1
|
Gueda Moussa M, Lamy J, Nguyen V, Marsac P, Gencer U, Mousseaux E, Bollache E, Kachenoura N. Estimate of the hydraulic force in the aging heart: a cardiovascular magnetic resonance imaging study. BMC Med Imaging 2024; 24:168. [PMID: 38977955 PMCID: PMC11232129 DOI: 10.1186/s12880-024-01303-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/20/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Coupling between left ventricle (LV) and left atrium (LA) plays a central role in the process of cardiac remodeling during aging and development of cardiac disease. The hydraulic force (HyF) is related to variation in size between LV and LA. The objectives of this study were to: (1) derive an estimate of left atrioventricular HyF using cine- Magnetic Resonance Imaging (MRI) in healthy subjects with a wide age range, and (2) study its relationship with age and conventional diastolic function parameters, as estimated by reference echocardiography. METHODS We studied 119 healthy volunteers (mean age 44 ± 17 years, 58 women) who underwent Doppler echocardiography and MRI on the same day. Conventional transmitral flow early (E) and late (A) LV filling peak velocities as well as mitral annulus diastolic longitudinal peak velocity (E') were derived from echocardiography. MRI cine SSFP images in longitudinal two and four chamber views were acquired, and analyzed using feature tracking (FT) software. In addition to conventional LV and LA strain measurements, FT-derived LV and LA contours were further used to calculate chamber cross-sectional areas. HyF was approximated as the difference between the LV and LA maximal cross-sectional areas in the diastasis phase corresponding to the lowest LV-LA pressure gradient. Univariate and multivariate analyses while adjusting for appropriate variables were used to study the associations between HyF and age as well as diastolic function and strain indices. RESULTS HyF decreased significantly with age (R²=0.34, p < 0.0001). In addition, HyF was significantly associated with conventional indices of diastolic function and LA strain: E/A: R²=0.24, p < 0.0001; E': R²=0.24, p < 0.0001; E/E': R²=0.12, p = 0.0004; LA conduit longitudinal strain: R²=0.27, p < 0.0001. In multivariate analysis, associations with E/A (R2 = 0.39, p = 0.03) and LA conduit strain (R2 = 0.37, p = 0.02) remained significant after adjustment for age, sex, and body mass index. CONCLUSIONS HyF, estimated using FT contours, which are primarily used to quantify LV/LA strain on standard cardiac cine MRI, varied significantly with age in association with subclinical changes in ventricular filling. Its usefulness in cohorts of patients with left heart disease to detect LV-LA uncoupling remains to be evaluated.
Collapse
Affiliation(s)
- Moussa Gueda Moussa
- Laboratoire d'Imagerie Biomédicale (LIB), Sorbonne Université, CNRS, INSERM, 15 Rue de École de Médecine, Paris, 75006, France
| | - Jérôme Lamy
- PARCC, Université Paris Cité, Inserm, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Vincent Nguyen
- Laboratoire d'Imagerie Biomédicale (LIB), Sorbonne Université, CNRS, INSERM, 15 Rue de École de Médecine, Paris, 75006, France
| | - Perrine Marsac
- Laboratoire d'Imagerie Biomédicale (LIB), Sorbonne Université, CNRS, INSERM, 15 Rue de École de Médecine, Paris, 75006, France
| | - Umit Gencer
- PARCC, Université Paris Cité, Inserm, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Elie Mousseaux
- PARCC, Université Paris Cité, Inserm, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Emilie Bollache
- Laboratoire d'Imagerie Biomédicale (LIB), Sorbonne Université, CNRS, INSERM, 15 Rue de École de Médecine, Paris, 75006, France
| | - Nadjia Kachenoura
- Laboratoire d'Imagerie Biomédicale (LIB), Sorbonne Université, CNRS, INSERM, 15 Rue de École de Médecine, Paris, 75006, France.
| |
Collapse
|
2
|
Zeng Y, Yuan Z, Li J, Yang L, Li C, Xiang Y, Wu L, Xia T, Zhong L, Li Y, Wu N. Small non-coding RNA signatures in atrial appendages of patients with atrial fibrillation. J Cell Mol Med 2024; 28:e18483. [PMID: 39051629 PMCID: PMC11193094 DOI: 10.1111/jcmm.18483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 07/27/2024] Open
Abstract
The development of high-throughput technologies has enhanced our understanding of small non-coding RNAs (sncRNAs) and their crucial roles in various diseases, including atrial fibrillation (AF). This study aimed to systematically delineate sncRNA profiles in AF patients. PANDORA-sequencing was used to examine the sncRNA profiles of atrial appendage tissues from AF and non-AF patients. Differentially expressed sncRNAs were identified using the R package DEGseq 2 with a fold change >2 and p < 0.05. The target genes of the differentially expressed sncRNAs were predicted using MiRanda and RNAhybrid. Gene Ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. In AF patients, the most abundant sncRNAs were ribosomal RNA-derived small RNAs (rsRNAs), followed by transfer RNA-derived small RNAs (tsRNAs), and microRNAs (miRNAs). Compared with non-AF patients, 656 rsRNAs, 45 miRNAs, 191 tsRNAs and 51 small nucleolar RNAs (snoRNAs) were differentially expressed in AF patients, whereas no significantly differentially expressed piwi-interacting RNAs were identified. Two out of three tsRNAs were confirmed to be upregulated in AF patients by quantitative reverse transcriptase polymerase chain reaction, and higher plasma levels of tsRNA 5006c-LysCTT were associated with a 2.55-fold increased risk of all-cause death in AF patients (hazard ratio: 2.55; 95% confidence interval, 1.56-4.17; p < 0.001). Combined with our previous transcriptome sequencing results, 32 miRNA, 31 snoRNA, 110 nucleus-encoded tsRNA, and 33 mitochondria-encoded tsRNA target genes were dysregulated in AF patients. GO and KEGG analyses revealed enrichment of differentially expressed sncRNA target genes in AF-related pathways, including the 'calcium signaling pathway' and 'adrenergic signaling in cardiomyocytes.' The dysregulated sncRNA profiles in AF patients suggest their potential regulatory roles in AF pathogenesis. Further research is needed to investigate the specific mechanisms of sncRNAs in the development of AF and to explore potential biomarkers for AF treatment and prognosis.
Collapse
Affiliation(s)
- Yuhong Zeng
- Department of Epidemiology, College of Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingPeople's Republic of China
| | - Zhiquan Yuan
- Department of Epidemiology, College of Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingPeople's Republic of China
| | - Jun Li
- Thoracic and Cardiac Surgery, Southwest HospitalThe First Affiliated Hospital of Army Medical University (Third Military Medical University)ChongqingPeople's Republic of China
| | - Lanqing Yang
- Department of Epidemiology, College of Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingPeople's Republic of China
| | - Chengying Li
- Department of Epidemiology, College of Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingPeople's Republic of China
| | - Ying Xiang
- Department of Epidemiology, College of Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingPeople's Republic of China
| | - Long Wu
- Department of Epidemiology, College of Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingPeople's Republic of China
| | - Tingting Xia
- Department of Epidemiology, College of Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingPeople's Republic of China
| | - Li Zhong
- Cardiovascular Disease CenterThird Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Yafei Li
- Department of Epidemiology, College of Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingPeople's Republic of China
| | - Na Wu
- Department of Epidemiology, College of Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingPeople's Republic of China
| |
Collapse
|
3
|
Zhong Z, Li X, Gao L, Wu X, Ye Y, Zhang X, Zeng Q, Zhou C, Lu X, Wei Y, Ding Y, Chen S, Zhou G, Xu J, Liu S. Long Non-coding RNA Involved in the Pathophysiology of Atrial Fibrillation. Cardiovasc Drugs Ther 2023:10.1007/s10557-023-07491-8. [PMID: 37702834 DOI: 10.1007/s10557-023-07491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) is a prevalent and chronic cardiovascular disorder associated with various pathophysiological alterations, including atrial electrical and structural remodeling, disrupted calcium handling, autonomic nervous system dysfunction, aberrant energy metabolism, and immune dysregulation. Emerging evidence suggests that long non-coding RNAs (lncRNAs) play a significant role in the pathogenesis of AF. OBJECTIVE This discussion aims to elucidate the involvement of AF-related lncRNAs, with a specific focus on their role as miRNA sponges that modulate crucial signaling pathways, contributing to the progression of AF. We also address current limitations in AF-related lncRNA research and explore potential future directions in this field. Additionally, we summarize feasible strategies and promising delivery systems for targeting lncRNAs in AF therapy. CONCLUSION In conclusion, targeting AF-related lncRNAs holds substantial promise for future investigations and represents a potential therapeutic avenue for managing AF.
Collapse
Affiliation(s)
- Zikan Zhong
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xintao Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Longzhe Gao
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Wu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yutong Ye
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Zhang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingye Zeng
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changzuan Zhou
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofeng Lu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Wei
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Ding
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Songwen Chen
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Genqing Zhou
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Juan Xu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shaowen Liu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Remme CA, Heijman J, Gomez AM, Zaza A, Odening KE. 25 years of basic and translational science in EP Europace: novel insights into arrhythmia mechanisms and therapeutic strategies. Europace 2023; 25:euad210. [PMID: 37622575 PMCID: PMC10450791 DOI: 10.1093/europace/euad210] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 08/26/2023] Open
Abstract
In the last 25 years, EP Europace has published more than 300 basic and translational science articles covering different arrhythmia types (ranging from atrial fibrillation to ventricular tachyarrhythmias), different diseases predisposing to arrhythmia formation (such as genetic arrhythmia disorders and heart failure), and different interventional and pharmacological anti-arrhythmic treatment strategies (ranging from pacing and defibrillation to different ablation approaches and novel drug-therapies). These studies have been conducted in cellular models, small and large animal models, and in the last couple of years increasingly in silico using computational approaches. In sum, these articles have contributed substantially to our pathophysiological understanding of arrhythmia mechanisms and treatment options; many of which have made their way into clinical applications. This review discusses a representative selection of EP Europace manuscripts covering the topics of pacing and ablation, atrial fibrillation, heart failure and pro-arrhythmic ventricular remodelling, ion channel (dys)function and pharmacology, inherited arrhythmia syndromes, and arrhythmogenic cardiomyopathies, highlighting some of the advances of the past 25 years. Given the increasingly recognized complexity and multidisciplinary nature of arrhythmogenesis and continued technological developments, basic and translational electrophysiological research is key advancing the field. EP Europace aims to further increase its contribution to the discovery of arrhythmia mechanisms and the implementation of mechanism-based precision therapy approaches in arrhythmia management.
Collapse
Affiliation(s)
- Carol Ann Remme
- Department of Experimental Cardiology, Amsterdam UMC location University of Amsterdam, Heart Centre, Academic Medical Center, Room K2-104.2, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, The Netherlands
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ana M Gomez
- Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Inserm, Université Paris-Saclay, 91400 Orsay, France
| | - Antonio Zaza
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Katja E Odening
- Translational Cardiology, Department of Cardiology and Department of Physiology, Inselspital University Hospital Bern, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
5
|
Biomimetic cultivation of atrial tissue slices as novel platform for in-vitro atrial arrhythmia studies. Sci Rep 2023; 13:3648. [PMID: 36871094 PMCID: PMC9985600 DOI: 10.1038/s41598-023-30688-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Living myocardial slices (LMS) are beating sections of intact human myocardium that maintain 3D microarchitecture and multicellularity, thereby overcoming most limitations of conventional myocardial cell cultures. We introduce a novel method to produce LMS from human atria and apply pacing modalities to bridge the gap between in-vitro and in-vivo atrial arrhythmia studies. Human atrial biopsies from 15 patients undergoing cardiac surgery were dissected to tissue blocks of ~ 1 cm2 and cut to 300 µm thin LMS with a precision-cutting vibratome. LMS were placed in a biomimetic cultivation chamber, filled with standard cell culture medium, under diastolic preload (1 mN) and continuous electrical stimulation (1000 ms cycle length (CL)), resulting in 68 beating LMS. Atrial LMS refractory period was determined at 192 ± 26 ms. Fixed rate pacing with a CL of 333 ms was applied as atrial tachyarrhythmia (AT) model. This novel state-of-the-art platform for AT research can be used to investigate arrhythmia mechanisms and test novel therapies.
Collapse
|
6
|
Resting membrane potential is less negative in trabeculae from right atrial appendages of women, but action potential duration does not shorten with age. J Mol Cell Cardiol 2023; 176:1-10. [PMID: 36681268 DOI: 10.1016/j.yjmcc.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
AIMS The incidence of atrial fibrillation (AF) increases with age. Women have a lower risk. Little is known on the impact of age, sex and clinical variables on action potentials (AP) recorded in right atrial tissue obtained during open heart surgery from patients in sinus rhythm (SR) and in longstanding AF. We here investigated whether age or sex have an impact on the shape of AP recorded in vitro from right atrial tissue. METHODS We performed multivariable analysis of individual AP data from trabeculae obtained during heart surgery of patients in SR (n = 320) or in longstanding AF (n = 201). AP were recorded by sharp microelectrodes at 37 °C at 1 Hz. Impact of clinical variables were modeled using a multivariable mixed model regression. RESULTS In SR, AP duration at 90% repolarization (APD90) increased with age. Lower ejection fraction and higher body mass index were associated with smaller action potential amplitude (APA) and maximum upstroke velocity (Vmax). The use of beta-blockers was associated with larger APD90. In tissues from women, resting membrane potential was less negative and APA as well as Vmax were smaller. Besides shorter APD20 in elderly patients, effects of age and sex on atrial AP were lost in AF. CONCLUSION The higher probability to develop AF at advanced age cannot be explained by a shortening in APD90. Less negative RMP and lower upstroke velocity might contribute to lower incidence of AF in women, which may be of clinical relevance.
Collapse
|
7
|
Amesz JH, Zhang L, Everts BR, De Groot NMS, Taverne YJHJ. Living myocardial slices: Advancing arrhythmia research. Front Physiol 2023; 14:1076261. [PMID: 36711023 PMCID: PMC9880234 DOI: 10.3389/fphys.2023.1076261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Living myocardial slices (LMS) are ultrathin (150-400 µm) sections of intact myocardium that can be used as a comprehensive model for cardiac arrhythmia research. The recent introduction of biomimetic electromechanical cultivation chambers enables long-term cultivation and easy control of living myocardial slices culture conditions. The aim of this review is to present the potential of this biomimetic interface using living myocardial slices in electrophysiological studies outlining advantages, disadvantages and future perspectives of the model. Furthermore, different electrophysiological techniques and their application on living myocardial slices will be discussed. The developments of living myocardial slices in electrophysiology research will hopefully lead to future breakthroughs in the understanding of cardiac arrhythmia mechanisms and the development of novel therapeutic options.
Collapse
Affiliation(s)
- Jorik H. Amesz
- Translational Cardiothoracic Surgery Research Lab, Lowlands Institute for Bioelectric Medicine, Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
- Translational Electrophysiology, Lowlands Institute for Bioelectric Medicine, Department of Cardiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Lu Zhang
- Translational Electrophysiology, Lowlands Institute for Bioelectric Medicine, Department of Cardiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Bian R. Everts
- Translational Cardiothoracic Surgery Research Lab, Lowlands Institute for Bioelectric Medicine, Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Natasja M. S. De Groot
- Translational Electrophysiology, Lowlands Institute for Bioelectric Medicine, Department of Cardiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Yannick J. H. J. Taverne
- Translational Cardiothoracic Surgery Research Lab, Lowlands Institute for Bioelectric Medicine, Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
8
|
Wang T, Huang Y, Wang ZM, Chen YT, Cao H, Liu T, Zou Q. Consequences and Mechanisms of Left Atrium Remodeling in Aging Rabbits. Bull Exp Biol Med 2022; 174:283-289. [PMID: 36602603 DOI: 10.1007/s10517-023-05691-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Indexed: 01/06/2023]
Abstract
To investigate the consequences and mechanisms of myocardium remodeling of aging left atrium, we analyzed the main cardiac electrophysiological parameters such as rest membrane potential, action potential amplitude, maximum rate of action potential increase (max dV/dt), action potential plateau, and 30, 50, and 90% action potential duration (APD30, APD50, and APD90, respectively), as well as the inducibility and duration of atrial arrhythmias in adult and aging rabbits. L-type calcium current was also recorded. The collagen content in the myocardium and ultrastructure of left atrial cells were also studied. Significant changes were detected in the electrophysiological parameters and structure in aged left atrium, which can contribute to atrial susceptibility to arrhythmia in aged rabbits.
Collapse
Affiliation(s)
- Teng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University & Cardiovascular Research Institute of Wuhan University, Wuhan, China.
| | - Yan Huang
- Department of Cardiology, Renmin Hospital of Wuhan University & Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Zi-Ming Wang
- School of Stomatology, Wuhan University, Wuhan, China
| | - Yu-Ting Chen
- Department of Cardiology, Renmin Hospital of Wuhan University & Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Hong Cao
- Department of Cardiology, Renmin Hospital of Wuhan University & Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Tao Liu
- Department of Cardiology, Renmin Hospital of Wuhan University & Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Qiang Zou
- Department of Cardiology, Renmin Hospital of Wuhan University & Cardiovascular Research Institute of Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Boehmer AA, Rothe M, Zezyk C, Soether CM, Dobre BC, Kaess BM, Ehrlich JR. Persistent Atrial Fibrillation in Elderly Patients: Limited Efficacy of Pulmonary Vein Isolation. J Clin Med 2022; 11:jcm11206070. [PMID: 36294392 PMCID: PMC9604667 DOI: 10.3390/jcm11206070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/02/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Cryoballoon pulmonary vein isolation (cryoPVI) is established for symptomatic paroxysmal atrial fibrillation (AF) treatment, but its value in persistent AF is less clear. In particular, limited data are available on its efficacy in elderly patients (≥75 years) with persistent AF. Age is an important modifier of AF progression and represents a risk-factor for AF recurrence. (2) Methods: Prospective, single-center observational study to evaluate the impact of age on efficacy and safety of cryoPVI in elderly patients. Primary efficacy endpoint was symptomatic AF recurrence after 90-day blanking period. Primary safety endpoints were death from any cause, procedure-associated complications or stroke/transient ischemic attack. Median follow-up was 17 months (range 3−24). (3) Results: We included 268 patients with persistent AF (94 ≥ 75 years of age). Multivariate Cox regression analysis identified age as the only independent factor influencing AF recurrence in the overall cohort (p = 0.006). To minimize confounding bias in efficacy and safety analysis of cryoPVI, we matched younger and elderly patients with respect to baseline characteristics. At 24 months, primary efficacy endpoint occurred in 13/69 patients <75 years and 31/69 patients ≥75 years of age (24 months Kaplan−Meier event-rate estimates, HR 0.34; 95% CI, 0.19 to 0.62; log-rank p = 0.0004). No differences were observed in the occurrence of safety end points. (4) Conclusions: Elderly (≥75 years) patients with persistent AF undergoing cryoPVI had an approximately threefold higher risk of symptomatic AF recurrence than matched younger patients. Accordingly, other treatment modalities may be evaluated in this population.
Collapse
|
10
|
Distress-Mediated Remodeling of Cardiac Connexin-43 in a Novel Cell Model for Arrhythmogenic Heart Diseases. Int J Mol Sci 2022; 23:ijms231710174. [PMID: 36077591 PMCID: PMC9456330 DOI: 10.3390/ijms231710174] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Gap junctions and their expression pattern are essential to robust function of intercellular communication and electrical propagation in cardiomyocytes. In healthy myocytes, the main cardiac gap junction protein connexin-43 (Cx43) is located at the intercalated disc providing a clear direction of signal spreading across the cardiac tissue. Dislocation of Cx43 to lateral membranes has been detected in numerous cardiac diseases leading to slowed conduction and high propensity for the development of arrhythmias. At the cellular level, arrhythmogenic diseases are associated with elevated levels of oxidative distress and gap junction remodeling affecting especially the amount and sarcolemmal distribution of Cx43 expression. So far, a mechanistic link between sustained oxidative distress and altered Cx43 expression has not yet been identified. Here, we propose a novel cell model based on murine induced-pluripotent stem cell-derived cardiomyocytes to investigate subcellular signaling pathways linking cardiomyocyte distress with gap junction remodeling. We tested the new hypothesis that chronic distress, induced by rapid pacing, leads to increased reactive oxygen species, which promotes expression of a micro-RNA, miR-1, specific for the control of Cx43. Our data demonstrate that Cx43 expression is highly sensitive to oxidative distress, leading to reduced expression. This effect can be efficiently prevented by the glutathione peroxidase mimetic ebselen. Moreover, Cx43 expression is tightly regulated by miR-1, which is activated by tachypacing-induced oxidative distress. In light of the high arrhythmogenic potential of altered Cx43 expression, we propose miR-1 as a novel target for pharmacological interventions to prevent the maladaptive remodeling processes during chronic distress in the heart.
Collapse
|
11
|
Wei F, Zhang X, Kuang X, Gao X, Wang J, Fan J. Integrated Analysis of circRNA-miRNA-mRNA-Mediated Network and Its Potential Function in Atrial Fibrillation. Front Cardiovasc Med 2022; 9:883205. [PMID: 35845080 PMCID: PMC9279703 DOI: 10.3389/fcvm.2022.883205] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background Atrial fibrillation (AF) is one of the most prevalent arrhythmias, characterized by a high risk of heart failure and embolic stroke. Competing endogenous RNA network has been reported to play an important role in cardiovascular diseases. The main objective of the present study was to construct a circRNA–miRNA–mRNA-mediated network and explore the potential function in AF. Methods The microarray data of circRNA, miRNA, and mRNA in AF were downloaded from the Gene Expression Omnibus database. The RobustRankAggreg method was used to screen the different expression circRNAs(DECs). Then the circRNA–miRNA–mRNA-mediated network was constructed by using the CircInteractome database and the miRWalk online tool. A quantitative real-time polymerase chain reaction was used to detect the circRNA expression level in plasma. The left atrial fibrosis was evaluated with the left atrial low voltage area (LVA) by using left atrial voltage matrix mapping. Results Three DECs (hsa_circRNA_102461, hsa_circRNA_103693, and hsa_circRNA_059880) and 4 miRNAs were screened. Then a circRNA–miRNA–mRNA-mediated network was constructed, which included 2 circRNAs, 4 miRNAs, and 83 genes. Furthermore, the plasma’s hsa_circ_0070391 expression level was confirmed to be upregulated and positively correlated with left atrial fibrosis in AF (r = 0.88, P < 0.001), whereas hsa_circ_0003935 was downregulated. Moreover, the ROC curve analysis revealed hsa_circ_0070391 and hsa_circ_0003935 could differentiate AF from the healthy controls with an AUC of 0.95 (95% sensitivity and 90% specificity) and 0.86 (70% sensitivity and 75% specificity), respectively. Finally, the free of atrial tachyarrhythmia rate was dramatically lower in the hsa_circ_0070391 high expression group than in the low expression group post catheter ablation (70.0 vs. 90.0%, p = 0.04). Conclusion This study provides a novel insight to further understand the AF pathogenesis from the perspective of the circRNA–miRNA–mRNA network, suggesting that plasma circRNAs could serve as a novel atrial fibrosis and prognosis biomarker for AF.
Collapse
Affiliation(s)
- Feiyu Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Department of Cardiology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xi Zhang
- Department of Cardiology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xiaohui Kuang
- Department of Cardiology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xiaolong Gao
- Department of Cardiology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Jing Wang
- Department of Cardiology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Jie Fan
- Department of Cardiology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- *Correspondence: Jie Fan,
| |
Collapse
|
12
|
Research Progress on Natural Products’ Therapeutic Effects on Atrial Fibrillation by Regulating Ion Channels. Cardiovasc Ther 2022; 2022:4559809. [PMID: 35387267 PMCID: PMC8964196 DOI: 10.1155/2022/4559809] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/28/2022] [Accepted: 03/03/2022] [Indexed: 11/18/2022] Open
Abstract
Antiarrhythmic drugs (AADs) have a therapeutic effect on atrial fibrillation (AF) by regulating the function of ion channels. However, several adverse effects and high recurrence rates after drug withdrawal seriously affect patients’ medication compliance and clinical prognosis. Thus, safer and more effective drugs are urgently needed. Active components extracted from natural products are potential choices for AF therapy. Natural products like Panax notoginseng (Burk.) F.H. Chen, Sophora flavescens Ait., Stephania tetrandra S. Moore., Pueraria lobata (Willd.) Ohwi var. thomsonii (Benth.) Vaniot der Maesen., and Coptis chinensis Franch. have a long history in the treatment of arrhythmia, myocardial infarction, stroke, and heart failure in China. Based on the classification of chemical structures, this article discussed the natural product components’ therapeutic effects on atrial fibrillation by regulating ion channels, connexins, and expression of related genes, in order to provide a reference for development of therapeutic drugs for atrial fibrillation.
Collapse
|
13
|
Huang H, Chen H, Liang X, Chen X, Chen X, Chen C. Upregulated miR-328-3p and its high risk in atrial fibrillation: A systematic review and meta-analysis with meta-regression. Medicine (Baltimore) 2022; 101:e28980. [PMID: 35244069 PMCID: PMC8896476 DOI: 10.1097/md.0000000000028980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/11/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Several studies have shown miR-328-3p increased in atrial fibrillation (AF), but some researches indicated no difference or even decreased. This inconsistent result confuses researchers, and it is urgent to know the truth. This study is to assess the association between miR-328-3p levels in plasma/atrial tissue and patients with AF. METHODS PubMed, EMBASE, Scopus, Web of Science, and ProQuest were searched from inception to February 1, 2021. The standardized mean differences (SMD) with their 95% confidence interval (CI) were calculated to evaluate the association between miR-328-3p levels and AF. RESULTS Twelve studies met the inclusion criteria and were used for our meta-analysis. Overall, the levels of miR-328-3p were higher in patients with AF than in the control group (SMD = 0.69, 95% CI [0.10, 1.28], P = .022). After adjustment, the overall SMD was 0.82 (95% CI [0.22, 1.42], P = .007). Sensitivity analysis indicated that the results were stable, and the trim-fill analysis showed that the results were credible. Subgroup analyses showed that AF patients, n ≥ 30, various of comorbidity, articles published earlier, and Asia groups had higher levels of expression of miR-328-3p. CONCLUSIONS High levels of miR-328-3p are significantly associated with an increased risk of AF. It implies that miR-328-3p played an important role in diagnosis and may serve as a potential momentous, and useful biomarker to identify AF.
Collapse
Affiliation(s)
- Haitao Huang
- Department of Cardiology, the Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Hao Chen
- Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiao Liang
- Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiuting Chen
- Department of Cardiology, the Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiaoxin Chen
- Department of Cardiology, the Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Can Chen
- Department of Cardiology, the Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
14
|
Zhang L, Wang X, Huang C. A narrative review of non-coding RNAs in atrial fibrillation: potential therapeutic targets and molecular mechanisms. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1486. [PMID: 34734038 PMCID: PMC8506732 DOI: 10.21037/atm-21-4483] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/16/2021] [Indexed: 11/11/2022]
Abstract
Objective This review summarizes the advances in the study of ncRNAs and atrial remodeling mechanisms to explore potential therapeutic targets and strategies for AF. Background Atrial fibrillation (AF) is one of the most common arrhythmias, and its morbidity and mortality rates are gradually increasing. Non-coding ribonucleic acid RNAs (ncRNAs) are transcribed from the genome and do not have the ability to be translated into proteins. A growing body of evidence has shown ncRNAs are extensively involved in the pathophysiological processes underlying AF. However, the precise molecular mechanisms of these associations have not been fully elucidated. Atrial remodeling plays a key role in the occurrence and development of AF, and includes electrical remodeling, structural remodeling, and autonomic nerve remodeling. Research has shown that ncRNA expression is altered in the plasma and tissues of AF patients that mediate cardiac excitation and arrhythmia, and is closely related to atrial remodeling. Methods Literatures about ncRNAs and atrial fibrillation were extensively reviewed to discuss and analyze. Conclusions The biology of ncRNAs represents a relatively new field of research and is still in an emerging stage. Recent studies have laid a foundation for understanding the molecular mechanisms of AF, future studies aimed at identifying how ncRNAs act on atrial fibrillation to provide potentially promising therapeutic targets for the treatment of atrial fibrillation.
Collapse
Affiliation(s)
- Lan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
15
|
Wei F, Ren W, Zhang X, Wu P, Fan J. miR-425-5p is negatively associated with atrial fibrosis and promotes atrial remodeling by targeting CREB1 in atrial fibrillation. J Cardiol 2021; 79:202-210. [PMID: 34688515 DOI: 10.1016/j.jjcc.2021.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Progression of atrial fibrosis is vital for atrial remodeling in atrial fibrillation (AF). The main objective of the present study was to explore the association between miR-425-5p and atrial fibrosis as well as the resultant impact on atrial remodeling in AF. METHODS Firstly, miRNAs sequencing and quantitative real-time polymerase chain reaction was used to screen and verify the miRNAs expression level in plasma and atrial tissue in AF patients. The left atrial fibrosis was evaluated with the left atrial low voltage area by using left atrial voltage matrix mapping. Cell counting kit-8 was used to detect fibroblasts proliferation. The AF mouse model was established using acetylcholine-CaCl2 injection for 7 days. Target gene prediction software, luciferase assay, and western blotting were employed to confirm the direct targets of miR-425-5p. RESULTS Firstly, we demonstrated that miR-425-5p was downregulated in plasma and atrial tissue among the patients who suffered from AF. We then confirmed that the plasma's miR-425-5p level was negatively correlated with left atrial fibrosis in persistent AF, and catheter ablation could restore the decreased plasma miR-425-5p. Besides, receiver operating characteristic curve analysis revealed the miR-425-5p not only could differentiate AF from healthy control wit area under the curve (AUC) 0.921, but also discriminated persistent AF from paroxysmal AF with AUC 0.888. Furthermore, downregulation of miR-425-5p could promote atrial remodeling, and overexpression of miR-425-p could improve atrial remodeling and decrease susceptibility to atrial fibrillation. Finally, CREB1 was verified to be a direct target for miR-425-5p. CONCLUSIONS Our findings suggested that miR-425-5p could serve as novel atrial fibrosis biomarker and contributed to atrial remodeling in AF.
Collapse
Affiliation(s)
- Feiyu Wei
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Kunming, Yunnan, China; Department of Cardiology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Kunming, Yunnan 650032, China
| | - Wenjun Ren
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xi Zhang
- Department of Cardiology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Kunming, Yunnan 650032, China
| | - Peng Wu
- Department of Cardiology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Kunming, Yunnan 650032, China
| | - Jie Fan
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Kunming, Yunnan, China; Department of Cardiology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Kunming, Yunnan 650032, China.
| |
Collapse
|
16
|
Couselo-Seijas M, Rodríguez-Mañero M, González-Juanatey JR, Eiras S. Updates on epicardial adipose tissue mechanisms on atrial fibrillation. Obes Rev 2021; 22:e13277. [PMID: 34002458 DOI: 10.1111/obr.13277] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/19/2021] [Indexed: 02/06/2023]
Abstract
Obesity is a well-known risk factor for atrial fibrillation (AF). Local epi-myocardial or intra-myocardial adiposity caused by aging, obesity, or cardiovascular disease (CVD) is considered to be a better predictor of the risk of AF than general adiposity. Some of the described mechanisms suggest that epicardial adipose tissue (EAT) participates in structural remodeling owing to its endocrine activity or its infiltration between cardiomyocytes. Epicardial fat also wraps up the ganglionated plexi that reach the myocardium. Although the increment of volume/thickness and activity of EAT might modify autonomic activity, autonomic system dysfunction might also change the endocrine activity of epicardial fat in a feedback response. As a result, new preventive therapeutic strategies are focused on reducing adiposity and weight loss before AF ablation or inhibiting autonomic neurotransmitter secretion on fat pads during open-heart surgery to reduce the recurrence or postoperative risk of AF. In this manuscript, we review some of the novel findings regarding the pathophysiology and associated risk factors of AF, with special emphasis on the role of EAT in the electrical, structural, and molecular mechanisms of AF initiation and maintenance. In addition, we have included a brief note provided on epicardial fat preclinical models that could be useful for identifying new therapeutic targets.
Collapse
Affiliation(s)
- Marinela Couselo-Seijas
- Translational Cardiology group, Health Research Institute, Santiago de Compostela, Spain.,University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Moisés Rodríguez-Mañero
- Translational Cardiology group, Health Research Institute, Santiago de Compostela, Spain.,CIBERCV, Madrid, Spain.,Cardiovascular Department, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - José R González-Juanatey
- University of Santiago de Compostela, Santiago de Compostela, Spain.,CIBERCV, Madrid, Spain.,Cardiovascular Department, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain.,Cardiology group, Health Research Institute, Santiago de Compostela, Spain
| | - Sonia Eiras
- Translational Cardiology group, Health Research Institute, Santiago de Compostela, Spain.,CIBERCV, Madrid, Spain
| |
Collapse
|
17
|
Papathanasiou KA, Giotaki SG, Vrachatis DA, Siasos G, Lambadiari V, Iliodromitis KE, Kossyvakis C, Kaoukis A, Raisakis K, Deftereos G, Papaioannou TG, Giannopoulos G, Avramides D, Deftereos SG. Molecular Insights in Atrial Fibrillation Pathogenesis and Therapeutics: A Narrative Review. Diagnostics (Basel) 2021; 11:diagnostics11091584. [PMID: 34573926 PMCID: PMC8470040 DOI: 10.3390/diagnostics11091584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
The prevalence of atrial fibrillation (AF) is bound to increase globally in the following years, affecting the quality of life of millions of people, increasing mortality and morbidity, and beleaguering health care systems. Increasingly effective therapeutic options against AF are the constantly evolving electroanatomic substrate mapping systems of the left atrium (LA) and ablation catheter technologies. Yet, a prerequisite for better long-term success rates is the understanding of AF pathogenesis and maintenance. LA electrical and anatomical remodeling remains in the epicenter of current research for novel diagnostic and treatment modalities. On a molecular level, electrical remodeling lies on impaired calcium handling, enhanced inwardly rectifying potassium currents, and gap junction perturbations. In addition, a wide array of profibrotic stimuli activates fibroblast to an increased extracellular matrix turnover via various intermediaries. Concomitant dysregulation of the autonomic nervous system and the humoral function of increased epicardial adipose tissue (EAT) are established mediators in the pathophysiology of AF. Local atrial lymphomononuclear cells infiltrate and increased inflammasome activity accelerate and perpetuate arrhythmia substrate. Finally, impaired intracellular protein metabolism, excessive oxidative stress, and mitochondrial dysfunction deplete atrial cardiomyocyte ATP and promote arrhythmogenesis. These overlapping cellular and molecular alterations hinder us from distinguishing the cause from the effect in AF pathogenesis. Yet, a plethora of therapeutic modalities target these molecular perturbations and hold promise in combating the AF burden. Namely, atrial selective ion channel inhibitors, AF gene therapy, anti-fibrotic agents, AF drug repurposing, immunomodulators, and indirect cardiac neuromodulation are discussed here.
Collapse
Affiliation(s)
- Konstantinos A. Papathanasiou
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
| | - Sotiria G. Giotaki
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
| | - Dimitrios A. Vrachatis
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
| | - Gerasimos Siasos
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
| | - Vaia Lambadiari
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
| | | | - Charalampos Kossyvakis
- Department of Cardiology, “G. Gennimatas” General Hospital of Athens, 11527 Athens, Greece; (C.K.); (A.K.); (K.R.); (G.D.); (D.A.)
| | - Andreas Kaoukis
- Department of Cardiology, “G. Gennimatas” General Hospital of Athens, 11527 Athens, Greece; (C.K.); (A.K.); (K.R.); (G.D.); (D.A.)
| | - Konstantinos Raisakis
- Department of Cardiology, “G. Gennimatas” General Hospital of Athens, 11527 Athens, Greece; (C.K.); (A.K.); (K.R.); (G.D.); (D.A.)
| | - Gerasimos Deftereos
- Department of Cardiology, “G. Gennimatas” General Hospital of Athens, 11527 Athens, Greece; (C.K.); (A.K.); (K.R.); (G.D.); (D.A.)
| | - Theodore G. Papaioannou
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
| | | | - Dimitrios Avramides
- Department of Cardiology, “G. Gennimatas” General Hospital of Athens, 11527 Athens, Greece; (C.K.); (A.K.); (K.R.); (G.D.); (D.A.)
| | - Spyridon G. Deftereos
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
- Correspondence: ; Tel.: +30-21-0583-2355
| |
Collapse
|
18
|
Obergassel J, O'Reilly M, Sommerfeld LC, Kabir SN, O'Shea C, Syeda F, Eckardt L, Kirchhof P, Fabritz L. Effects of genetic background, sex, and age on murine atrial electrophysiology. Europace 2021; 23:958-969. [PMID: 33462602 DOI: 10.1093/europace/euaa369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Indexed: 11/14/2022] Open
Abstract
AIMS Genetically altered mice are powerful models to investigate mechanisms of atrial arrhythmias, but normal ranges for murine atrial electrophysiology have not been robustly characterized. METHODS AND RESULTS We analyzed results from 221 electrophysiological (EP) studies in isolated, Langendorff-perfused hearts of wildtype mice (114 female, 107 male) from 2.5 to 17.7 months (mean 7 months) with different genetic backgrounds (C57BL/6, FVB/N, MF1, 129/Sv, Swiss agouti). Left atrial monophasic action potential duration (LA-APD), interatrial activation time (IA-AT), and atrial effective refractory period (ERP) were summarized at different pacing cycle lengths (PCLs). Factors influencing atrial electrophysiology including genetic background, sex, and age were determined. LA-APD70 was 18 ± 0.5 ms, atrial ERP was 27 ± 0.8 ms, and IA-AT was 17 ± 0.5 ms at 100 ms PCL. LA-APD was longer with longer PCL (+17% from 80 to 120 ms PCL for APD70), while IA-AT decreased (-7% from 80 to 120 ms PCL). Female sex was associated with longer ERP (+14% vs. males). Genetic background influenced atrial electrophysiology: LA-APD70 (-20% vs. average) and atrial ERP (-25% vs. average) were shorter in Swiss agouti background compared to others. LA-APD70 (+25% vs. average) and IA-AT (+44% vs. average) were longer in 129/Sv mice. Atrial ERP was longer in FVB/N (+34% vs. average) and in younger experimental groups below 6 months of age. CONCLUSION This work defines normal ranges for murine atrial EP parameters. Genetic background has a profound effect on these parameters, at least of the magnitude as those of sex and age. These results can inform the experimental design and interpretation of murine atrial electrophysiology.
Collapse
Affiliation(s)
- Julius Obergassel
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK.,University Heart and Vascular Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Molly O'Reilly
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Laura C Sommerfeld
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - S Nashitha Kabir
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Christopher O'Shea
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Fahima Syeda
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Lars Eckardt
- Department of Cardiology II - Electrophysiology, University Hospital Münster, Münster, Germany
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK.,University Heart and Vascular Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany.,Department of Cardiology, UHB NHS Trust, Birmingham, UK.,Department of Cardiology, SWBH NHS Trust, Birmingham City Hospital, Birmingham, UK.,German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK.,University Heart and Vascular Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany.,Department of Cardiology, UHB NHS Trust, Birmingham, UK
| |
Collapse
|
19
|
Geng M, Lin A, Nguyen TP. Revisiting Antiarrhythmic Drug Therapy for Atrial Fibrillation: Reviewing Lessons Learned and Redefining Therapeutic Paradigms. Front Pharmacol 2020; 11:581837. [PMID: 33240090 PMCID: PMC7680856 DOI: 10.3389/fphar.2020.581837] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Since the clinical use of digitalis as the first pharmacological therapy for atrial fibrillation (AF) 235 years ago in 1785, antiarrhythmic drug therapy has advanced considerably and become a cornerstone of AF clinical management. Yet, a preventive or curative panacea for sustained AF does not exist despite the rise of AF global prevalence to epidemiological proportions. While multiple elevated risk factors for AF have been established, the natural history and etiology of AF remain incompletely understood. In the present article, the first section selectively highlights some disappointing shortcomings and current efforts in antiarrhythmic drug therapy to uncover reasons why AF is such a clinical challenge. The second section discusses some modern takes on the natural history of AF as a relentless, progressive fibro-inflammatory "atriomyopathy." The final section emphasizes the need to redefine therapeutic strategies on par with new insights of AF pathophysiology.
Collapse
Affiliation(s)
| | | | - Thao P. Nguyen
- Division of Cardiology, Department of Medicine, The Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
20
|
Abstract
Atrial fibrillation (AF) contributes to morbidity and mortality of millions of individuals. Its molecular, cellular, neurohumoral, and hemodynamic pathophysiological mechanisms are complex, and there is increasing awareness that a wide range of comorbidities can contribute to AF-promoting atrial remodeling. Moreover, recent research has highlighted that AF risk is not constant and that the temporal variation in concomitant conditions contributes to the complexity of AF dynamics. In this review, we provide an overview of fundamental AF mechanisms related to established and emerging comorbidities or risk factors and their role in the AF-promoting effects. We focus on the accumulating evidence for the relevance of temporally dynamic changes in these risk factors and the consequence for AF initiation and maintenance. Finally, we highlight the important implications for future research and clinical practice resulting from the dynamic interaction between AF risk factors and mechanisms.
Collapse
Affiliation(s)
- Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Dominik Linz
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, 6200 MD Maastricht, The Netherlands; .,Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands; .,Department of Cardiology, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands.,Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, 5005 Adelaide, South Australia, Australia
| | - Ulrich Schotten
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, 6200 MD Maastricht, The Netherlands; .,Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, 6200 MD Maastricht, The Netherlands;
| |
Collapse
|