1
|
Bijvoet GP, Hermans BJM, Linz D, Luermans JGLM, Maesen B, Nijveldt R, Mihl C, Vernooy K, Wildberger JE, Holtackers RJ, Schotten U, Chaldoupi SM. Optimal Threshold and Interpatient Variability in Left Atrial Ablation Scar Assessment by Dark-Blood LGE CMR. JACC Clin Electrophysiol 2024; 10:2186-2197. [PMID: 39001763 DOI: 10.1016/j.jacep.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Dark-blood late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) has better correlation with bipolar voltage (BiV) to define ablation scar in the left atrium (LA) compared to conventional bright-blood LGE CMR. OBJECTIVES This study sought to determine the optimal signal intensity threshold of dark-blood LGE CMR to identify LA ablation scar. METHODS In 54 patients scheduled for atrial fibrillation ablation, image intensity ratios (IIRs) were derived from preprocedural dark-blood LGE CMR. In 26 patients without previous ablation, the upper limit of normal was derived from the 95th and 98th percentiles of pooled IIR values. In 28 patients with previous atrial fibrillation ablation, BiV was compared with the corresponding IIR. Receiver-operating characteristics analyses were employed to determine the optimal IIR threshold (ie, the point with the smallest distance to the upper left corner of the receiver-operating characteristics) for LA ablation scar (BiV ≤0.15 mV). RESULTS Upper limit of normal corresponded to IIR values 1.16 and 1.21, yielding low sensitivities of 0.32 and 0.09 to detect LA ablation scar. Receiver-operating characteristics analysis of IIR and BiV comparison achieved a median area under the curve of 0.77. Median optimal IIR threshold for LA ablation scar was 1.09, with an average sensitivity of 0.73, specificity of 0.75, and accuracy of 0.71. Median IIR thresholds of 1.00 and 1.10 corresponded to 80% sensitivity and 80% specificity, respectively. There was considerable interpatient variability: optimal IIR thresholds per patient ranged from 1.01 to 1.22. CONCLUSIONS The optimal IIR threshold to identify LA ablation scar by dark-blood LGE CMR is 1.09. Because of interpatient variability, the investigators recommend using a lower (1.00) and upper (1.10) threshold to prevent over- or underestimation of ablation scar.
Collapse
Affiliation(s)
- Geertruida Petronella Bijvoet
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC+), Maastricht, the Netherlands.
| | - Ben J M Hermans
- Department of Physiology, CARIM, Maastricht University, Maastricht, the Netherlands
| | - Dominik Linz
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC+), Maastricht, the Netherlands; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Justin G L M Luermans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC+), Maastricht, the Netherlands
| | - Bart Maesen
- Department of Cardiothoracic Surgery, CARIM, MUMC+, Maastricht, the Netherlands
| | - Robin Nijveldt
- Department of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Casper Mihl
- Department of Radiology and Nuclear Medicine, CARIM, MUMC+, Maastricht, the Netherlands
| | - Kevin Vernooy
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC+), Maastricht, the Netherlands
| | - Joachim E Wildberger
- Department of Radiology and Nuclear Medicine, CARIM, MUMC+, Maastricht, the Netherlands
| | - Rob J Holtackers
- Department of Radiology and Nuclear Medicine, CARIM, MUMC+, Maastricht, the Netherlands
| | - Ulrich Schotten
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC+), Maastricht, the Netherlands; Department of Physiology, CARIM, Maastricht University, Maastricht, the Netherlands
| | - Sevasti-Maria Chaldoupi
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC+), Maastricht, the Netherlands.
| |
Collapse
|
2
|
Guan W, Liu J, Chen K, Yao Y. Empirical superior vena cava electrical isolation guided by quantitative ablation index improves outcomes of radiofrequency catheter ablation for paroxysmal atrial fibrillation. Open Heart 2024; 11:e002873. [PMID: 39304298 PMCID: PMC11418580 DOI: 10.1136/openhrt-2024-002873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND The value of empirical superior vena cava isolation (SVCI) following pulmonary vein isolation (PVI) to improve the efficacy of radiofrequency catheter ablation (RFCA) for paroxysmal atrial fibrillation (PAF) remains controversial. OBJECTIVE To evaluate the efficacy and safety of quantitative ablation index (AI)-guided empirical SVCI, in addition to PVI, for patients with PAF. METHODS Patients with symptomatic PAF who underwent RFCA between October 2021 and May 2023 were retrospectively analysed. Patients were categorised into PVI-only group and PVI+SVCI group based on the intraoperative ablation strategy. RFCA was guided by quantitative AI in both groups. Regular clinical follow-ups were conducted to detect AF recurrence, defined as any episode of atrial fibrillation, atrial flutter or atrial tachycardia lasting >30 s. RESULTS A total of 246 patients were enrolled, with 108 patients in the PVI group and 138 patients in the PVI+SVCI group. Compared with the PVI group, patients in the PVI+SVCI group had a higher prevalence of coronary artery disease (p=0.04), stroke (p=0.02) and a smaller left atrial diameter (p<0.01). After a follow-up period of 16±6 months, the ablation success rate was significantly higher in the SVCI+PVI group compared with the PVI group (91.3% vs 81.5%, p=0.02). Multivariable logistic regression analysis indicated that SVCI was an independent predictor of reduced AF recurrence postablation (Relative Risk [RR] 0.4, 95% CI 0.19 to 0.90, p=0.026). No significant difference in complication rates was observed between the groups. CONCLUSION Quantitative AI-guided empirical SVCI, in addition to PVI, improves the success rate of RFCA for PAF without increasing the risk of complications.
Collapse
Affiliation(s)
- Wenchi Guan
- Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Jun Liu
- Fuwai Hospital, Chinese Academy of Medical Sciences; Fuwai Shenzhen Hospital,Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Keping Chen
- Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yan Yao
- Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
3
|
Mills MT, Calvert P, Gupta D. Radiofrequency catheter ablation of cardiac arrhythmias: Don't get burned. HeartRhythm Case Rep 2024; 10:248-249. [PMID: 38766621 PMCID: PMC11096421 DOI: 10.1016/j.hrcr.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Affiliation(s)
- Mark T. Mills
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom
- Department of Cardiology, Liverpool Heart & Chest Hospital NHS Foundation Trust, Liverpool, United Kingdom
| | - Peter Calvert
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom
- Department of Cardiology, Liverpool Heart & Chest Hospital NHS Foundation Trust, Liverpool, United Kingdom
| | - Dhiraj Gupta
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom
- Department of Cardiology, Liverpool Heart & Chest Hospital NHS Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
4
|
Sciacca V, Sommer P, Sohns C. Beyond the Pulse: Understanding the Systemic Effects of Nonthermal Ablation. JACC Clin Electrophysiol 2023:S2405-500X(23)00905-2. [PMID: 38276925 DOI: 10.1016/j.jacep.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/27/2024]
Affiliation(s)
- Vanessa Sciacca
- Clinic for Electrophysiology, Herz-und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Philipp Sommer
- Clinic for Electrophysiology, Herz-und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Christian Sohns
- Clinic for Electrophysiology, Herz-und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany.
| |
Collapse
|
5
|
Fink T, Sciacca V, Neven K, Didenko M, Sommer P, Sohns C. Pulsed field ablation for atrial fibrillation - Lessons from magnetic resonance imaging. Pacing Clin Electrophysiol 2023; 46:1586-1594. [PMID: 37943015 DOI: 10.1111/pace.14864] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/19/2023] [Accepted: 10/21/2023] [Indexed: 11/10/2023]
Abstract
Pulsed field ablation (PFA) is a promising technology for the treatment of atrial fibrillation (AF). Due to its unique tissue selectivity, PFA potentially bears superior characteristics as compared to established thermal energy sources in AF ablation procedures. Cardiovascular magnetic resonance imaging (CMR) using late gadolinium enhancement (LGE) is an established tool in the analysis of myocardial fibrosis representing atrial cardiomyopathy as well as ablation-induced atrial scar formation following catheter ablation with thermal energy. Mechanisms of atrial lesion formation differ between thermal ablation and electroporation and its impact on results of CMR imaging are not fully understood until now. In this review article, the potential of CMR imaging for PFA lesion assessment and available data are discussed. Further, additional needs to adopt imaging approaches to the cellular mechanisms of electroporation are considered.
Collapse
Affiliation(s)
- Thomas Fink
- Clinic for Electrophysiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Vanessa Sciacca
- Clinic for Electrophysiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Kars Neven
- Department of Electrophysiology, Alfried Krupp Hospital, Essen, Germany
- Dept. of Medicine, Witten/Herdecke University, Witten, Germany
| | - Maxim Didenko
- Clinic for Electrophysiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Philipp Sommer
- Clinic for Electrophysiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Christian Sohns
- Clinic for Electrophysiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| |
Collapse
|
6
|
Nesapiragasan V, Hayıroğlu Mİ, Sciacca V, Sommer P, Sohns C, Fink T. Catheter Ablation Approaches for the Treatment of Arrhythmia Recurrence in Patients with a Durable Pulmonary Vein Isolation. Balkan Med J 2023; 40:386-394. [PMID: 37817408 PMCID: PMC10613749 DOI: 10.4274/balkanmedj.galenos.2023.2023-9-48] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/12/2023] Open
Abstract
Catheter ablation has emerged as an effective treatment for atrial arrhythmias, and pulmonary vein isolation (PVI) is the cornerstone of ablation strategies. Significant technological evolution and widespread increase in operator experience have facilitated the effectiveness of catheter ablation to achieve durable PVIs in single or multiple ablation procedures. Nevertheless, arrhythmia recurrence is a common problem even after establishing PVI. Data on catheter ablation in these patients are sparse and repeat ablation in this population is highly challenging. In this review we have summarized the available data as well as potential strategies of catheter ablation following the initial PVI.
Collapse
Affiliation(s)
- Vinitha Nesapiragasan
- Clinics for Electrophysiology, Herz- und Diabeteszentrum Nordrhein-Westfalen, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Mert İlker Hayıroğlu
- Clinic Cardiology, Siyami Ersek Thoracic and Cardiovascular Surgery Training and Research Hospital, İstanbul, Türkiye
| | - Vanessa Sciacca
- Clinics for Electrophysiology, Herz- und Diabeteszentrum Nordrhein-Westfalen, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Philipp Sommer
- Clinics for Electrophysiology, Herz- und Diabeteszentrum Nordrhein-Westfalen, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Christian Sohns
- Clinics for Electrophysiology, Herz- und Diabeteszentrum Nordrhein-Westfalen, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Thomas Fink
- Clinics for Electrophysiology, Herz- und Diabeteszentrum Nordrhein-Westfalen, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| |
Collapse
|
7
|
Liu J, Guan W, Guo J, Li X, Xia Y, Niu G, Yao Y. Optimization of superior vena cava isolation with aid of ablation index guidance. J Cardiovasc Electrophysiol 2023; 34:1820-1827. [PMID: 37493500 DOI: 10.1111/jce.16006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/27/2023]
Abstract
INTRODUCTION To investigate the optimal range of quantitative ablation index (AI) value during superior vena cava (SVC) electrical isolation by radiofrequency catheter ablation (RFCA). METHODS First, in a development cohort of patients with atrial fibrillation (AF), the RFCA with 40 W was performed to complete SVC isolation guided by the conduction breakthrough point from the right atrium to SVC. Then, the range of AI value was calculated by offline analysis on different segments of SVC. Lastly, for the validation of AF patients, the safety and effectiveness of SVC isolation with the optimized target range of AI value were evaluated with an additional adenosine test. RESULTS A total of 101 patients with AF were included in the study (44 patients in the development cohort/57 in the validation cohort). The segmental ablation strategy was applied in 70% of the patients. According to the offline analysis of the AI values in the development cohort, the target AI value range was set as 350-400. The success rate of SVC isolation in the validation cohort was significantly higher than that in the exploration cohort (100% vs. 90.9%, p = .02), and no complications occurred in the exploration cohort. During the adenosine test, the recovery rate of electrical conduction in SVC was significantly lower than that in the pulmonary vein (3.5% vs. 17.5%). CONCLUSION The target AI value with a range from 350 to 400 is safe and effective for high-power RFCA to complete SVC isolation.
Collapse
Affiliation(s)
- Jun Liu
- Center for Arrhythmia Diagnosis and Treatment, Fu Wai Hospital, PUMC & CAMS, Beijing, China
| | - Wenchi Guan
- Center for Arrhythmia Diagnosis and Treatment, Fu Wai Hospital, PUMC & CAMS, Beijing, China
| | - Jinrui Guo
- Department of Cardiac Arrhythmia, Fuwai Yunnan Cardiovascular Hospital, Kunming Medical University, Kunming, China
| | - Xiaofeng Li
- Center for Arrhythmia Diagnosis and Treatment, Fu Wai Hospital, PUMC & CAMS, Beijing, China
| | - Yu Xia
- Center for Arrhythmia Diagnosis and Treatment, Fu Wai Hospital, PUMC & CAMS, Beijing, China
| | - Guodong Niu
- Department of Cardiac Arrhythmia, Fuwai Yunnan Cardiovascular Hospital, Kunming Medical University, Kunming, China
| | - Yan Yao
- Center for Arrhythmia Diagnosis and Treatment, Fu Wai Hospital, PUMC & CAMS, Beijing, China
| |
Collapse
|
8
|
Boersma L, Andrade JG, Betts T, Duytschaever M, Pürerfellner H, Santoro F, Tzeis S, Verma A. Progress in atrial fibrillation ablation during 25 years of Europace journal. Europace 2023; 25:euad244. [PMID: 37622592 PMCID: PMC10451004 DOI: 10.1093/europace/euad244] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
The first edition of Europace journal in 1999 came right around the time of the landmark publication of the electrophysiologists from Bordeaux, establishing how elimination of ectopic activity from the pulmonary veins (PVs) resulted in a marked reduction of atrial fibrillation (AF). The past 25 years have seen an incredible surge in scientific interest to develop new catheters and energy sources to optimize durability and safety of ablation, as well as study the mechanisms for AF and devise ablation strategies. While ablation in the beginning was performed with classic 4 mm tip catheters that emitted radiofrequency (RF) energy to create tissue lesions, this evolved to using irrigation and contact force (CF) measurement while increasing power. Also, so-called single-shot devices were developed with balloons and arrays to create larger contiguous lesions, and energy sources changed from RF current to cryogenic ablation and more recently pulsed field ablation with electrical current. Although PV ablation has remained the basis for every AF ablation, it was soon recognized that this was not enough to cure all patients, especially those with non-paroxysmal AF. Standardized approaches for additional ablation targets have been used but have not been satisfactory in all patients so far. This led to highly technical mapping systems that are meant to unravel the drivers for the maintenance of AF. In the following sections, the development of energies, strategies, and tools is described with a focus on the contribution of Europace to publish the outcomes of studies that were done during the past 25 years.
Collapse
Affiliation(s)
- Lucas Boersma
- Cardiology Department, St. Antonius Hospital Nieuwegein/Amsterdam University Medical Center, PO 2500, 3430 EM Nieuwegein, The Netherlands
| | - Jason G Andrade
- Department of Medicine, University of British Columbia, Vancouver, Canada
- Cardiology Department, Center for Cardiovascular Innovation, Vancouver, Canada
- Montreal Heart Institute, Department of Medicine, Université de Montréal, Montreal, Canada
| | - Tim Betts
- Department of Cardiology, Oxford University, Oxford, UK
| | | | | | - Francesco Santoro
- Department of Medical and Surgery Sciences, University of Foggia, Foggia, Italy
| | - Stylianos Tzeis
- Cardiology Department, Mitera Hospital, Hygeia Group, Athens, Greece
| | - Atul Verma
- Cardiology Department, McGill University Health Center, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Braun M, Bergau L, Fink T, Sciacca V, El Hamriti M, Sommer P, Sohns C. Scar formation following temperature-guided atrial fibrillation ablation: An in vivo assessment. Pacing Clin Electrophysiol 2023; 46:201-202. [PMID: 36448731 DOI: 10.1111/pace.14638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/16/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022]
Affiliation(s)
- Martin Braun
- Clinic for Electrophysiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Leonard Bergau
- Clinic for Electrophysiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Thomas Fink
- Clinic for Electrophysiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Vanessa Sciacca
- Clinic for Electrophysiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Mustapha El Hamriti
- Clinic for Electrophysiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Philipp Sommer
- Clinic for Electrophysiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Christian Sohns
- Clinic for Electrophysiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| |
Collapse
|
10
|
Qiao Y, Zhao Z, Cai X, Guo Y, Fu M, Liu K, Guo J, Guo T, Niu G. Long-Term prognosis of radiofrequency catheter ablation for atrial fibrillation with different subtypes of heart failure in the era of ablation index guidance. Front Cardiovasc Med 2022; 9:922910. [PMID: 36204561 PMCID: PMC9530740 DOI: 10.3389/fcvm.2022.922910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background The long-term outcomes of ablation index (AI)-guided radiofrequency catheter ablation (RFCA) on atrial fibrillation (AF) and different subtypes of heart failure (HF) remain unknown. The aim of the study was to evaluate the long-term prognosis of AI-guided RFCA procedures in patients with AF and concomitant HF. Methods We retrospectively included consecutive patients with AF and HF who underwent the initial RFCA procedure with AI guidance from March 2018 to June 2021 in our institution. The patients were categorized into two groups: HF with preserved ejection fraction (HFpEF) group and HF with mid-range ejection fraction (HFmrEF) +HF with reduced ejection fraction (HFrEF) group. Results A total of 101 patients were included. HFpEF and HFmrEF + HFrEF groups consisted of 71 (70.3%) and 30 patients (29.7%), respectively. During a median follow-up of 32.0 (18.2, 37.6) months, no significant difference was detected in AF recurrence between groups (21.1 vs. 33.3%) after multiple procedures, whereas the incidence of the composite endpoint of all-cause death, thromboembolic events, and HF hospitalization was significantly lower in HFpEF group (9.9 vs. 25.0%, Log-rank p = 0.018). In multivariable analysis, a history of hypertension [hazard ratio (HR) 4.667, 95% confidence interval (CI) 1.433–15.203, p = 0.011], left ventricular ejection fraction (LVEF) < 50% (HR 5.390, 95% CI 1.911–15.203, p = 0.001) and recurrent AF after multiple procedures (HR 7.542, 95% CI 2.355–24.148, p = 0.001) were independently associated with the incidence of the composite endpoint. Conclusion Long-term success could be achieved in 75% of patients with AF and concomitant HF after AI-guided RFCA procedures, irrespective of different HF subtypes. Preserved LVEF was associated with a reduction in the composite endpoint compared with impaired LVEF. Patients with recurrent AF tend to have a poorer prognosis.
Collapse
Affiliation(s)
- Yu Qiao
- Department of Cardiac Arrhythmia, Fuwai Yunnan Cardiovascular Hospital, Kunming Medical University, Kunming, China
| | - Zhen Zhao
- Department of Cardiac Arrhythmia, Fuwai Yunnan Cardiovascular Hospital, Kunming Medical University, Kunming, China
| | - Xiang Cai
- Department of Cardiac Arrhythmia, Fuwai Yunnan Cardiovascular Hospital, Kunming Medical University, Kunming, China
| | - Yulong Guo
- Department of Cardiac Arrhythmia, Fuwai Yunnan Cardiovascular Hospital, Kunming Medical University, Kunming, China
| | - Mingpeng Fu
- Department of Cardiac Arrhythmia, Fuwai Yunnan Cardiovascular Hospital, Kunming Medical University, Kunming, China
| | - Ke Liu
- Department of Cardiac Arrhythmia, Fuwai Yunnan Cardiovascular Hospital, Kunming Medical University, Kunming, China
| | - Jinrui Guo
- Department of Cardiac Arrhythmia, Fuwai Yunnan Cardiovascular Hospital, Kunming Medical University, Kunming, China
| | - Tao Guo
- Department of Cardiac Arrhythmia, Fuwai Yunnan Cardiovascular Hospital, Kunming Medical University, Kunming, China
| | - Guodong Niu
- State Key Laboratory of Cardiovascular Disease, Cardiac Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Guodong Niu
| |
Collapse
|
11
|
O’Neill L, Sim I, O’Hare D, Whitaker J, Mukherjee RK, Razeghi O, Niederer S, Wright M, Chiribiri A, Frigiola A, O’Neill MD, Williams SE. CArdiac MagnEtic resonance assessment of bi-Atrial fibrosis in secundum atrial septal defects patients: CAMERA-ASD study. Eur Heart J Cardiovasc Imaging 2022; 23:1231-1239. [PMID: 34568942 PMCID: PMC9365304 DOI: 10.1093/ehjci/jeab188] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Indexed: 12/25/2022] Open
Abstract
AIMS Atrial septal defects (ASD) are associated with atrial arrhythmias, but the arrhythmia substrate in these patients is poorly defined. We hypothesized that bi-atrial fibrosis is present and that right atrial fibrosis is associated with atrial arrhythmias in ASD patients. We aimed to evaluate the extent of bi-atrial fibrosis in ASD patients and to investigate the relationships between bi-atrial fibrosis, atrial arrhythmias, shunt fraction, and age. METHODS AND RESULTS Patients with uncorrected secundum ASDs (n = 36; 50.4 ± 13.6 years) underwent cardiac magnetic resonance imaging with atrial late gadolinium enhancement. Comparison was made to non-congenital heart disease patients (n = 36; 60.3 ± 10.5 years) with paroxysmal atrial fibrillation (AF). Cardiac magnetic resonance parameters associated with atrial arrhythmias were identified and the relationship between bi-atrial structure, age, and shunt fraction studied. Bi-atrial fibrosis burden was greater in ASD patients than paroxysmal AF patients (20.7 ± 14% vs. 10.1 ± 8.6% and 14.8 ± 8.5% vs. 8.6 ± 6.1% for right and left atria respectively, P = 0.001 for both). In ASD patients, right atrial fibrosis burden was greater in those with than without atrial arrhythmias (33.4 ± 18.7% vs. 16.8 ± 10.3%, P = 0.034). On receiver operating characteristic analysis, a right atrial fibrosis burden of 32% had a 92% specificity and 71% sensitivity for predicting the presence of atrial arrhythmias. Neither age nor shunt fraction was associated with bi-atrial fibrosis burden. CONCLUSION Bi-atrial fibrosis burden is greater in ASD patients than non-congenital heart disease patients with paroxysmal AF. Right atrial fibrosis is associated with the presence of atrial arrhythmias in ASD patients. These findings highlight the importance of right atrial fibrosis to atrial arrhythmogenesis in ASD patients.
Collapse
Affiliation(s)
- Louisa O’Neill
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, 4th Floor North, Wing, St. Thomas’, Hospital, London SE1 7EH, UK
| | - Iain Sim
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, 4th Floor North, Wing, St. Thomas’, Hospital, London SE1 7EH, UK
| | - Daniel O’Hare
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, 4th Floor North, Wing, St. Thomas’, Hospital, London SE1 7EH, UK
| | - John Whitaker
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, 4th Floor North, Wing, St. Thomas’, Hospital, London SE1 7EH, UK
| | - Rahul K Mukherjee
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, 4th Floor North, Wing, St. Thomas’, Hospital, London SE1 7EH, UK
| | - Orod Razeghi
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, 4th Floor North, Wing, St. Thomas’, Hospital, London SE1 7EH, UK
| | - Steven Niederer
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, 4th Floor North, Wing, St. Thomas’, Hospital, London SE1 7EH, UK
| | - Matthew Wright
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, 4th Floor North, Wing, St. Thomas’, Hospital, London SE1 7EH, UK
| | - Amedeo Chiribiri
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, 4th Floor North, Wing, St. Thomas’, Hospital, London SE1 7EH, UK
| | | | - Mark D O’Neill
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, 4th Floor North, Wing, St. Thomas’, Hospital, London SE1 7EH, UK
| | - Steven E Williams
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, 4th Floor North, Wing, St. Thomas’, Hospital, London SE1 7EH, UK
| |
Collapse
|
12
|
Mulder MJ, Kemme MJB, Allaart CP. Radiofrequency ablation to achieve durable pulmonary vein isolation. Europace 2021; 24:874-886. [PMID: 34964469 DOI: 10.1093/europace/euab279] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Indexed: 11/13/2022] Open
Abstract
Pulmonary vein isolation (PVI) by radiofrequency (RF) ablation is an important alternative to antiarrhythmic drugs in the treatment of symptomatic atrial fibrillation. However, the inability to consistently achieve durable isolation of the pulmonary veins hampers the long-term efficacy of PVI procedures. The large number of factors involved in RF lesion formation and the complex interplay of these factors complicate reliable creation of durable and transmural ablation lesions. Various surrogate markers of ablation lesion formation have been proposed that may provide information on RF lesion completeness. Real-time assessment of these surrogates may aid in the creation of transmural ablation lesions, and therefore, holds potential to decrease the risk of PV reconnection and consequent post-PVI arrhythmia recurrence. Moreover, titration of energy delivery until lesions is transmural may prevent unnecessary ablation and subsequent adverse events. Whereas several surrogate markers of ablation lesion formation have been described over the past decades, a 'gold standard' is currently lacking. This review provides a state-of-the-art overview of ablation strategies that aim to enhance durability of RF-PVI, with special focus on real-time available surrogates of RF lesion formation in light of the biophysical basis of RF ablation.
Collapse
Affiliation(s)
- Mark J Mulder
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Michiel J B Kemme
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Cornelis P Allaart
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
13
|
Roney CH, Sillett C, Whitaker J, Lemus JAS, Sim I, Kotadia I, O'Neill M, Williams SE, Niederer SA. Applications of multimodality imaging for left atrial catheter ablation. Eur Heart J Cardiovasc Imaging 2021; 23:31-41. [PMID: 34747450 PMCID: PMC8685603 DOI: 10.1093/ehjci/jeab205] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Atrial arrhythmias, including atrial fibrillation and atrial flutter, may be treated through catheter ablation. The process of atrial arrhythmia catheter ablation, which includes patient selection, pre-procedural planning, intra-procedural guidance, and post-procedural assessment, is typically characterized by the use of several imaging modalities to sequentially inform key clinical decisions. Increasingly, advanced imaging modalities are processed via specialized image analysis techniques and combined with intra-procedural electrical measurements to inform treatment approaches. Here, we review the use of multimodality imaging for left atrial ablation procedures. The article first outlines how imaging modalities are routinely used in the peri-ablation period. We then describe how advanced imaging techniques may inform patient selection for ablation and ablation targets themselves. Ongoing research directions for improving catheter ablation outcomes by using imaging combined with advanced analyses for personalization of ablation targets are discussed, together with approaches for their integration in the standard clinical environment. Finally, we describe future research areas with the potential to improve catheter ablation outcomes.
Collapse
Affiliation(s)
- Caroline H Roney
- School of Biomedical Engineering and Imaging Sciences, King's College, London, UK
| | - Charles Sillett
- School of Biomedical Engineering and Imaging Sciences, King's College, London, UK
| | - John Whitaker
- School of Biomedical Engineering and Imaging Sciences, King's College, London, UK
| | | | - Iain Sim
- School of Biomedical Engineering and Imaging Sciences, King's College, London, UK
| | - Irum Kotadia
- School of Biomedical Engineering and Imaging Sciences, King's College, London, UK
| | - Mark O'Neill
- School of Biomedical Engineering and Imaging Sciences, King's College, London, UK
| | - Steven E Williams
- School of Biomedical Engineering and Imaging Sciences, King's College, London, UK
- Centre for Cardiovascular Science, The University of Edinburgh, Scotland, UK
| | - Steven A Niederer
- School of Biomedical Engineering and Imaging Sciences, King's College, London, UK
| |
Collapse
|
14
|
Williams SE, Roney CH, Connolly A, Sim I, Whitaker J, O’Hare D, Kotadia I, O’Neill L, Corrado C, Bishop M, Niederer SA, Wright M, O’Neill M, Linton NWF. OpenEP: A Cross-Platform Electroanatomic Mapping Data Format and Analysis Platform for Electrophysiology Research. Front Physiol 2021; 12:646023. [PMID: 33716795 PMCID: PMC7952326 DOI: 10.3389/fphys.2021.646023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/29/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Electroanatomic mapping systems are used to support electrophysiology research. Data exported from these systems is stored in proprietary formats which are challenging to access and storage-space inefficient. No previous work has made available an open-source platform for parsing and interrogating this data in a standardized format. We therefore sought to develop a standardized, open-source data structure and associated computer code to store electroanatomic mapping data in a space-efficient and easily accessible manner. METHODS A data structure was defined capturing the available anatomic and electrical data. OpenEP, implemented in MATLAB, was developed to parse and interrogate this data. Functions are provided for analysis of chamber geometry, activation mapping, conduction velocity mapping, voltage mapping, ablation sites, and electrograms as well as visualization and input/output functions. Performance benchmarking for data import and storage was performed. Data import and analysis validation was performed for chamber geometry, activation mapping, voltage mapping and ablation representation. Finally, systematic analysis of electrophysiology literature was performed to determine the suitability of OpenEP for contemporary electrophysiology research. RESULTS The average time to parse clinical datasets was 400 ± 162 s per patient. OpenEP data was two orders of magnitude smaller than compressed clinical data (OpenEP: 20.5 ± 8.7 Mb, vs clinical: 1.46 ± 0.77 Gb). OpenEP-derived geometry metrics were correlated with the same clinical metrics (Area: R 2 = 0.7726, P < 0.0001; Volume: R 2 = 0.5179, P < 0.0001). Investigating the cause of systematic bias in these correlations revealed OpenEP to outperform the clinical platform in recovering accurate values. Both activation and voltage mapping data created with OpenEP were correlated with clinical values (mean voltage R 2 = 0.8708, P < 0.001; local activation time R 2 = 0.8892, P < 0.0001). OpenEP provides the processing necessary for 87 of 92 qualitatively assessed analysis techniques (95%) and 119 of 136 quantitatively assessed analysis techniques (88%) in a contemporary cohort of mapping studies. CONCLUSIONS We present the OpenEP framework for evaluating electroanatomic mapping data. OpenEP provides the core functionality necessary to conduct electroanatomic mapping research. We demonstrate that OpenEP is both space-efficient and accurately representative of the original data. We show that OpenEP captures the majority of data required for contemporary electroanatomic mapping-based electrophysiology research and propose a roadmap for future development.
Collapse
Affiliation(s)
- Steven E. Williams
- King’s College London, London, United Kingdom
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, United Kingdom
| | | | - Adam Connolly
- King’s College London, London, United Kingdom
- Invicro, Ltd., London, United Kingdom
| | - Iain Sim
- King’s College London, London, United Kingdom
| | | | | | | | | | | | | | | | - Matt Wright
- King’s College London, London, United Kingdom
- Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Mark O’Neill
- King’s College London, London, United Kingdom
- Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | | |
Collapse
|
15
|
O'Neill MD, Williams SE. Intentions and consequences: Power applied and current delivered during radiofrequency ablation. J Cardiovasc Electrophysiol 2020; 31:2846-2847. [PMID: 32762061 DOI: 10.1111/jce.14706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Mark D O'Neill
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
- Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Steven E Williams
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
- Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
16
|
Razeghi O, Solís-Lemus JA, Lee AW, Karim R, Corrado C, Roney CH, de Vecchi A, Niederer SA. CemrgApp: An interactive medical imaging application with image processing, computer vision, and machine learning toolkits for cardiovascular research. SOFTWAREX 2020; 12:100570. [PMID: 34124331 PMCID: PMC7610963 DOI: 10.1016/j.softx.2020.100570] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Personalised medicine is based on the principle that each body is unique and will respond to therapies differently. In cardiology, characterising patient specific cardiovascular properties would help in personalising care. One promising approach for characterising these properties relies on performing computational analysis of multimodal imaging data. An interactive cardiac imaging environment, which can seamlessly render, manipulate, derive calculations, and otherwise prototype research activities, is therefore sought-after. We developed the Cardiac Electro-Mechanics Research Group Application (CemrgApp) as a platform with custom image processing and computer vision toolkits for applying statistical, machine learning and simulation approaches to study physiology, pathology, diagnosis and treatment of the cardiovascular system. CemrgApp provides an integrated environment, where cardiac data visualisation and workflow prototyping are presented through a common graphical user interface.
Collapse
|