1
|
Serinagaoglu Dogrusoz Y, Bear LR, Bergquist JA, Rababah AS, Good W, Stoks J, Svehlikova J, van Dam E, Brooks DH, MacLeod RS. Evaluation of five methods for the interpolation of bad leads in the solution of the inverse electrocardiography problem. Physiol Meas 2024; 45:095012. [PMID: 39197474 DOI: 10.1088/1361-6579/ad74d6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/28/2024] [Indexed: 09/01/2024]
Abstract
Objective.This study aims to assess the sensitivity of epicardial potential-based electrocardiographic imaging (ECGI) to the removal or interpolation of bad leads.Approach.We utilized experimental data from two distinct centers. Langendorff-perfused pig (n= 2) and dog (n= 2) hearts were suspended in a human torso-shaped tank and paced from the ventricles. Six different bad lead configurations were designed based on clinical experience. Five interpolation methods were applied to estimate the missing data. Zero-order Tikhonov regularization was used to solve the inverse problem for complete data, data with removed bad leads, and interpolated data. We assessed the quality of interpolated ECG signals and ECGI reconstructions using several metrics, comparing the performance of interpolation methods and the impact of bad lead removal versus interpolation on ECGI.Main results.The performance of ECG interpolation strongly correlated with ECGI reconstruction. The hybrid method exhibited the best performance among interpolation techniques, followed closely by the inverse-forward and Kriging methods. Bad leads located over high amplitude/high gradient areas on the torso significantly impacted ECGI reconstructions, even with minor interpolation errors. The choice between removing or interpolating bad leads depends on the location of missing leads and confidence in interpolation performance. If uncertainty exists, removing bad leads is the safer option, particularly when they are positioned in high amplitude/high gradient regions. In instances where interpolation is necessary, the inverse-forward and Kriging methods, which do not require training, are recommended.Significance.This study represents the first comprehensive evaluation of the advantages and drawbacks of interpolating versus removing bad leads in the context of ECGI, providing valuable insights into ECGI performance.
Collapse
Affiliation(s)
- Y Serinagaoglu Dogrusoz
- Middle East Technical University, Department of Electrical and Electronics Engineering, Ankara, Turkey
| | - L R Bear
- IHU-LIRYC, Fondation Bordeaux Université, Pessac, France
- Univ. Bordeaux, CRCTB, U1045 Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045 Bordeaux, France
| | - J A Bergquist
- Scientific Computing and Imaging (SCI) Institute, University of Utah, Salt Lake City, UT, United States of America
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah, Salt Lake City, UT, United States of America
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States of America
| | - A S Rababah
- Jordanian Royal Medical Services, Amman, Jordan
| | - W Good
- Acutus Medical, Carlsbad, CA, United States of America
| | - J Stoks
- Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - J Svehlikova
- Slovak Academy of Sciences, Institute of Measurement Science, Bratislava, Slovakia
| | | | - D H Brooks
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, United States of America
| | - R S MacLeod
- Scientific Computing and Imaging (SCI) Institute, University of Utah, Salt Lake City, UT, United States of America
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah, Salt Lake City, UT, United States of America
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States of America
- School of Medicine, University of Utah, Salt Lake City, UT, United States of America
| |
Collapse
|
2
|
Toloubidokhti M, Gharbia OA, Parkosa A, Trayanova N, Nazarian S, Sapp JL, Wang L. Understanding the Utility of Endocardial Electrocardiographic Imaging in Epi-Endocardial Mapping of 3D Reentrant Circuits. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.13.24304259. [PMID: 38559058 PMCID: PMC10980114 DOI: 10.1101/2024.03.13.24304259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Studies of VT mechanisms are largely based on a 2D portrait of reentrant circuits on one surface of the heart. This oversimplifies the 3D circuit that involves the depth of the myocardium. Simultaneous epicardial and endocardial (epi-endo) mapping was shown to facilitate a 3D delineation of VT circuits, which is however difficult via invasive mapping. Objective This study investigates the capability of noninvasive epicardial-endocardial electrocardiographic imaging (ECGI) to elucidate the 3D construct of VT circuits, emphasizing the differentiation of epicardial, endocardial, and intramural circuits and to determine the proximity of mid-wall exits to the epicardial or endocardial surfaces. Methods 120-lead ECGs of VT in combination with subject-specific heart-torso geometry are used to compute unipolar electrograms (CEGM) on ventricular epicardium and endocardia. Activation isochrones are constructed, and the percentage of activation within VT cycle length is calculated on each surface. This classifies VT circuits into 2D (surface only), uniform transmural, nonuniform transmural, and mid-myocardial (focal on surfaces). Furthermore, the endocardial breakthrough time was accurately measured using Laplacian eigenmaps, and by correlating the delay time of the epi-endo breakthroughs, the relative distance of a mid-wall exit to the epicardium or the endocardium surfaces was identified. Results We analyzed 23 simulated and in-vivo VT circuits on post-infarction porcine hearts. In simulated circuits, ECGI classified 21% as 2D and 78% as 3D: 82.6% of these were correctly classified. The relative timing between epicardial and endocardial breakthroughs was correctly captured across all cases. In in-vivo circuits, ECGI classified 25% as 2D and 75% as 3D: in all cases, circuit exits and entrances were consistent with potential critical isthmus delineated from combined LGE-MRI and catheter mapping data. Conclusions ECGI epi-endo mapping has the potential for fast delineation of 3D VT circuits, which may augment detailed catheter mapping for VT ablation.
Collapse
Affiliation(s)
- Maryam Toloubidokhti
- College of Computing and Information Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Omar A Gharbia
- Department of Otolaryngology, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Adityo Parkosa
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Natalia Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Saman Nazarian
- School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - John L Sapp
- Department of Medicine, QEII Health Sciences Centre, Halifax, NS, Canada
| | - Linwei Wang
- College of Computing and Information Sciences, Rochester Institute of Technology, Rochester, NY, USA
| |
Collapse
|
3
|
van der Waal J, Meijborg V, Coronel R, Dubois R, Oostendorp T. Basis and applicability of noninvasive inverse electrocardiography: a comparison between cardiac source models. Front Physiol 2023; 14:1295103. [PMID: 38152249 PMCID: PMC10752226 DOI: 10.3389/fphys.2023.1295103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/30/2023] [Indexed: 12/29/2023] Open
Abstract
The body surface electrocardiogram (ECG) is a direct result of electrical activity generated by the myocardium. Using the body surface ECGs to reconstruct cardiac electrical activity is called the inverse problem of electrocardiography. The method to solve the inverse problem depends on the chosen cardiac source model to describe cardiac electrical activity. In this paper, we describe the theoretical basis of two inverse methods based on the most commonly used cardiac source models: the epicardial potential model and the equivalent dipole layer model. We discuss similarities and differences in applicability, strengths and weaknesses and sketch a road towards improved inverse solutions by targeted use, sequential application or a combination of the two methods.
Collapse
Affiliation(s)
- Jeanne van der Waal
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Veronique Meijborg
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Ruben Coronel
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Rémi Dubois
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac, France
| | - Thom Oostendorp
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| |
Collapse
|
4
|
Marashly Q, Najjar SN, Hahn J, Rector GJ, Khawaja M, Chelu MG. Innovations in ventricular tachycardia ablation. J Interv Card Electrophysiol 2023; 66:1499-1518. [PMID: 35879516 DOI: 10.1007/s10840-022-01311-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Abstract
Catheter ablation of ventricular arrhythmias (VAs) has evolved significantly over the past decade and is currently a well-established therapeutic option. Technological advances and improved understanding of VA mechanisms have led to tremendous innovations in VA ablation. The purpose of this review article is to provide an overview of current innovations in VA ablation. Mapping techniques, such as ultra-high density mapping, isochronal late activation mapping, and ripple mapping, have provided improved arrhythmogenic substrate delineation and potential procedural success while limiting duration of ablation procedure and potential hemodynamic compromise. Besides, more advanced mapping and ablation techniques such as epicardial and intramyocardial ablation approaches have allowed operators to more precisely target arrhythmogenic substrate. Moreover, advances in alternate energy sources, such as electroporation, as well as stereotactic radiation therapy have been proposed to be effective and safe. New catheters, such as the lattice and the saline-enhanced radiofrequency catheters, have been designed to provide deeper and more durable tissue ablation lesions compared to conventional catheters. Contact force optimization and baseline impedance modulation are important tools to optimize VT radiofrequency ablation and improve procedural success. Furthermore, advances in cardiac imaging, specifically cardiac MRI, have great potential in identifying arrhythmogenic substrate and evaluating ablation success. Overall, VA ablation has undergone significant advances over the past years. Innovations in VA mapping techniques, alternate energy source, new catheters, and utilization of cardiac imaging have great potential to improve overall procedural safety, hemodynamic stability, and procedural success.
Collapse
Affiliation(s)
- Qussay Marashly
- Division of Cardiology, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Salim N Najjar
- Division of Cardiology, Baylor College of Medicine, 7200 Cambridge Suite A6.137, MS: BCM621, Houston, TX, 77030, USA
| | - Joshua Hahn
- Division of Cardiology, Baylor College of Medicine, 7200 Cambridge Suite A6.137, MS: BCM621, Houston, TX, 77030, USA
| | - Graham J Rector
- Division of Cardiology, Baylor College of Medicine, 7200 Cambridge Suite A6.137, MS: BCM621, Houston, TX, 77030, USA
| | - Muzamil Khawaja
- Division of Cardiology, Baylor College of Medicine, 7200 Cambridge Suite A6.137, MS: BCM621, Houston, TX, 77030, USA
| | - Mihail G Chelu
- Division of Cardiology, Baylor College of Medicine, 7200 Cambridge Suite A6.137, MS: BCM621, Houston, TX, 77030, USA.
- Baylor St. Luke's Medical Center, Houston, USA.
- Texas Heart Institute, Houston, USA.
| |
Collapse
|
5
|
Graham AJ, Orini M, Zacur E, Dhillon G, Jones D, Prabhu S, Pugliese F, Lowe M, Ahsan S, Earley MJ, Chow A, Sporton S, Dhinoja M, Hunter RJ, Schilling RJ, Lambiase PD. Assessing Noninvasive Delineation of Low-Voltage Zones Using ECG Imaging in Patients With Structural Heart Disease. JACC Clin Electrophysiol 2022; 8:426-436. [PMID: 35450597 DOI: 10.1016/j.jacep.2021.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVES This study sought to assess the association between electrocardiographic imaging (ECGI) parameters and voltage from simultaneous electroanatomic mapping (EAM). BACKGROUND ECGI offers noninvasive assessment of electrophysiologic features relevant for mapping ventricular arrhythmia and its substrate, but the accuracy of ECGI in the delineation of scar is unclear. METHODS Sixteen patients with structural heart disease underwent simultaneous ECGI (CardioInsight, Medtronic) and contact EAM (CARTO, Biosense-Webster) during ventricular tachycardia catheter ablation, with 7 mapped epicardially. ECGI and EAM geometries were coregistered using anatomic landmarks. ECGI points were paired to the closest site on the EAM within 10 mm. The association between EAM voltage and ECGI features from reconstructed epicardial unipolar electrograms was assessed by mixed-effects regression models. The classification of low-voltage regions was performed using receiver-operating characteristic analysis. RESULTS A total of 9,541 ECGI points (median: 596; interquartile range: 377-737 across patients) were paired to an EAM site. Epicardial EAM voltage was associated with ECGI features of signal fractionation and local repolarization dispersion (N = 7; P < 0.05), but they poorly classified sites with bipolar voltage of <1.5 mV or <0.5 mV thresholds (median area under the curve across patients: 0.50-0.62). No association was found between bipolar EAM voltage and low-amplitude reconstructed epicardial unipolar electrograms or ECGI-derived bipolar electrograms. Similar results were found in the combined cohort (n = 16), including endocardial EAM voltage compared to epicardial ECGI features (n = 9). CONCLUSIONS Despite a statistically significant association between ECGI features and EAM voltage, the accuracy of the delineation of low-voltage zones was modest. This may limit ECGI use for pr-procedural substrate analysis in ventricular tachycardia ablation, but it could provide value in risk assessment for ventricular arrhythmias.
Collapse
Affiliation(s)
- Adam J Graham
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom
| | - Michele Orini
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Ernesto Zacur
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Gurpreet Dhillon
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom
| | - Daniel Jones
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom
| | - Sandeep Prabhu
- Department of Cardiology, The Alfred Hospital, Melbourne, Australia
| | - Francesca Pugliese
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom
| | - Martin Lowe
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom
| | - Syed Ahsan
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom
| | - Mark J Earley
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom
| | - Anthony Chow
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom
| | - Simon Sporton
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom
| | - Mehul Dhinoja
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom
| | - Ross J Hunter
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom
| | - Richard J Schilling
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom
| | - Pier D Lambiase
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom.
| |
Collapse
|
6
|
Robert J, Bessiere F, Cao E, Loyer V, Abell E, Vaillant F, Quesson B, Catheline S, Lafon C. Spectral Analysis of Tissue Displacement for Cardiac Activation Mapping: Ex Vivo Working Heart and In Vivo Study. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:942-956. [PMID: 34941506 DOI: 10.1109/tuffc.2021.3137989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Characterizing myocardial activation is of major interest for understanding the underlying mechanism of cardiac arrhythmias. Electromechanical wave imaging (EWI) is an ultrafast ultrasound-based method used to map the propagation of the local contraction triggered by electrical activation of the heart. This study introduces a novel way to characterize cardiac activation based on the time evolution of the instantaneous frequency content of the cardiac tissue displacement curves. The first validation of this method was performed on an ex vivo dataset of 36 acquisitions acquired from two working heart models in paced rhythms. It was shown that the activation mapping described by spectral analysis of interframe displacement is similar to the standard EWI method based on zero-crossing of interframe strain. An average median error of 3.3 ms was found in the ex vivo dataset between the activation maps obtained with the two methods. The feasibility of mapping cardiac activation by EWI was then investigated on two open-chest pigs during sinus and paced rhythms in a pilot trial of cardiac mapping with an intracardiac probe. Seventy-five acquisitions were performed with reasonable stability and analyzed with the novel algorithm to map cardiac contraction propagation in the left ventricle (LV). Sixty-one qualitatively continuous isochrones were successfully computed based on this method. The region of contraction onset was coherently described while pacing in the imaging plane. These findings highlight the potential of implementing EWI acquisition on intracardiac probes and emphasize the benefit of performing short time-frequency analysis of displacement data to characterize cardiac activation in vivo.
Collapse
|
7
|
SCN5A mutation in Brugada syndrome is associated with substrate severity detected by ECG imaging and high density electroanatomical mapping. Heart Rhythm 2022; 19:945-951. [DOI: 10.1016/j.hrthm.2022.01.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022]
|
8
|
Pannone L, Monaco C, Sorgente A, Vergara P, Calburean PA, Gauthey A, Bisignani A, Kazawa S, Strazdas A, Mojica J, Lipartiti F, Al Housari M, Miraglia V, Rizzi S, Sofianos D, Cecchini F, Osório TG, Paparella G, Ramak R, Overeinder I, Bala G, Almorad A, Ströker E, Pappaert G, Sieira J, Brugada P, La Meir M, Chierchia GB, de Asmundis C. Ajmaline-Induced Abnormalities in Brugada Syndrome: Evaluation With ECG Imaging. J Am Heart Assoc 2022; 11:e024001. [PMID: 35023354 PMCID: PMC9238512 DOI: 10.1161/jaha.121.024001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background The rate of sudden cardiac death (SCD) in Brugada syndrome (BrS) is ≈1%/y. Noninvasive electrocardiographic imaging is a noninvasive mapping system that has a role in assessing BrS depolarization and repolarization abnormalities. This study aimed to analyze electrocardiographic imaging parameters during ajmaline test (AJT). Methods and Results All consecutive epicardial maps of the right ventricle outflow tract (RVOT-EPI) in BrS with CardioInsight were retrospectively analyzed. (1) RVOT-EPI activation time (RVOT-AT); (2) RVOT-EPI recovery time, and (3) RVOT-EPI activation-recovery interval (RVOT-ARI) were calculated. ∆RVOT-AT, ∆RVOT-EPI recovery time, and ∆RVOT-ARI were defined as the difference in parameters before and after AJT. SCD-BrS patients were defined as individuals presenting a history of aborted SCD. Thirty-nine patients with BrS were retrospectively analyzed and 12 patients (30.8%) were SCD-BrS. After AJT, an increase in both RVOT-AT [105.9 milliseconds versus 65.8 milliseconds, P<0.001] and RVOT-EPI recovery time [403.4 milliseconds versus 365.7 milliseconds, P<0.001] was observed. No changes occurred in RVOT-ARI [297.5 milliseconds versus 299.9 milliseconds, P=0.7]. Before AJT no differences were observed between SCD-BrS and non SCD-BrS in RVOT-AT, RVOT-EPI recovery time, and RVOT-ARI (P=0.9, P=0.91, P=0.86, respectively). Following AJT, SCD-BrS patients showed higher RVOT-AT, higher ∆RVOT-AT, lower RVOT-ARI, and lower ∆RVOT-ARI (P<0.001, P<0.001, P=0.007, P=0.002, respectively). At the univariate logistic regression, predictors of SCD-BrS were the following: RVOT-AT after AJT (specificity: 0.74, sensitivity 1.00, area under the curve 0.92); ∆RVOT-AT (specificity: 0.74, sensitivity 0.92, area under the curve 0.86); RVOT-ARI after AJT (specificity 0.96, sensitivity 0.58, area under the curve 0.79), and ∆RVOT-ARI (specificity 0.85, sensitivity 0.67, area under the curve 0.76). Conclusions Noninvasive electrocardiographic imaging can be useful in evaluating the results of AJT in BrS.
Collapse
Affiliation(s)
- Luigi Pannone
- Heart Rhythm Management Centre Postgraduate Program in Cardiac Electrophysiology and PacingUniversitair Ziekenhuis Brussel - Vrije Universiteit BrusselEuropean Reference Networks Guard-Heart Brussels Belgium
| | - Cinzia Monaco
- Heart Rhythm Management Centre Postgraduate Program in Cardiac Electrophysiology and PacingUniversitair Ziekenhuis Brussel - Vrije Universiteit BrusselEuropean Reference Networks Guard-Heart Brussels Belgium
| | - Antonio Sorgente
- Heart Rhythm Management Centre Postgraduate Program in Cardiac Electrophysiology and PacingUniversitair Ziekenhuis Brussel - Vrije Universiteit BrusselEuropean Reference Networks Guard-Heart Brussels Belgium
| | - Pasquale Vergara
- Heart Rhythm Management Centre Postgraduate Program in Cardiac Electrophysiology and PacingUniversitair Ziekenhuis Brussel - Vrije Universiteit BrusselEuropean Reference Networks Guard-Heart Brussels Belgium
| | - Paul-Adrian Calburean
- Heart Rhythm Management Centre Postgraduate Program in Cardiac Electrophysiology and PacingUniversitair Ziekenhuis Brussel - Vrije Universiteit BrusselEuropean Reference Networks Guard-Heart Brussels Belgium
| | - Anaïs Gauthey
- Heart Rhythm Management Centre Postgraduate Program in Cardiac Electrophysiology and PacingUniversitair Ziekenhuis Brussel - Vrije Universiteit BrusselEuropean Reference Networks Guard-Heart Brussels Belgium
| | - Antonio Bisignani
- Heart Rhythm Management Centre Postgraduate Program in Cardiac Electrophysiology and PacingUniversitair Ziekenhuis Brussel - Vrije Universiteit BrusselEuropean Reference Networks Guard-Heart Brussels Belgium
| | - Shuichiro Kazawa
- Heart Rhythm Management Centre Postgraduate Program in Cardiac Electrophysiology and PacingUniversitair Ziekenhuis Brussel - Vrije Universiteit BrusselEuropean Reference Networks Guard-Heart Brussels Belgium
| | - Antanas Strazdas
- Heart Rhythm Management Centre Postgraduate Program in Cardiac Electrophysiology and PacingUniversitair Ziekenhuis Brussel - Vrije Universiteit BrusselEuropean Reference Networks Guard-Heart Brussels Belgium
| | - Joerelle Mojica
- Heart Rhythm Management Centre Postgraduate Program in Cardiac Electrophysiology and PacingUniversitair Ziekenhuis Brussel - Vrije Universiteit BrusselEuropean Reference Networks Guard-Heart Brussels Belgium
| | - Felicia Lipartiti
- Heart Rhythm Management Centre Postgraduate Program in Cardiac Electrophysiology and PacingUniversitair Ziekenhuis Brussel - Vrije Universiteit BrusselEuropean Reference Networks Guard-Heart Brussels Belgium
| | - Maysam Al Housari
- Heart Rhythm Management Centre Postgraduate Program in Cardiac Electrophysiology and PacingUniversitair Ziekenhuis Brussel - Vrije Universiteit BrusselEuropean Reference Networks Guard-Heart Brussels Belgium
| | - Vincenzo Miraglia
- Heart Rhythm Management Centre Postgraduate Program in Cardiac Electrophysiology and PacingUniversitair Ziekenhuis Brussel - Vrije Universiteit BrusselEuropean Reference Networks Guard-Heart Brussels Belgium
| | - Sergio Rizzi
- Heart Rhythm Management Centre Postgraduate Program in Cardiac Electrophysiology and PacingUniversitair Ziekenhuis Brussel - Vrije Universiteit BrusselEuropean Reference Networks Guard-Heart Brussels Belgium
| | - Dimitrios Sofianos
- Heart Rhythm Management Centre Postgraduate Program in Cardiac Electrophysiology and PacingUniversitair Ziekenhuis Brussel - Vrije Universiteit BrusselEuropean Reference Networks Guard-Heart Brussels Belgium
| | - Federico Cecchini
- Heart Rhythm Management Centre Postgraduate Program in Cardiac Electrophysiology and PacingUniversitair Ziekenhuis Brussel - Vrije Universiteit BrusselEuropean Reference Networks Guard-Heart Brussels Belgium
| | - Thiago Guimarães Osório
- Heart Rhythm Management Centre Postgraduate Program in Cardiac Electrophysiology and PacingUniversitair Ziekenhuis Brussel - Vrije Universiteit BrusselEuropean Reference Networks Guard-Heart Brussels Belgium
| | - Gaetano Paparella
- Heart Rhythm Management Centre Postgraduate Program in Cardiac Electrophysiology and PacingUniversitair Ziekenhuis Brussel - Vrije Universiteit BrusselEuropean Reference Networks Guard-Heart Brussels Belgium
| | - Robbert Ramak
- Heart Rhythm Management Centre Postgraduate Program in Cardiac Electrophysiology and PacingUniversitair Ziekenhuis Brussel - Vrije Universiteit BrusselEuropean Reference Networks Guard-Heart Brussels Belgium
| | - Ingrid Overeinder
- Heart Rhythm Management Centre Postgraduate Program in Cardiac Electrophysiology and PacingUniversitair Ziekenhuis Brussel - Vrije Universiteit BrusselEuropean Reference Networks Guard-Heart Brussels Belgium
| | - Gezim Bala
- Heart Rhythm Management Centre Postgraduate Program in Cardiac Electrophysiology and PacingUniversitair Ziekenhuis Brussel - Vrije Universiteit BrusselEuropean Reference Networks Guard-Heart Brussels Belgium
| | - Alexandre Almorad
- Heart Rhythm Management Centre Postgraduate Program in Cardiac Electrophysiology and PacingUniversitair Ziekenhuis Brussel - Vrije Universiteit BrusselEuropean Reference Networks Guard-Heart Brussels Belgium
| | - Erwin Ströker
- Heart Rhythm Management Centre Postgraduate Program in Cardiac Electrophysiology and PacingUniversitair Ziekenhuis Brussel - Vrije Universiteit BrusselEuropean Reference Networks Guard-Heart Brussels Belgium
| | - Gudrun Pappaert
- Heart Rhythm Management Centre Postgraduate Program in Cardiac Electrophysiology and PacingUniversitair Ziekenhuis Brussel - Vrije Universiteit BrusselEuropean Reference Networks Guard-Heart Brussels Belgium
| | - Juan Sieira
- Heart Rhythm Management Centre Postgraduate Program in Cardiac Electrophysiology and PacingUniversitair Ziekenhuis Brussel - Vrije Universiteit BrusselEuropean Reference Networks Guard-Heart Brussels Belgium
| | - Pedro Brugada
- Heart Rhythm Management Centre Postgraduate Program in Cardiac Electrophysiology and PacingUniversitair Ziekenhuis Brussel - Vrije Universiteit BrusselEuropean Reference Networks Guard-Heart Brussels Belgium
| | - Mark La Meir
- Cardiac Surgery Department Universitair Ziekenhuis Brussel - Vrije Universiteit Brussel Brussels Belgium
| | - Gian-Battista Chierchia
- Heart Rhythm Management Centre Postgraduate Program in Cardiac Electrophysiology and PacingUniversitair Ziekenhuis Brussel - Vrije Universiteit BrusselEuropean Reference Networks Guard-Heart Brussels Belgium
| | - Carlo de Asmundis
- Heart Rhythm Management Centre Postgraduate Program in Cardiac Electrophysiology and PacingUniversitair Ziekenhuis Brussel - Vrije Universiteit BrusselEuropean Reference Networks Guard-Heart Brussels Belgium
| |
Collapse
|
9
|
Schuler S, Schaufelberger M, Bear LR, Bergquist JA, Cluitmans MJM, Coll-Font J, Onak ON, Zenger B, Loewe A, MacLeod RS, Brooks DH, Dossel O. Reducing Line-of-block Artifacts in Cardiac Activation Maps Estimated Using ECG Imaging: A Comparison of Source Models and Estimation Methods. IEEE Trans Biomed Eng 2021; 69:2041-2052. [PMID: 34905487 DOI: 10.1109/tbme.2021.3135154] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To investigate cardiac activation maps estimated using electrocardiographic imaging and to find methods reducing line-of-block (LoB) artifacts, while preserving real LoBs. METHODS Body surface potentials were computed for 137 simulated ventricular excitations. Subsequently, the inverse problem was solved to obtain extracellular potentials (EP) and transmembrane voltages (TMV). From these, activation times (AT) were estimated using four methods and compared to the ground truth. This process was evaluated with two cardiac mesh resolutions. Factors contributing to LoB artifacts were identified by analyzing the impact of spatial and temporal smoothing on the morphology of source signals. RESULTS AT estimation using a spatiotemporal derivative performed better than using a temporal derivative. Compared to deflection-based AT estimation, correlation-based methods were less prone to LoB artifacts but performed worse in identifying real LoBs. Temporal smoothing could eliminate artifacts for TMVs but not for EPs, which could be linked to their temporal morphology. TMVs led to more accurate ATs on the septum than EPs. Mesh resolution had a negligible effect on inverse reconstructions, but small distances were important for cross-correlation-based estimation of AT delays. CONCLUSION LoB artifacts are mainly caused by the inherent spatial smoothing effect of the inverse reconstruction. Among the configurations evaluated, only deflection-based AT estimation in combination with TMVs and strong temporal smoothing can prevent LoB artifacts, while preserving real LoBs. SIGNIFICANCE Regions of slow conduction are of considerable clinical interest and LoB artifacts observed in non-invasive ATs can lead to misinterpretations. We addressed this problem by identifying factors causing such artifacts and methods to reduce them.
Collapse
|
10
|
Good WW, Zenger B, Bergquist JA, Rupp LC, Gillette K, Angel N, Chou D, Plank G, MacLeod RS. Combining endocardial mapping and electrocardiographic imaging (ECGI) for improving PVC localization: A feasibility study. J Electrocardiol 2021; 69S:51-54. [PMID: 34649726 PMCID: PMC9014370 DOI: 10.1016/j.jelectrocard.2021.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Accurate reconstruction of cardiac activation wavefronts is crucial for clinical diagnosis, management, and treatment of cardiac arrhythmias. Furthermore, reconstruction of activation profiles within the intramural myocardium has long been impossible because electrical mapping was only performed on the endocardial surface. Recent advancements in electrocardiographic imaging (ECGI) have made endocardial and epicardial activation mapping possible. We propose a novel approach to use both endocardial and epicardial mapping in a combined approach to reconstruct intramural activation times. OBJECTIVE To implement and validate a combined epicardial/endocardial intramural activation time reconstruction technique. METHODS We used 11 simulations of ventricular activation paced from sites throughout myocardial wall and extracted endocardial and epicardial activation maps at approximate clinical resolution. From these maps, we interpolated the activation times through the myocardium using thin-plate-spline radial basis functions. We evaluated activation time reconstruction accuracy using root-mean-squared error (RMSE) of activation times and the percent of nodes within 1 ms of the ground truth. RESULTS Reconstructed intramural activation times showed an RMSE and percentage of nodes within 1 ms of the ground truth simulations of 3 ms and 70%, respectively. In the worst case, the RMSE and percentage of nodes were 4 ms and 60%, respectively. CONCLUSION We showed that a simple, yet effective combination of clinical endocardial and epicardial activation maps can accurately reconstruct intramural wavefronts. Furthermore, we showed that this approach provided robust reconstructions across multiple intramural stimulation sites.
Collapse
Affiliation(s)
- Wilson W Good
- Scientific Computing and Imaging Institute, University of Utah, SLC, UT, USA; Department of Biomedical Engineering, University of Utah, SLC, UT, USA; Nora Eccles Cardiovascular Research and Training Institute, University of Utah, SLC, UT, USA; Acutus Medical, Carlsbad, CA, USA.
| | - Brian Zenger
- Scientific Computing and Imaging Institute, University of Utah, SLC, UT, USA; Department of Biomedical Engineering, University of Utah, SLC, UT, USA; Nora Eccles Cardiovascular Research and Training Institute, University of Utah, SLC, UT, USA
| | - Jake A Bergquist
- Scientific Computing and Imaging Institute, University of Utah, SLC, UT, USA; Department of Biomedical Engineering, University of Utah, SLC, UT, USA; Nora Eccles Cardiovascular Research and Training Institute, University of Utah, SLC, UT, USA
| | - Lindsay C Rupp
- Scientific Computing and Imaging Institute, University of Utah, SLC, UT, USA; Department of Biomedical Engineering, University of Utah, SLC, UT, USA; Nora Eccles Cardiovascular Research and Training Institute, University of Utah, SLC, UT, USA
| | - Karli Gillette
- Institute of Biophysics, Medical University of Graz, Graz, Austria
| | | | | | - Gernot Plank
- Institute of Biophysics, Medical University of Graz, Graz, Austria
| | - Rob S MacLeod
- Scientific Computing and Imaging Institute, University of Utah, SLC, UT, USA; Department of Biomedical Engineering, University of Utah, SLC, UT, USA; Nora Eccles Cardiovascular Research and Training Institute, University of Utah, SLC, UT, USA
| |
Collapse
|
11
|
Restrepo AJ, Dickfeld TM. Perioperative Imaging to Guide Epicardial Mapping and Ablation. Card Electrophysiol Clin 2020; 12:281-293. [PMID: 32771183 DOI: 10.1016/j.ccep.2020.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Accessing the epicardial space without a sternotomy or a surgical pericardial window to treat ventricular arrhythmias in Chagas disease became a medical necessity in South America. Since the introduction of the dry percutaneous epicardial access approach, epicardial access has been standard procedure for management of ventricular arrhythmias in ischemic and nonischemic cardiomyopathies and atrioventricular accessory pathways after failed conventional endocardial ablation. Understanding the epicardial space and neighboring structures has become an important subject of teachings in electrophysiology. The evolution of complex ablation procedures to treat atrial and ventricular arrhythmias and device interventions to prevent cardioembolic stroke requires thorough understanding of pericardial anatomy.
Collapse
Affiliation(s)
- Alejandro Jimenez Restrepo
- Section of Cardiology, Marshfield Clinic Health System, 1000 North Oak Avenue, Marshfield, WI 54449, USA.
| | - Timm Michael Dickfeld
- Section of Cardiac Electrophysiology and the Maryland Arrhythmia and Cardiac Imaging Group (MACIG), University of Maryland School of Medicine, 22 South Greene Street, Room N3W77, Baltimore, MD 21201, USA
| |
Collapse
|
12
|
Pereira H, Niederer S, Rinaldi CA. Electrocardiographic imaging for cardiac arrhythmias and resynchronization therapy. Europace 2020; 22:euaa165. [PMID: 32754737 PMCID: PMC7544539 DOI: 10.1093/europace/euaa165] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
Use of the 12-lead electrocardiogram (ECG) is fundamental for the assessment of heart disease, including arrhythmias, but cannot always reveal the underlying mechanism or the location of the arrhythmia origin. Electrocardiographic imaging (ECGi) is a non-invasive multi-lead ECG-type imaging tool that enhances conventional 12-lead ECG. Although it is an established technology, its continuous development has been shown to assist in arrhythmic activation mapping and provide insights into the mechanism of cardiac resynchronization therapy (CRT). This review addresses the validity, reliability, and overall feasibility of ECGi for use in a diverse range of arrhythmias. A systematic search limited to full-text human studies published in peer-reviewed journals was performed through Medline via PubMed, using various combinations of three key concepts: ECGi, arrhythmia, and CRT. A total of 456 studies were screened through titles and abstracts. Ultimately, 42 studies were included for literature review. Evidence to date suggests that ECGi can be used to provide diagnostic insights regarding the mechanistic basis of arrhythmias and the location of arrhythmia origin. Furthermore, ECGi can yield valuable information to guide therapeutic decision-making, including during CRT. Several studies have used ECGi as a diagnostic tool for atrial and ventricular arrhythmias. More recently, studies have tested the value of this technique in predicting outcomes of CRT. As a non-invasive method for assessing cardiovascular disease, particularly arrhythmias, ECGi represents a significant advancement over standard procedures in contemporary cardiology. Its full potential has yet to be fully explored.
Collapse
Affiliation(s)
- Helder Pereira
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, 4th Floor, Lambeth Wing, St. Thomas’ Hospital, Westminster Bridge Rd, London SE1 7EH, UK
- Cardiac Physiology Services—Clinical Investigation Centre, Bupa Cromwell Hospital, London, UK
| | - Steven Niederer
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, 4th Floor, Lambeth Wing, St. Thomas’ Hospital, Westminster Bridge Rd, London SE1 7EH, UK
| | - Christopher A Rinaldi
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, 4th Floor, Lambeth Wing, St. Thomas’ Hospital, Westminster Bridge Rd, London SE1 7EH, UK
- Cardiovascular Department, Guys and St Thomas NHS Foundation Trust, London, UK
| |
Collapse
|
13
|
Perez-Alday EA, Haq KT, German DM, Hamilton C, Johnson K, Phan F, Rogovoy NM, Yang K, Wirth A, Thomas JA, Dalouk K, Fuss C, Ferencik M, Heitner S, Tereshchenko LG. Mechanisms of Arrhythmogenicity in Hypertrophic Cardiomyopathy: Insight From Non-invasive Electrocardiographic Imaging. Front Physiol 2020; 11:344. [PMID: 32390862 PMCID: PMC7194131 DOI: 10.3389/fphys.2020.00344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/26/2020] [Indexed: 11/25/2022] Open
Abstract
Background Mechanisms of arrhythmogenicity in hypertrophic cardiomyopathy (HCM) are not well understood. Objective To characterize an electrophysiological substrate of HCM in comparison to ischemic cardiomyopathy (ICM), or healthy individuals. Methods We conducted a prospective case-control study. The study enrolled HCM patients at high risk for ventricular tachyarrhythmia (VT) [n = 10; age 61 ± 9 years; left ventricular ejection fraction (LVEF) 60 ± 9%], and three comparison groups: healthy individuals (n = 10; age 28 ± 6 years; LVEF > 70%), ICM patients with LV hypertrophy (LVH) and known VT (n = 10; age 64 ± 9 years; LVEF 31 ± 15%), and ICM patients with LVH and no known VT (n = 10; age 70 ± 7 years; LVEF 46 ± 16%). All participants underwent 12-lead ECG, cardiac CT or MRI, and 128-electrode body surface mapping (BioSemi ActiveTwo, Netherlands). Non-invasive voltage and activation maps were reconstructed using the open-source SCIRun (University of Utah) inverse problem-solving environment. Results In the epicardial basal anterior segment, HCM patients had the greatest ventricular activation dispersion [16.4 ± 5.5 vs. 13.1 ± 2.7 (ICM with VT) vs. 13.8 ± 4.3 (ICM no VT) vs. 8.1 ± 2.4 ms (Healthy); P = 0.0007], the largest unipolar voltage [1094 ± 211 vs. 934 ± 189 (ICM with VT) vs. 898 ± 358 (ICM no VT) vs. 842 ± 90 μV (Healthy); P = 0.023], and the greatest voltage dispersion [median (interquartile range) 215 (161–281) vs. 189 (143–208) (ICM with VT) vs. 158 (109–236) (ICM no VT) vs. 110 (106–168) μV (Healthy); P = 0.041]. Differences were also observed in other endo-and epicardial basal and apical segments. Conclusion HCM is characterized by a greater activation dispersion in basal segments, a larger voltage, and a larger voltage dispersion through LV. Clinical Trial Registration www.clinicaltrials.gov Unique identifier: NCT02806479.
Collapse
Affiliation(s)
- Erick A Perez-Alday
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Kazi T Haq
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - David M German
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Christopher Hamilton
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Kyle Johnson
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Francis Phan
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Nichole M Rogovoy
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Katherine Yang
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States.,Sidney Kimmel Medical College, Philadelphia, PA, United States
| | - Ashley Wirth
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Jason A Thomas
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Khidir Dalouk
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States.,Portland VA Medical Center, Portland, OR, United States
| | - Cristina Fuss
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, OR, United States
| | - Maros Ferencik
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Stephen Heitner
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Larisa G Tereshchenko
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
14
|
Dhamala J, Bajracharya P, Arevalo HJ, Sapp JL, Horácek BM, Wu KC, Trayanova NA, Wang L. Embedding high-dimensional Bayesian optimization via generative modeling: Parameter personalization of cardiac electrophysiological models. Med Image Anal 2020; 62:101670. [PMID: 32171168 DOI: 10.1016/j.media.2020.101670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 12/16/2019] [Accepted: 02/24/2020] [Indexed: 11/28/2022]
Abstract
The estimation of patient-specific tissue properties in the form of model parameters is important for personalized physiological models. Because tissue properties are spatially varying across the underlying geometrical model, it presents a significant challenge of high-dimensional (HD) optimization at the presence of limited measurement data. A common solution to reduce the dimension of the parameter space is to explicitly partition the geometrical mesh. In this paper, we present a novel concept that uses a generative variational auto-encoder (VAE) to embed HD Bayesian optimization into a low-dimensional (LD) latent space that represents the generative code of HD parameters. We further utilize VAE-encoded knowledge about the generative code to guide the exploration of the search space. The presented method is applied to estimating tissue excitability in a cardiac electrophysiological model in a range of synthetic and real-data experiments, through which we demonstrate its improved accuracy and substantially reduced computational cost in comparison to existing methods that rely on geometry-based reduction of the HD parameter space.
Collapse
Affiliation(s)
- Jwala Dhamala
- Rochester Institute of Technology, Rochester, NY, USA. http://www.jwaladhamala.com
| | | | | | | | | | | | | | - Linwei Wang
- Rochester Institute of Technology, Rochester, NY, USA.
| |
Collapse
|
15
|
Sapp JL, Zhou S, Wang L. Mapping Ventricular Tachycardia With Electrocardiographic Imaging. Circ Arrhythm Electrophysiol 2020; 13:e008255. [PMID: 32069088 DOI: 10.1161/circep.120.008255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- John L Sapp
- Department of Medicine, Dalhousie University, and the QEII Health Sciences Centre, Halifax, NS, Canada (J.L.S.)
| | - Shijie Zhou
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Institute of Computational Medicine, Johns Hopkins University, Baltimore, MD (S.Z.)
| | - Linwei Wang
- College of Computing and Information Sciences, Rochester Institute of Technology, Rochester, NY (L.W.)
| |
Collapse
|
16
|
Trayanova NA, Doshi AN, Prakosa A. How personalized heart modeling can help treatment of lethal arrhythmias: A focus on ventricular tachycardia ablation strategies in post-infarction patients. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1477. [PMID: 31917524 DOI: 10.1002/wsbm.1477] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/18/2022]
Abstract
Precision Cardiology is a targeted strategy for cardiovascular disease prevention and treatment that accounts for individual variability. Computational heart modeling is one of the novel approaches that have been developed under the umbrella of Precision Cardiology. Personalized computational modeling of patient hearts has made strides in the development of models that incorporate the individual geometry and structure of the heart as well as other patient-specific information. Of these developments, one of the potentially most impactful is the research aimed at noninvasively predicting the targets of ablation of lethal arrhythmia, ventricular tachycardia (VT), using patient-specific models. The approach has been successfully applied to patients with ischemic cardiomyopathy in proof-of-concept studies. The goal of this paper is to review the strategies for computational VT ablation guidance in ischemic cardiomyopathy patients, from model developments to the intricacies of the actual clinical application. To provide context in describing the road these computational modeling applications have undertaken, we first review the state of the art in VT ablation in the clinic, emphasizing the benefits that personalized computational prediction of ablation targets could bring to the clinical electrophysiology practice. This article is characterized under: Analytical and Computational Methods > Computational Methods Models of Systems Properties and Processes > Organ, Tissue, and Physiological Models Translational, Genomic, and Systems Medicine > Translational Medicine.
Collapse
Affiliation(s)
- Natalia A Trayanova
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Ashish N Doshi
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland
| | - Adityo Prakosa
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
17
|
Cluitmans M, Brooks DH, MacLeod R, Dössel O, Guillem MS, van Dam PM, Svehlikova J, He B, Sapp J, Wang L, Bear L. Validation and Opportunities of Electrocardiographic Imaging: From Technical Achievements to Clinical Applications. Front Physiol 2018; 9:1305. [PMID: 30294281 PMCID: PMC6158556 DOI: 10.3389/fphys.2018.01305] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 08/29/2018] [Indexed: 11/23/2022] Open
Abstract
Electrocardiographic imaging (ECGI) reconstructs the electrical activity of the heart from a dense array of body-surface electrocardiograms and a patient-specific heart-torso geometry. Depending on how it is formulated, ECGI allows the reconstruction of the activation and recovery sequence of the heart, the origin of premature beats or tachycardia, the anchors/hotspots of re-entrant arrhythmias and other electrophysiological quantities of interest. Importantly, these quantities are directly and non-invasively reconstructed in a digitized model of the patient's three-dimensional heart, which has led to clinical interest in ECGI's ability to personalize diagnosis and guide therapy. Despite considerable development over the last decades, validation of ECGI is challenging. Firstly, results depend considerably on implementation choices, which are necessary to deal with ECGI's ill-posed character. Secondly, it is challenging to obtain (invasive) ground truth data of high quality. In this review, we discuss the current status of ECGI validation as well as the major challenges remaining for complete adoption of ECGI in clinical practice. Specifically, showing clinical benefit is essential for the adoption of ECGI. Such benefit may lie in patient outcome improvement, workflow improvement, or cost reduction. Future studies should focus on these aspects to achieve broad adoption of ECGI, but only after the technical challenges have been solved for that specific application/pathology. We propose 'best' practices for technical validation and highlight collaborative efforts recently organized in this field. Continued interaction between engineers, basic scientists, and physicians remains essential to find a hybrid between technical achievements, pathological mechanisms insights, and clinical benefit, to evolve this powerful technique toward a useful role in clinical practice.
Collapse
Affiliation(s)
- Matthijs Cluitmans
- Department of Cardiology, Cardiovascular Research Institute Maastricht Maastricht University, Maastricht, Netherlands
| | - Dana H. Brooks
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, United States
| | - Rob MacLeod
- Biomedical Engineering Department, Scientific Computing and Imaging Institute (SCI), and Cardiovascular Research and Training Institute (CVRTI), The University of Utah, Salt Lake City, UT, United States
| | - Olaf Dössel
- Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | - Peter M. van Dam
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| | - Jana Svehlikova
- Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Bin He
- Department of Biomedical Engineering Carnegie Mellon University, Pittsburgh, PA, United States
| | - John Sapp
- QEII Health Sciences Centre and Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Linwei Wang
- Rochester Institute of Technology, Rochester, NY, United States
| | - Laura Bear
- IHU LIRYC, Fondation Bordeaux Université, Inserm U1045 and Université de Bordeaux, Bordeaux, France
| |
Collapse
|
18
|
Stevenson WG, Hindricks G. Ventricular arrhythmias and sudden cardiac death: new research insights with clinical implications. Europace 2018. [DOI: 10.1093/europace/euy207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- William G Stevenson
- Division of Cardiovascular Medicine, Arrhythmia Section, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gerhard Hindricks
- Department of Electrophysiology, Heart Center Leipzig, Strümpellstr. 39, Leipzig, Germany
| |
Collapse
|