1
|
Di Leto Y, Mineo A, Capri FC, Gallo G, Mannina G, Alduina R. The effects of headspace volume reactor on the microbial community structure during fermentation processes for volatile fatty acid production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:61781-61794. [PMID: 39441512 DOI: 10.1007/s11356-024-35389-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
The transition from traditional wastewater treatment plants to biorefineries represents an environmentally and economically sustainable approach to extracting valuable compounds from waste. Sewage sludge produced from wastewater treatment is incinerated or disposed of in specific landfills. Repurposing this waste material to recover valuable resources could help lower disposal costs and reduce environmental impact by producing other beneficial polymers. Microorganisms present in the sewage sludge can ferment organic pollutants, producing volatile fatty acids (VFA), precursors for biopolymers that could be used as an alternative to petroleum-derived plastics. To boost VFA production during sewage sludge fermentation, it is necessary to understand the operating microbial community and its metabolic capacities in anaerobic conditions. This study presents the influence of the headspace volume on the microbial community and the VFA production to define the best operational parameters in a 225 L pilot plant fermenter. The wasted sewage sludge was withdrawn from an oxic-settling-anaerobic plant that collected wastewater from the canteen and dormitory of the UNIPA Campus (Palermo University, Italy) and incubated using a 40% and a 60% headspace volume. The microbial community was analysed before and after the fermentation process through metataxonomic analysis, and VFA yields were determined by gas chromatography analysis. Our results showed that the 40% headspace volume induced a tenfold higher VFA production than the 60% headspace volume, modulating the microbial community's efforts to establish a VFA-producing factory. Notably, at 40% headspace, the relative abundance of bacteria, like Proteobacteria, Firmicutes, Actinobacteria, and Chloroflexi, significantly increased, as well as the relative abundance of Bacteroidetes and Verrucomicrobia decreased during the fermentation process. This result is consistent with the selection of efficient VFA-producing bacteria that lead to increased VFA yields that are not obtained at 60% headspace. Thus, reducing headspace is a promising strategy that can be implemented, even in full-scale plants, to optimise the wastewater reuse process and maximise VFA production to produce bioplastics, like polyhydroxyalkanoate, for the transition from linear wastewater treatment plants to circular biorefineries.
Collapse
Affiliation(s)
- Ylenia Di Leto
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale Delle Scienze, Bldg. 16, 90128, Palermo, Italy
| | - Antonio Mineo
- Engineering Department, University of Palermo, Viale Delle Scienze, Bldg. 8, 90128, Palermo, Italy
| | - Fanny Claire Capri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale Delle Scienze, Bldg. 16, 90128, Palermo, Italy
| | - Giuseppe Gallo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale Delle Scienze, Bldg. 16, 90128, Palermo, Italy
- NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy
| | - Giorgio Mannina
- Engineering Department, University of Palermo, Viale Delle Scienze, Bldg. 8, 90128, Palermo, Italy
| | - Rosa Alduina
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale Delle Scienze, Bldg. 16, 90128, Palermo, Italy.
- NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy.
| |
Collapse
|
2
|
Yu D, Ryu K, Zhi S, Otto SJG, Neumann NF. Naturalized Escherichia coli in Wastewater and the Co-evolution of Bacterial Resistance to Water Treatment and Antibiotics. Front Microbiol 2022; 13:810312. [PMID: 35707173 PMCID: PMC9189398 DOI: 10.3389/fmicb.2022.810312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/09/2022] [Indexed: 12/30/2022] Open
Abstract
Antibiotic resistance represents one of the most pressing concerns facing public health today. While the current antibiotic resistance crisis has been driven primarily by the anthropogenic overuse of antibiotics in human and animal health, recent efforts have revealed several important environmental dimensions underlying this public health issue. Antibiotic resistant (AR) microbes, AR genes, and antibiotics have all been found widespread in natural environments, reflecting the ancient origins of this phenomenon. In addition, modern societal advancements in sanitation engineering (i.e., sewage treatment) have also contributed to the dissemination of resistance, and concerningly, may also be promoting the evolution of resistance to water treatment. This is reflected in the recent characterization of naturalized wastewater strains of Escherichia coli-strains that appear to be adapted to live in wastewater (and meat packing plants). These strains carry a plethora of stress-resistance genes against common treatment processes, such as chlorination, heat, UV light, and advanced oxidation, mechanisms which potentially facilitate their survival during sewage treatment. These strains also carry an abundance of common antibiotic resistance genes, and evidence suggests that resistance to some antibiotics is linked to resistance to treatment (e.g., tetracycline resistance and chlorine resistance). As such, these naturalized E. coli populations may be co-evolving resistance against both antibiotics and water treatment. Recently, extraintestinal pathogenic strains of E. coli (ExPEC) have also been shown to exhibit phenotypic resistance to water treatment, seemingly associated with the presence of various shared genetic elements with naturalized wastewater E. coli. Consequently, some pathogenic microbes may also be evolving resistance to the two most important public health interventions for controlling infectious disease in modern society-antibiotic therapy and water treatment.
Collapse
Affiliation(s)
- Daniel Yu
- School of Public Health, University of Alberta, Edmonton, AB, Canada
- Antimicrobial Resistance – One Health Consortium, Calgary, AB, Canada
| | - Kanghee Ryu
- School of Public Health, University of Alberta, Edmonton, AB, Canada
- Antimicrobial Resistance – One Health Consortium, Calgary, AB, Canada
| | - Shuai Zhi
- School of Medicine, Ningbo University, Ningbo, China
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Simon J. G. Otto
- School of Public Health, University of Alberta, Edmonton, AB, Canada
- Antimicrobial Resistance – One Health Consortium, Calgary, AB, Canada
- Human-Environment-Animal Transdisciplinary Antimicrobial Resistance Research Group, School of Public Health, University of Alberta, Edmonton, AB, Canada
- Healthy Environments, Centre for Health Communities, School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Norman F. Neumann
- School of Public Health, University of Alberta, Edmonton, AB, Canada
- Antimicrobial Resistance – One Health Consortium, Calgary, AB, Canada
| |
Collapse
|
3
|
Improving the Treatment Performance of Low Impact Development Practices—Comparison of Sand and Bioretention Soil Mixtures Using Column Experiments. WATER 2021. [DOI: 10.3390/w13091210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Low impact development (LID) practices, such as bioretention and sand filter basins, are stormwater control measures designed to mitigate the adverse impacts of urbanization on stormwater. LID treatment performance is highly dependent on the media characteristics. The literature suggests that bioretention media often leach nutrients in the stormwater effluent. The objective of this study was to analyze the treatment performance of different sand and bioretention soil mixtures. Specifically, this investigation aimed to answer whether the use of limestone and recycled glass could improve the treatment performance of bioretention systems. Column experiments were designed to assess (1) the removal efficiencies of different sand and bioretention soil mixtures and (2) the impact of plant uptake on removal rates. Enhanced pollutant removal was observed for the custom blends with addition of limestone sand, indicating mean dissolved and total phosphorus removal of 44.5% and 32.6% respectively, while the conventional bioretention soil mixtures leached phosphorus. Moreover, improved treatment of dissolved and total copper was achieved with mean removal rates of 70.7% and 93.4%, respectively. The results suggest that the nutrient effluent concentration decreased with the addition of plants, with mean phosphorus removal of 72.4%, and mean nitrogen removal of 22% for the limestone blend.
Collapse
|
4
|
Zhang T, Fukuda K, Topp E, Zhu YG, Smalla K, Tiedje JM, Larsson DGJ. Editorial: The Environmental Dimension of Antibiotic Resistance. FEMS Microbiol Ecol 2020; 96:5871492. [DOI: 10.1093/femsec/fiaa130] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 01/10/2023] Open
Affiliation(s)
- Tong Zhang
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Keiji Fukuda
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Edward Topp
- Agriculture and Agri-Food Canada, Department of Biology, University of Western Ontario, London, Canada
| | - Yong-Guan Zhu
- Institute of Urban Environmenta, Chinese Academy of Science, Xiamen, China
| | - Kornelia Smalla
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - James M Tiedje
- The Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, USA
| | - D G Joakim Larsson
- Department of Infectious Disease, Centre for Antibiotic Resistance Research, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|