklion Crete, Greece
| | | | | | | | | | | | - Eleni S Nakou
- University Hospital of Heraklion, PO box 1352, Stavrakia, Heraklion Crete, Greece
| | - Panos E Vardas
- University Hospital of Heraklion, PO box 1352, Stavrakia, Heraklion Crete, Greece
| |
Collapse
|
15
|
Abstract
Myocardin (MYOCD) is a potent transcriptional coactivator that functions primarily in cardiac muscle and smooth muscle through direct contacts with serum response factor (SRF) over cis elements known as CArG boxes found near a number of genes encoding for contractile, ion channel, cytoskeletal, and calcium handling proteins. Since its discovery more than 10 years ago, new insights have been obtained regarding the diverse isoforms of MYOCD expressed in cells as well as the regulation of MYOCD expression and activity through transcriptional, post-transcriptional, and post-translational processes. Curiously, there are a number of functions associated with MYOCD that appear to be independent of contractile gene expression and the CArG-SRF nucleoprotein complex. Further, perturbations in MYOCD gene expression are associated with an increasing number of diseases including heart failure, cancer, acute vessel disease, and diabetes. This review summarizes the various biological and pathological processes associated with MYOCD and offers perspectives to several challenges and future directions for further study of this formidable transcriptional coactivator.
Collapse
Affiliation(s)
- Joseph M Miano
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
16
|
Narula N, Favalli V, Tarantino P, Grasso M, Pilotto A, Bellazzi R, Serio A, Gambarin FI, Charron P, Meder B, Pinto Y, Elliott PM, Mogensen J, Bolognesi M, Bollati M, Arbustini E. Quantitative expression of the mutated lamin A/C gene in patients with cardiolaminopathy. J Am Coll Cardiol 2012; 60:1916-20. [PMID: 23062543 DOI: 10.1016/j.jacc.2012.05.059] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 05/23/2012] [Accepted: 05/28/2012] [Indexed: 01/19/2023]
Abstract
OBJECTIVES The authors sought to investigate the gene and protein expression in Lamin A/C (LMNA)-mutated dilated cardiolaminopathy (DCM) patients (DCM(LMNAMut)) versus LMNA-wild-type DCM (DCM(LMNAWT)), and normal controls (CTRL(LMNAWT)). BACKGROUND Dilated cardiolaminopathies are clinically characterized by high arrhythmogenic risk and caused by LMNA mutations. Little is known regarding quantitative gene expression (QGE) of the LMNA gene in blood and myocardium, as well as regarding myocardial expression of the lamin A/C protein. METHODS Using the comparative ΔΔCT method, we evaluated the QGE of LMNA (QGE(LMNA)) in peripheral blood and myocardial RNA from carriers of LMNA mutations, versus blood and myocardial samples from DCM(LMNAWT) patients and CTRL(LMNAWT) individuals. After generating reference values in normal controls, QGE(LMNA) was performed in 311 consecutive patients and relatives, blind to genotype, to assess the predictive value of QGE(LMNA) for the identification of mutation carriers. In parallel, Lamin A/C was investigated in myocardial samples from DCM(LMNAMut) versus DCM(LMNAWT) versus normal hearts (CTRL(LMNAWT)). RESULTS LMNA was significantly underexpressed in mRNA from peripheral blood and myocardium of DCM(LMNAMut) patients versus DCM(LMNAWT) and CTRL(LMNAWT). In 311 individuals, blind to genotype, the QGE(LMNA) showed 100% sensitivity and 87% specificity as a predictor of LMNA mutations. The receiver-operating characteristic curve analysis yielded an area under the curve of 0.957 (p < 0.001). Loss of protein in cardiomyocytes' nuclei was documented in DCM(LMNAMut) patients. CONCLUSIONS The reduced expression of LMNA gene in blood is a novel potential predictive biomarker for dilated cardiolaminopathies with parallel loss of protein expression in cardiomyocyte nuclei.
Collapse
Affiliation(s)
- Nupoor Narula
- Centre for Inherited Cardiovascular Diseases, Foundation IRCCS Policlinico San Matteo, University of Pavia, Piazzale Golgi 19, Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Early cardiac gene transcript levels in peripheral blood mononuclear cells in patients with untreated essential hypertension. J Hypertens 2011; 29:791-7. [PMID: 21157370 DOI: 10.1097/hjh.0b013e3283424bc4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVES To assess the expression of early cardiac genes, implicated in the hypertrophic growth response of the adult heart, in peripheral blood mononuclear cells in patients with essential hypertension and its relationship to ambulatory blood pressure monitoring (ABPM) parameters and to echocardiographic left ventricular mass. METHODS Twenty-four-hour ABPM, echocardiography and blood sampling were performed in 62 untreated participants with essential hypertension. Blood samples from 38 healthy individuals were included for comparison. Peripheral blood mononuclear cells (PBMCs) were isolated and gene transcript levels were determined by quantitative real-time reverse transcription PCR. RESULTS Myocardin (3.92±0.68 versus 2.09±0.67, P<0.001), GATA4 (3.48±0.68 versus 0.32±0.08, P<0.001) and Nkx2.5 (208.91±35.01 versus 129.75±49.70, P<0.001) were upregulated in hypertensive patients compared with controls. In hypertensive patients, transcript levels of myocardin (r=0.698, P<0.001) and GATA4 (r=0.374, P=0.003) showed significant positive correlations with 24-h systolic blood pressure (BP) as well as with mean BP, (r=0.626, P<0.001) and (r=0.340, P=0.007), respectively. A significant positive correlation between myocardin and 24-h pulse pressure (r=0.467, P<0.001) was also observed. Myocardin (r=-0.606, P<0.001) and GATA4 (r=-0.453, P<0.001) transcript levels also showed significant negative correlations with the mean 24-h dipping status. Additionally, myocardin (r=0.341, P=0.007), GATA4 (r=0.337, P=0.007) and Nkx2.5 (r=0.325, P=0.010) transcript levels showed significant positive correlations with left ventricular mass index. CONCLUSION Myocardin and GATA4 transcript levels correlate significantly with 24-h ABPM parameters, rendering them potential candidate biomarkers in hypertension. Early cardiac gene transcript levels in PBMCs of hypertensive patients are associated with left ventricular mass and may reflect activation of the hypertrophic response gene network in these patients.
Collapse
|
19
|
|