1
|
de Vere F, Wijesuriya N, Howell S, Elliott MK, Mehta V, Mannakkara NN, Strocchi M, Niederer SA, Rinaldi CA. Optimizing outcomes from cardiac resynchronization therapy: what do recent data and insights say? Expert Rev Cardiovasc Ther 2024; 22:1-18. [PMID: 39695920 PMCID: PMC11716670 DOI: 10.1080/14779072.2024.2445246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 11/05/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024]
Abstract
INTRODUCTION Cardiac Resynchronization Therapy (CRT) is an effective treatment for heart failure (HF) in approximately two-thirds of recipients, with a third remaining CRT 'non-responders.' There is an increasing body of evidence exploring the reasons behind non-response, as well as ways to preempt or counteract it. AREAS COVERED This review will examine the most recent evidence regarding optimizing outcomes from CRT, as well as explore whether traditional CRT indeed remains the best first-line therapy for electrical resynchronization in HF. We will start by discussing methods of preempting non-response, such as refining patient selection and procedural technique, before reviewing how responses can be optimized post-implantation. For the purpose of this review, evidence was gathered from electronic literature searches (via PubMed and GoogleScholar), with a particular focus on primary evidence published in the last 5 years. EXPERT OPINION Ever-expanding research in the field of device therapy has armed physicians with more tools than ever to treat dyssynchronous HF. Newer developments, such as artificial intelligence (AI) guided device programming and conduction system pacing (CSP) are particularly exciting, and we will discuss how they could eventually lead to truly personalized care by maximizing outcomes from CRT.
Collapse
Affiliation(s)
- Felicity de Vere
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Department of Cardiology, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Nadeev Wijesuriya
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Department of Cardiology, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Sandra Howell
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Department of Cardiology, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Mark K. Elliott
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Department of Cardiology, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Vishal Mehta
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Department of Cardiology, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Nilanka N. Mannakkara
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Department of Cardiology, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Marina Strocchi
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Steven A. Niederer
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Christopher A. Rinaldi
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Department of Cardiology, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| |
Collapse
|
2
|
Joza J, Burri H, Andrade JG, Linz D, Ellenbogen KA, Vernooy K. Atrioventricular node ablation for atrial fibrillation in the era of conduction system pacing. Eur Heart J 2024; 45:4887-4901. [PMID: 39397777 PMCID: PMC11631063 DOI: 10.1093/eurheartj/ehae656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/30/2024] [Accepted: 09/15/2024] [Indexed: 10/15/2024] Open
Abstract
Despite key advances in catheter-based treatments, the management of persistent atrial fibrillation (AF) remains a therapeutic challenge in a significant subset of patients. While success rates have improved with repeat AF ablation procedures and the concurrent use of antiarrhythmic drugs, the likelihood of maintaining sinus rhythm during long-term follow-up is still limited. Atrioventricular node ablation (AVNA) has returned as a valuable treatment option given the recent developments in cardiac pacing. With the advent of conduction system pacing, AVNA has seen a revival where pacing-induced cardiomyopathy after AVNA is felt to be overcome. This review will discuss the role of permanent pacemaker implantation and AVNA for AF management in this new era of conduction system pacing. Specifically, this review will discuss the haemodynamic consequences of AF and the mechanisms through which 'pace-and-ablate therapy' enhances outcomes, analyse historical and more recent literature across various pacing methods, and work to identify patient groups that may benefit from earlier implementation of this approach.
Collapse
Affiliation(s)
- Jacqueline Joza
- Department of Medicine, McGill University Health Center, Montreal, Quebec, Canada
| | - Haran Burri
- Cardiology Department, University Hospital of Geneva, Geneva, Switzerland
| | - Jason G Andrade
- Department of Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Dominik Linz
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | | | - Kevin Vernooy
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
3
|
Yamamoto N, Noda T, Nakano M, Ito T, Sato H, Hayashi H, Chiba T, Hasebe Y, Ueda N, Kamakura T, Ishibashi K, Miyata S, Kusano K, Yasuda S. Clinical utility of QRS duration normalized to left ventricular volume for predicting cardiac resynchronization therapy efficacy in patients with "mid-range" QRS duration. Heart Rhythm 2024; 21:855-862. [PMID: 38367890 DOI: 10.1016/j.hrthm.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/30/2024] [Accepted: 02/09/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Cardiac resynchronization therapy (CRT) is effective for patients with heart failure with QRS duration (QRSd) ≥150 ms. However, its beneficial effect seems to be limited for those with "mid-range" QRSd (120-149 ms). Recent studies have demonstrated that modifying QRSd to left ventricular end-diastolic volume (LVEDV)-modified QRSd-improves the prediction of clinical outcomes of CRT. OBJECTIVE The purpose of this study was to investigate the clinical impact of the modified QRSd on the efficacy of CRT in patients with "mid-range" QRSd. METHODS We conducted a retrospective, multicenter, observational study, with heart failure hospitalization (HFH) after CRT as the primary endpoint. Modified QRSd is defined as QRSd divided by LVEDV, determined through the Teichholtz method of echocardiography. RESULTS Among the 506 consecutive patients considered, 119 (mean age 61 ± 15 years; 80% male, QRSd 135 ± 9 ms) with a "mid-range" QRSd who underwent de novo CRT device implantation were included for analysis. During median follow-up of 878 days [interquartile range 381-1663 days], HFH occurred in 45 patients (37%). Fine-Gray analysis revealed modified QRSd was an independent predictor of HFH (hazard ratio [HR] 0.97; 95% confidence interval [CI] 0.96-0.99; P <.01). Receiver operating characteristic curve analysis revealed a cutoff value of 0.65 ms/mL for the modified QRSd in predicting HFH. Patients above the threshold exhibited a significantly lower incidence of HFH than patients below the threshold (HR 0.46; 95% CI 0.25-0.86; P = .01). CONCLUSION Modified QRSd can effectively predict the efficacy of CRT in patients with a "mid-range" QRSd.
Collapse
Affiliation(s)
- Nobuhiko Yamamoto
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Noda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Makoto Nakano
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Ito
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Sato
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideka Hayashi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takahiko Chiba
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuhi Hasebe
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuhiko Ueda
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Tsukasa Kamakura
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Kohei Ishibashi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Satoshi Miyata
- Teikyo University Graduate School of Public Health, Tokyo, Japan
| | - Kengo Kusano
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan.
| |
Collapse
|
4
|
Glikson M, Jastrzebski M, Gold MR, Ellenbogen K, Burri H. Conventional biventricular pacing is still preferred to conduction system pacing for atrioventricular block in patients with reduced ejection fraction and narrow QRS. Europace 2023; 26:euad337. [PMID: 38153385 PMCID: PMC10754179 DOI: 10.1093/europace/euad337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/05/2023] [Indexed: 12/29/2023] Open
Abstract
It is well established that right ventricular pacing is detrimental in patients with reduced cardiac function who require ventricular pacing (VP), and alternatives nowadays are comprised of biventricular pacing (BiVP) and conduction system pacing (CSP). The latter modality is of particular interest in patients with a narrow baseline QRS as it completely avoids, or minimizes, ventricular desynchronization associated with VP. In this article, experts debate whether BiVP or CSP should be used to treat these patients.
Collapse
Affiliation(s)
- Michael Glikson
- Jesselson Integrated Heart Center, Shaare Zedek Medical Center and Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Marek Jastrzebski
- First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University, Medical College, Jakubowskiego 2, 30-688 Krakow, Poland
| | - Michael R Gold
- Virginia Commonwealth University, VCU Medical Center Gateway Building, 1200 E. Marshall Street, Richmond, VA 23219, USA
| | - Kenneth Ellenbogen
- MUSC Division of Cardiology, Medical University of South Carolina, 25 Courtenay Dr, MS-592, Charleston, SC 29425, USA
| | - Haran Burri
- Cardiac Pacing Unit, Cardiology Department, University Hospital of Geneva, Rue Gabrielle Perret Gentil 4, 1211, Geneva, Switzerland
| |
Collapse
|
5
|
Chung MK, Patton KK, Lau CP, Dal Forno ARJ, Al-Khatib SM, Arora V, Birgersdotter-Green UM, Cha YM, Chung EH, Cronin EM, Curtis AB, Cygankiewicz I, Dandamudi G, Dubin AM, Ensch DP, Glotzer TV, Gold MR, Goldberger ZD, Gopinathannair R, Gorodeski EZ, Gutierrez A, Guzman JC, Huang W, Imrey PB, Indik JH, Karim S, Karpawich PP, Khaykin Y, Kiehl EL, Kron J, Kutyifa V, Link MS, Marine JE, Mullens W, Park SJ, Parkash R, Patete MF, Pathak RK, Perona CA, Rickard J, Schoenfeld MH, Seow SC, Shen WK, Shoda M, Singh JP, Slotwiner DJ, Sridhar ARM, Srivatsa UN, Stecker EC, Tanawuttiwat T, Tang WHW, Tapias CA, Tracy CM, Upadhyay GA, Varma N, Vernooy K, Vijayaraman P, Worsnick SA, Zareba W, Zeitler EP, Lopez-Cabanillas N, Ellenbogen KA, Hua W, Ikeda T, Mackall JA, Mason PK, McLeod CJ, Mela T, Moore JP, Racenet LK. 2023 HRS/APHRS/LAHRS guideline on cardiac physiologic pacing for the avoidance and mitigation of heart failure. J Arrhythm 2023; 39:681-756. [PMID: 37799799 PMCID: PMC10549836 DOI: 10.1002/joa3.12872] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Cardiac physiologic pacing (CPP), encompassing cardiac resynchronization therapy (CRT) and conduction system pacing (CSP), has emerged as a pacing therapy strategy that may mitigate or prevent the development of heart failure (HF) in patients with ventricular dyssynchrony or pacing-induced cardiomyopathy. This clinical practice guideline is intended to provide guidance on indications for CRT for HF therapy and CPP in patients with pacemaker indications or HF, patient selection, pre-procedure evaluation and preparation, implant procedure management, follow-up evaluation and optimization of CPP response, and use in pediatric populations. Gaps in knowledge, pointing to new directions for future research, are also identified.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Eugene H Chung
- University of Michigan Medical School Ann Arbor Michigan USA
| | | | | | | | | | - Anne M Dubin
- Stanford University, Pediatric Cardiology Palo Alto California USA
| | - Douglas P Ensch
- Cleveland Clinic Cleveland Ohio USA
- University of Washington Seattle Washington USA
- University of Hong Kong Hong Kong China
- Hospital SOS Cárdio Florianópolis Brazil
- Duke University Medical Center Durham North Carolina USA
- Indraprastha Apollo Hospital New Delhi India
- University of California San Diego Health La Jolla California USA
- Mayo Clinic, Rochester Rochester Minnesota USA
- University of Michigan Medical School Ann Arbor Michigan USA
- Temple University Philadelphia Pennsylvania USA
- University at Buffalo Buffalo New York USA
- Medical University of Łódź, Łódź Poland
- Virginia Mason Franciscan Health Tacoma Washington USA
- Stanford University, Pediatric Cardiology Palo Alto California USA
- Hackensack Meridian School of Medicine Hackensack New Jersey USA
- Medical University of South Carolina Charleston South Carolina USA
- University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Kansas City Heart Rhythm Institute Overland Park Kansas USA
- University Hospitals and Case Western Reserve University School of Medicine Cleveland Ohio USA
- University of Minnesota Minneapolis Minnesota USA
- McMaster University Hamilton Ontario Canada
- First Affiliated Hospital of Wenzhou Medical University Wenzhou China
- Case Western Reserve University Cleveland Ohio USA
- University of Arizona, Sarver Heart Center Tucson Arizona USA
- MetroHealth Medical Center Case Western Reserve University Cleveland Ohio USA
- The Children's Hospital of Michigan Central Michigan University Detroit Michigan USA
- Southlake Regional Health Center Newmarket Ontario Canada
- Sentara Norfolk Virginia USA
- Virginia Commonwealth University Richmond Virginia USA
- University of Rochester Medical Center Rochester New York USA
- University of Texas Southwestern Medical Center Dallas Texas USA
- Johns Hopkins University School of Medicine Baltimore Maryland USA
- Ziekenhuis Oost-Limburg Genk Belgium and Hasselt University Hasselt Belgium
- Sungkyunkwan University School of Medicine, Samsung Medical Center Seoul Republic of Korea
- QEII Health Sciences Center Halifax Nova Scotia Canada
- Clinica Corazones Unidos Santo Domingo Dominican Republic
- Australian National University, Canberra Hospital Garran Australian Capital Territory Australia
- Santojanni Hospital Buenos Aires Argentina
- Yale University School of Medicine New Haven Connecticut USA
- National University Hospital Singapore Singapore
- Mayo Clinic Phoenix Arizona USA
- Tokyo Women's Medical University Tokyo Japan
- Massachusetts General Hospital, Harvard Medical School Boston Massachusetts USA
- Weill Cornell Medicine Population Health Sciences New York New York USA
- University of California Davis Sacramento California USA
- Oregon Health & Science University Portland Oregon USA
- Indiana University Indianapolis Indiana USA
- Fundación Cardioinfantil Instituto de Cardiologia Bogotá Colombia
- George Washington University Washington District of Columbia USA
- University of Chicago Medicine Chicago Illinois USA
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center Maastricht The Netherlands
- Geisinger Health System Wilkes-Barre Pennsylvania USA
- Dartmouth Hitchcock Medical Center New Hampshire Lebanon
| | - Taya V Glotzer
- Hackensack Meridian School of Medicine Hackensack New Jersey USA
| | - Michael R Gold
- Medical University of South Carolina Charleston South Carolina USA
| | - Zachary D Goldberger
- University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
| | | | - Eiran Z Gorodeski
- University Hospitals and Case Western Reserve University School of Medicine Cleveland Ohio USA
| | | | | | - Weijian Huang
- First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Peter B Imrey
- Cleveland Clinic Cleveland Ohio USA
- Case Western Reserve University Cleveland Ohio USA
| | - Julia H Indik
- University of Arizona, Sarver Heart Center Tucson Arizona USA
| | - Saima Karim
- MetroHealth Medical Center Case Western Reserve University Cleveland Ohio USA
| | - Peter P Karpawich
- The Children's Hospital of Michigan Central Michigan University Detroit Michigan USA
| | - Yaariv Khaykin
- Southlake Regional Health Center Newmarket Ontario Canada
| | | | - Jordana Kron
- Virginia Commonwealth University Richmond Virginia USA
| | | | - Mark S Link
- University of Texas Southwestern Medical Center Dallas Texas USA
| | - Joseph E Marine
- Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Wilfried Mullens
- Ziekenhuis Oost-Limburg Genk Belgium and Hasselt University Hasselt Belgium
| | - Seung-Jung Park
- Sungkyunkwan University School of Medicine, Samsung Medical Center Seoul Republic of Korea
| | | | | | - Rajeev Kumar Pathak
- Australian National University, Canberra Hospital Garran Australian Capital Territory Australia
| | | | | | | | | | | | - Morio Shoda
- Tokyo Women's Medical University Tokyo Japan
| | - Jagmeet P Singh
- Massachusetts General Hospital, Harvard Medical School Boston Massachusetts USA
| | - David J Slotwiner
- Weill Cornell Medicine Population Health Sciences New York New York USA
| | | | - Uma N Srivatsa
- University of California Davis Sacramento California USA
| | | | | | | | | | - Cynthia M Tracy
- George Washington University Washington District of Columbia USA
| | | | | | - Kevin Vernooy
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center Maastricht The Netherlands
| | | | | | - Wojciech Zareba
- University of Rochester Medical Center Rochester New York USA
| | | | - Nestor Lopez-Cabanillas
- Cleveland Clinic Cleveland Ohio USA
- University of Washington Seattle Washington USA
- University of Hong Kong Hong Kong China
- Hospital SOS Cárdio Florianópolis Brazil
- Duke University Medical Center Durham North Carolina USA
- Indraprastha Apollo Hospital New Delhi India
- University of California San Diego Health La Jolla California USA
- Mayo Clinic, Rochester Rochester Minnesota USA
- University of Michigan Medical School Ann Arbor Michigan USA
- Temple University Philadelphia Pennsylvania USA
- University at Buffalo Buffalo New York USA
- Medical University of Łódź, Łódź Poland
- Virginia Mason Franciscan Health Tacoma Washington USA
- Stanford University, Pediatric Cardiology Palo Alto California USA
- Hackensack Meridian School of Medicine Hackensack New Jersey USA
- Medical University of South Carolina Charleston South Carolina USA
- University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Kansas City Heart Rhythm Institute Overland Park Kansas USA
- University Hospitals and Case Western Reserve University School of Medicine Cleveland Ohio USA
- University of Minnesota Minneapolis Minnesota USA
- McMaster University Hamilton Ontario Canada
- First Affiliated Hospital of Wenzhou Medical University Wenzhou China
- Case Western Reserve University Cleveland Ohio USA
- University of Arizona, Sarver Heart Center Tucson Arizona USA
- MetroHealth Medical Center Case Western Reserve University Cleveland Ohio USA
- The Children's Hospital of Michigan Central Michigan University Detroit Michigan USA
- Southlake Regional Health Center Newmarket Ontario Canada
- Sentara Norfolk Virginia USA
- Virginia Commonwealth University Richmond Virginia USA
- University of Rochester Medical Center Rochester New York USA
- University of Texas Southwestern Medical Center Dallas Texas USA
- Johns Hopkins University School of Medicine Baltimore Maryland USA
- Ziekenhuis Oost-Limburg Genk Belgium and Hasselt University Hasselt Belgium
- Sungkyunkwan University School of Medicine, Samsung Medical Center Seoul Republic of Korea
- QEII Health Sciences Center Halifax Nova Scotia Canada
- Clinica Corazones Unidos Santo Domingo Dominican Republic
- Australian National University, Canberra Hospital Garran Australian Capital Territory Australia
- Santojanni Hospital Buenos Aires Argentina
- Yale University School of Medicine New Haven Connecticut USA
- National University Hospital Singapore Singapore
- Mayo Clinic Phoenix Arizona USA
- Tokyo Women's Medical University Tokyo Japan
- Massachusetts General Hospital, Harvard Medical School Boston Massachusetts USA
- Weill Cornell Medicine Population Health Sciences New York New York USA
- University of California Davis Sacramento California USA
- Oregon Health & Science University Portland Oregon USA
- Indiana University Indianapolis Indiana USA
- Fundación Cardioinfantil Instituto de Cardiologia Bogotá Colombia
- George Washington University Washington District of Columbia USA
- University of Chicago Medicine Chicago Illinois USA
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center Maastricht The Netherlands
- Geisinger Health System Wilkes-Barre Pennsylvania USA
- Dartmouth Hitchcock Medical Center New Hampshire Lebanon
| | - Kenneth A Ellenbogen
- Cleveland Clinic Cleveland Ohio USA
- University of Washington Seattle Washington USA
- University of Hong Kong Hong Kong China
- Hospital SOS Cárdio Florianópolis Brazil
- Duke University Medical Center Durham North Carolina USA
- Indraprastha Apollo Hospital New Delhi India
- University of California San Diego Health La Jolla California USA
- Mayo Clinic, Rochester Rochester Minnesota USA
- University of Michigan Medical School Ann Arbor Michigan USA
- Temple University Philadelphia Pennsylvania USA
- University at Buffalo Buffalo New York USA
- Medical University of Łódź, Łódź Poland
- Virginia Mason Franciscan Health Tacoma Washington USA
- Stanford University, Pediatric Cardiology Palo Alto California USA
- Hackensack Meridian School of Medicine Hackensack New Jersey USA
- Medical University of South Carolina Charleston South Carolina USA
- University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Kansas City Heart Rhythm Institute Overland Park Kansas USA
- University Hospitals and Case Western Reserve University School of Medicine Cleveland Ohio USA
- University of Minnesota Minneapolis Minnesota USA
- McMaster University Hamilton Ontario Canada
- First Affiliated Hospital of Wenzhou Medical University Wenzhou China
- Case Western Reserve University Cleveland Ohio USA
- University of Arizona, Sarver Heart Center Tucson Arizona USA
- MetroHealth Medical Center Case Western Reserve University Cleveland Ohio USA
- The Children's Hospital of Michigan Central Michigan University Detroit Michigan USA
- Southlake Regional Health Center Newmarket Ontario Canada
- Sentara Norfolk Virginia USA
- Virginia Commonwealth University Richmond Virginia USA
- University of Rochester Medical Center Rochester New York USA
- University of Texas Southwestern Medical Center Dallas Texas USA
- Johns Hopkins University School of Medicine Baltimore Maryland USA
- Ziekenhuis Oost-Limburg Genk Belgium and Hasselt University Hasselt Belgium
- Sungkyunkwan University School of Medicine, Samsung Medical Center Seoul Republic of Korea
- QEII Health Sciences Center Halifax Nova Scotia Canada
- Clinica Corazones Unidos Santo Domingo Dominican Republic
- Australian National University, Canberra Hospital Garran Australian Capital Territory Australia
- Santojanni Hospital Buenos Aires Argentina
- Yale University School of Medicine New Haven Connecticut USA
- National University Hospital Singapore Singapore
- Mayo Clinic Phoenix Arizona USA
- Tokyo Women's Medical University Tokyo Japan
- Massachusetts General Hospital, Harvard Medical School Boston Massachusetts USA
- Weill Cornell Medicine Population Health Sciences New York New York USA
- University of California Davis Sacramento California USA
- Oregon Health & Science University Portland Oregon USA
- Indiana University Indianapolis Indiana USA
- Fundación Cardioinfantil Instituto de Cardiologia Bogotá Colombia
- George Washington University Washington District of Columbia USA
- University of Chicago Medicine Chicago Illinois USA
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center Maastricht The Netherlands
- Geisinger Health System Wilkes-Barre Pennsylvania USA
- Dartmouth Hitchcock Medical Center New Hampshire Lebanon
| | - Wei Hua
- Cleveland Clinic Cleveland Ohio USA
- University of Washington Seattle Washington USA
- University of Hong Kong Hong Kong China
- Hospital SOS Cárdio Florianópolis Brazil
- Duke University Medical Center Durham North Carolina USA
- Indraprastha Apollo Hospital New Delhi India
- University of California San Diego Health La Jolla California USA
- Mayo Clinic, Rochester Rochester Minnesota USA
- University of Michigan Medical School Ann Arbor Michigan USA
- Temple University Philadelphia Pennsylvania USA
- University at Buffalo Buffalo New York USA
- Medical University of Łódź, Łódź Poland
- Virginia Mason Franciscan Health Tacoma Washington USA
- Stanford University, Pediatric Cardiology Palo Alto California USA
- Hackensack Meridian School of Medicine Hackensack New Jersey USA
- Medical University of South Carolina Charleston South Carolina USA
- University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Kansas City Heart Rhythm Institute Overland Park Kansas USA
- University Hospitals and Case Western Reserve University School of Medicine Cleveland Ohio USA
- University of Minnesota Minneapolis Minnesota USA
- McMaster University Hamilton Ontario Canada
- First Affiliated Hospital of Wenzhou Medical University Wenzhou China
- Case Western Reserve University Cleveland Ohio USA
- University of Arizona, Sarver Heart Center Tucson Arizona USA
- MetroHealth Medical Center Case Western Reserve University Cleveland Ohio USA
- The Children's Hospital of Michigan Central Michigan University Detroit Michigan USA
- Southlake Regional Health Center Newmarket Ontario Canada
- Sentara Norfolk Virginia USA
- Virginia Commonwealth University Richmond Virginia USA
- University of Rochester Medical Center Rochester New York USA
- University of Texas Southwestern Medical Center Dallas Texas USA
- Johns Hopkins University School of Medicine Baltimore Maryland USA
- Ziekenhuis Oost-Limburg Genk Belgium and Hasselt University Hasselt Belgium
- Sungkyunkwan University School of Medicine, Samsung Medical Center Seoul Republic of Korea
- QEII Health Sciences Center Halifax Nova Scotia Canada
- Clinica Corazones Unidos Santo Domingo Dominican Republic
- Australian National University, Canberra Hospital Garran Australian Capital Territory Australia
- Santojanni Hospital Buenos Aires Argentina
- Yale University School of Medicine New Haven Connecticut USA
- National University Hospital Singapore Singapore
- Mayo Clinic Phoenix Arizona USA
- Tokyo Women's Medical University Tokyo Japan
- Massachusetts General Hospital, Harvard Medical School Boston Massachusetts USA
- Weill Cornell Medicine Population Health Sciences New York New York USA
- University of California Davis Sacramento California USA
- Oregon Health & Science University Portland Oregon USA
- Indiana University Indianapolis Indiana USA
- Fundación Cardioinfantil Instituto de Cardiologia Bogotá Colombia
- George Washington University Washington District of Columbia USA
- University of Chicago Medicine Chicago Illinois USA
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center Maastricht The Netherlands
- Geisinger Health System Wilkes-Barre Pennsylvania USA
- Dartmouth Hitchcock Medical Center New Hampshire Lebanon
| | - Takanori Ikeda
- Cleveland Clinic Cleveland Ohio USA
- University of Washington Seattle Washington USA
- University of Hong Kong Hong Kong China
- Hospital SOS Cárdio Florianópolis Brazil
- Duke University Medical Center Durham North Carolina USA
- Indraprastha Apollo Hospital New Delhi India
- University of California San Diego Health La Jolla California USA
- Mayo Clinic, Rochester Rochester Minnesota USA
- University of Michigan Medical School Ann Arbor Michigan USA
- Temple University Philadelphia Pennsylvania USA
- University at Buffalo Buffalo New York USA
- Medical University of Łódź, Łódź Poland
- Virginia Mason Franciscan Health Tacoma Washington USA
- Stanford University, Pediatric Cardiology Palo Alto California USA
- Hackensack Meridian School of Medicine Hackensack New Jersey USA
- Medical University of South Carolina Charleston South Carolina USA
- University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Kansas City Heart Rhythm Institute Overland Park Kansas USA
- University Hospitals and Case Western Reserve University School of Medicine Cleveland Ohio USA
- University of Minnesota Minneapolis Minnesota USA
- McMaster University Hamilton Ontario Canada
- First Affiliated Hospital of Wenzhou Medical University Wenzhou China
- Case Western Reserve University Cleveland Ohio USA
- University of Arizona, Sarver Heart Center Tucson Arizona USA
- MetroHealth Medical Center Case Western Reserve University Cleveland Ohio USA
- The Children's Hospital of Michigan Central Michigan University Detroit Michigan USA
- Southlake Regional Health Center Newmarket Ontario Canada
- Sentara Norfolk Virginia USA
- Virginia Commonwealth University Richmond Virginia USA
- University of Rochester Medical Center Rochester New York USA
- University of Texas Southwestern Medical Center Dallas Texas USA
- Johns Hopkins University School of Medicine Baltimore Maryland USA
- Ziekenhuis Oost-Limburg Genk Belgium and Hasselt University Hasselt Belgium
- Sungkyunkwan University School of Medicine, Samsung Medical Center Seoul Republic of Korea
- QEII Health Sciences Center Halifax Nova Scotia Canada
- Clinica Corazones Unidos Santo Domingo Dominican Republic
- Australian National University, Canberra Hospital Garran Australian Capital Territory Australia
- Santojanni Hospital Buenos Aires Argentina
- Yale University School of Medicine New Haven Connecticut USA
- National University Hospital Singapore Singapore
- Mayo Clinic Phoenix Arizona USA
- Tokyo Women's Medical University Tokyo Japan
- Massachusetts General Hospital, Harvard Medical School Boston Massachusetts USA
- Weill Cornell Medicine Population Health Sciences New York New York USA
- University of California Davis Sacramento California USA
- Oregon Health & Science University Portland Oregon USA
- Indiana University Indianapolis Indiana USA
- Fundación Cardioinfantil Instituto de Cardiologia Bogotá Colombia
- George Washington University Washington District of Columbia USA
- University of Chicago Medicine Chicago Illinois USA
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center Maastricht The Netherlands
- Geisinger Health System Wilkes-Barre Pennsylvania USA
- Dartmouth Hitchcock Medical Center New Hampshire Lebanon
| | - Judith A Mackall
- Cleveland Clinic Cleveland Ohio USA
- University of Washington Seattle Washington USA
- University of Hong Kong Hong Kong China
- Hospital SOS Cárdio Florianópolis Brazil
- Duke University Medical Center Durham North Carolina USA
- Indraprastha Apollo Hospital New Delhi India
- University of California San Diego Health La Jolla California USA
- Mayo Clinic, Rochester Rochester Minnesota USA
- University of Michigan Medical School Ann Arbor Michigan USA
- Temple University Philadelphia Pennsylvania USA
- University at Buffalo Buffalo New York USA
- Medical University of Łódź, Łódź Poland
- Virginia Mason Franciscan Health Tacoma Washington USA
- Stanford University, Pediatric Cardiology Palo Alto California USA
- Hackensack Meridian School of Medicine Hackensack New Jersey USA
- Medical University of South Carolina Charleston South Carolina USA
- University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Kansas City Heart Rhythm Institute Overland Park Kansas USA
- University Hospitals and Case Western Reserve University School of Medicine Cleveland Ohio USA
- University of Minnesota Minneapolis Minnesota USA
- McMaster University Hamilton Ontario Canada
- First Affiliated Hospital of Wenzhou Medical University Wenzhou China
- Case Western Reserve University Cleveland Ohio USA
- University of Arizona, Sarver Heart Center Tucson Arizona USA
- MetroHealth Medical Center Case Western Reserve University Cleveland Ohio USA
- The Children's Hospital of Michigan Central Michigan University Detroit Michigan USA
- Southlake Regional Health Center Newmarket Ontario Canada
- Sentara Norfolk Virginia USA
- Virginia Commonwealth University Richmond Virginia USA
- University of Rochester Medical Center Rochester New York USA
- University of Texas Southwestern Medical Center Dallas Texas USA
- Johns Hopkins University School of Medicine Baltimore Maryland USA
- Ziekenhuis Oost-Limburg Genk Belgium and Hasselt University Hasselt Belgium
- Sungkyunkwan University School of Medicine, Samsung Medical Center Seoul Republic of Korea
- QEII Health Sciences Center Halifax Nova Scotia Canada
- Clinica Corazones Unidos Santo Domingo Dominican Republic
- Australian National University, Canberra Hospital Garran Australian Capital Territory Australia
- Santojanni Hospital Buenos Aires Argentina
- Yale University School of Medicine New Haven Connecticut USA
- National University Hospital Singapore Singapore
- Mayo Clinic Phoenix Arizona USA
- Tokyo Women's Medical University Tokyo Japan
- Massachusetts General Hospital, Harvard Medical School Boston Massachusetts USA
- Weill Cornell Medicine Population Health Sciences New York New York USA
- University of California Davis Sacramento California USA
- Oregon Health & Science University Portland Oregon USA
- Indiana University Indianapolis Indiana USA
- Fundación Cardioinfantil Instituto de Cardiologia Bogotá Colombia
- George Washington University Washington District of Columbia USA
- University of Chicago Medicine Chicago Illinois USA
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center Maastricht The Netherlands
- Geisinger Health System Wilkes-Barre Pennsylvania USA
- Dartmouth Hitchcock Medical Center New Hampshire Lebanon
| | - Pamela K Mason
- Cleveland Clinic Cleveland Ohio USA
- University of Washington Seattle Washington USA
- University of Hong Kong Hong Kong China
- Hospital SOS Cárdio Florianópolis Brazil
- Duke University Medical Center Durham North Carolina USA
- Indraprastha Apollo Hospital New Delhi India
- University of California San Diego Health La Jolla California USA
- Mayo Clinic, Rochester Rochester Minnesota USA
- University of Michigan Medical School Ann Arbor Michigan USA
- Temple University Philadelphia Pennsylvania USA
- University at Buffalo Buffalo New York USA
- Medical University of Łódź, Łódź Poland
- Virginia Mason Franciscan Health Tacoma Washington USA
- Stanford University, Pediatric Cardiology Palo Alto California USA
- Hackensack Meridian School of Medicine Hackensack New Jersey USA
- Medical University of South Carolina Charleston South Carolina USA
- University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Kansas City Heart Rhythm Institute Overland Park Kansas USA
- University Hospitals and Case Western Reserve University School of Medicine Cleveland Ohio USA
- University of Minnesota Minneapolis Minnesota USA
- McMaster University Hamilton Ontario Canada
- First Affiliated Hospital of Wenzhou Medical University Wenzhou China
- Case Western Reserve University Cleveland Ohio USA
- University of Arizona, Sarver Heart Center Tucson Arizona USA
- MetroHealth Medical Center Case Western Reserve University Cleveland Ohio USA
- The Children's Hospital of Michigan Central Michigan University Detroit Michigan USA
- Southlake Regional Health Center Newmarket Ontario Canada
- Sentara Norfolk Virginia USA
- Virginia Commonwealth University Richmond Virginia USA
- University of Rochester Medical Center Rochester New York USA
- University of Texas Southwestern Medical Center Dallas Texas USA
- Johns Hopkins University School of Medicine Baltimore Maryland USA
- Ziekenhuis Oost-Limburg Genk Belgium and Hasselt University Hasselt Belgium
- Sungkyunkwan University School of Medicine, Samsung Medical Center Seoul Republic of Korea
- QEII Health Sciences Center Halifax Nova Scotia Canada
- Clinica Corazones Unidos Santo Domingo Dominican Republic
- Australian National University, Canberra Hospital Garran Australian Capital Territory Australia
- Santojanni Hospital Buenos Aires Argentina
- Yale University School of Medicine New Haven Connecticut USA
- National University Hospital Singapore Singapore
- Mayo Clinic Phoenix Arizona USA
- Tokyo Women's Medical University Tokyo Japan
- Massachusetts General Hospital, Harvard Medical School Boston Massachusetts USA
- Weill Cornell Medicine Population Health Sciences New York New York USA
- University of California Davis Sacramento California USA
- Oregon Health & Science University Portland Oregon USA
- Indiana University Indianapolis Indiana USA
- Fundación Cardioinfantil Instituto de Cardiologia Bogotá Colombia
- George Washington University Washington District of Columbia USA
- University of Chicago Medicine Chicago Illinois USA
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center Maastricht The Netherlands
- Geisinger Health System Wilkes-Barre Pennsylvania USA
- Dartmouth Hitchcock Medical Center New Hampshire Lebanon
| | - Christopher J McLeod
- Cleveland Clinic Cleveland Ohio USA
- University of Washington Seattle Washington USA
- University of Hong Kong Hong Kong China
- Hospital SOS Cárdio Florianópolis Brazil
- Duke University Medical Center Durham North Carolina USA
- Indraprastha Apollo Hospital New Delhi India
- University of California San Diego Health La Jolla California USA
- Mayo Clinic, Rochester Rochester Minnesota USA
- University of Michigan Medical School Ann Arbor Michigan USA
- Temple University Philadelphia Pennsylvania USA
- University at Buffalo Buffalo New York USA
- Medical University of Łódź, Łódź Poland
- Virginia Mason Franciscan Health Tacoma Washington USA
- Stanford University, Pediatric Cardiology Palo Alto California USA
- Hackensack Meridian School of Medicine Hackensack New Jersey USA
- Medical University of South Carolina Charleston South Carolina USA
- University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Kansas City Heart Rhythm Institute Overland Park Kansas USA
- University Hospitals and Case Western Reserve University School of Medicine Cleveland Ohio USA
- University of Minnesota Minneapolis Minnesota USA
- McMaster University Hamilton Ontario Canada
- First Affiliated Hospital of Wenzhou Medical University Wenzhou China
- Case Western Reserve University Cleveland Ohio USA
- University of Arizona, Sarver Heart Center Tucson Arizona USA
- MetroHealth Medical Center Case Western Reserve University Cleveland Ohio USA
- The Children's Hospital of Michigan Central Michigan University Detroit Michigan USA
- Southlake Regional Health Center Newmarket Ontario Canada
- Sentara Norfolk Virginia USA
- Virginia Commonwealth University Richmond Virginia USA
- University of Rochester Medical Center Rochester New York USA
- University of Texas Southwestern Medical Center Dallas Texas USA
- Johns Hopkins University School of Medicine Baltimore Maryland USA
- Ziekenhuis Oost-Limburg Genk Belgium and Hasselt University Hasselt Belgium
- Sungkyunkwan University School of Medicine, Samsung Medical Center Seoul Republic of Korea
- QEII Health Sciences Center Halifax Nova Scotia Canada
- Clinica Corazones Unidos Santo Domingo Dominican Republic
- Australian National University, Canberra Hospital Garran Australian Capital Territory Australia
- Santojanni Hospital Buenos Aires Argentina
- Yale University School of Medicine New Haven Connecticut USA
- National University Hospital Singapore Singapore
- Mayo Clinic Phoenix Arizona USA
- Tokyo Women's Medical University Tokyo Japan
- Massachusetts General Hospital, Harvard Medical School Boston Massachusetts USA
- Weill Cornell Medicine Population Health Sciences New York New York USA
- University of California Davis Sacramento California USA
- Oregon Health & Science University Portland Oregon USA
- Indiana University Indianapolis Indiana USA
- Fundación Cardioinfantil Instituto de Cardiologia Bogotá Colombia
- George Washington University Washington District of Columbia USA
- University of Chicago Medicine Chicago Illinois USA
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center Maastricht The Netherlands
- Geisinger Health System Wilkes-Barre Pennsylvania USA
- Dartmouth Hitchcock Medical Center New Hampshire Lebanon
| | - Theofanie Mela
- Cleveland Clinic Cleveland Ohio USA
- University of Washington Seattle Washington USA
- University of Hong Kong Hong Kong China
- Hospital SOS Cárdio Florianópolis Brazil
- Duke University Medical Center Durham North Carolina USA
- Indraprastha Apollo Hospital New Delhi India
- University of California San Diego Health La Jolla California USA
- Mayo Clinic, Rochester Rochester Minnesota USA
- University of Michigan Medical School Ann Arbor Michigan USA
- Temple University Philadelphia Pennsylvania USA
- University at Buffalo Buffalo New York USA
- Medical University of Łódź, Łódź Poland
- Virginia Mason Franciscan Health Tacoma Washington USA
- Stanford University, Pediatric Cardiology Palo Alto California USA
- Hackensack Meridian School of Medicine Hackensack New Jersey USA
- Medical University of South Carolina Charleston South Carolina USA
- University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Kansas City Heart Rhythm Institute Overland Park Kansas USA
- University Hospitals and Case Western Reserve University School of Medicine Cleveland Ohio USA
- University of Minnesota Minneapolis Minnesota USA
- McMaster University Hamilton Ontario Canada
- First Affiliated Hospital of Wenzhou Medical University Wenzhou China
- Case Western Reserve University Cleveland Ohio USA
- University of Arizona, Sarver Heart Center Tucson Arizona USA
- MetroHealth Medical Center Case Western Reserve University Cleveland Ohio USA
- The Children's Hospital of Michigan Central Michigan University Detroit Michigan USA
- Southlake Regional Health Center Newmarket Ontario Canada
- Sentara Norfolk Virginia USA
- Virginia Commonwealth University Richmond Virginia USA
- University of Rochester Medical Center Rochester New York USA
- University of Texas Southwestern Medical Center Dallas Texas USA
- Johns Hopkins University School of Medicine Baltimore Maryland USA
- Ziekenhuis Oost-Limburg Genk Belgium and Hasselt University Hasselt Belgium
- Sungkyunkwan University School of Medicine, Samsung Medical Center Seoul Republic of Korea
- QEII Health Sciences Center Halifax Nova Scotia Canada
- Clinica Corazones Unidos Santo Domingo Dominican Republic
- Australian National University, Canberra Hospital Garran Australian Capital Territory Australia
- Santojanni Hospital Buenos Aires Argentina
- Yale University School of Medicine New Haven Connecticut USA
- National University Hospital Singapore Singapore
- Mayo Clinic Phoenix Arizona USA
- Tokyo Women's Medical University Tokyo Japan
- Massachusetts General Hospital, Harvard Medical School Boston Massachusetts USA
- Weill Cornell Medicine Population Health Sciences New York New York USA
- University of California Davis Sacramento California USA
- Oregon Health & Science University Portland Oregon USA
- Indiana University Indianapolis Indiana USA
- Fundación Cardioinfantil Instituto de Cardiologia Bogotá Colombia
- George Washington University Washington District of Columbia USA
- University of Chicago Medicine Chicago Illinois USA
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center Maastricht The Netherlands
- Geisinger Health System Wilkes-Barre Pennsylvania USA
- Dartmouth Hitchcock Medical Center New Hampshire Lebanon
| | - Jeremy P Moore
- Cleveland Clinic Cleveland Ohio USA
- University of Washington Seattle Washington USA
- University of Hong Kong Hong Kong China
- Hospital SOS Cárdio Florianópolis Brazil
- Duke University Medical Center Durham North Carolina USA
- Indraprastha Apollo Hospital New Delhi India
- University of California San Diego Health La Jolla California USA
- Mayo Clinic, Rochester Rochester Minnesota USA
- University of Michigan Medical School Ann Arbor Michigan USA
- Temple University Philadelphia Pennsylvania USA
- University at Buffalo Buffalo New York USA
- Medical University of Łódź, Łódź Poland
- Virginia Mason Franciscan Health Tacoma Washington USA
- Stanford University, Pediatric Cardiology Palo Alto California USA
- Hackensack Meridian School of Medicine Hackensack New Jersey USA
- Medical University of South Carolina Charleston South Carolina USA
- University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Kansas City Heart Rhythm Institute Overland Park Kansas USA
- University Hospitals and Case Western Reserve University School of Medicine Cleveland Ohio USA
- University of Minnesota Minneapolis Minnesota USA
- McMaster University Hamilton Ontario Canada
- First Affiliated Hospital of Wenzhou Medical University Wenzhou China
- Case Western Reserve University Cleveland Ohio USA
- University of Arizona, Sarver Heart Center Tucson Arizona USA
- MetroHealth Medical Center Case Western Reserve University Cleveland Ohio USA
- The Children's Hospital of Michigan Central Michigan University Detroit Michigan USA
- Southlake Regional Health Center Newmarket Ontario Canada
- Sentara Norfolk Virginia USA
- Virginia Commonwealth University Richmond Virginia USA
- University of Rochester Medical Center Rochester New York USA
- University of Texas Southwestern Medical Center Dallas Texas USA
- Johns Hopkins University School of Medicine Baltimore Maryland USA
- Ziekenhuis Oost-Limburg Genk Belgium and Hasselt University Hasselt Belgium
- Sungkyunkwan University School of Medicine, Samsung Medical Center Seoul Republic of Korea
- QEII Health Sciences Center Halifax Nova Scotia Canada
- Clinica Corazones Unidos Santo Domingo Dominican Republic
- Australian National University, Canberra Hospital Garran Australian Capital Territory Australia
- Santojanni Hospital Buenos Aires Argentina
- Yale University School of Medicine New Haven Connecticut USA
- National University Hospital Singapore Singapore
- Mayo Clinic Phoenix Arizona USA
- Tokyo Women's Medical University Tokyo Japan
- Massachusetts General Hospital, Harvard Medical School Boston Massachusetts USA
- Weill Cornell Medicine Population Health Sciences New York New York USA
- University of California Davis Sacramento California USA
- Oregon Health & Science University Portland Oregon USA
- Indiana University Indianapolis Indiana USA
- Fundación Cardioinfantil Instituto de Cardiologia Bogotá Colombia
- George Washington University Washington District of Columbia USA
- University of Chicago Medicine Chicago Illinois USA
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center Maastricht The Netherlands
- Geisinger Health System Wilkes-Barre Pennsylvania USA
- Dartmouth Hitchcock Medical Center New Hampshire Lebanon
| | - Laurel Kay Racenet
- Cleveland Clinic Cleveland Ohio USA
- University of Washington Seattle Washington USA
- University of Hong Kong Hong Kong China
- Hospital SOS Cárdio Florianópolis Brazil
- Duke University Medical Center Durham North Carolina USA
- Indraprastha Apollo Hospital New Delhi India
- University of California San Diego Health La Jolla California USA
- Mayo Clinic, Rochester Rochester Minnesota USA
- University of Michigan Medical School Ann Arbor Michigan USA
- Temple University Philadelphia Pennsylvania USA
- University at Buffalo Buffalo New York USA
- Medical University of Łódź, Łódź Poland
- Virginia Mason Franciscan Health Tacoma Washington USA
- Stanford University, Pediatric Cardiology Palo Alto California USA
- Hackensack Meridian School of Medicine Hackensack New Jersey USA
- Medical University of South Carolina Charleston South Carolina USA
- University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Kansas City Heart Rhythm Institute Overland Park Kansas USA
- University Hospitals and Case Western Reserve University School of Medicine Cleveland Ohio USA
- University of Minnesota Minneapolis Minnesota USA
- McMaster University Hamilton Ontario Canada
- First Affiliated Hospital of Wenzhou Medical University Wenzhou China
- Case Western Reserve University Cleveland Ohio USA
- University of Arizona, Sarver Heart Center Tucson Arizona USA
- MetroHealth Medical Center Case Western Reserve University Cleveland Ohio USA
- The Children's Hospital of Michigan Central Michigan University Detroit Michigan USA
- Southlake Regional Health Center Newmarket Ontario Canada
- Sentara Norfolk Virginia USA
- Virginia Commonwealth University Richmond Virginia USA
- University of Rochester Medical Center Rochester New York USA
- University of Texas Southwestern Medical Center Dallas Texas USA
- Johns Hopkins University School of Medicine Baltimore Maryland USA
- Ziekenhuis Oost-Limburg Genk Belgium and Hasselt University Hasselt Belgium
- Sungkyunkwan University School of Medicine, Samsung Medical Center Seoul Republic of Korea
- QEII Health Sciences Center Halifax Nova Scotia Canada
- Clinica Corazones Unidos Santo Domingo Dominican Republic
- Australian National University, Canberra Hospital Garran Australian Capital Territory Australia
- Santojanni Hospital Buenos Aires Argentina
- Yale University School of Medicine New Haven Connecticut USA
- National University Hospital Singapore Singapore
- Mayo Clinic Phoenix Arizona USA
- Tokyo Women's Medical University Tokyo Japan
- Massachusetts General Hospital, Harvard Medical School Boston Massachusetts USA
- Weill Cornell Medicine Population Health Sciences New York New York USA
- University of California Davis Sacramento California USA
- Oregon Health & Science University Portland Oregon USA
- Indiana University Indianapolis Indiana USA
- Fundación Cardioinfantil Instituto de Cardiologia Bogotá Colombia
- George Washington University Washington District of Columbia USA
- University of Chicago Medicine Chicago Illinois USA
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center Maastricht The Netherlands
- Geisinger Health System Wilkes-Barre Pennsylvania USA
- Dartmouth Hitchcock Medical Center New Hampshire Lebanon
| |
Collapse
|
6
|
Chung MK, Patton KK, Lau CP, Dal Forno ARJ, Al-Khatib SM, Arora V, Birgersdotter-Green UM, Cha YM, Chung EH, Cronin EM, Curtis AB, Cygankiewicz I, Dandamudi G, Dubin AM, Ensch DP, Glotzer TV, Gold MR, Goldberger ZD, Gopinathannair R, Gorodeski EZ, Gutierrez A, Guzman JC, Huang W, Imrey PB, Indik JH, Karim S, Karpawich PP, Khaykin Y, Kiehl EL, Kron J, Kutyifa V, Link MS, Marine JE, Mullens W, Park SJ, Parkash R, Patete MF, Pathak RK, Perona CA, Rickard J, Schoenfeld MH, Seow SC, Shen WK, Shoda M, Singh JP, Slotwiner DJ, Sridhar ARM, Srivatsa UN, Stecker EC, Tanawuttiwat T, Tang WHW, Tapias CA, Tracy CM, Upadhyay GA, Varma N, Vernooy K, Vijayaraman P, Worsnick SA, Zareba W, Zeitler EP. 2023 HRS/APHRS/LAHRS guideline on cardiac physiologic pacing for the avoidance and mitigation of heart failure. Heart Rhythm 2023; 20:e17-e91. [PMID: 37283271 PMCID: PMC11062890 DOI: 10.1016/j.hrthm.2023.03.1538] [Citation(s) in RCA: 172] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 06/08/2023]
Abstract
Cardiac physiologic pacing (CPP), encompassing cardiac resynchronization therapy (CRT) and conduction system pacing (CSP), has emerged as a pacing therapy strategy that may mitigate or prevent the development of heart failure (HF) in patients with ventricular dyssynchrony or pacing-induced cardiomyopathy. This clinical practice guideline is intended to provide guidance on indications for CRT for HF therapy and CPP in patients with pacemaker indications or HF, patient selection, pre-procedure evaluation and preparation, implant procedure management, follow-up evaluation and optimization of CPP response, and use in pediatric populations. Gaps in knowledge, pointing to new directions for future research, are also identified.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Eugene H Chung
- University of Michigan Medical School, Ann Arbor, Michigan
| | | | | | | | | | - Anne M Dubin
- Stanford University, Pediatric Cardiology, Palo Alto, California
| | | | - Taya V Glotzer
- Hackensack Meridian School of Medicine, Hackensack, New Jersey
| | - Michael R Gold
- Medical University of South Carolina, Charleston, South Carolina
| | - Zachary D Goldberger
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | | | - Eiran Z Gorodeski
- University Hospitals and Case Western Reserve University School of Medicine, Cleveland, Ohio
| | | | | | - Weijian Huang
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peter B Imrey
- Cleveland Clinic, Cleveland, Ohio; Case Western Reserve University, Cleveland, Ohio
| | - Julia H Indik
- University of Arizona, Sarver Heart Center, Tucson, Arizona
| | - Saima Karim
- MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - Peter P Karpawich
- The Children's Hospital of Michigan, Central Michigan University, Detroit, Michigan
| | - Yaariv Khaykin
- Southlake Regional Health Center, Newmarket, Ontario, Canada
| | | | - Jordana Kron
- Virginia Commonwealth University, Richmond, Virginia
| | | | - Mark S Link
- University of Texas Southwestern Medical Center, Dallas, Texas
| | - Joseph E Marine
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Wilfried Mullens
- Ziekenhuis Oost-Limburg Genk, Belgium and Hasselt University, Hasselt, Belgium
| | - Seung-Jung Park
- Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Ratika Parkash
- QEII Health Sciences Center, Halifax, Nova Scotia, Canada
| | | | - Rajeev Kumar Pathak
- Australian National University, Canberra Hospital, Garran, Australian Capital Territory, Australia
| | | | | | | | | | | | - Morio Shoda
- Tokyo Women's Medical University, Tokyo, Japan
| | - Jagmeet P Singh
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - David J Slotwiner
- Weill Cornell Medicine Population Health Sciences, New York, New York
| | | | | | | | | | | | | | - Cynthia M Tracy
- George Washington University, Washington, District of Columbia
| | | | | | - Kevin Vernooy
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
7
|
de Vere F, Wijesuriya N, Elliott MK, Mehta V, Howell S, Bishop M, Strocchi M, Niederer SA, Rinaldi CA. Managing arrhythmia in cardiac resynchronisation therapy. Front Cardiovasc Med 2023; 10:1211560. [PMID: 37608808 PMCID: PMC10440957 DOI: 10.3389/fcvm.2023.1211560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/30/2023] [Indexed: 08/24/2023] Open
Abstract
Arrhythmia is an extremely common finding in patients receiving cardiac resynchronisation therapy (CRT). Despite this, in the majority of randomised trials testing CRT efficacy, patients with a recent history of arrhythmia were excluded. Most of our knowledge into the management of arrhythmia in CRT is therefore based on arrhythmia trials in the heart failure (HF) population, rather than from trials dedicated to the CRT population. However, unique to CRT patients is the aim to reach as close to 100% biventricular pacing (BVP) as possible, with HF outcomes greatly influenced by relatively small changes in pacing percentage. Thus, in comparison to the average HF patient, there is an even greater incentive for controlling arrhythmia, to achieve minimal interference with the effective delivery of BVP. In this review, we examine both atrial and ventricular arrhythmias, addressing their impact on CRT, and discuss the available evidence regarding optimal arrhythmia management in this patient group. We review pharmacological and procedural-based approaches, and lastly explore novel ways of harnessing device data to guide treatment of arrhythmia in CRT.
Collapse
Affiliation(s)
- Felicity de Vere
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, United Kingdom
- Department of Cardiology, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Nadeev Wijesuriya
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, United Kingdom
- Department of Cardiology, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Mark K. Elliott
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, United Kingdom
- Department of Cardiology, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Vishal Mehta
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, United Kingdom
- Department of Cardiology, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Sandra Howell
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, United Kingdom
- Department of Cardiology, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Martin Bishop
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, United Kingdom
| | - Marina Strocchi
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, United Kingdom
| | - Steven A. Niederer
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, United Kingdom
| | - Christopher A. Rinaldi
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, United Kingdom
- Department of Cardiology, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
8
|
Monge García MI, Jian Z, Hatib F, Settles JJ, Cecconi M, Pinsky MR. Relationship between intraventricular mechanical dyssynchrony and left ventricular systolic and diastolic performance: An in vivo experimental study. Physiol Rep 2023; 11:e15607. [PMID: 36808901 PMCID: PMC9937795 DOI: 10.14814/phy2.15607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 02/19/2023] Open
Abstract
Left ventricular mechanical dyssynchrony (LVMD) refers to the nonuniformity in mechanical contraction and relaxation timing in different ventricular segments. We aimed to determine the relationship between LVMD and LV performance, as assessed by ventriculo-arterial coupling (VAC), LV mechanical efficiency (LVeff ), left ventricular ejection fraction (LVEF), and diastolic function during sequential experimental changes in loading and contractile conditions. Thirteen Yorkshire pigs submitted to three consecutive stages with two opposite interventions each: changes in afterload (phenylephrine/nitroprusside), preload (bleeding/reinfusion and fluid bolus), and contractility (esmolol/dobutamine). LV pressure-volume data were obtained with a conductance catheter. Segmental mechanical dyssynchrony was assessed by global, systolic, and diastolic dyssynchrony (DYS) and internal flow fraction (IFF). Late systolic LVMD was related to an impaired VAC, LVeff , and LVEF, whereas diastolic LVMD was associated with delayed LV relaxation (logistic tau), decreased LV peak filling rate, and increased atrial contribution to LV filling. The hemodynamic factors related to LVMD were contractility, afterload, and heart rate. However, the relationship between these factors differed throughout the cardiac cycle. LVMD plays a significant role in LV systolic and diastolic performance and is associated with hemodynamic factors and intraventricular conduction.
Collapse
Affiliation(s)
| | | | | | | | - Maurizio Cecconi
- Department Anaesthesia and Intensive Care Units, Humanitas Research HospitalHumanitas UniversityMilanItaly
| | - Michael R. Pinsky
- Department of Critical Care MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
9
|
Doi T, Nakata T, Noto T, Mita T, Yuda S, Hashimoto A. Improved risk-stratification in heart failure patients with mid-range to severe abnormalities of QRS duration and systolic function using mechanical dyssynchrony assessed by myocardial perfusion-gated SPECT. J Nucl Cardiol 2022; 29:1611-1625. [PMID: 33629244 DOI: 10.1007/s12350-021-02554-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/15/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND The use of left ventricular mechanical dyssynchrony (LVMD), which has been reported to be responsible for unfavorable outcomes, might improve conventional risk-stratification by clinical indices including QRS duration (QRSd) and systolic dysfunction in patients with heart failure (HF). METHODS AND RESULTS Following measurements of 12-lead QRSd and left ventricular ejection fraction (LVEF), three-dimensional (3-D) LVMD was evaluated as a standard deviation (phase SD) of regional mechanical systolic phase angles by gated myocardial perfusion imaging in 829 HF patients. Patients were followed up for a mean period of 37 months with a primary endpoint of lethal cardiac events (CEs). In an overall multivariate Cox proportional hazards model, phase SDs were identified as significant prognostic determinants independently. The patients were divided into 4 groups by combining with the cut-off values of LVEF (35% and 50%) and QRSd (130 ms and 150 ms). The groups with lower LVEF and prolonged QRSd more frequently had CEs than did the other groups. Patient groups with LVEF < 35% and with 35% ≦ LVEF < 50% were differentiated into low-risk and high-risk categories by using an optimal phase SD cut-off value of both QRSd thresholds. CONCLUSIONS 3-D LVMD can risk-stratify HF patients with mid-range as well as severe abnormalities of QRSd and systolic dysfunction.
Collapse
Affiliation(s)
- Takahiro Doi
- Department of Cardiology, Teine Kijinkai Hospital, Sapporo, Hokkaido, Japan.
| | - Tomoaki Nakata
- Department of Cardiology, Hakodate Goryokaku Hospital, Hakodate, Japan
| | - Takahiro Noto
- Department of Cardiology, Teine Kijinkai Hospital, Sapporo, Hokkaido, Japan
| | - Tomohiro Mita
- Department of Cardiology, Teine Kijinkai Hospital, Sapporo, Hokkaido, Japan
| | - Satoshi Yuda
- Department of Cardiology, Teine Kijinkai Hospital, Sapporo, Hokkaido, Japan
| | - Akiyoshi Hashimoto
- Department of Cardiology, Renal and Metabolic Medicine, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
10
|
Biventricular versus Conduction System Pacing after Atrioventricular Node Ablation in Heart Failure Patients with Atrial Fibrillation. J Cardiovasc Dev Dis 2022; 9:jcdd9070209. [PMID: 35877570 PMCID: PMC9318052 DOI: 10.3390/jcdd9070209] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Conduction system pacing (CSP) modalities, including His-bundle pacing (HBP) and left bundle branch pacing (LBBP), are increasingly used as alternatives to biventricular (BiV) pacing in heart failure (HF) patients scheduled for pace and ablate strategy. The aim of the study was to compare clinical outcomes of HF patients with refractory AF who received either BiV pacing or CSP in conjunction with atrio-ventricular node ablation (AVNA). Fifty consecutive patients (male 48%, age 70 years (IQR 9), left ventricular ejection fraction (LVEF) 39% (IQR 12)) were retrospectively analysed. Thirteen patients (26%) received BiV pacing, 27 patients (54%) HBP and 10 patients (20%) LBBP. All groups had similar baseline characteristics and acute success rate. While New York Heart. Association (NYHA) class improved in both HBP (p < 0.001) and LBBP (p = 0.008), it did not improve in BiV group (p = 0.096). At follow-up, LVEF increased in HBP (form 39% (IQR 15) to 49% (IQR 16), p < 0.001) and LBBP (from 28% (IQR 13) to 40% (IQR 13), p = 0.041), but did not change in BiV group (p = 0.916). Conduction system pacing modalities showed superior symptomatic and echocardiographic improvement compared to BiV pacing after AVNA. With more stable pacing parameters, LBBP could present a more feasible pacing option compared to HBP.
Collapse
|
11
|
Žižek D, Antolič B, Mežnar AZ, Zavrl-Džananović D, Jan M, Štublar J, Pernat A. Biventricular versus His bundle pacing after atrioventricular node ablation in heart failure patients with narrow QRS. Acta Cardiol 2022; 77:222-230. [PMID: 34078244 DOI: 10.1080/00015385.2021.1903196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Background: His bundle pacing (HBP) is a physiological alternative to biventricular (BiV) pacing. We compared short-term results of both pacing approaches in symptomatic atrial fibrillation (AF) patients with moderately reduced left ventricular (LV) ejection fraction (EF ≥35% and <50%) and narrow QRS (≤120 ms) who underwent atrioventricular node ablation (AVNA).Methods: Thirty consecutive AF patients who received BiV pacing or HBP in conjunction with AVNA between May 2015 and January 2020 were retrospectively assessed. Electrocardiographic, echocardiographic, and clinical data at baseline and 6 months after the procedure were assessed.Results: Twenty-four patients (age 68.8 ± 6.5 years, 50% female, EF 39.6 ± 4%, QRS 95 ± 10 ms) met the inclusion criteria, 12 received BiV pacing and 12 HBP. Both groups had similar acute procedure-related success and complication rates. HBP was superior to BiV pacing in terms of post-implant QRS duration, implantation fluoroscopy times, reduction of indexed LV volumes (EDVi 63.8 (49.6-81) mL/m2 vs. 79.9 (66-100) mL/m2, p = 0.055; ESVi 32.7 (25.6-42.6) mL/m2 vs. 46.4 (42.9-68.1) mL/m2, p = 0.009) and increase in LVEF (46 (41-55) % vs. 38 (35-42) %, p = 0.005). However, the improvement of the NYHA class was similar in both groups.Conclusions: In symptomatic AF patients with moderately reduced EF and narrow QRS undergoing AVNA, HBP could be a conceivable alternative to BiV pacing. Further prospective studies are warranted to address the outcomes between both 'ablate and pace' strategies.
Collapse
Affiliation(s)
- David Žižek
- Department of Cardiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Bor Antolič
- Department of Cardiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Anja Zupan Mežnar
- Department of Cardiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | | | - Matevž Jan
- Cardiovascular Surgery Department, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Jernej Štublar
- Department of Cardiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Andrej Pernat
- Department of Cardiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
12
|
Harbin MM, Brown CD, Espinoza EA, Burns KV, Bank AJ. Relationship between QRS duration and resynchronization window for CRT optimization: Implications for CRT in narrow QRS patients. J Electrocardiol 2022; 72:72-78. [DOI: 10.1016/j.jelectrocard.2022.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/14/2022] [Indexed: 12/28/2022]
|
13
|
Shanks J, Abukar Y, Lever NA, Pachen M, LeGrice IJ, Crossman DJ, Nogaret A, Paton JFR, Ramchandra R. Reverse re-modelling chronic heart failure by reinstating heart rate variability. Basic Res Cardiol 2022; 117:4. [PMID: 35103864 PMCID: PMC8807455 DOI: 10.1007/s00395-022-00911-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 01/31/2023]
Abstract
Heart rate variability (HRV) is a crucial indicator of cardiovascular health. Low HRV is correlated with disease severity and mortality in heart failure. Heart rate increases and decreases with each breath in normal physiology termed respiratory sinus arrhythmia (RSA). RSA is highly evolutionarily conserved, most prominent in the young and athletic and is lost in cardiovascular disease. Despite this, current pacemakers either pace the heart in a metronomic fashion or sense activity in the sinus node. If RSA has been lost in cardiovascular disease current pacemakers cannot restore it. We hypothesized that restoration of RSA in heart failure would improve cardiac function. Restoration of RSA in heart failure was assessed in an ovine model of heart failure with reduced ejection fraction. Conscious 24 h recordings were made from three groups, RSA paced (n = 6), monotonically paced (n = 6) and heart failure time control (n = 5). Real-time blood pressure, cardiac output, heart rate and diaphragmatic EMG were recorded in all animals. Respiratory modulated pacing was generated by a proprietary device (Ceryx Medical) to pace the heart with real-time respiratory modulation. RSA pacing substantially increased cardiac output by 1.4 L/min (20%) compared to contemporary (monotonic) pacing. This increase in cardiac output led to a significant decrease in apnoeas associated with heart failure, reversed cardiomyocyte hypertrophy, and restored the T-tubule structure that is essential for force generation. Re-instating RSA in heart failure improves cardiac function through mechanisms of reverse re-modelling; the improvement observed is far greater than that seen with current contemporary therapies. These findings support the concept of re-instating RSA as a regime for patients who require a pacemaker.
Collapse
Affiliation(s)
- J. Shanks
- grid.9654.e0000 0004 0372 3343Manaaki Manawa—The Centre for Heart Research, Department of Physiology, University of Auckland, Park Road, Grafton, Auckland, New Zealand
| | - Y. Abukar
- grid.9654.e0000 0004 0372 3343Manaaki Manawa—The Centre for Heart Research, Department of Physiology, University of Auckland, Park Road, Grafton, Auckland, New Zealand
| | - N. A. Lever
- grid.414055.10000 0000 9027 2851Department of Cardiology, Auckland City Hospital, Auckland District Health Board, Park Road, Grafton, Auckland, New Zealand
| | - M. Pachen
- grid.9654.e0000 0004 0372 3343Manaaki Manawa—The Centre for Heart Research, Department of Physiology, University of Auckland, Park Road, Grafton, Auckland, New Zealand
| | - I. J. LeGrice
- grid.9654.e0000 0004 0372 3343Manaaki Manawa—The Centre for Heart Research, Department of Physiology, University of Auckland, Park Road, Grafton, Auckland, New Zealand
| | - D. J. Crossman
- grid.9654.e0000 0004 0372 3343Manaaki Manawa—The Centre for Heart Research, Department of Physiology, University of Auckland, Park Road, Grafton, Auckland, New Zealand
| | - A. Nogaret
- grid.7340.00000 0001 2162 1699Department of Physics, University of Bath, Claverton Down, Bath, UK
| | - J. F. R. Paton
- grid.9654.e0000 0004 0372 3343Manaaki Manawa—The Centre for Heart Research, Department of Physiology, University of Auckland, Park Road, Grafton, Auckland, New Zealand
| | - R. Ramchandra
- grid.9654.e0000 0004 0372 3343Manaaki Manawa—The Centre for Heart Research, Department of Physiology, University of Auckland, Park Road, Grafton, Auckland, New Zealand
| |
Collapse
|
14
|
Efficacy of Cardiac Resynchronization Therapy in Patients with a Narrow QRS Complex. J Interv Cardiol 2021. [DOI: 10.1155/2021/8858836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aims. In the guidelines for cardiac resynchronization therapy (CRT), there is a gap between the Japanese Circulation Society (JCS) criteria, which specify a QRS duration of ≥120 ms, and other countries, with a QRS ≥ 130 ms. The efficacy of CRT remains controversial in patients with a narrow QRS <130 ms. The aims of this study are to evaluate the response to CRT in patients with a narrow QRS and to identify predictors of mortality. Methods. We retrospectively studied 212 patients who received CRT. They were divided into narrow QRS (<130 ms) and wide QRS (≥130 ms) groups. We compared CRT response rates and investigated whether age, gender, baseline New York Heart Association (NYHA) class, ischemic etiology, atrial fibrillation, and ventricular arrhythmias are associated with response and also predictive of mortality. Results. The CRT response rate was not significantly different between the wide QRS group and the narrow QRS group (74.6% versus 77.2%,
= 0.6876), and the response rate in the narrow QRS group was as good as that reported worldwide. NYHA class IV was shown to be a predictor of mortality (HR 9.38, 95% CI 5.35–16.3,
< 0.0001). Conclusions. The present study demonstrated that patients with a narrow QRS complex responded well to CRT. Even with QRS <130 ms, CRT should be tried if no other effective treatment is available.
Collapse
|
15
|
Cardiac contractility modulation for the treatment of heart failure with reduced ejection fraction. Heart Fail Rev 2020; 26:217-226. [PMID: 32852661 DOI: 10.1007/s10741-020-10017-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/21/2020] [Indexed: 12/11/2022]
Abstract
There has been a progressive evolution in the management of patients with chronic heart failure and reduced ejection fraction (HFrEF), including cardiac resynchronisation therapy (CRT) in those that fulfil pre-defined criteria. However, there exists a significant proportion with refractory symptoms in whom CRT devices are not clinically indicated or ineffective. Cardiac contractility modulation (CCM) is a novel therapy that incorporates administration of non-excitatory electrical impulses to the interventricular septum during the absolute refractory period. Implantation is analogous to a traditional transvenous pacemaker system, but with the use of two right ventricular leads. Mechanistic studies have shown augmentation of left ventricular contractility and beneficial global effects on reverse remodeling, primarily through alterations in calcium handling. This appears to occur without increasing myocardial oxygen consumption. Data from clinical trials have shown translational improvements in functional capacity and quality of life, though long-term outcome data are lacking. This review explores the rationale, evidence base and limitations of this nascent technology.
Collapse
|
16
|
Calle S, Delens C, Kamoen V, De Pooter J, Timmermans F. Septal flash: At the heart of cardiac dyssynchrony. Trends Cardiovasc Med 2020; 30:115-122. [DOI: 10.1016/j.tcm.2019.03.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/31/2019] [Accepted: 03/31/2019] [Indexed: 11/29/2022]
|
17
|
Sabitov YT, Dusypov AA, Abdrakhmanov AS, Orekhov AY, Turubaev EM. [Resynchronization Therapy for Chronic Heart Failure: Diagnostic and Therapeutic Approaches]. KARDIOLOGIYA 2019; 59:84-91. [PMID: 31849315 DOI: 10.18087/cardio.2019.12.n391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 08/19/2019] [Accepted: 09/17/2019] [Indexed: 11/18/2022]
Abstract
Chronic heart failure (CHF) remains one of the most important problems of modern cardiology. One of the effective treatment methods is resynchronization therapy (RT). The article presents an analysis of literature data on the effectiveness of RT in improving the quality of life, reducing the number of hospitalizations and mortality in patients with heart failure with severe left ventricular systolic dysfunction and expanding QRS complex, and also discusses key methods for optimizing RT.
Collapse
|
18
|
Ezzeddine FM, Dandamudi G. Updates on His bundle pacing: The road more traveled lately. Trends Cardiovasc Med 2018; 29:326-332. [PMID: 30344079 DOI: 10.1016/j.tcm.2018.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/23/2018] [Accepted: 09/24/2018] [Indexed: 11/29/2022]
Abstract
His bundle pacing (HBP) has continued to evolve over the past decade and has started to become a global phenomenon. Evidence is mounting of its clinical benefits as compared to both right ventricular and left ventricular pacing. In this paper, we review recent data in support of His bundle pacing and some of the challenges facing us as we advocate its increasing role in clinical practice.
Collapse
Affiliation(s)
- Fatima M Ezzeddine
- Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gopi Dandamudi
- Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
19
|
Normand C, Linde C, Singh J, Dickstein K. Indications for Cardiac Resynchronization Therapy. JACC-HEART FAILURE 2018; 6:308-316. [DOI: 10.1016/j.jchf.2018.01.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/18/2017] [Accepted: 01/23/2018] [Indexed: 12/21/2022]
|
20
|
Abstract
Heart failure is a major health problem worldwide and, despite effective therapies, is expected to grow by almost 50 % over the next 15 years. Five-year mortality remains high at 50 % over 5 years. Because of the economic burden and large impact on quality of life, substantial effort has focused on treatments with multiple medical (beta-blockers, angiotensin-converting enzyme inhibitors and angiotensin receptor blockers (ARB), aldosterone antagonists, and combination of ARB/neprilysin blockers, ivabradine) and device therapies (ICD, CRT) which have been implemented to reduce disease burden and mortality. However, in the past decade only two new medical therapies and no devices have been approved by the US FDA for the treatment of heart failure. This review highlights the preclinical and clinical literature, and the implantation procedure, related to a relatively new therapeutic device for heart failure; cardiac contractility modulation (CCM). CCM delivers a biphasic high-voltage bipolar signal to the RV septum during the absolute refractory period, eliciting an acute increase in global contractility, and chronically producing a sustained improvement in quality of life, exercise tolerance, and heart failure symptoms. The technology is used commercially in Europe with nearly 3000 patients implanted worldwide. Indications include patients with reduced EF and normal or slightly prolonged QRS duration, thus filling an important therapeutic gap among the 2/3 of patients with heart failure who do not meet criteria for CRT. The mechanism by which CCM provides benefit can be seen at the cellular level where improved calcium handling (phosphorylation of phospholamban, upregulation of SERCA-2A), reversal of the fetal myocyte gene program associated with heart failure, and reverse remodeling are observed. Recent retrospective studies indicate a long-term mortality benefit. A pivotal randomized controlled study is currently being completed in the USA. CCM appears to be an effective, safe technology for the treatment of heart failure with reduced ejection fraction.
Collapse
|
21
|
Scherlag BJ, Papaila A. Permanent His bundle pacing to replace biventricular pacing for cardiac resynchronization therapy. Med Hypotheses 2017; 109:77-79. [DOI: 10.1016/j.mehy.2017.09.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 08/23/2017] [Accepted: 09/26/2017] [Indexed: 11/26/2022]
|
22
|
Ezekowitz JA, O'Meara E, McDonald MA, Abrams H, Chan M, Ducharme A, Giannetti N, Grzeslo A, Hamilton PG, Heckman GA, Howlett JG, Koshman SL, Lepage S, McKelvie RS, Moe GW, Rajda M, Swiggum E, Virani SA, Zieroth S, Al-Hesayen A, Cohen-Solal A, D'Astous M, De S, Estrella-Holder E, Fremes S, Green L, Haddad H, Harkness K, Hernandez AF, Kouz S, LeBlanc MH, Masoudi FA, Ross HJ, Roussin A, Sussex B. 2017 Comprehensive Update of the Canadian Cardiovascular Society Guidelines for the Management of Heart Failure. Can J Cardiol 2017; 33:1342-1433. [PMID: 29111106 DOI: 10.1016/j.cjca.2017.08.022] [Citation(s) in RCA: 456] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 08/28/2017] [Accepted: 08/28/2017] [Indexed: 02/06/2023] Open
Abstract
Since the inception of the Canadian Cardiovascular Society heart failure (HF) guidelines in 2006, much has changed in the care for patients with HF. Over the past decade, the HF Guidelines Committee has published regular updates. However, because of the major changes that have occurred, the Guidelines Committee believes that a comprehensive reassessment of the HF management recommendations is presently needed, with a view to producing a full and complete set of updated guidelines. The primary and secondary Canadian Cardiovascular Society HF panel members as well as external experts have reviewed clinically relevant literature to provide guidance for the practicing clinician. The 2017 HF guidelines provide updated guidance on the diagnosis and management (self-care, pharmacologic, nonpharmacologic, device, and referral) that should aid in day-to-day decisions for caring for patients with HF. Among specific issues covered are risk scores, the differences in management for HF with preserved vs reduced ejection fraction, exercise and rehabilitation, implantable devices, revascularization, right ventricular dysfunction, anemia, and iron deficiency, cardiorenal syndrome, sleep apnea, cardiomyopathies, HF in pregnancy, cardio-oncology, and myocarditis. We devoted attention to strategies and treatments to prevent HF, to the organization of HF care, comorbidity management, as well as practical issues around the timing of referral and follow-up care. Recognition and treatment of advanced HF is another important aspect of this update, including how to select advanced therapies as well as end of life considerations. Finally, we acknowledge the remaining gaps in evidence that need to be filled by future research.
Collapse
Affiliation(s)
| | - Eileen O'Meara
- Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec, Canada
| | | | | | - Michael Chan
- Edmonton Cardiology Consultants, Edmonton, Alberta, Canada
| | - Anique Ducharme
- Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec, Canada
| | | | - Adam Grzeslo
- Hamilton Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | - Serge Lepage
- Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | | - Miroslaw Rajda
- QEII Health Sciences Centre, Halifax, Nova Scotia, Canada
| | | | - Sean A Virani
- University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | - Sabe De
- London Health Sciences, Western University, London, Ontario, Canada
| | | | - Stephen Fremes
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Lee Green
- University of Alberta, Edmonton, Alberta, Canada
| | - Haissam Haddad
- University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Karen Harkness
- Hamilton Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | - Simon Kouz
- Centre Hospitalier Régional de Lanaudière, Joliette, Québec, Canada
| | | | | | | | - Andre Roussin
- Centre hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Bruce Sussex
- Memorial University, St John's, Newfoundland, Canada
| |
Collapse
|
23
|
Vijayaraman P, Dandamudi G, Lustgarten D, Ellenbogen KA. Permanent His bundle pacing: Electrophysiological and echocardiographic observations from long-term follow-up. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2017; 40:883-891. [DOI: 10.1111/pace.13130] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 12/25/2022]
|
24
|
Abstract
Advances in the field of defibrillation have brought to practice different types of devices that include the transvenous implantable cardioverter-defibrillator (ICD) with or without cardiac resynchronization therapy, the subcutaneous ICD (S-ICD), and the wearable cardioverter-defibrillator. To ensure optimal use of these devices and to achieve best patient outcomes, clinicians need to understand how these devices work, learn the characteristics of patients who qualify them for one type of device versus another, and recognize the remaining gaps in knowledge surrounding these devices. The transvenous ICD has been shown in several randomized clinical trials to improve the survival of patients resuscitated from near-fatal ventricular fibrillation and those with sustained ventricular tachycardia with syncope or systolic heart failure as a result of ischemic or nonischemic cardiomyopathy despite receiving guideline-directed medical therapy. Important gaps in knowledge regarding the transvenous ICD involve the role of the ICD in patient subgroups not included, or not well represented, in clinical trials and the need to refine the selection criteria for the ICD in patients who are indicated for it. S-ICDs were recently introduced into the clinical arena as another option for many patients who have an approved indication for a transvenous ICD. The main advantage of the S-ICD is a lower risk of infection and lead-related complications; however, the S-ICD does not offer bradycardia or antitachycardia pacing. The S-ICD may be ideal for patients with limited vascular access, high infection risk, or some congenital heart diseases. However, more data are needed regarding the efficacy and effectiveness of the S-ICD in comparison to transvenous ICDs, the extent of defibrillation testing required, and the use of the S-ICD with other novel technologies, including leadless pacemakers. Cardiac resynchronization therapy-defibrillators are indicated in patients with a left ventricular ejection fraction ≤35%, QRS width ≥130 ms, and New York Heart Association class II, III, or ambulatory IV symptoms despite treatment with guideline-directed medical therapy. Multiple randomized controlled trials have shown that the cardiac resynchronization therapy-defibrillator improves survival, quality of life, and several echocardiographic measures. One main challenge related to cardiac resynchronization therapy-defibrillators is the 30% nonresponse rate. Many initiatives are underway to address this challenge including improved cardiac resynchronization therapy and imaging technologies and enhanced selection of patients and device programming.
Collapse
Affiliation(s)
- Sana M Al-Khatib
- From the Division of Cardiology and Duke Clinical Research Institute, Duke University Medical Center, Durham, NC (S.M.A.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN (P.F.); and Division of Cardiology, Virginia Commonwealth University School of Medicine, Richmond, VA (K.A.E.).
| | - Paul Friedman
- From the Division of Cardiology and Duke Clinical Research Institute, Duke University Medical Center, Durham, NC (S.M.A.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN (P.F.); and Division of Cardiology, Virginia Commonwealth University School of Medicine, Richmond, VA (K.A.E.)
| | - Kenneth A Ellenbogen
- From the Division of Cardiology and Duke Clinical Research Institute, Duke University Medical Center, Durham, NC (S.M.A.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN (P.F.); and Division of Cardiology, Virginia Commonwealth University School of Medicine, Richmond, VA (K.A.E.)
| |
Collapse
|
25
|
Chia N, Fulcher J, Keech A. Beta-blocker, angiotensin-converting enzyme inhibitor/angiotensin receptor blocker, nitrate-hydralazine, diuretics, aldosterone antagonist, ivabradine, devices and digoxin (BANDAID(2) ): an evidence-based mnemonic for the treatment of systolic heart failure. Intern Med J 2016; 46:653-62. [PMID: 26109136 DOI: 10.1111/imj.12839] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Heart failure causes significant morbidity and mortality, with recognised underutilisation rates of guideline-based therapies. Our aim was to review current evidence for heart failure treatments and derive a mnemonic summarising best practice, which might assist physicians in patient care. Treatments were identified for review from multinational society guidelines and recent randomised trials, with a primary aim of examining their effects in systolic heart failure patients on mortality, hospitalisation rates and symptoms. Secondary aims were to consider other clinical benefits. MEDLINE and EMBASE were searched using a structured keyword strategy and the retrieved articles were evaluated methodically to produce an optimised reference list for each treatment. We devised the mnemonic BANDAID (2) , standing for beta-blocker, angiotensin-converting enzyme inhibitor/angiotensin receptor blocker, nitrate-hydralazine (or potentially neprilysin inhibitor), diuretics, aldosterone antagonist, ivabradine, devices (automatic implantable cardioverter defibrillator, cardiac resynchronisation therapy or both) and digoxin as a representation of treatments with strong evidence for their use in systolic heart failure. Treatment with omega-3 fatty acids, statins or anti-thrombotic therapies has limited benefits in a general heart failure population. Adoption of this mnemonic for current evidence-based treatments for heart failure may help improve prescribing rates and patient outcomes in this debilitating, high mortality condition.
Collapse
Affiliation(s)
- N Chia
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - J Fulcher
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - A Keech
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
26
|
Peinado R, Ruiz-Mateas F, Izquierdo M, Arana E, Robledo M, Arias MA, Jiménez-Jáimez J, Rodríguez-Mañero M, Chimeno J. Selección de temas de actualidad en arritmias y estimulación cardiaca 2015. Rev Esp Cardiol 2016. [DOI: 10.1016/j.recesp.2015.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Peinado R, Ruiz-Mateas F, Izquierdo M, Arana E, Robledo M, Arias MA, Jiménez-Jáimez J, Rodríguez-Mañero M, Chimeno J. Cardiac Arrhythmias and Pacing 2015: A Selection of Topical Issues. ACTA ACUST UNITED AC 2016; 69:167-75. [PMID: 26778594 DOI: 10.1016/j.rec.2015.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022]
Affiliation(s)
- Rafael Peinado
- Unidad de Arritmias y Electrofisiología Cardiaca, Servicio de Cardiología, Hospital Universitario La Paz, Madrid, Spain.
| | - Francisco Ruiz-Mateas
- Unidad de Estimulación Cardiaca, Área de Cardiología, Hospital Costa del Sol, Marbella, Malaga, Spain
| | - Maite Izquierdo
- Unidad de Arritmias, Servicio de Cardiología, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Eduardo Arana
- Unidad de Arritmias, Servicio de Cardiología, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Maria Robledo
- Sección de Arritmias, Servicio de Cardiología, Hospital Universitario Araba, Vitoria, Álava, Spain
| | - Miguel Angel Arias
- Unidad de Arritmias y Electrofisiología Cardiaca, Servicio de Cardiología, Hospital Virgen de la Salud, Toledo, Spain
| | - Juan Jiménez-Jáimez
- Unidad de Arritmias, Servicio de Cardiología, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Moisés Rodríguez-Mañero
- Unidad de Arritmias, Departamento de Cardiología, Complejo Universitario de Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| | - Javier Chimeno
- Sección de Cardiología, Hospital Virgen de la Concha, Zamora, Spain
| |
Collapse
|
28
|
Imamura T, Kinugawa K, Nitta D, Komuro I. Complete left bundle branch block and smaller left atrium are predictors of response to cardiac resynchronization therapy in advanced heart failure. Circ J 2015; 79:2414-21. [PMID: 26376671 DOI: 10.1253/circj.cj-15-0769] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND We previously reported that cardiac resynchronization therapy with defibrillator (CRT-D) is not an appropriate rescue strategy in patients with advanced heart failure (HF), especially those dependent on inotrope infusion, and instead early ventricular assist device (VAD) implantation should be considered. Predictors of response to CRT in such populations, however, remain uncertain. METHODS AND RESULTS We studied 67 inpatients aged <65 years old with advanced HF, who received CRT-D between 2007 and 2014. Eleven patients (16%) were responders, in whom LVEF improved >10% at 6-month follow up. On logistic regression analysis, LA volume index (LAVI) <43 ml/m(2)(odds ratio (OR), 36.67; P=0.001) and complete left bundle branch block (CLBBB; OR, 6.663; P=0.032) were significant predictors of response to CRT-D among the baseline variables. Patients with both predictors were associated with improvements in LVEF and plasma B-type natriuretic peptide compared with those with none of these predictors during the 6-month follow up period (P<0.05 for both). VAD-free survival rate was significantly higher in the responders compared with the non-responders during the 2-year study period (86% vs. 52%, P=0.044). CONCLUSIONS CLBBB and smaller LAVI are novel predictors of response in patients with advanced HF receiving CRT-D in real-world practice. Such responders may be better candidates for CRT-D and delay of cardiac replacement therapy.
Collapse
Affiliation(s)
- Teruhiko Imamura
- Department of Therapeutic Strategy for Heart Failure, Graduate School of Medicine, University of Tokyo
| | | | | | | |
Collapse
|
29
|
Normand C, Dickstein K. Predicting outcomes following CRT: the quest continues. Eur J Heart Fail 2015; 17:645-6. [PMID: 26140695 DOI: 10.1002/ejhf.306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 11/07/2022] Open
Affiliation(s)
- Camilla Normand
- Stavanger University Hospital, Cardiology Division, Stavanger, 4068, Norway
| | - Kenneth Dickstein
- Stavanger University Hospital, Cardiology Division, Stavanger, 4068, Norway
| |
Collapse
|
30
|
Yamada S, Arrell DK, Martinez-Fernandez A, Behfar A, Kane GC, Perez-Terzic CM, Crespo-Diaz RJ, McDonald RJ, Wyles SP, Zlatkovic-Lindor J, Nelson TJ, Terzic A. Regenerative Therapy Prevents Heart Failure Progression in Dyssynchronous Nonischemic Narrow QRS Cardiomyopathy. J Am Heart Assoc 2015; 4:JAHA.114.001614. [PMID: 25964205 PMCID: PMC4599402 DOI: 10.1161/jaha.114.001614] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Cardiac resynchronization therapy using bi-ventricular pacing is proven effective in the management of heart failure (HF) with a wide QRS-complex. In the absence of QRS prolongation, however, device-based resynchronization is reported unsuitable. As an alternative, the present study tests a regenerative cell-based approach in the setting of narrow QRS-complex HF. Methods and Results Progressive cardiac dyssynchrony was provoked in a chronic transgenic model of stress-triggered dilated cardiomyopathy. In contrast to rampant end-stage disease afflicting untreated cohorts, stem cell intervention early in disease, characterized by mechanical dyssynchrony and a narrow QRS-complex, aborted progressive dyssynchronous HF and prevented QRS widening. Stem cell-treated hearts acquired coordinated ventricular contraction and relaxation supporting systolic and diastolic performance. Rescue of contractile dynamics was underpinned by a halted left ventricular dilatation, limited hypertrophy, and reduced fibrosis. Reverse remodeling reflected a restored cardiomyopathic proteome, enforced at systems level through correction of the pathological molecular landscape and nullified adverse cardiac outcomes. Cell therapy of a dyssynchrony-prone cardiomyopathic cohort translated prospectively into improved exercise capacity and prolonged survivorship. Conclusions In narrow QRS HF, a regenerative approach demonstrated functional and structural benefit, introducing the prospect of device-autonomous resynchronization therapy for refractory disease.
Collapse
Affiliation(s)
- Satsuki Yamada
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, MN (S.Y., K.A., A.M.F., A.B., G.C.K., C.M.P.T., R.J.C.D., R.J.M.D., S.P.W., J.Z.L., T.J.N., A.T.)
| | - D Kent Arrell
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, MN (S.Y., K.A., A.M.F., A.B., G.C.K., C.M.P.T., R.J.C.D., R.J.M.D., S.P.W., J.Z.L., T.J.N., A.T.)
| | - Almudena Martinez-Fernandez
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, MN (S.Y., K.A., A.M.F., A.B., G.C.K., C.M.P.T., R.J.C.D., R.J.M.D., S.P.W., J.Z.L., T.J.N., A.T.)
| | - Atta Behfar
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, MN (S.Y., K.A., A.M.F., A.B., G.C.K., C.M.P.T., R.J.C.D., R.J.M.D., S.P.W., J.Z.L., T.J.N., A.T.)
| | - Garvan C Kane
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, MN (S.Y., K.A., A.M.F., A.B., G.C.K., C.M.P.T., R.J.C.D., R.J.M.D., S.P.W., J.Z.L., T.J.N., A.T.)
| | - Carmen M Perez-Terzic
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, MN (S.Y., K.A., A.M.F., A.B., G.C.K., C.M.P.T., R.J.C.D., R.J.M.D., S.P.W., J.Z.L., T.J.N., A.T.) Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN (C.M.P.T.)
| | - Ruben J Crespo-Diaz
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, MN (S.Y., K.A., A.M.F., A.B., G.C.K., C.M.P.T., R.J.C.D., R.J.M.D., S.P.W., J.Z.L., T.J.N., A.T.)
| | - Robert J McDonald
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, MN (S.Y., K.A., A.M.F., A.B., G.C.K., C.M.P.T., R.J.C.D., R.J.M.D., S.P.W., J.Z.L., T.J.N., A.T.)
| | - Saranya P Wyles
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, MN (S.Y., K.A., A.M.F., A.B., G.C.K., C.M.P.T., R.J.C.D., R.J.M.D., S.P.W., J.Z.L., T.J.N., A.T.)
| | - Jelena Zlatkovic-Lindor
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, MN (S.Y., K.A., A.M.F., A.B., G.C.K., C.M.P.T., R.J.C.D., R.J.M.D., S.P.W., J.Z.L., T.J.N., A.T.)
| | - Timothy J Nelson
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, MN (S.Y., K.A., A.M.F., A.B., G.C.K., C.M.P.T., R.J.C.D., R.J.M.D., S.P.W., J.Z.L., T.J.N., A.T.) Division of General Internal Medicine, William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN (T.J.N.)
| | - Andre Terzic
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, MN (S.Y., K.A., A.M.F., A.B., G.C.K., C.M.P.T., R.J.C.D., R.J.M.D., S.P.W., J.Z.L., T.J.N., A.T.)
| |
Collapse
|
31
|
|